JP2009185390A - Method for producing metal nanoparticle, metal fine wire, metal film, and method for forming the same - Google Patents

Method for producing metal nanoparticle, metal fine wire, metal film, and method for forming the same Download PDF

Info

Publication number
JP2009185390A
JP2009185390A JP2009115043A JP2009115043A JP2009185390A JP 2009185390 A JP2009185390 A JP 2009185390A JP 2009115043 A JP2009115043 A JP 2009115043A JP 2009115043 A JP2009115043 A JP 2009115043A JP 2009185390 A JP2009185390 A JP 2009185390A
Authority
JP
Japan
Prior art keywords
metal
acid
liquid
organometallic compound
reduction treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009115043A
Other languages
Japanese (ja)
Inventor
Tsutomu Atsugi
勉 厚木
Masaaki Oda
正明 小田
Toshiharu Hayashi
年治 林
Reiko Kiyoshima
礼子 清嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Ulvac Inc
Mitsubishi Materials Electronic Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Mitsubishi Materials Electronic Chemicals Co Ltd filed Critical Ulvac Inc
Priority to JP2009115043A priority Critical patent/JP2009185390A/en
Publication of JP2009185390A publication Critical patent/JP2009185390A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably producing a metal nanoparticle which can achieve practical conductivity by low temperature firing while achieving the increase in the concentration of metal, to provide a metal fine wire, to provide a metal film, and to provide a method for forming the same. <P>SOLUTION: Regarding the method for producing the metal nanoparticle where one selected from an organometallic compound of fatty acid, a metallic complex of aliphatic amine having a normal chain or branched structure and a mixture of the organometallic compound and the metallic complex is dissolved into a non-polar solvent, a reducing agent is added to the liquid, and reduction treatment is performed, so as to obtain a metal nanoparticle. Further, the reduction treatment is performed while introducing a hydrogen gas, a carbon monoxide gas, a hydrogen-containing gas or a carbon monoxide-containing gas into the liquid as well as the addition of the reducing agent, after the reduction treatment, deionized water is added to the inside of the liquid, the obtained mixture is stirred, and is next let to alone, so as to transit impurities present in the liquid to a polar solvent, and the concentration of the impurities in the non-polar solvent is reduced, so as to obtain a metal nanoparticle. The dispersed liquid of the metal nanoparticle is applied to a base material, after drying, firing is performed at low temperature, so as to obtain a metal fine wire or a metal film having conductivity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属ナノ粒子の製造方法、並びに金属細線及び金属膜及びその形成方法に関するものである。   The present invention relates to a method for producing metal nanoparticles, a fine metal wire and a metal film, and a method for forming the same.

従来、100nm以下の金属ナノ粒子からなる導電性金属ナノ粒子の製造方法としては、貴金属又は銅のイオンを還元することにより、貴金属又は銅のコロイドを得る方法が知られている(例えば、特許文献1参照)。また、アミノ基とカルボキシル基を少なくとも1個有する化合物を含有する金属コロイド液が知られている(例えば、特許文献2参照)。しかし、いずれの場合も、高濃度で安定した金属コロイドを作製することは困難である。   Conventionally, as a method for producing conductive metal nanoparticles composed of metal nanoparticles of 100 nm or less, a method of obtaining a noble metal or copper colloid by reducing noble metal or copper ions is known (for example, Patent Documents). 1). Further, a metal colloid solution containing a compound having at least one amino group and carboxyl group is known (see, for example, Patent Document 2). However, in any case, it is difficult to produce a stable metal colloid at a high concentration.

特開平11−319538号公報(特許請求の範囲)Japanese Patent Laid-Open No. 11-319538 (Claims) 特開2002−245854号公報(特許請求の範囲)JP 2002-245854 A (Claims)

電気電子工業の分野で用いられる配線の形成法では、近年、低温化が進んでいる。また、金属ナノ粒子を塗布・乾燥・焼成する基材としては、ガラス、ポリイミド等の種々のものが使用されており、これらの基材以外にも、最近では、ガラス上にTFT(薄膜トランジスタ)が搭載されている基板に対しても金属ナノ粒子を適用することがあり、成膜温度の低温化が要求されている。焼成温度は、その基材の性質にもよるが、低いものは200℃での焼成が要求されている。   In recent years, the temperature of a wiring forming method used in the field of electrical and electronic industries has been decreasing. In addition, various substrates such as glass and polyimide are used as a substrate on which metal nanoparticles are applied, dried, and fired. In addition to these substrates, TFTs (thin film transistors) have recently been formed on glass. Metal nanoparticles may also be applied to the mounted substrate, and there is a demand for lowering the film formation temperature. Although the firing temperature depends on the properties of the substrate, a low firing temperature is required to be fired at 200 ° C.

こうした状況の中、低温焼成で、しかもできるだけ塗布回数或いは成膜回数を少なくして所望の厚さを有する配線を形成したいという要求は強い。そのためには、低温焼成でも抵抗率が低い配線が得られ、しかも金属濃度が高い分散金属ナノ粒子を得ることが望まれている。従来、このような用途に用いられる金属ナノ粒子からなる膜を形成するには、低抵抗を実現できるが高温焼成が必要であったり、低温処理が可能であるが塗布回数が多くなる等の問題があった。また、塗布回数を少なくするために、塗布液の固形分濃度を何らかの方法で濃くしたとしも、得られた液が不安定になり、2次凝集を起こして金属粒子が沈降するという問題もあった。   Under such circumstances, there is a strong demand for forming a wiring having a desired thickness by low-temperature firing and by reducing the number of coatings or depositions as much as possible. For this purpose, it is desired to obtain a dispersed metal nanoparticle having a low resistivity and a high metal concentration even at low temperature firing. Conventionally, in order to form a film made of metal nanoparticles used in such applications, low resistance can be realized, but high temperature firing is necessary, low temperature treatment is possible, but the number of coatings is increased, etc. was there. In addition, even if the solid content concentration of the coating solution is increased by any method in order to reduce the number of coatings, there is a problem that the obtained solution becomes unstable and secondary aggregation occurs and the metal particles settle. It was.

本発明の課題は、上記従来技術の問題点を解決することにあり、塗布回数或いは成膜回数を低減できるように金属固形分の高濃度化を実現しつつ、しかも低温焼成処理によって十分な導電率を達成できる、安定した金属ナノ粒子の製造方法、並びに金属ナノ粒子分散液を用いて得られた金属細線及び金属膜及びその形成方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, and while realizing a high concentration of metal solids so that the number of times of coating or film formation can be reduced, sufficient conductivity can be achieved by low-temperature baking treatment. It is an object of the present invention to provide a stable method for producing metal nanoparticles, a metal fine wire and a metal film obtained using a metal nanoparticle dispersion, and a method for forming the same.

本発明の金属ナノ粒子の製造方法は、脂肪酸の有機金属化合物、直鎖若しくは分枝構造を有する脂肪族アミンの金属錯体、又は該有機金属化合物と該金属錯体との混合物の1種を非極性溶媒に溶解せしめ、この液に還元剤を添加して還元処理し、金属ナノ粒子を得る金属ナノ粒子の製造方法であって、さらに、該還元処理を、該還元剤を添加し、水素ガス、一酸化炭素ガス、水素含有ガス、又は一酸化炭素含有ガスを該液中に導入しながら行い、該還元処理の後、該液中に脱イオン水を添加し、得られた混合物を攪拌し、次いで静置して該液中に存在する不純物を極性溶媒に移行させ、該非極性溶媒中の不純物濃度を低減させることを特徴とする。   In the method for producing metal nanoparticles according to the present invention, one of a fatty acid organometallic compound, a metal complex of an aliphatic amine having a linear or branched structure, or a mixture of the organometallic compound and the metal complex is nonpolar. A method for producing metal nanoparticles, which is dissolved in a solvent, and a reducing agent is added to the liquid to perform a reduction treatment to obtain metal nanoparticles, and the reduction treatment is further performed by adding the reducing agent, hydrogen gas, Carbon monoxide gas, hydrogen-containing gas, or carbon monoxide-containing gas is introduced into the liquid, and after the reduction treatment, deionized water is added to the liquid, and the resulting mixture is stirred. Next, it is allowed to stand to transfer impurities present in the liquid to a polar solvent, thereby reducing the impurity concentration in the nonpolar solvent.

前記金属ナノ粒子の大きさが、1nm以上100nm以下であることを特徴とする。   The metal nanoparticles have a size of 1 nm to 100 nm.

前記得られた金属ナノ粒子を含む混合物を濃縮し、次いで該金属ナノ粒子を再分散して、金属ナノ粒子の濃度を5wt%以上90wt%以下にコントロールすることを特徴とする。   The mixture containing the obtained metal nanoparticles is concentrated, and then the metal nanoparticles are redispersed to control the concentration of the metal nanoparticles to 5 wt% or more and 90 wt% or less.

前記有機金属化合物が、分散剤として、各金属ナノ粒子の周囲に付着していること、そして該有機金属化合物が、脂肪酸の有機金属化合物、アミンの金属錯体、又は該脂肪酸の有機金属化合物と該アミンの金属錯体との混合物であることを特徴とする。   The organometallic compound is attached as a dispersant around each metal nanoparticle, and the organometallic compound is a fatty acid organometallic compound, an amine metal complex, or the fatty acid organometallic compound and the fatty acid. It is a mixture with a metal complex of an amine.

前記脂肪酸が、直鎖又は分枝構造を有するC〜C22の飽和脂肪酸及び不飽和脂肪酸から選ばれた少なくとも1種の脂肪酸であることを特徴とする。 The fatty acid is at least one fatty acid selected from C 6 to C 22 saturated fatty acids and unsaturated fatty acids having a linear or branched structure.

前記脂肪酸が、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、テトラデカン酸、エイコサン酸、ドコサン酸、2−エチルヘキサン酸、オレイン酸、リノール酸、リノレン酸から選ばれた少なくとも1種の脂肪酸であることを特徴とする。   The fatty acid is selected from hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, eicosanoic acid, docosanoic acid, 2-ethylhexanoic acid, oleic acid, linoleic acid, linolenic acid And at least one fatty acid.

前記アミンが、直鎖又は分枝構造を有する脂肪族アミンであることを特徴とする。   The amine is an aliphatic amine having a linear or branched structure.

前記アミンが、ヘキシルアミン、ヘプチルアミン、オクチルアミン、デシルアミン、ドデシルアミン、2−エチルヘキシルアミン、1,3−ジメチル−n−ブチルアミン、1−アミノウンデカン、1−アミノトリデカンから選ばれた少なくとも1種のアミンであることを特徴とする。   The amine is at least one selected from hexylamine, heptylamine, octylamine, decylamine, dodecylamine, 2-ethylhexylamine, 1,3-dimethyl-n-butylamine, 1-aminoundecane, and 1-aminotridecane. It is characterized by being an amine.

本発明の金属細線又は金属膜の形成方法は、直鎖若しくは分枝構造を有するC〜C22の飽和脂肪酸及び不飽和脂肪酸から選ばれた少なくとも1種の脂肪酸の有機金属化合物、直鎖若しくは分枝構造を有する脂肪族アミンの金属錯体、又は該有機金属化合物と該金属錯体との混合物を非極性溶媒に溶解せしめ、この液に還元剤を添加して還元処理し、金属ナノ粒子を得る際に、さらに、該還元処理を、該還元剤を添加し、水素ガス、一酸化炭素ガス、水素含有ガス、又は一酸化炭素含有ガスを該液中に導入しながら行い、該還元処理の後、該液中に脱イオン水を添加し、得られた混合物を攪拌し、次いで静置して該液中に存在する不純物を極性溶媒に移行させ、該非極性溶媒中の不純物濃度を低減させることによって製造された金属ナノ粒子含有分散液を基材表面に塗布し、次いで乾燥後に分散液の被覆層を焼成して導電性を有する金属細線又は金属膜を形成することを特徴とする。本発明の金属細線は、この金属細線の形成方法によって得られ、また、金属膜は前記金属膜の形成方法によって得られたものである。前記焼成の温度が、140〜300℃、好ましくは140〜220℃であることを特徴とする。 The method for forming a thin metal wire or a metal film of the present invention comprises an organic metal compound of at least one fatty acid selected from C 6 to C 22 saturated fatty acids and unsaturated fatty acids having a linear or branched structure, linear or A metal complex of an aliphatic amine having a branched structure or a mixture of the organometallic compound and the metal complex is dissolved in a nonpolar solvent, and a reducing agent is added to the solution to obtain a metal nanoparticle. In addition, the reduction treatment is further performed while adding the reducing agent and introducing hydrogen gas, carbon monoxide gas, hydrogen-containing gas, or carbon monoxide-containing gas into the liquid, and after the reduction treatment. Adding deionized water to the liquid, stirring the resulting mixture, and then allowing to stand to transfer impurities present in the liquid to a polar solvent, thereby reducing the concentration of impurities in the nonpolar solvent Metal nanomanufactured by Applying a child-containing dispersion on the substrate surface, then and forming a thin metal wire or a metal film having conductivity by firing the coating layer of the dispersion after drying. The fine metal wire of the present invention is obtained by the method for forming the fine metal wire, and the metal film is obtained by the method for forming the metal film. The firing temperature is 140 to 300 ° C, preferably 140 to 220 ° C.

本発明の金属細線又は金属膜の形成方法は、直鎖若しくは分枝構造を有するC〜C22の飽和脂肪酸及び不飽和脂肪酸から選ばれた少なくとも1種の脂肪酸の有機金属化合物、直鎖若しくは分枝構造を有する脂肪族アミンの金属錯体、又は該有機金属化合物と該金属錯体との混合物の1種を非極性溶媒に溶解せしめ、この液に還元剤を添加して還元処理し、金属ナノ粒子を得、次いでこの金属ナノ粒子を再分散して、金属ナノ粒子の濃度を5wt%以上90wt%以下にコントロールして金属ナノ粒子を得る際に、さらに、該還元処理を、還元剤を添加し、水素ガス、一酸化炭素ガス、水素含有ガス、又は一酸化炭素含有ガスを該液中に導入しながら行い、該還元処理の後、該液中に脱イオン水を添加し、得られた混合物を攪拌し、次いで静置して該液中に存在する不純物を極性溶媒に移行させ、該非極性溶媒中の不純物濃度を低減させることによって製造された金属ナノ粒子含有分散液を基材表面に塗布し、次いで乾燥後に分散液の被覆層を焼成して導電性を有する金属細線又は金属膜を形成することを特徴とする。本発明の金属細線は、この金属細線の形成方法によって得られ、また、金属膜はこの金属膜の形成方法によって得られたものである。前記焼成の温度が、140〜300℃、好ましくは140〜220℃であることを特徴とする。 The method for forming a thin metal wire or a metal film of the present invention comprises an organic metal compound of at least one fatty acid selected from C 6 to C 22 saturated fatty acids and unsaturated fatty acids having a linear or branched structure, linear or One kind of a metal complex of an aliphatic amine having a branched structure or a mixture of the organometallic compound and the metal complex is dissolved in a nonpolar solvent, and a reducing agent is added to the solution for reduction treatment. When particles are obtained and then the metal nanoparticles are redispersed to control the concentration of the metal nanoparticles to 5 wt% or more and 90 wt% or less to obtain metal nanoparticles, the reduction treatment is further performed by adding a reducing agent. Obtained by introducing hydrogen gas, carbon monoxide gas, hydrogen-containing gas, or carbon monoxide-containing gas into the liquid and adding deionized water to the liquid after the reduction treatment. Stir the mixture and then The metal nanoparticle-containing dispersion produced by allowing the impurities present in the liquid to migrate to a polar solvent and reducing the impurity concentration in the nonpolar solvent is applied to the substrate surface, and then dried. The coating layer of the dispersion is fired to form a conductive fine metal wire or metal film. The fine metal wire of the present invention is obtained by the method for forming the fine metal wire, and the metal film is obtained by the method for forming the metal film. The firing temperature is 140 to 300 ° C, preferably 140 to 220 ° C.

本発明の金属細線又は金属膜の形成方法はさらに、直鎖若しくは分枝構造を有するC〜C22の飽和脂肪酸及び不飽和脂肪酸から選ばれた少なくとも1種の脂肪酸の有機金属化合物、直鎖若しくは分枝構造を有する脂肪族アミンの金属錯体、又は該有機金属化合物と該金属錯体との混合物の1種を非極性溶媒に溶解せしめ、この液に還元剤を添加して還元処理し、金属ナノ粒子を得、次いで濃縮して得られた金属ナノ粒子を再度分散せしめて、5wt%以上90wt%以下の金属ナノ粒子濃度を有する金属ナノ粒子分散液を得る際に、さらに、該還元処理を、還元剤を添加し、水素ガス、一酸化炭素ガス、水素含有ガス、又は一酸化炭素含有ガスを該液中に導入しながら行い、該還元処理の後、該液中に脱イオン水を添加し、得られた混合物を攪拌し、次いで静置して該液中に存在する不純物を極性溶媒に移行させ、該非極性溶媒中の不純物濃度を低減させることによって製造された金属ナノ粒子含有分散液を基材表面に塗布し、次いで乾燥後に分散液の被覆層を焼成して導電性を有する金属細線又は金属膜を形成することを特徴とする。本発明の金属細線は、この金属細線の形成方法によって得られ、また、金属膜はこの金属膜の形成方法によって得られたものである。前記焼成の温度が、140〜300℃、好ましくは140〜220℃であることを特徴とする。 The method for forming a metal fine wire or metal film of the present invention further comprises an organometallic compound of at least one fatty acid selected from C 6 to C 22 saturated fatty acids and unsaturated fatty acids having a straight chain or branched structure, a straight chain Alternatively, a metal complex of an aliphatic amine having a branched structure, or one of a mixture of the organometallic compound and the metal complex is dissolved in a nonpolar solvent, and a reducing agent is added to the solution for reduction treatment. The metal nanoparticles obtained by obtaining and then concentrating the nanoparticles are dispersed again to obtain a metal nanoparticle dispersion having a metal nanoparticle concentration of 5 wt% or more and 90 wt% or less. Adding a reducing agent, introducing hydrogen gas, carbon monoxide gas, hydrogen-containing gas, or carbon monoxide-containing gas into the liquid, and adding deionized water to the liquid after the reduction treatment And the resulting blend The dispersion containing the metal nanoparticles produced by stirring the product and then allowing it to stand to transfer impurities present in the liquid to a polar solvent and reducing the impurity concentration in the nonpolar solvent is applied to the substrate surface. After coating, and then drying, the coating layer of the dispersion is baked to form a conductive fine metal wire or metal film. The fine metal wire of the present invention is obtained by the method for forming the fine metal wire, and the metal film is obtained by the method for forming the metal film. The firing temperature is 140 to 300 ° C, preferably 140 to 220 ° C.

前記金属ナノ粒子の製造方法により、各金属の周りに分散剤として有機金属化合物が付着している金属ナノ粒子が得られる。この有機金属化合物は、貴金属及び遷移金属から選ばれた少なくとも1種の金属又はこれらの金属の少なくとも2種からなる合金を含むものであり、有機金属化合物は、脂肪酸の有機金属化合物、アミンの金属錯体、脂肪酸の有機金属化合物とアミンの金属錯体との混合物であり、脂肪酸は、直鎖又は分枝構造を有するC〜C22の飽和脂肪酸及び不飽和脂肪酸から選ばれた少なくとも1種の脂肪酸であり、例えば、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、テトラデカン酸、エイコサン酸、ドコサン酸、2−エチルヘキサン酸、オレイン酸、リノール酸、リノレン酸から選ばれた少なくとも1種の脂肪酸である。また、アミンは、直鎖又は分枝構造を有するC〜C13の脂肪族アミンであり、例えば、ヘキシルアミン、ヘプチルアミン、オクチルアミン、デシルアミン、ドデシルアミン、2−エチルヘキシルアミン、1,3−ジメチル−n−ブチルアミン、1−アミノウンデカン、1−アミノトリデカンから選ばれた少なくとも1種のアミンである。 According to the method for producing metal nanoparticles, metal nanoparticles having an organometallic compound attached as a dispersant around each metal can be obtained. The organometallic compound includes at least one metal selected from precious metals and transition metals, or an alloy composed of at least two of these metals. The organometallic compound includes an organometallic compound of a fatty acid and an amine metal. A complex, a mixture of an organic metal compound of a fatty acid and a metal complex of an amine, wherein the fatty acid is at least one fatty acid selected from C 6 -C 22 saturated fatty acids and unsaturated fatty acids having a linear or branched structure For example, from hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, eicosanoic acid, docosanoic acid, 2-ethylhexanoic acid, oleic acid, linoleic acid, linolenic acid At least one fatty acid selected. The amine is a C 6 to C 13 aliphatic amine having a linear or branched structure. For example, hexylamine, heptylamine, octylamine, decylamine, dodecylamine, 2-ethylhexylamine, 1,3- It is at least one amine selected from dimethyl-n-butylamine, 1-aminoundecane, and 1-aminotridecane.

本発明によれば、高濃度の安定した金属ナノ粒子分散液を提供できるので、その塗布回数、成膜回数を低減できると共に、しかも220℃程度の低温での焼成処理によっても十分実用的な導電率を達成できる。   According to the present invention, a stable metal nanoparticle dispersion with a high concentration can be provided, so that the number of coating times and the number of film formations can be reduced. Rate can be achieved.

実施例5で作製した本発明の銀ナノ粒子のTOF−SIMS分析の結果を示すグラフ。The graph which shows the result of the TOF-SIMS analysis of the silver nanoparticle of this invention produced in Example 5. FIG.

本発明における金属ナノ粒子の構成金属は、Ag、Au、Cu、Pt、Pd、W、Ni、Ta、In、Sn、Zn、Cr、Fe、Co、及びSi等からなる群から選ばれた1種若しくは2種以上の金属又はこれら金属の少なくとも2種からなる合金であり、目的・用途に合わせて適宜選定すれば良く、これらの金属のうち、Ag、Au等の貴金属、及びCuから選ばれた少なくとも1種の金属、又はこれらの金属の少なくとも2種からなる合金が好ましい。還元剤由来のB、N、P等が混在してもかまわない。上記金属で構成された金属ナノ粒子は、この金属の周りに分散剤として有機金属化合物が付着している構造を有する。ここで言う「付着」とは、有機酸金属塩 、金属アミン錯体が金属イオンを介して金属粒子の表面に吸着することをいい、金属粒子が有機分散体に安定に分散するのを助けている状態にある。   The constituent metal of the metal nanoparticles in the present invention is selected from the group consisting of Ag, Au, Cu, Pt, Pd, W, Ni, Ta, In, Sn, Zn, Cr, Fe, Co, Si, and the like 1 It is a seed or two or more metals or an alloy composed of at least two of these metals, and may be appropriately selected according to the purpose and application. Among these metals, selected from noble metals such as Ag and Au, and Cu Further, at least one metal or an alloy composed of at least two of these metals is preferable. B, N, P, etc. derived from a reducing agent may be mixed. The metal nanoparticle comprised with the said metal has a structure where the organometallic compound has adhered as a dispersing agent around this metal. The term “adhesion” as used herein means that an organic acid metal salt or metal amine complex is adsorbed on the surface of metal particles via metal ions, and helps to stably disperse the metal particles in the organic dispersion. Is in a state.

上記有機金属化合物としての脂肪酸の有機金属化合物を構成する脂肪酸は、C〜C22の飽和脂肪酸及び不飽和脂肪酸から選ばれた少なくとも1種の脂肪酸であり、好ましくは、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、テトラデカン酸、エイコサン酸、ドコサン酸、2−エチルヘキサン酸、オレイン酸、リノール酸、リノレン酸から選ばれた少なくとも1種の脂肪酸である。
また、有機金属化合物としてのアミンの金属錯体を構成するアミンは、例えばアルキルアミンから選ばれた少なくとも1種であればよい。
The fatty acid constituting the organometallic compound of the fatty acid as the organometallic compound is at least one fatty acid selected from C 6 to C 22 saturated fatty acids and unsaturated fatty acids, preferably hexanoic acid, heptanoic acid, It is at least one fatty acid selected from octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, eicosanoic acid, docosanoic acid, 2-ethylhexanoic acid, oleic acid, linoleic acid, and linolenic acid.
Moreover, the amine which comprises the metal complex of the amine as an organometallic compound should just be at least 1 sort (s) chosen from the alkylamine, for example.

本発明で使用することのできるアルキルアミンとしては、特に限定されるわけではなく、第1〜3級アミンであっても、モノアミン、ジアミン、トリアミン等の多価アミンであっても良い。特に、炭素数4〜20の主骨格を持つアルキルアミンが好ましく、炭素数8〜18の主骨格を持つアルキルアミンが安定性、ハンドリング性の点からはさらに好ましい。また、全ての級数のアルキルアミンが分散剤として有効に働くが、第1級のアルキルアミンが安定性、ハンドリング性の点からは好適に用いられる。アルキルアミンの主鎖の炭素数が4より短いと、アミンの塩基性が強過ぎて金属ナノ粒子を腐食する傾向があり、最終的にはこのナノ粒子を溶かしてしまうという問題がある。また、アルキルアミンの主鎖の炭素数が20よりも長いと、金属ナノ分散液の濃度を高くしたときに、分散液の粘度が上昇してハンドリング性がやや劣るようになり、また、焼成後の金属細線や膜中に炭素が残留しやすくなって、比抵抗値が上昇するという問題がある。   The alkylamine that can be used in the present invention is not particularly limited, and may be a primary to tertiary amine or a polyvalent amine such as a monoamine, diamine, or triamine. In particular, an alkylamine having a main skeleton having 4 to 20 carbon atoms is preferable, and an alkylamine having a main skeleton having 8 to 18 carbon atoms is more preferable in terms of stability and handling properties. Moreover, although all series of alkylamines work effectively as a dispersant, primary alkylamines are preferably used from the viewpoints of stability and handling properties. When the number of carbon atoms in the main chain of the alkylamine is shorter than 4, there is a problem that the basicity of the amine is too strong and the metal nanoparticles tend to be corroded, and eventually the nanoparticles are dissolved. In addition, when the number of carbon atoms in the main chain of the alkylamine is longer than 20, when the concentration of the metal nano-dispersion is increased, the viscosity of the dispersion increases and the handling property becomes slightly inferior. There is a problem that carbon tends to remain in the fine metal wires and film, and the specific resistance value increases.

本発明で使用することができるアルキルアミンの具体例としては、例えば、ブチルアミン、ヘキシルアミン、オクチルアミン、ノニルアミン、ドデシルアミン、ヘクサドデシルアミン、オクタデシルアミン、ココアミン、タロウアミン、水素化タロウアミン、オレイルアミン、ラウリルアミン、及びステアリルアミンなどのような第1級アミン、ジココアミン、ジ水素化タロウアミン、及びジステアリルアミンなどのような第2級アミン、並びにドデシルジメチルアミン、ジドデシルモノメチルアミン、テトラデシルジメチルアミン、オクタデシルジメチルアミン、ココジメチルアミン、ドデシルテトラデシルジメチルアミン、及びトリオクチルアミンなどのような第3級アミンや、その他に、ナフタレンジアミン、ステアリルプロピレンジアミン、オクタメチレンジアミン、及びノナンジアミンなどのようなジアミンがある。これらのアミン中、ヘキシルアミン、ヘプチルアミン、オクチルアミン、デシルアミン、ドデシルアミン、2−エチルヘキシルアミン、1,3−ジメチル−n−ブチルアミン、1−アミノウンデカン、1−アミノトリデカンが好ましい。   Specific examples of alkylamines that can be used in the present invention include, for example, butylamine, hexylamine, octylamine, nonylamine, dodecylamine, hexadodecylamine, octadecylamine, cocoamine, tallowamine, hydrogenated tallowamine, oleylamine, laurylamine , And secondary amines such as stearylamine, etc., dicocoamine, dihydrogenated tallowamine, and distearylamine, and dodecyldimethylamine, didodecylmonomethylamine, tetradecyldimethylamine, octadecyldimethyl Tertiary amines such as amine, cocodimethylamine, dodecyltetradecyldimethylamine, and trioctylamine, as well as naphthalenediamine, stearylpropylene Min, there are diamines such as octamethylene diamine, and nonane diamine. Among these amines, hexylamine, heptylamine, octylamine, decylamine, dodecylamine, 2-ethylhexylamine, 1,3-dimethyl-n-butylamine, 1-aminoundecane, and 1-aminotridecane are preferable.

本発明によれば、金属ナノ粒子を含んだ分散液中のアルキルアミンの含有量は、金属ナノ粒子金属重量基準で、0.1重量%以上10重量%以下、望ましくは1重量%以上5重量%以下である。0.1重量%未満では、脂肪酸金属化合物同士が結合しあい増粘作用が現れ、還元後の分散性が悪くなり、一方10重量%を超えると、窒素と金属との強固な結合による効果が出始め、焼成熱分解過程においても窒素が取りきれずに低温焼成特性の妨げになる。   According to the present invention, the content of the alkylamine in the dispersion containing the metal nanoparticles is 0.1 wt% or more and 10 wt% or less, preferably 1 wt% or more and 5 wt%, based on the metal weight of the metal nanoparticles. % Or less. If the amount is less than 0.1% by weight, the fatty acid metal compounds are bonded to each other and a thickening action appears, resulting in poor dispersibility after reduction. First, nitrogen cannot be completely removed even during the pyrolysis process, which hinders low-temperature firing characteristics.

本発明によれば、上記有機金属化合物はまた、任意の割合の脂肪酸の有機金属化合物とアミン金属錯体との混合物であってもよい。
本発明の金属ナノ粒子の製造方法によれば、脂肪酸の有機金属化合物及び/又はアミンの金属錯体を非極性溶媒に溶解せしめ、この液に還元剤を添加して還元処理し、金属ナノ粒子を得る。
According to the present invention, the organometallic compound may also be a mixture of an organometallic compound of fatty acid in any proportion and an amine metal complex.
According to the method for producing metal nanoparticles of the present invention, the organometallic compound of fatty acid and / or the metal complex of amine is dissolved in a nonpolar solvent, a reducing agent is added to this solution, and the reduction treatment is performed. obtain.

上記還元剤としては、例えば、水素化ホウ素ナトリウム、ジメチルアミンボラン、ターシャリーブチルアミンボラン等を用いることが好ましい。還元剤としては、これらに限定されるわけではなく、同じ還元作用を有するものであれば、公知の他の還元剤を用いてもよい。この還元反応は、反応系にさらに水素ガス、一酸化炭素ガス、水素含有ガス、一酸化炭素含有ガスを導入することにより行われることが好ましい。
上記還元処理は、攪拌処理中にバブリングを行い、室温或いは加熱還流下のような条件下で行われる。
As the reducing agent, for example, sodium borohydride, dimethylamine borane, tertiary butylamine borane and the like are preferably used. The reducing agent is not limited to these, and other known reducing agents may be used as long as they have the same reducing action. This reduction reaction is preferably carried out by further introducing hydrogen gas, carbon monoxide gas, hydrogen-containing gas, or carbon monoxide-containing gas into the reaction system.
The reduction treatment is performed under conditions such as bubbling during the stirring treatment and at room temperature or under reflux with heating.

上記したように、非極性溶媒中で還元処理して金属コロイドを形成するが、反応液中には不純物(例えば、還元剤中のホウ素等)が存在する。そのため、反応液に脱イオン水を添加、攪拌した後、所定の時間静置して上澄みを回収する。このとき、反応液中に存在する不純物のうち親水性の不純物は、水層の方に移動するので、不純物の低減下が可能になる。脱イオン水の代わりに炭素数の短い極性溶媒を使用してもよい。さらに、過剰な脂肪酸や脂肪酸エステルやアミン等を取り除き、純度及び金属濃度を上げるため、限外濾過等の濾過により濃縮することができ、その結果、5wt%以上90wt%以下の金属ナノ粒子を含んだ分散液を得ることができる。   As described above, metal colloid is formed by reduction treatment in a nonpolar solvent, but impurities (for example, boron in a reducing agent, etc.) are present in the reaction solution. Therefore, after adding deionized water to the reaction solution and stirring, it is allowed to stand for a predetermined time and the supernatant is recovered. At this time, hydrophilic impurities out of the impurities present in the reaction solution move toward the water layer, so that the impurities can be reduced. A polar solvent having a short carbon number may be used instead of deionized water. Furthermore, in order to remove excess fatty acid, fatty acid ester, amine, etc. and increase purity and metal concentration, it can be concentrated by filtration such as ultrafiltration, and as a result, contains metal nanoparticles of 5 wt% or more and 90 wt% or less. A dispersion can be obtained.

本発明によれば、以上のように製造された金属ナノ粒子分散液の場合、90重量%の高濃度であってもナノ粒子同士が凝集を起こさず、また、分散液の流動性が失われることもない。90重量%の金属ナノ粒子分散液を、例えば、IC基板などに用いられる多層配線やICの内部配線に用いる場合、この分散液は流動性を失うこともなく、また、金属ナノ粒子が凝集を起こすことも無いため、電導性が均一な欠損の無い微細な配線パターンを形成することができる。   According to the present invention, in the case of the metal nanoparticle dispersion produced as described above, the nanoparticles do not aggregate even at a high concentration of 90% by weight, and the fluidity of the dispersion is lost. There is nothing. When 90% by weight of the metal nanoparticle dispersion is used for, for example, a multilayer wiring used for an IC substrate or the internal wiring of an IC, the dispersion does not lose fluidity, and the metal nanoparticles are aggregated. Since it does not occur, it is possible to form a fine wiring pattern with uniform conductivity and no defect.

本発明において用いる非極性溶媒は、例えば、極性の弱い溶媒であって、主鎖の炭素数が6〜18である有機溶媒を用いることが好ましい。炭素数が6未満であると、溶媒極性が強くて分散しないか、または乾燥が早すぎて分散液製品のハンドリング上で問題がある。炭素数が18を超えると、粘度の上昇や焼成時に炭素が残留し易いという問題がある。これらの溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、デカン、ウンデカン、ドデカン、トリデカン、トリメチルペンタンなどの長鎖アルカンや、シクロヘキサン、シクロヘプタン、シクロオクタンなどの環状アルカン、ベンゼン、トルエン、キシレン、トリメチルベンゼン、ドデシルベンゼンなどの芳香族炭化水素、ヘキサノール、ヘプタノール、オクタノール、デカノール、シクロヘキサノール、テルピネオールなどのアルコールを用いることができる。これらの溶媒は、単独で用いても、混合溶媒の形で用いても良い。例えば、長鎖アルカンの混合物であるミネラルスピリットであっても良い。
また、極性溶媒は、炭素数の短い溶媒であり、例えば、メタノール、エタノール、アセトン等が好ましい。
The nonpolar solvent used in the present invention is, for example, a solvent having a weak polarity, and an organic solvent having a main chain having 6 to 18 carbon atoms is preferably used. If the number of carbon atoms is less than 6, the solvent polarity is strong and does not disperse, or drying is too early and there is a problem in handling the dispersion product. When the number of carbons exceeds 18, there is a problem that the carbon tends to remain at the time of increase in viscosity or firing. Examples of these solvents include long-chain alkanes such as hexane, heptane, octane, decane, undecane, dodecane, tridecane, and trimethylpentane, cyclic alkanes such as cyclohexane, cycloheptane, and cyclooctane, benzene, toluene, xylene, and trimethyl. Aromatic hydrocarbons such as benzene and dodecylbenzene, and alcohols such as hexanol, heptanol, octanol, decanol, cyclohexanol, and terpineol can be used. These solvents may be used alone or in the form of a mixed solvent. For example, it may be a mineral spirit that is a mixture of long-chain alkanes.
Further, the polar solvent is a solvent having a short carbon number, and for example, methanol, ethanol, acetone and the like are preferable.

本発明により提供できる金属ナノ粒子の大きさは100nm以下である。IC基板等の多層配線や半導体の内部配線等の場合、近年ますますファイン化が進み、1μm以下の配線が要求されてきているので、金属ナノ粒子の大きさは、要求される線幅の1/10以下、すなわち1nm以上100nm以下、好ましくは1nm以上10nm以下であることが要望されるが、本発明の金属ナノ粒子は、この要望を充分に満足する。また、100nmより大きい粒子は自重により沈降現象を生じ、良好な分散特性が得られなくなる。
本発明の導電性を有する金属細線又は金属膜の形成方法によれば、上記金属ナノ粒子分散液を各種基材に、例えば、スピンコート法等の塗布法を用いて塗布し、乾燥後焼成する。この際の乾燥温度は、塗布液が流れない程度であれば良く、例えば、50〜100℃で充分である。また、焼成温度は、例えば、140〜300℃、好ましくは、140〜220℃で、充分実用的な導電率を達成できる。
The size of the metal nanoparticles that can be provided by the present invention is 100 nm or less. In the case of multilayer wiring such as an IC substrate and internal wiring of semiconductors, finer processing has been progressed in recent years, and wiring of 1 μm or less has been required. Therefore, the size of metal nanoparticles is 1 of the required line width. / 10 or less, that is, 1 nm or more and 100 nm or less, preferably 1 nm or more and 10 nm or less. The metal nanoparticles of the present invention sufficiently satisfy this demand. Further, particles larger than 100 nm cause a sedimentation phenomenon due to their own weight, and good dispersion characteristics cannot be obtained.
According to the method for forming a conductive fine metal wire or metal film of the present invention, the metal nanoparticle dispersion is applied to various substrates using, for example, a coating method such as a spin coating method, dried and then fired. . The drying temperature at this time should just be a grade which a coating liquid does not flow, for example, 50-100 degreeC is enough. Moreover, a calcination temperature is 140-300 degreeC, for example, Preferably, it is 140-220 degreeC, and it can achieve fully practical electrical conductivity.

有機酸塩としてオレイン酸銀、アミン錯体としてオクチルアミンの銀錯体を選定した。始めにオレイン酸銀28g、オクチルアミンの銀錯体12gを非極性溶媒に加え、均一な液とした。この後、ジメチルアミンボランを10%となるようにメタノールに溶解させた還元剤溶液0.1gを上記オレイン酸銀とオクチルアミン銀錯体との溶液に添加し、反応させた。還元剤溶液添加直後に、液の色は透明から茶色に変化し、金属コロイドの形成が確認された。このままではボロン等の不純物が存在するため、この反応液に脱イオン水を加え、激しく攪拌した後一晩静置し、上澄みだけを回収した。さらに、熱分解に影響を与える過剰なオレイン酸やオクチルアミンを取り除くため、限外濾過にて濃縮し、非極性溶媒としてトルエンを用いて濃度調整を行い、濃度35wt%のAg分散液を調製した。このAgナノ粒子の粒径は5nmであった。
この分散液をスピンコート法により、基板(ガラス)上に塗布し、100℃乾燥、250℃焼成により銀の薄膜を作製した。この薄膜の表面抵抗を測定したところ、膜厚0.3μmで比抵抗3.6×10−6Ω・cmが得られた。
Silver oleate was selected as the organic acid salt and octylamine silver complex as the amine complex. First, 28 g of silver oleate and 12 g of octylamine silver complex were added to a nonpolar solvent to obtain a uniform solution. Thereafter, 0.1 g of a reducing agent solution in which dimethylamine borane was dissolved in methanol so as to be 10% was added to the solution of the silver oleate and the octylamine silver complex and reacted. Immediately after addition of the reducing agent solution, the color of the liquid changed from transparent to brown, confirming the formation of metal colloid. Since impurities such as boron are present as they are, deionized water was added to the reaction solution, vigorously stirred and allowed to stand overnight, and only the supernatant was collected. Furthermore, in order to remove excess oleic acid and octylamine which affect the thermal decomposition, the solution was concentrated by ultrafiltration and the concentration was adjusted using toluene as a nonpolar solvent to prepare an Ag dispersion having a concentration of 35 wt%. . The particle diameter of the Ag nanoparticles was 5 nm.
This dispersion was applied onto a substrate (glass) by spin coating, and a silver thin film was produced by drying at 100 ° C. and baking at 250 ° C. When the surface resistance of this thin film was measured, a specific resistance of 3.6 × 10 −6 Ω · cm was obtained at a film thickness of 0.3 μm.

有機酸としてリノール酸銀、また、アミン錯体としてオクチルアミンの銀錯体を使用した以外は、実施例1と同様な方法で銀ナノ粒子の合成、成膜、評価を行った。このときの抵抗値は、膜厚0.3μmで比抵抗3.6×10−6Ω・cmであった。   Silver nanoparticles were synthesized, formed, and evaluated in the same manner as in Example 1 except that silver linoleate was used as the organic acid and octylamine silver complex was used as the amine complex. At this time, the resistance value was a specific resistance of 3.6 × 10 −6 Ω · cm with a film thickness of 0.3 μm.

以下の表1に示す原料を用いて実施例1と同様な方法で金属ナノ粒子の合成、成膜、評価を行った。   Synthesis, film formation, and evaluation of metal nanoparticles were performed in the same manner as in Example 1 using the raw materials shown in Table 1 below.

Figure 2009185390
Figure 2009185390

実施例5に示したオレイン酸Ag、ドデシルアミンAg錯体を用いて作製した銀ナノ粒子のTOF−SIMS分析を行った結果を図1に示す。この結果から、金属表面に、オレイン酸銀(Oleic acid+Ag)又はドデシルアミン銀(Dodecylamine+Ag)が付着していることが確認された。   FIG. 1 shows the result of TOF-SIMS analysis of silver nanoparticles prepared using the oleic acid Ag and dodecylamine Ag complex shown in Example 5. From these results, it was confirmed that silver oleate (Oleic acid + Ag) or dodecylamine silver (Dodecylamine + Ag) was adhered to the metal surface.

(比較例1)
10%硝酸銀水溶液に対し、分散剤として高分子系のソルスパース24000(商品名:ゼネカ社製)を使用し、還元剤としてジエタノールアミンを使用し、実施例1と同様な方法で銀ナノ粒子分散液を調製した。反応後に、最終濃度を35%に調整した。
この分散液をスピンコート法により、基板上に塗布し、100℃乾燥、250℃焼成により銀の薄膜を作製した。この薄膜の表面抵抗を測定したところ、膜厚0.3μで比抵抗7×10−2Ω・cmであった。
(Comparative Example 1)
For a 10% silver nitrate aqueous solution, a polymer-based Solsperse 24000 (trade name: manufactured by Zeneca) is used as a dispersant, diethanolamine is used as a reducing agent, and a silver nanoparticle dispersion is prepared in the same manner as in Example 1. Prepared. After the reaction, the final concentration was adjusted to 35%.
This dispersion was applied onto a substrate by spin coating, and a silver thin film was prepared by drying at 100 ° C. and baking at 250 ° C. When the surface resistance of this thin film was measured, it was a specific resistance of 7 × 10 −2 Ω · cm at a film thickness of 0.3 μm.

(比較例2)
合成グリシン0.44gと硫酸第一鉄七水和物3.2gとを90mLのイオン交換水に溶解し、水酸化ナトリウム水溶液(和光純薬工業(株)製、試薬特級をイオン交換水で適当な濃度に調整したもの)でpH7に調整した後、イオン交換水を添加して全量を128mLにした。次に、室温下にマグネティックスターラーで攪拌しながら、これに1gの硝酸銀を含む水溶液2mLを滴下させて金属含有量約5g/Lの銀コロイド液を作製した。このとき、銀1gに対するグリシンの量は0.69gとなる。
上記銀コロイド液の濃度が低いため、限外濾過により高濃度化を行ったが、途中で凝集を起こした。また、十分な導電性を得るためには膜厚を稼がなければならないが、この濃度では10回以上の塗布が必要であった。
(Comparative Example 2)
0.44 g of synthetic glycine and 3.2 g of ferrous sulfate heptahydrate are dissolved in 90 mL of ion-exchanged water, and an aqueous sodium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd., suitable for reagent grade with ion-exchanged water) Adjusted to pH 7), and then ion-exchanged water was added to make the total amount 128 mL. Next, while stirring with a magnetic stirrer at room temperature, 2 mL of an aqueous solution containing 1 g of silver nitrate was added dropwise thereto to prepare a silver colloidal solution having a metal content of about 5 g / L. At this time, the amount of glycine with respect to 1 g of silver is 0.69 g.
Since the concentration of the silver colloid liquid was low, the concentration was increased by ultrafiltration, but aggregation occurred in the middle. Moreover, in order to obtain sufficient electrical conductivity, the film thickness must be increased. However, at this concentration, coating 10 times or more is necessary.

本発明において、金属ナノ粒子を含む分散液は、金属濃度が非常に高いので成膜回数を低減できると共に、低温焼成処理によって十分実用的な導電率を達成できる。この金属ナノ粒子分散液は、例えば、電気電子工業等の分野でフラットパネルディスプレー等のディスプレー機器やプリント配線の分野で金属配線等の作製に用いられる。   In the present invention, since the dispersion containing metal nanoparticles has a very high metal concentration, the number of film formations can be reduced, and a sufficiently practical conductivity can be achieved by low-temperature baking treatment. This metal nanoparticle dispersion liquid is used, for example, for the production of metal wiring and the like in the field of display equipment such as a flat panel display and the field of printed wiring in the field of electrical and electronic industries.

Claims (20)

脂肪酸の有機金属化合物、直鎖若しくは分枝構造を有する脂肪族アミンの金属錯体、又は該有機金属化合物と該金属錯体との混合物の1種を非極性溶媒に溶解せしめ、この液に還元剤を添加して還元処理し、金属ナノ粒子を得る金属ナノ粒子の製造方法であって、さらに、該還元処理を、該還元剤を添加し、水素ガス、一酸化炭素ガス、水素含有ガス、又は一酸化炭素含有ガスを該液中に導入しながら行い、該還元処理の後、該液中に脱イオン水を添加し、得られた混合物を攪拌し、次いで静置して該液中に存在する不純物を極性溶媒に移行させ、該非極性溶媒中の不純物濃度を低減させることを特徴とする金属ナノ粒子の製造方法。 An organic metal compound of fatty acid, a metal complex of an aliphatic amine having a linear or branched structure, or a mixture of the organometallic compound and the metal complex is dissolved in a nonpolar solvent, and a reducing agent is added to the liquid. A method for producing metal nanoparticles, which is reduced by addition to obtain metal nanoparticles, and the reduction treatment is further performed by adding the reducing agent to hydrogen gas, carbon monoxide gas, hydrogen-containing gas, or Carried out while introducing carbon oxide-containing gas into the liquid, and after the reduction treatment, deionized water is added to the liquid, and the resulting mixture is stirred and then allowed to stand to be present in the liquid A method for producing metal nanoparticles, wherein impurities are transferred to a polar solvent to reduce the impurity concentration in the nonpolar solvent. 前記金属ナノ粒子の大きさが、1nm以上100nm以下であることを特徴とする請求項1記載の金属ナノ粒子の製造方法。 The method for producing metal nanoparticles according to claim 1, wherein the size of the metal nanoparticles is 1 nm or more and 100 nm or less. 前記得られた金属ナノ粒子を含む混合物を濃縮し、次いで該金属ナノ粒子を再分散して、金属ナノ粒子の濃度を5wt%以上90wt%以下にコントロールすることを特徴とする請求項1又は2記載の金属ナノ粒子の製造方法。 3. The mixture containing the obtained metal nanoparticles is concentrated, and then the metal nanoparticles are redispersed to control the concentration of the metal nanoparticles to 5 wt% or more and 90 wt% or less. The manufacturing method of the metal nanoparticle of description. 前記有機金属化合物が、分散剤として、各金属ナノ粒子の周囲に付着していること、そして該有機金属化合物が、脂肪酸の有機金属化合物、アミンの金属錯体、又は該脂肪酸の有機金属化合物と該アミンの金属錯体との混合物であることを特徴とする請求項1〜3のいずれか1項に記載の金属ナノ粒子の製造方法。 The organometallic compound is attached as a dispersant around each metal nanoparticle, and the organometallic compound is a fatty acid organometallic compound, an amine metal complex, or the fatty acid organometallic compound and the fatty acid. It is a mixture with the metal complex of amine, The manufacturing method of the metal nanoparticle of any one of Claims 1-3 characterized by the above-mentioned. 前記脂肪酸が、直鎖又は分枝構造を有するC〜C22の飽和脂肪酸及び不飽和脂肪酸から選ばれた少なくとも1種の脂肪酸であることを特徴とする請求項1〜4のいずれか1項に記載の金属ナノ粒子の製造方法。 Wherein the fatty acid is a straight-chain or any one of claims 1 to 4, characterized in that at least one fatty acid selected from saturated and unsaturated fatty acids of C 6 -C 22 having a branched structure The manufacturing method of the metal nanoparticle of description. 前記脂肪酸が、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、テトラデカン酸、エイコサン酸、ドコサン酸、2−エチルヘキサン酸、オレイン酸、リノール酸、リノレン酸から選ばれた少なくとも1種の脂肪酸であることを特徴とする請求項1〜5のいずれか1項に記載の金属ナノ粒子の製造方法。 The fatty acid is selected from hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, eicosanoic acid, docosanoic acid, 2-ethylhexanoic acid, oleic acid, linoleic acid, linolenic acid The method for producing metal nanoparticles according to any one of claims 1 to 5, wherein the metal nanoparticles are at least one kind of fatty acid. 前記アミンが、直鎖又は分枝構造を有する脂肪族アミンであることを特徴とする請求項1〜6のいずれか1項に記載の金属ナノ粒子の製造方法。 The method for producing metal nanoparticles according to claim 1, wherein the amine is an aliphatic amine having a linear or branched structure. 前記アミンが、ヘキシルアミン、ヘプチルアミン、オクチルアミン、デシルアミン、ドデシルアミン、2−エチルヘキシルアミン、1,3−ジメチル−n−ブチルアミン、1−アミノウンデカン、1−アミノトリデカンから選ばれた少なくとも1種のアミンであることを特徴とする請求項1〜7のいずれか1項に記載の金属ナノ粒子の製造方法。 The amine is at least one selected from hexylamine, heptylamine, octylamine, decylamine, dodecylamine, 2-ethylhexylamine, 1,3-dimethyl-n-butylamine, 1-aminoundecane, and 1-aminotridecane. The method for producing metal nanoparticles according to any one of claims 1 to 7, wherein the amine is an amine. 直鎖若しくは分枝構造を有するC〜C22の飽和脂肪酸及び不飽和脂肪酸から選ばれた少なくとも1種の脂肪酸の有機金属化合物、直鎖若しくは分枝構造を有する脂肪族アミンの金属錯体、又は該有機金属化合物と該金属錯体との混合物を非極性溶媒に溶解せしめ、この液に還元剤を添加して還元処理し、金属ナノ粒子を得る際に、さらに、該還元処理を、該還元剤を添加し、水素ガス、一酸化炭素ガス、水素含有ガス、又は一酸化炭素含有ガスを該液中に導入しながら行い、該還元処理の後、該液中に脱イオン水を添加し、得られた混合物を攪拌し、次いで静置して該液中に存在する不純物を極性溶媒に移行させ、該非極性溶媒中の不純物濃度を低減させることによって製造された金属ナノ粒子含有分散液を基材表面に塗布し、次いで乾燥後に分散液の被覆層を焼成して導電性を有する金属細線又は金属膜を形成することを特徴とする金属細線又は金属膜の形成方法。 An organometallic compound of at least one fatty acid selected from C 6 to C 22 saturated fatty acids and unsaturated fatty acids having a linear or branched structure, a metal complex of an aliphatic amine having a linear or branched structure, or When a mixture of the organometallic compound and the metal complex is dissolved in a non-polar solvent and a reducing agent is added to the solution for reduction treatment to obtain metal nanoparticles, the reduction treatment is further performed with the reduction agent. Is carried out while introducing hydrogen gas, carbon monoxide gas, hydrogen-containing gas, or carbon monoxide-containing gas into the liquid, and after the reduction treatment, deionized water is added to the liquid. Stirring the resulting mixture, then allowing it to stand to transfer impurities present in the liquid to a polar solvent, and reducing the concentration of impurities in the nonpolar solvent as a base material Apply to the surface, then Method for forming a metal thin wire or a metal film and forming a thin metal wire or a metal film having conductivity by firing the coating layer of the dispersion to 燥後. 前記焼成の温度が、140〜300℃であることを特徴とする請求項9記載の金属細線又は金属膜の形成方法。 The method for forming a thin metal wire or metal film according to claim 9, wherein the firing temperature is 140 to 300 ° C. 請求項9又は10記載の形成方法によって得られた金属細線。 A thin metal wire obtained by the forming method according to claim 9 or 10. 請求項9又は10記載の形成方法によって得られた金属膜。 A metal film obtained by the forming method according to claim 9 or 10. 直鎖若しくは分枝構造を有するC〜C22の飽和脂肪酸及び不飽和脂肪酸から選ばれた少なくとも1種の脂肪酸の有機金属化合物、直鎖若しくは分枝構造を有する脂肪族アミンの金属錯体、又は該有機金属化合物と該金属錯体との混合物の1種を非極性溶媒に溶解せしめ、この液に還元剤を添加して還元処理し、金属ナノ粒子を得、次いでこの金属ナノ粒子を再分散して、金属ナノ粒子の濃度を5wt%以上90wt%以下にコントロールして金属ナノ粒子を得る際に、さらに、該還元処理を、還元剤を添加し、水素ガス、一酸化炭素ガス、水素含有ガス、又は一酸化炭素含有ガスを該液中に導入しながら行い、該還元処理の後、該液中に脱イオン水を添加し、得られた混合物を攪拌し、次いで静置して該液中に存在する不純物を極性溶媒に移行させ、該非極性溶媒中の不純物濃度を低減させることによって製造された金属ナノ粒子含有分散液を基材表面に塗布し、次いで乾燥後に分散液の被覆層を焼成して導電性を有する金属細線又は金属膜を形成することを特徴とする金属細線又は金属膜の形成方法。 An organometallic compound of at least one fatty acid selected from C 6 to C 22 saturated fatty acids and unsaturated fatty acids having a linear or branched structure, a metal complex of an aliphatic amine having a linear or branched structure, or One kind of a mixture of the organometallic compound and the metal complex is dissolved in a nonpolar solvent, and a reducing agent is added to the solution to perform reduction treatment to obtain metal nanoparticles, and then the metal nanoparticles are redispersed. When the metal nanoparticles are obtained by controlling the concentration of the metal nanoparticles to 5 wt% or more and 90 wt% or less, the reduction treatment is further performed by adding a reducing agent, hydrogen gas, carbon monoxide gas, hydrogen-containing gas. Or after introducing the carbon monoxide-containing gas into the liquid, and after the reduction treatment, deionized water is added to the liquid, and the resulting mixture is stirred and then left to stand in the liquid. Impurities present in The metal nanoparticle-containing dispersion produced by reducing the concentration of impurities in the nonpolar solvent was applied to the surface of the substrate, and after drying, the coating layer of the dispersion was baked to provide a conductive metal. A method for forming a fine metal wire or a metal film, comprising forming a fine wire or a metal film. 前記焼成の温度が、140〜300℃であることを特徴とする請求項13記載の金属細線又は金属膜の形成方法。 The method for forming a fine metal wire or metal film according to claim 13, wherein the firing temperature is 140 to 300 ° C. 請求項13又は14記載の形成方法によって得られた金属細線。 The metal fine wire obtained by the formation method of Claim 13 or 14. 請求項13又は14記載の形成方法によって得られた金属膜。 A metal film obtained by the forming method according to claim 13 or 14. 直鎖若しくは分枝構造を有するC〜C22の飽和脂肪酸及び不飽和脂肪酸から選ばれた少なくとも1種の脂肪酸の有機金属化合物、直鎖若しくは分枝構造を有する脂肪族アミンの金属錯体、又は該有機金属化合物と該金属錯体との混合物の1種を非極性溶媒に溶解せしめ、この液に還元剤を添加して還元処理し、金属ナノ粒子を得、次いで濃縮して得られた金属ナノ粒子を再度分散せしめて、5wt%以上90wt%以下の金属ナノ粒子濃度を有する金属ナノ粒子分散液を得る際に、さらに、該還元処理を、還元剤を添加し、水素ガス、一酸化炭素ガス、水素含有ガス、又は一酸化炭素含有ガスを該液中に導入しながら行い、該還元処理の後、該液中に脱イオン水を添加し、得られた混合物を攪拌し、次いで静置して該液中に存在する不純物を極性溶媒に移行させ、該非極性溶媒中の不純物濃度を低減させることによって製造された金属ナノ粒子含有分散液を基材表面に塗布し、次いで乾燥後に分散液の被覆層を焼成して導電性を有する金属細線又は金属膜を形成することを特徴とする金属細線又は金属膜の形成方法。 An organometallic compound of at least one fatty acid selected from C 6 to C 22 saturated fatty acids and unsaturated fatty acids having a linear or branched structure, a metal complex of an aliphatic amine having a linear or branched structure, or One kind of a mixture of the organometallic compound and the metal complex is dissolved in a nonpolar solvent, and a reducing agent is added to the solution to perform a reduction treatment to obtain metal nanoparticles, and then the metal nanoparticles obtained by concentration are obtained. When the particles are dispersed again to obtain a metal nanoparticle dispersion having a metal nanoparticle concentration of 5 wt% or more and 90 wt% or less, the reduction treatment is further performed by adding a reducing agent, hydrogen gas, carbon monoxide gas The hydrogen-containing gas or carbon monoxide-containing gas is introduced into the liquid, and after the reduction treatment, deionized water is added to the liquid, and the resulting mixture is stirred and then allowed to stand. Present in the liquid. The metal nanoparticle-containing dispersion produced by transferring the product to a polar solvent and reducing the impurity concentration in the nonpolar solvent is applied to the substrate surface, and then dried, the coating layer of the dispersion is baked to make the conductive Forming a thin metal wire or metal film having a property. 前記焼成の温度が、140〜300℃であることを特徴とする請求項17記載の金属細線又は金属膜の形成方法。 The method for forming a metal thin wire or a metal film according to claim 17, wherein the firing temperature is 140 to 300 ° C. 請求項17又は18記載の形成方法によって得られた金属細線。 A fine metal wire obtained by the forming method according to claim 17 or 18. 請求項17又は18記載の形成方法によって得られた金属膜。 The metal film obtained by the formation method of Claim 17 or 18.
JP2009115043A 2009-05-11 2009-05-11 Method for producing metal nanoparticle, metal fine wire, metal film, and method for forming the same Pending JP2009185390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115043A JP2009185390A (en) 2009-05-11 2009-05-11 Method for producing metal nanoparticle, metal fine wire, metal film, and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115043A JP2009185390A (en) 2009-05-11 2009-05-11 Method for producing metal nanoparticle, metal fine wire, metal film, and method for forming the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003317161A Division JP2005081501A (en) 2003-09-09 2003-09-09 Metallic nano particle and its manufacturing method, metallic nano particle dispersion fluid and its manufacturing method, and metallic thin line, metallic membrane and their manufacturing method

Publications (1)

Publication Number Publication Date
JP2009185390A true JP2009185390A (en) 2009-08-20

Family

ID=41068909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115043A Pending JP2009185390A (en) 2009-05-11 2009-05-11 Method for producing metal nanoparticle, metal fine wire, metal film, and method for forming the same

Country Status (1)

Country Link
JP (1) JP2009185390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013794A1 (en) 2012-07-19 2014-01-23 日油株式会社 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013794A1 (en) 2012-07-19 2014-01-23 日油株式会社 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
KR20150033722A (en) 2012-07-19 2015-04-01 니치유 가부시키가이샤 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
US9496069B2 (en) 2012-07-19 2016-11-15 Nof Corporation Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material

Similar Documents

Publication Publication Date Title
KR100764535B1 (en) Metal nanoparticle and method for producing same, liquid dispersion of metal nanoparticle and method for producing same, metal thin line, metal film and method for producing same
JP5007020B2 (en) Method for forming metal thin film and metal thin film
JP4496216B2 (en) Conductive metal paste
US10071426B2 (en) Coated metal fine particle and manufacturing method thereof
TW533431B (en) Dispersion of ultrafine metal particles and process for producing the same
US9168587B2 (en) Fine coated copper particles and method for producing same
JP5002478B2 (en) Metal nanoparticle paste and pattern forming method
JP2007321215A5 (en)
JP2007321215A (en) Dispersion of metallic nanoparticle and metallic coating film
TWI575108B (en) Method for preparing nanowire having core-shell structure
JP2009097074A (en) Metal nanoparticle paste, and pattern forming method
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
JP2008069374A (en) Metallic nanoparticle dispersion and metallic film
WO2015198881A1 (en) Method for producing core-shell type metal fine particles, core-shell type metal fine particles, and method for producing substrate and electrically conductive ink
JP4034968B2 (en) Method for forming a conductive pattern on an insulating substrate
JP2016145299A (en) Conductive material and conductor using it
KR20140058892A (en) Transparent composite electrode using nanowire having core-shell structure and method for preparing the same
JP2009185390A (en) Method for producing metal nanoparticle, metal fine wire, metal film, and method for forming the same
JP2005060824A (en) Method for producing alloy particulate, and method for producing alloy thin film
JP4382335B2 (en) Fabrication method of metal wiring
JP2016039008A (en) Method for manufacturing copper-layer attached substrate, and copper-layer attached substrate
JP2013204106A (en) Method for producing metal fine particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091216