JP2009173458A - Alumina cement and monolithic refractory - Google Patents

Alumina cement and monolithic refractory Download PDF

Info

Publication number
JP2009173458A
JP2009173458A JP2006130976A JP2006130976A JP2009173458A JP 2009173458 A JP2009173458 A JP 2009173458A JP 2006130976 A JP2006130976 A JP 2006130976A JP 2006130976 A JP2006130976 A JP 2006130976A JP 2009173458 A JP2009173458 A JP 2009173458A
Authority
JP
Japan
Prior art keywords
alumina cement
cao
mass
source
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006130976A
Other languages
Japanese (ja)
Inventor
Masaaki Umiga
正晃 海賀
Atsunori Koyama
厚徳 小山
Yuji Koga
祐司 古賀
Kazuto Kushihashi
和人 串橋
Hirotomo Sakai
裕智 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006130976A priority Critical patent/JP2009173458A/en
Priority to PCT/JP2007/059673 priority patent/WO2007129752A1/en
Publication of JP2009173458A publication Critical patent/JP2009173458A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Abstract

<P>PROBLEM TO BE SOLVED: To effectively utilize the slag containing a lot of CaO and Al<SB>2</SB>O<SB>3</SB>as a raw material for alumina cement and to provide a monolithic refractory using the alumina cement and exhibiting equal properties to those of conventional products. <P>SOLUTION: The alumina cement is manufactured from the slag containing one or more kinds of minerals selected from among CaO-Al<SB>2</SB>O<SB>3</SB>, CaO-2Al<SB>2</SB>O<SB>3</SB>, 12CaO-7Al<SB>2</SB>O<SB>3</SB>and an amorphous material of 60 mass% or more and a CaO source and/or an Al<SB>2</SB>O<SB>3</SB>source as raw materials. The alumina cement is characterized by using the slag containing one or more kinds of minerals selected from among CaO-Al<SB>2</SB>O<SB>3</SB>, CaO-2Al<SB>2</SB>O<SB>3</SB>, 12CaO-7Al<SB>2</SB>O<SB>3</SB>and the amorphous material of 60 mass% or more and containing MgO-Al<SB>2</SB>O<SB>3</SB>and/or MgO of 30 mass% or less as a raw material. The monolithic refractory contains the alumina cement and a fire-resistant aggregate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、CaO・Al2O3、CaO・2Al2O3、12CaO・7Al2O3、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含むスラグと、CaO源及び/又はAl2O3源を原料として製造されるアルミナセメント、並びに、それを用いた不定形耐火物に関する。 The present invention, CaO · Al 2 O 3, CaO · 2Al 2 O 3, 12CaO · 7Al 2 O 3, and slag containing one or more minerals 60% by mass or more selected from amorphous, CaO source And / or an alumina cement produced using an Al 2 O 3 source as a raw material, and an amorphous refractory using the same.

アルミナセメントは、一般に、CaO原料として石灰石や生石灰を、Al2O3原料として精製アルミナ、ボーキサイト、アルミ残灰等を使用し、焼成法又は溶融法にて製造したクリンカーを単独で粉砕、或いは、クリンカーにアルミナや各種添加剤を添加して混合粉砕することにより製造される。一般的なアルミナセメントの製造方法及びその特性は、広く知られている(例えば、非特許文献1)。
耐火物 Vol.29,pp368-374,1977
Alumina cement generally uses limestone or quicklime as a CaO raw material, refined alumina, bauxite, aluminum residual ash, etc. as an Al 2 O 3 raw material, and pulverizes a clinker produced by a firing method or a melting method alone, or Manufactured by adding alumina and various additives to the clinker and mixing and grinding. A general method for producing alumina cement and its characteristics are widely known (for example, Non-Patent Document 1).
Refractory Vol.29, pp368-374, 1977

現在、廃棄物のリサイクルをはじめとして、環境負荷低減を目的とした取り組みが活発におこなわれている。 Currently, efforts are being made actively to reduce environmental impact, including waste recycling.

従来、廃棄物の削減および資源の有効利用を目的として、スラグなどが、道路用材料、土木用材料および高炉セメントの原料等に有効利用されてきた。 Conventionally, slag and the like have been effectively used as road materials, civil engineering materials, blast furnace cement raw materials, and the like for the purpose of reducing waste and effectively using resources.

しかしながら、CaOとAl2O3を多く含有するスラグについては、これまで有効利用されていなかった。CaOとAl2O3を多く含有するスラグにはMgO成分が含まれており、このスラグを原料としたアルミナセメントは、MgO・Al2O3の生成による強度の低下や、高温下での硬化体の体積安定性が悪いという課題があった。 However, slag containing a large amount of CaO and Al 2 O 3 has not been effectively used so far. The slag containing a lot of CaO and Al 2 O 3 contains MgO component. Alumina cement made from this slag is reduced in strength due to the formation of MgO · Al 2 O 3 and hardened at high temperature. There was a problem that the volume stability of the body was poor.

本発明の目的は、上記の状況に鑑み、CaOとAl2O3を多く含有するスラグをアルミナセメントの原料として有効利用することであり、得られたアルミナセメントが従来品と同等以上の性能を示すことである。さらに、このアルミナセメントを利用した不定形耐火物が、従来品に比べて遜色のない流動性、体積安定性等の特性を示すことである。 In view of the above situation, an object of the present invention is to effectively use slag containing a large amount of CaO and Al 2 O 3 as a raw material for alumina cement, and the obtained alumina cement has a performance equal to or higher than that of a conventional product. Is to show. Further, the amorphous refractory using the alumina cement exhibits characteristics such as fluidity and volume stability that are comparable to conventional products.

即ち、本発明は、CaO・Al2O3(以下CAという)、CaO・2Al2O3(以下CA2という)、12CaO・7Al2O3(以下C12A7という)、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含むスラグと、CaO源及び/又はAl2O3源を原料として製造されるアルミナセメントであり、CA、CA2、C12A7、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含み、且つ、MgO・Al2O3(以下MAという)及び/又はMgOを30質量%以下含むスラグと、CaO源及び/又はAl2O3源を原料として製造されるアルミナセメントであり、アルミナセメントと耐火骨材を含有してなる不定形耐火物である。 That is, the present invention, CaO · Al 2 O 3 (hereinafter referred to as CA), (hereinafter referred to CA2) CaO · 2Al 2 O 3 , ( hereinafter referred to as C12A7) 12CaO · 7Al 2 O 3 , 1 kind selected from amorphous Or an alumina cement manufactured using slag containing 60% by mass or more of two or more minerals and a CaO source and / or Al 2 O 3 source as a raw material, one selected from CA, CA2, C12A7, and amorphous Or, a slag containing 60% by mass or more of two or more minerals and containing 30% by mass or less of MgO.Al 2 O 3 (hereinafter referred to as MA) and / or MgO, and a CaO source and / or an Al 2 O 3 source. It is an alumina cement manufactured as a raw material, and is an amorphous refractory containing alumina cement and a refractory aggregate.

本発明により、CA、CA2、C12A7、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含むスラグをアルミナセメントの原料として有効利用することが可能である。 According to the present invention, slag containing 60% by mass or more of one or more minerals selected from CA, CA2, C12A7, and amorphous can be effectively used as a raw material for alumina cement.

本発明者は、環境問題の対象となっている廃棄物の有効利用を種々検討した結果、今まで有効利用されていなかった、CA、CA2、C12A7、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含むスラグ、より好ましくは、CA、CA2、C12A7、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含み、且つ、MA及び/又はMgOの含有量が30質量%以下であるスラグを利用し、アルミナセメントを製造する技術を確立するに至った。 As a result of various studies on the effective use of wastes that are the subject of environmental problems, the present inventor has found that one or two kinds selected from CA, CA2, C12A7, and amorphous, which have not been used effectively so far. Slag containing 60% by mass or more of the above minerals, more preferably 60% by mass or more of one or more minerals selected from CA, CA2, C12A7 and amorphous, and MA and / or MgO. Using slag with a content of 30% by mass or less, a technology for producing alumina cement has been established.

本発明者はキャスタブルの可使時間、流動性、硬化特性及び強度発現性等の諸特性を満足させる為に、アルミナセメントの原料としてCA、CA2、C12A7、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含むスラグを使用することが好適であり、さらに好ましくは、スラグのMA及び/又はMgO含有量を30質量%以下とすることにより、既存のキャスタブルとほぼ同等の性能を示すとの知見を得て、本発明を完成するに至った。 The present inventor has selected one or two of CA, CA2, C12A7, and amorphous as raw materials for alumina cement in order to satisfy various properties such as pot life, fluidity, curing characteristics and strength development. It is preferable to use a slag containing 60% by mass or more of minerals of more than seeds, and more preferably, by making the MA and / or MgO content of the slag 30% by mass or less, it is almost equivalent to existing castables. Obtaining knowledge that it shows performance, the present invention has been completed.

本発明に係るアルミナセメントは、CA、CA2、C12A7、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含むスラグを、より好ましくは、CA、CA2、C12A7、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含み、且つ、MA及び/又はMgOの含有量が30質量%以下であるスラグを原料として利用し、必要に応じて、石灰石や生石灰などのCaO源及び/又は精製アルミナ、ボーキサイト、アルミ残灰等のAl2O3源を、所定の成分割合になるように配合し、溶融または焼成して得られる。以下、本発明を詳細に説明する。 The alumina cement according to the present invention comprises slag containing 60% by mass or more of one or more minerals selected from CA, CA2, C12A7 and amorphous, more preferably CA, CA2, C12A7 and amorphous. As a raw material, slag containing 60% by mass or more of one or more minerals selected from the above and MA and / or MgO content of 30% by mass or less is used as required. CaO source and / or purification of alumina such as bauxite, the Al 2 O 3 source, such as an aluminum residual ash, blended to a predetermined component ratio, obtained by melt or baking. Hereinafter, the present invention will be described in detail.

本発明に係るスラグは特に限定されないが、例えば製鉄プロセス等で生じるスラグなどが挙げられる。 Although the slag which concerns on this invention is not specifically limited, For example, the slag etc. which arise in an iron manufacturing process etc. are mentioned.

CaO源及び/又はAl2O3源の添加が必要な場合とは、目的とするアルミナセメントの特性(水硬性、急硬性、耐火性及び耐食性等)が充分に得られない場合である。例えば、急硬性を必要とする用途では、鉱物組成としてC12A7、C3Aが得られるようにCaO源を追加し、目的の特性が得られるように成分の調整をする。一方、耐火性を必要とする用途では、鉱物組成としてCA、CA2が得られるようにAl2O3源を追加し、目的の特性が得られるように成分調整を行い、耐酸性や耐火性を必要とするバインダー用途では、CAの鉱物量が多く得られるようにCaO源及び/又はAl2O3源を追加し、目的の特性が得られるように成分調整を行う。 The case where addition of a CaO source and / or an Al 2 O 3 source is necessary is a case where the characteristics of the target alumina cement (hydraulicity, rapid hardening, fire resistance, corrosion resistance, etc.) cannot be obtained sufficiently. For example, in applications that require rapid hardening, a CaO source is added to obtain C 12 A 7 and C 3 A as the mineral composition, and the components are adjusted to obtain the desired characteristics. On the other hand, in applications that require fire resistance, an Al 2 O 3 source is added to obtain CA and CA2 as the mineral composition, and the components are adjusted to obtain the desired characteristics, thereby improving acid resistance and fire resistance. In the required binder application, a CaO source and / or an Al 2 O 3 source is added so as to obtain a large amount of CA mineral, and the components are adjusted so as to obtain the desired characteristics.

溶融法で本発明のアルミナセメントを製造する場合、CA、CA2、C12A7、非晶質から選ばれる1種又は2種以上以上の鉱物を60質量%以上含むスラグ、より好ましくは、CA、CA2、C12A7、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含み、且つ、MA及び/又はMgOの含有量が30質量%以下であるスラグと、必要に応じてCaO源及び/又はAl2O3源を所定の割合で混合又は混合粉砕し、電気炉等の溶融炉にて1,300℃以上の高温で、完全に未反応原料が無くなるまで溶融することが好ましい。 When the alumina cement of the present invention is produced by the melting method, slag containing 60% by mass or more of one or more minerals selected from CA, CA2, C12A7, and amorphous, more preferably CA, CA2, C12A7, a slag containing 60% by mass or more of one or more minerals selected from amorphous and containing MA and / or MgO of 30% by mass or less, and optionally a CaO source and It is preferable to mix or pulverize the Al 2 O 3 source at a predetermined ratio, and melt it in a melting furnace such as an electric furnace at a high temperature of 1,300 ° C. or more until there is no unreacted raw material.

また、焼成法で本発明のアルミナセメントを製造する場合、前記と同様に混合した原料をロータリーキルンにて焼成することによって得られる。その際1,000℃以上の高温で焼成するのが好ましく、1,300℃以上で焼成することがより好ましい。焼成方法においては、原料の粒度調整、焼成温度、及び焼成時間が目的の鉱物組成を得るために重要であり、その条件は、使用する原料に応じて適宜決められる。 Moreover, when manufacturing the alumina cement of this invention with a baking method, it is obtained by baking the raw material mixed like the above with a rotary kiln. In that case, it is preferable to fire at a high temperature of 1,000 ° C. or higher, and more preferable to fire at 1,300 ° C. or higher. In the firing method, the particle size adjustment of the raw material, the firing temperature, and the firing time are important for obtaining the desired mineral composition, and the conditions are appropriately determined according to the raw material used.

アルミナセメントの粉砕は特に限定されず、通常、粉塊物の微粉砕に使用される粉砕機が使用できる。例えば、ローラーミル、ジェットミル、チューブミル、ボールミル、及び振動ミル等が使用可能である。また、アルミナセメントの冷却条件は特に限定されるものではなく、従来の方法が使用可能である。 The grinding | pulverization of an alumina cement is not specifically limited, Usually, the grinder used for the fine grinding | pulverization of a powder lump can be used. For example, a roller mill, a jet mill, a tube mill, a ball mill, and a vibration mill can be used. The cooling conditions for the alumina cement are not particularly limited, and conventional methods can be used.

本発明に係るスラグ中のCA、CA2、C12A7、MA及びMgOの定量は、粉末X線回折パターンをもとに行うリートベルト解析により求めることができる。 The quantification of CA, CA2, C12A7, MA and MgO in the slag according to the present invention can be determined by Rietveld analysis performed based on the powder X-ray diffraction pattern.

本発明に係るアルミナセメントは、MAの含有量が20質量%以下とすることが好ましく、さらに15質量%以下とすることが、強度発現性、耐火性の点からより好ましい。MAの含有量が20質量%を超えると、流動性、耐火性、強度発現性、高温下での硬化体の体積安定性、耐スポーリング抵抗性等の特性が悪化する場合がある。 In the alumina cement according to the present invention, the MA content is preferably 20% by mass or less, and more preferably 15% by mass or less from the viewpoint of strength development and fire resistance. When the MA content exceeds 20% by mass, properties such as fluidity, fire resistance, strength development, volume stability of the cured product at high temperature, and spalling resistance may be deteriorated.

本発明に係るアルミナセメントを急硬材として使用する場合、CA、CA2、C12A7、非晶質から選ばれる1種又は2種以上以上の鉱物を60質量%以上含むスラグ、より好ましくは、CA、CA2、C12A7、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含み、且つ、MA及び/又はMgOの含有量が30質量%以下であるスラグに、必要に応じてCaO源及び/又はAl2O3源を所定の割合で混合又は混合粉砕して原料とし、CaO/Al2O3モル比が1.5以上になるようにすることが好ましい。 When the alumina cement according to the present invention is used as a hardened material, slag containing 60% by mass or more of one or more minerals selected from CA, CA2, C12A7, and amorphous, more preferably CA, CaO, C12A7, slag containing 60% by mass or more of one or more minerals selected from amorphous and containing MA and / or MgO of 30% by mass or less, if necessary, CaO It is preferable to mix or pulverize the source and / or Al 2 O 3 source at a predetermined ratio to obtain a raw material so that the CaO / Al 2 O 3 molar ratio is 1.5 or more.

さらに本発明では、流動性を改善する目的で、通常、不定形耐火物に配合される硬化遅延剤や硬化促進剤、流動化剤等の添加剤を併用することが可能である。 Furthermore, in the present invention, for the purpose of improving fluidity, additives such as a retarder, a curing accelerator, a fluidizing agent, etc., which are usually blended in an amorphous refractory can be used together.

硬化促進剤としては、例えば、Li2CO3、Ca(OH)2、NaOH、KOH等のリチウム塩や水酸化物が挙げられ、中でも、リチウム塩は硬化促進作用が強い。また、硬化遅延剤としては、例えば、カルボン酸類、アルカリ金属炭酸塩、硼酸類、ポリアクリル酸類、ポリメタクリル酸類及びヘキサメタ燐酸、トリポリ燐酸、ピロ燐酸等のアルカリ塩類が挙げられる。 Examples of the curing accelerator include lithium salts and hydroxides such as Li 2 CO 3 , Ca (OH) 2 , NaOH, and KOH. Among them, the lithium salt has a strong curing promoting action. Examples of the curing retarder include carboxylic acids, alkali metal carbonates, boric acids, polyacrylic acids, polymethacrylic acids, and alkali salts such as hexametaphosphoric acid, tripolyphosphoric acid, and pyrophosphoric acid.

添加剤の配合方法は、特に限定されるものではなく、各添加剤を所定の割合になるように配合し、予め粉砕したアルミナセメントクリンカーと、V型ブレンダー、コーンブレンダー、ナウターミキサー、パン型ミキサー、及びオムニミキサー等の混合機を用いて均一混合するか、あるいは、所定の割合でクリンカーに配合後、振動ミル、チューブミル、ボールミル、及びローラーミル等の粉砕機で混合粉砕することが可能である。 The method of blending the additive is not particularly limited, and each additive is blended in a predetermined ratio and pre-ground alumina cement clinker, V-type blender, corn blender, nauter mixer, pan type It can be mixed uniformly using a mixer such as a mixer and an omni mixer, or mixed with a clinker at a predetermined ratio and then mixed and pulverized by a pulverizer such as a vibration mill, tube mill, ball mill, or roller mill. It is.

本発明に係る不定形耐火物は、耐食性、耐用性、及び耐火性の面から、マグネシア、マグネシアスピネル、シャモット、アルミナ、炭化珪素、及び超微粉、更にはオイルピッチ、タール、鱗状黒鉛等のカーボン質骨材の中から選ばれた一種又は二種以上の耐火骨材を配合して、耐火骨材98〜90質量%、アルミナセメント組成物2〜10質量%の低セメントキャスタブルとして使用することが好ましい。 The amorphous refractory according to the present invention is composed of magnesia, magnesia spinel, chamotte, alumina, silicon carbide, and ultrafine powder, and carbon such as oil pitch, tar, and scaly graphite, in terms of corrosion resistance, durability, and fire resistance. One kind or two or more kinds of refractory aggregates selected from the aggregates can be blended and used as a low cement castable of 98 to 90% by mass of the refractory aggregate and 2 to 10% by mass of the alumina cement composition. preferable.

本発明に係る不定形耐火物の製造方法は、特に限定されるものではなく、通常の不定形耐火物の製造方法に準じ、各構成原料を所定の割合になるように配合し、V型ブレンダー、コーンブレンダー、ナウターミキサー、パン型ミキサー、及びオムニミキサー等の混合機を用いて均一混合するか、あるいは、所定の割合で混練り施工する際、混練り機に直接秤込むことも可能である。 The method for producing the amorphous refractory according to the present invention is not particularly limited, and in accordance with the usual method for producing an irregular refractory, each constituent raw material is blended to a predetermined ratio, and a V-type blender It is possible to mix evenly using a mixer such as a cone blender, a nauter mixer, a bread mixer, and an omni mixer, or to directly weigh into a kneader when performing kneading at a predetermined ratio. is there.

鉄鋼プロセスで発生したスラグ、Al2O3源としてボーキサイト、CaO源として生石灰を用い、生成物中の鉱物組成が所定の割合になるように配合し、カーボンルツボ内で約1800℃で溶融後、冷却してアルミナセメントを作製した。アルミナセメントの化学成分及び鉱物組成を表2に示す。次に、得られたアルミナセメントをバッチ式ボールミルにて、平均粒径8±3μmに調整し、JIS R2521に準じてモルタル試験を実施した。結果を表3に示す。
<使用材料>
(1)鉄鋼プロセスで発生したスラグ;使用スラグの化学成分を表1に示す。
(2) Al2O3源;市販ボーキサイト
(3)CaO源;市販生石灰
(4)アルミナセメント:市販品、電気化学工業製アルミナセメント1号(比較用)
Slag generated in the steel process, bauxite as the Al 2 O 3 source, quick lime as the CaO source, blended so that the mineral composition in the product is a predetermined ratio, after melting at about 1800 ° C in a carbon crucible, The alumina cement was produced by cooling. Table 2 shows the chemical composition and mineral composition of the alumina cement. Next, the obtained alumina cement was adjusted to an average particle size of 8 ± 3 μm with a batch type ball mill, and a mortar test was performed according to JIS R2521. The results are shown in Table 3.
<Materials used>
(1) Slag generated in the steel process; Table 1 shows the chemical composition of the slag used.
(2) Al 2 O 3 source; Commercial bauxite
(3) CaO source: commercially available quicklime
(4) Alumina cement: Commercial product, Alumina cement No. 1 (for comparison)

<評価方法>
(1) 化学成分:ビード法にて蛍光X線で測定。
(2)鉱物組成:アルミナセメントを粉末X線回折法で測定し、回折図形をリートベルト法により解析・定量した。
非晶質:既知量のα―Quartzとアルミナセメントの混合粉末をX線回折法で測定し、回折図形をリートベルト法により解析・定量した。
(3)流動性:20℃恒温室内に混練物を所定時間放置した後、JISR2521フロー試験に準拠し15回の落下運動を与え、フロー値を測定した。
(4)発熱時間:20℃恒温室内に混練物を放置した際の、注水から発熱温度が最大に到達するまでの時間を温度記録計を用いて測定し、発熱時間とした。
(5)養生強度:4×4×16cmの型枠に混練物を入れ、20℃恒温室内で24時間養生した後、圧縮強度を測定した。
(6)乾燥強度:4×4×16cmの型枠に混練物を入れ、20℃恒温室内で24時間養生した後、更に110℃にて24時間乾燥して、圧縮強度を測定した。
(6)体積安定性:2×2×8cmの型枠に混練物を入れ、20℃恒温室内で24時間養生した後、更に110℃にて24時間乾燥し、1000℃にて3時間焼成した。線変化率を体積安定性の指標とした。
<Evaluation method>
(1) Chemical composition: Measured with fluorescent X-ray by bead method.
(2) Mineral composition: Alumina cement was measured by the powder X-ray diffraction method, and the diffraction pattern was analyzed and quantified by the Rietveld method.
Amorphous: A mixed powder of a known amount of α-Quartz and alumina cement was measured by the X-ray diffraction method, and the diffraction pattern was analyzed and quantified by the Rietveld method.
(3) Fluidity: The kneaded material was allowed to stand in a constant temperature room at 20 ° C. for a predetermined time, and then dropped by 15 times according to the JISR2521 flow test, and the flow value was measured.
(4) Heat generation time: When the kneaded material was left in a constant temperature room at 20 ° C., the time from pouring water until the heat generation temperature reached the maximum was measured using a temperature recorder, and was defined as the heat generation time.
(5) Curing strength: The kneaded product was put into a 4 × 4 × 16 cm mold and cured in a constant temperature room at 20 ° C. for 24 hours, and then the compressive strength was measured.
(6) Drying strength: The kneaded product was put into a 4 × 4 × 16 cm mold, cured in a constant temperature room at 20 ° C. for 24 hours, and further dried at 110 ° C. for 24 hours, and the compressive strength was measured.
(6) Volume stability: The kneaded material is put into a 2 × 2 × 8 cm mold, cured in a constant temperature room at 20 ° C. for 24 hours, further dried at 110 ° C. for 24 hours, and baked at 1000 ° C. for 3 hours. . The rate of linear change was used as an index of volume stability.

表3に示す様に、本発明のカルシウムアルミネートを使用したモルタルは、従来品に比べて、遜色ない特性を示した。
As shown in Table 3, the mortar using the calcium aluminate of the present invention showed inferior characteristics compared to the conventional products.

Claims (3)

CaO・Al2O3、CaO・2Al2O3、12CaO・7Al2O3、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含むスラグと、CaO源及び/又はAl2O3源を原料として製造されるアルミナセメント。 CaO · Al 2 O 3, CaO · 2Al 2 O 3, 12CaO · 7Al 2 O 3, and slag containing one or more minerals 60% by mass or more selected from amorphous, CaO source and / or Al Alumina cement produced from 2 O 3 source. CaO・Al2O3、CaO・2Al2O3、12CaO・7Al2O3、非晶質から選ばれる1種又は2種以上の鉱物を60質量%以上含み、且つ、MgO・Al2O3及び/又はMgOを30質量%以下含むスラグを使用することを特徴とする請求項1記載のアルミナセメント。 CaO · Al 2 O 3, CaO · 2Al 2 O 3, 12CaO · 7Al 2 O 3, comprises one or more minerals 60% by mass or more selected from amorphous, and, MgO · Al 2 O 3 2. The alumina cement according to claim 1, wherein slag containing 30% by mass or less of MgO is used. 請求項1又は2記載のアルミナセメントと耐火骨材を含有してなる不定形耐火物。
An amorphous refractory comprising the alumina cement according to claim 1 or 2 and a refractory aggregate.
JP2006130976A 2006-05-10 2006-05-10 Alumina cement and monolithic refractory Pending JP2009173458A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006130976A JP2009173458A (en) 2006-05-10 2006-05-10 Alumina cement and monolithic refractory
PCT/JP2007/059673 WO2007129752A1 (en) 2006-05-10 2007-05-10 Process for production of alumina cement and prepared unshaped refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006130976A JP2009173458A (en) 2006-05-10 2006-05-10 Alumina cement and monolithic refractory

Publications (1)

Publication Number Publication Date
JP2009173458A true JP2009173458A (en) 2009-08-06

Family

ID=38667860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006130976A Pending JP2009173458A (en) 2006-05-10 2006-05-10 Alumina cement and monolithic refractory

Country Status (2)

Country Link
JP (1) JP2009173458A (en)
WO (1) WO2007129752A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013960A (en) * 2014-06-11 2016-01-28 宇部興産株式会社 Acid-resistant hydraulic composition, mortar composition and hardened mortar body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093576B2 (en) 2014-03-03 2018-10-09 Krosakiharima Corporation Unshaped refractory material
JP2016003152A (en) * 2014-06-16 2016-01-12 宇部興産株式会社 Self-leveling material
FR3068965B1 (en) * 2017-07-11 2021-11-19 Vicat NEW CONSTRUCTION MATERIAL PREPARED FROM A NEW POUZZOLANIC MATERIAL
CN111960835B (en) * 2020-08-28 2022-05-24 攀钢集团攀枝花钢铁研究院有限公司 Pointing material for reducing oxidation of electric furnace magnesia carbon brick and preparation and use methods thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2835467B2 (en) * 1990-07-25 1998-12-14 中部鋼鈑株式会社 Method for producing alumina cement from electric furnace slag
JP4155932B2 (en) * 2004-03-03 2008-09-24 電気化学工業株式会社 Alumina cement and amorphous refractory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013960A (en) * 2014-06-11 2016-01-28 宇部興産株式会社 Acid-resistant hydraulic composition, mortar composition and hardened mortar body

Also Published As

Publication number Publication date
WO2007129752A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP4527656B2 (en) Calcium aluminate, alumina cement and amorphous refractories
JP5290125B2 (en) Bonding agent for amorphous refractory and amorphous refractory
JP2006282486A (en) Alumina cement, alumina cement composition, and monolithic refractory
CN102958867B (en) The constructional method of unsetting refractory body binding agent, unsetting refractory body and unsetting refractory body
JP4602379B2 (en) Method for producing alumina cement
JP2009173458A (en) Alumina cement and monolithic refractory
CN103508740A (en) Ramming mass for repairing gap bridge magnesia-alumina spinel bricks of sleeve lime kiln
JP4155932B2 (en) Alumina cement and amorphous refractory
JP3392281B2 (en) Alumina cement composition and amorphous refractory using the same
JP2005154180A (en) Alumina cement composition and monolithic refractory
JP5031239B2 (en) Alumina cement, alumina cement composition and amorphous refractory
JP3348813B2 (en) Alumina cement substance, alumina cement containing the same, and amorphous refractory using the same
JP4920321B2 (en) Method for producing calcium aluminate
JP4343127B2 (en) Alumina cement and alumina cement composition
JP4101162B2 (en) Alumina cement, alumina cement composition and amorphous refractory using the same
JP4312190B2 (en) Calcium aluminate, alumina cement composition and amorphous refractory
JP4459882B2 (en) Alumina cement composition and amorphous refractory using the same
JP2009096658A (en) Alumina cement composition, and monolithic refractory using the same
WO2009130811A1 (en) Binder for monolithic refractory and monolithic refractory
JP3348814B2 (en) Alumina cement and amorphous refractories using it
JP2005162566A (en) Alumina cement, alumina cement composition and monolithic refractory using the same
JP2023147603A (en) Calcium aluminate, alumina cement, and unshaped refractory
JP2023147587A (en) Calcium aluminate, alumina cement, and unshaped refractory
JP2023147594A (en) Calcium aluminate, alumina cement, and unshaped refractory
JP3807773B2 (en) Alumina cement, alumina cement composition, and amorphous refractory using the same