JP2009166006A - Electric dust collector - Google Patents

Electric dust collector Download PDF

Info

Publication number
JP2009166006A
JP2009166006A JP2008010129A JP2008010129A JP2009166006A JP 2009166006 A JP2009166006 A JP 2009166006A JP 2008010129 A JP2008010129 A JP 2008010129A JP 2008010129 A JP2008010129 A JP 2008010129A JP 2009166006 A JP2009166006 A JP 2009166006A
Authority
JP
Japan
Prior art keywords
discharge
electrode plate
dust collector
electrostatic precipitator
nitrogen dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008010129A
Other languages
Japanese (ja)
Inventor
Hikari Murata
光 村田
Atsushi Kataya
篤史 片谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008010129A priority Critical patent/JP2009166006A/en
Publication of JP2009166006A publication Critical patent/JP2009166006A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve that problem that the hazardous nitrogen dioxide is increased by the oxidation of nitrogen monoxide in the exhaust gas because the suspended particulate materials (SPM) are removed by using an electric dust collector in a tunnel ventilation system but the electric dust collector generates ozone as a byproduct, that there is a risk of environmental influence in the neighborhood when the nitrogen dioxide is discharged outside of the tunnel through the ventilation system, and that when a nitrogen dioxide removing apparatus is arranged downstream side of the electric dust collector the treatment amount of the nitrogen dioxide removing apparatus varies. <P>SOLUTION: Discharged nitrogen dioxide is reduced by reducing an amount of generated ozone by selecting a glow discharge as the corona discharge type when positively charged. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気中の浮遊粒子状物質(SPM)を捕集する電気集塵装置に関する。   The present invention relates to an electrostatic precipitator that collects suspended particulate matter (SPM) in the air.

現在、トンネル換気用集塵装置としてSPMに電荷を与え捕集する電気集塵装置が採用されている。   Currently, an electric dust collector that collects charges by collecting SPM is employed as a dust collector for tunnel ventilation.

トンネル用の電気集塵機の構造は、特許第3150431号(特許文献1)の図3に示されるものが一般的であり、コロナ放電を発生させ粉塵に電荷を帯びさせる帯電部と、平行平板に高電圧を印加することで強電界空間を形成し、帯電した粉塵粒子を捕集する集塵部とからなる構成となっている。   The structure of an electrostatic precipitator for a tunnel is generally shown in FIG. 3 of Japanese Patent No. 3150431 (Patent Document 1). A charging unit that generates a corona discharge and charges a dust, and a parallel plate are high. A strong electric field space is formed by applying a voltage, and the dust collecting unit collects charged dust particles.

なお、放電極が接地極より電位が高くなるように電界を与える場合を正荷電、逆に放電極が接地極より電位が低くなるように電界を与える場合を負荷電と呼ぶ。   A case where an electric field is applied so that the discharge electrode has a potential higher than that of the ground electrode is referred to as positive charge, and a case where an electric field is applied so that the potential of the discharge electrode is lower than that of the ground electrode is referred to as negative charge.

これまで、トンネル換気用の電気集塵装置においては、帯電部の放電極として主に放電線が用いられてきた。しかし、放電線は長期間使用すると断線するため、メンテナンス頻度が増加する課題があった。   Until now, in an electrostatic precipitator for tunnel ventilation, a discharge wire has been mainly used as a discharge electrode of a charging unit. However, since the discharge wire is disconnected when used for a long period of time, there is a problem that the maintenance frequency increases.

このような状況の中で、帯電部放電極に断線の起こらない平板を利用し、その外周端面に複数の突起を有する放電極板が採用されている(例えば、特許文献2、特許文献3)。   Under such circumstances, a discharge plate having a plurality of protrusions on the outer peripheral end surface thereof is employed using a flat plate that does not cause disconnection in the charging unit discharge electrode (for example, Patent Document 2 and Patent Document 3). .

ここで、日本の都市部における道路トンネルの排ガス性状の典型的な例としては、表1に示すデータ(処理対象となる排ガスの成分)が挙げられる。   Here, as a typical example of the exhaust gas properties of a road tunnel in an urban area in Japan, data shown in Table 1 (components of exhaust gas to be processed) can be cited.

Figure 2009166006
Figure 2009166006

表1からもわかるように道路トンネル内のガスにはSPMの他に有害な二酸化窒素(NO2)が含まれる。 As can be seen from Table 1, the gas in the road tunnel contains harmful nitrogen dioxide (NO 2 ) in addition to SPM.

電気集塵機を換気設備に用いることによってSPMは除去されるものの、これらのガス(特にNO2、窒素酸化物(NOx))が換気設備を通しトンネル外に排出される場合、近隣の環境影響が懸念される。 Although SPM is removed by using an electrostatic precipitator for ventilation equipment, if these gases (especially NO 2 and nitrogen oxides (NOx)) are exhausted outside the tunnel through ventilation equipment, there is a concern about the environmental impact of the neighborhood. Is done.

従って、トンネル換気設備にはSPM除去が目的の電気集塵機とは別に、NO2除去またはNOx除去を目的とした還元触媒、吸着剤、吸収剤のいずれかを配置するケースが増えている。 Therefore, in addition to the electrostatic precipitator intended for SPM removal, tunnel ventilation equipment is increasingly equipped with any one of a reduction catalyst, an adsorbent, and an absorbent intended for NO 2 removal or NOx removal.

一方で、電気集塵機にはSPMを除去するという本来の機能の他に、帯電部においてコロナ放電を利用するため、副生成物として有害なオゾン(03)が発生する。特にトンネル内では、一酸化窒素(NO)が多く存在するため、オゾン(03)によって一酸化窒素(NO)が酸化し、有害な二酸化窒素(NO2)を増加させてしまうという問題もある。(公開特許「国際公開番号 WO2006/009187」(特許文献4))。 On the other hand, in addition to the original function of removing SPM, the electrostatic precipitator uses corona discharge in the charging unit, and therefore harmful ozone (0 3 ) is generated as a by-product. In particular, in the tunnel, there is a large amount of nitric oxide (NO), so there is also a problem that the nitrogen monoxide (NO) is oxidized by ozone (0 3 ) and harmful nitrogen dioxide (NO 2 ) is increased. . (Public Patent “International Publication Number WO2006 / 009187” (Patent Document 4)).

また、トンネル排気ガス中のNOxのうち約9割はNOであり、残りの約1割がNO2であると考えて問題はない。(松下電器産業の技術図書「National Technical Report 1995年6月号」(非特許文献1))。 Further, about 90% of the NOx in the tunnel exhaust gas is NO, and the remaining about 10% is NO 2 , so there is no problem. (Technical book of Matsushita Electric Industrial Co., Ltd. “National Technical Report June 1995” (Non-patent Document 1)).

さらに、非特許文献2のJohn H. Seinfeld 教授によるNOとオゾンとの反応式によれば、電気集塵機で発生するオゾンのほぼすべてがNO2に酸化されるものと考えて問題はない。 Furthermore, John H. et al. According to the reaction formula of NO and ozone by Professor Seinfeld, there is no problem assuming that almost all ozone generated in the electrostatic precipitator is oxidized to NO 2 .

つまり、電気集塵機から発生するオゾン量によって下流側のNO2除去装置のNO2ガス処理量は変動することになる。
特許第3150431号公報 実開昭61−200146号公報 実開平6−41849号公報 国際公開第2006/009187号パンフレット National Technical Report 1995年6月号 化学反応速度論(著者:John H. Seinfeld、産業図書) 静電気学会の新版「静電気ハンドブック」23章
That is, the NO 2 gas processing amount of the downstream NO 2 removal device varies depending on the amount of ozone generated from the electrostatic precipitator.
Japanese Patent No. 3150431 Japanese Utility Model Publication No. 61-200146 Japanese Utility Model Publication No. 6-41849 International Publication No. 2006/009187 Pamphlet National Technical Report June 1995 Chemical kinetics (author: John H. Seinfeld, industrial book) New Electrostatics Society "Static Handbook" Chapter 23

前述したように電気集塵装置は、帯電部においてコロナ放電を利用するため、副生成物として有害なオゾンが発生する。特にトンネル内では、NOが多く存在するため、オゾンによってNOが酸化し、有害なNO2を増加させる。一般にオゾン発生量は放電極形状や印加電圧の極性によって異なるが、これまでその違いについて明確に確認されていない。 As described above, since the electrostatic precipitator uses corona discharge in the charging unit, harmful ozone is generated as a by-product. Particularly in the tunnel, since there is a large amount of NO, NO is oxidized by ozone, and harmful NO 2 is increased. In general, the amount of ozone generated varies depending on the shape of the discharge electrode and the polarity of the applied voltage, but the difference has not been clearly confirmed so far.

非特許文献3の静電気学会「静電気ハンドブック」によれば、正荷電時のコロナ放電の形態には、消費電力の増加に伴い、少なくとも3種類ある。放電形態の3種類とはブラシコロナとグローコロナ、そしてストリーマコロナを言う。   According to the Electrostatic Society “Static Handbook” of Non-Patent Document 3, there are at least three types of corona discharge forms during positive charging as power consumption increases. The three types of discharge modes are brush corona, glow corona, and streamer corona.

ここでは、外周端面に複数の突起を有する放電極板を用い、正荷電においてオゾン発生量と放電形態について調べている。   Here, a discharge electrode plate having a plurality of protrusions on the outer peripheral end face is used, and the amount of ozone generated and the discharge form are examined in the positive charge.

その結果、放電形態の変化に応じてオゾン発生量が、一旦増加するものの、一時的に少なくなり、その後増加する傾向が顕著に見られる放電極形状があることが判った。   As a result, it was found that there is a discharge electrode shape in which the ozone generation amount increases once according to the change in the discharge form, but temporarily decreases and then a tendency to increase is noticeable.

そこで本発明は、外周端面に複数の突起を有する放電極板を用いて、高いSPM除去率を有しつつ、正荷電時の放電形態を選択しO3発生量を少なくすることで、換気設備を通しトンネル外に排出、または電気集じん機下流側のNO2除去装置で処理されるO3量とNO2量を少なくできる電気集塵装置を提供することを目的とする。 Therefore, the present invention uses a discharge electrode plate having a plurality of protrusions on the outer peripheral end face, selects a discharge mode at the time of positive charge while reducing the O 3 generation amount while having a high SPM removal rate, thereby providing ventilation equipment. An object of the present invention is to provide an electrostatic precipitator that can reduce the amount of O 3 and the amount of NO 2 that are discharged through the tunnel or processed by the NO 2 removal device downstream of the electrostatic precipitator.

本発明の電気集塵装置は、先端が尖った複数の突起を端面に有する放電極板と、平板状の接地極板が風の流れに対し平行にかつ交互に配設され、前記放電極板に高電圧を印加することでコロナ放電を発生し、空気中の粒子状物質に電荷を与える帯電部と、帯電した粒子状物質を捕集する集塵部とを備えた電気集塵装置において、前記放電極板が前記接地極板より電位が高くなるように電界を与える場合に、前記コロナ放電の形態はグロー放電で運用することを特徴とするものである。   In the electrostatic precipitator of the present invention, an electrode plate having a plurality of protrusions with sharp tips on its end surface and a flat ground electrode plate are arranged in parallel and alternately with the wind flow, and the electrode plate In an electrostatic precipitator equipped with a charging unit that generates a corona discharge by applying a high voltage to the air and applies a charge to particulate matter in the air, and a dust collecting unit that collects the charged particulate matter. In the case where the electric field is applied so that the electric potential of the discharge electrode plate is higher than that of the ground electrode plate, the corona discharge mode is operated by glow discharge.

本発明によれば、外周端面に複数の突起を有する放電極板を用いて、高いSPM除去率を有しつつ、換気設備を通しトンネル外に排出、または電気集塵機下流側のNO2除去装置で処理されるO3量とNO2量を少なくする電気集塵装置を提供できる。 According to the present invention, the discharge electrode plate having a plurality of protrusions on the outer peripheral end face is used, and the exhaust gas is exhausted out of the tunnel through the ventilation facility while having a high SPM removal rate, or the NO 2 removal device downstream of the electrostatic precipitator. An electric dust collector that reduces the amount of O 3 and NO 2 to be processed can be provided.

本発明の第1の実施形態は、先端が尖った複数の突起を端面に有する放電極板と、平板状の接地極板が風の流れに対し平行にかつ交互に配設され、放電極板に高電圧を印加することでコロナ放電を発生し、空気中の粒子状物質に電荷を与える帯電部と、帯電した粒子状物質を捕集する集塵部とを備えた電気集塵装置において、前記放電極板が前記接地極板より電位が高くなるように電界を与え、グロー放電となるように運用するものである。   In the first embodiment of the present invention, a discharge electrode plate having a plurality of protrusions with pointed tips and flat grounding electrode plates arranged alternately and parallel to the wind flow, In an electrostatic precipitator equipped with a charging unit that generates a corona discharge by applying a high voltage to the air and applies a charge to particulate matter in the air, and a dust collecting unit that collects the charged particulate matter. The discharge electrode plate is operated such that glow discharge is caused by applying an electric field so that the potential is higher than that of the ground electrode plate.

以下、本発明の一実施例について図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施例による電気集塵装置を示す斜視図である。   FIG. 1 is a perspective view showing an electric dust collector according to the present embodiment.

トンネル内の排気ガスは換気ファン(図示せず)により、電気集塵装置50に導かれる。電気集塵装置50は、流路上流側の帯電部52と、流路下流側の集塵部53から構成される。また電気集塵装置50の側面には集塵部53に高電圧を印加する給電部51Aと、帯電部52に高電圧を印加する給電部51Bとが設けられている。   The exhaust gas in the tunnel is guided to the electric dust collector 50 by a ventilation fan (not shown). The electric dust collector 50 includes a charging unit 52 on the upstream side of the flow channel and a dust collecting unit 53 on the downstream side of the flow channel. On the side surface of the electrostatic precipitator 50, a power feeding unit 51A for applying a high voltage to the dust collecting unit 53 and a power feeding unit 51B for applying a high voltage to the charging unit 52 are provided.

帯電部52は、複数の接地極板52Bが所定間隔あけて並設され、接地極板52Bの間に放電極板52Aが配置された構造となっている。集塵部53は、荷電極板53Aと集塵極板53Bが交互に間隔をあけて並設している。電気集塵機50を通過するSPMは、帯電部52の放電極板52Aと接地極板52Bとの間で発生するコロナ放電によって帯電される。また、集塵部53は、荷電極板53Aに電圧を印加することで集塵極板53Bとの間に電界を形成し、帯電したSPMをクーロン力によって集塵極板53Bに捕集する。なお、本実施例では帯電部52とは別に集塵部53を設けた場合で説明するが、各々を共通化した1段式電気集塵装置であってもよい。   The charging unit 52 has a structure in which a plurality of ground electrode plates 52B are arranged in parallel at predetermined intervals, and a discharge electrode plate 52A is disposed between the ground electrode plates 52B. In the dust collecting portion 53, the load electrode plate 53A and the dust collecting electrode plate 53B are arranged in parallel at intervals. The SPM passing through the electric dust collector 50 is charged by corona discharge generated between the discharge electrode plate 52A and the ground electrode plate 52B of the charging unit 52. Moreover, the dust collection part 53 forms an electric field between the dust collection electrode plates 53B by applying a voltage to the load electrode plate 53A, and collects the charged SPM on the dust collection electrode plates 53B by Coulomb force. In this embodiment, the dust collecting unit 53 is provided separately from the charging unit 52. However, a single-stage electrostatic dust collecting device in which the dust collecting unit 53 is shared may be used.

図2は、本実施例による電気集塵装置で平板状放電極を用いた帯電部構成を示す平面図である。   FIG. 2 is a plan view showing a configuration of a charging unit using a flat discharge electrode in the electrostatic precipitator according to the present embodiment.

帯電部52は、複数枚の接地極板52Bが所定間隔あけて並設され、接地極板52Bの間に放電極板52Aが配置されている。このとき、放電極板52Aの表面と接地極板52Bの表面との間の距離Dは12mmから20mm程度とする。尚、放電極板52Aは流路方向に各々複数に分割されていてもよい。   In the charging unit 52, a plurality of ground electrode plates 52B are arranged in parallel at predetermined intervals, and a discharge electrode plate 52A is disposed between the ground electrode plates 52B. At this time, the distance D between the surface of the discharge electrode plate 52A and the surface of the ground electrode plate 52B is about 12 mm to 20 mm. The discharge electrode plate 52A may be divided into a plurality of pieces in the flow path direction.

図3は、電気集塵装置の放電極板の構成を示す側面図を示す。放電極板52Aは、ガスの流れ方向に垂直な端面に、先端が尖った形状をした複数の突起10を有している。このとき、複数の突起10は、等間隔に設けられていることが好ましい。突起10の先端角度Αは10度から40度程度とする。複数の突起10は、放電極板52Aの風上側端面と風下側端面とに設けている。複数の突起10を、放電極板52Aの風上側端面だけに設けてもよい。放電極板52Aの風上側端面と風下側端面との間の幅Wは、30mmから300mm程度である。それぞれの突起10の高さHは、先端角度Aと突起間隔Pに制約されるが、5mmから20mm程度とし、突起10の突起間隔Pは4mmから20mmの範囲とすることが好ましい。   FIG. 3 is a side view showing the configuration of the discharge electrode plate of the electrostatic precipitator. The discharge electrode plate 52A has a plurality of protrusions 10 each having a pointed tip on an end surface perpendicular to the gas flow direction. At this time, the plurality of protrusions 10 are preferably provided at equal intervals. The tip angle Α of the protrusion 10 is about 10 to 40 degrees. The plurality of protrusions 10 are provided on the windward end face and the leeward end face of the discharge electrode plate 52A. The plurality of protrusions 10 may be provided only on the windward end face of the discharge electrode plate 52A. The width W between the windward end face and the leeward end face of the discharge electrode plate 52A is about 30 mm to 300 mm. The height H of each protrusion 10 is limited by the tip angle A and the protrusion interval P, but is preferably about 5 mm to 20 mm, and the protrusion interval P of the protrusion 10 is preferably in the range of 4 mm to 20 mm.

本実施例では、放電極板及び接地極板の板厚は0.5mm程度とし、材質はステンレスを用いている。放電極板52Aは支持金具12によって、接地極板と一定間隔Dで保持されている。ここで、コロナ放電によって突起10の先端形状が変化するのを防止するために突起10の先端には、曲率半径Rが0.3mmの丸みを設けている。   In the present embodiment, the plate thickness of the discharge electrode plate and the ground electrode plate is about 0.5 mm, and the material is stainless steel. The discharge electrode plate 52 </ b> A is held at a fixed distance D from the ground electrode plate by the support fitting 12. Here, in order to prevent the tip shape of the protrusion 10 from being changed by corona discharge, the tip of the protrusion 10 is provided with a roundness having a curvature radius R of 0.3 mm.

図4は、放電極形状とオゾン発生量特性について調べた実験装置構成図を示す。放電極板52Aより構成される帯電部52は、測定ダクト内に配置し、換気ファンの運転により常に新しい空気を帯電部に通風させている。尚、室内の温湿度は20℃、60%RHで一定にしている。帯電部流入、流出側のサンプル空気をオゾン計で測定した。尚、放電極形状による発生オゾン濃度の違いをより明確にするため、帯電部通過処理風速は2m/sとした。本実験では放電極間隔は12mm、高さは10mm、で固定とした。測定した放電極形状は、表2に示す通りである。尚、帯電部の荷電極性については、正荷電と負荷電の両方行なった。   FIG. 4 shows a configuration diagram of an experimental apparatus in which the discharge electrode shape and the ozone generation amount characteristic are examined. The charging unit 52 composed of the discharge electrode plate 52A is arranged in the measurement duct, and fresh air is constantly passed through the charging unit by the operation of the ventilation fan. The indoor temperature and humidity are constant at 20 ° C. and 60% RH. The sample air on the charging part inflow and outflow side was measured with an ozone meter. In addition, in order to clarify the difference in the generated ozone concentration depending on the discharge electrode shape, the charging part passing treatment wind speed was set to 2 m / s. In this experiment, the discharge electrode interval was fixed at 12 mm and the height was 10 mm. The measured discharge electrode shape is as shown in Table 2. In addition, about the charge polarity of the charging part, both positive charge and negative charge were performed.

Figure 2009166006
Figure 2009166006

図5に放電電流特性を示す。負荷電の場合、各パターンとも概ね似通った傾向を示し、印加電圧の上昇に対する放電電流の増加の割合はほぼ一定である。一方、正荷電の場合、放電電流の増加の割合が放電極形状によって異なっている。   FIG. 5 shows the discharge current characteristics. In the case of negative charge, each pattern shows a similar tendency, and the rate of increase of the discharge current with respect to the increase of the applied voltage is almost constant. On the other hand, in the case of positive charge, the rate of increase of the discharge current varies depending on the discharge electrode shape.

次に図6にオゾン発生特性を示す。尚、パターン〔2〕〔3〕は欠測している。ここでは比較のために放電極に放電線を用いたパターンを追加している。放電線の材質はタングステンとし、線径は0.25mm程度である。尚、消費電力は印加電圧と放電電流の積、処理風量は帯電部通風面積と通過風速の積で求めている。ここでは、単位処理風量あたりの消費電力に対するオゾン発生量を示している。   Next, FIG. 6 shows the ozone generation characteristics. Patterns [2] and [3] are missing. Here, for comparison, a pattern using discharge lines is added to the discharge electrode. The material of the discharge wire is tungsten, and the wire diameter is about 0.25 mm. The power consumption is obtained by the product of the applied voltage and the discharge current, and the processing air volume is obtained by the product of the charging portion ventilation area and the passing air speed. Here, the ozone generation amount with respect to the power consumption per unit processing air volume is shown.

負荷電の場合、消費電力に対するオゾン発生量の傾向は形状によらずほぼ一定であり、正荷電の放電線と比較して約5倍である。   In the case of negative electricity, the tendency of the amount of ozone generated with respect to power consumption is almost constant regardless of the shape, and is about five times that of positively charged discharge lines.

一方、正荷電の場合のオゾン発生特性は実に多様である。中でも特徴的であるのは、消費電力の増加に対してオゾン発生量が一時的に少なくなる傾向が見られることである。この傾向が最も顕著なパターン〔7〕について負荷電と正荷電を比較すると、正荷電でオゾン発生量が極小値となる消費電力150W/(m3/s)の時であれば、負荷電はオゾン発生量が約0.3ppmであるのに対し、正荷電はオゾン発生量が約0.1ppm以下でありおよそ3倍の差がある。また、オゾン発生量の極小値は,放電線電極の正荷電方式とほぼ同じレベルとなっている。この特徴的な傾向が見られる要因を把握するため、パターン〔7〕の放電極形状を用いて放電の様子と電流波形を確認した。図7にその結果を示す。 On the other hand, the ozone generation characteristics in the case of positive charge are very diverse. Among them, what is characteristic is that there is a tendency that the amount of generated ozone temporarily decreases with an increase in power consumption. When the negative charge and the positive charge are compared with respect to the pattern [7] in which this tendency is most remarkable, if the power consumption is 150 W / (m 3 / s) at which the ozone generation amount becomes a minimum value with the positive charge, the negative charge is The ozone generation amount is about 0.3 ppm, whereas the positive charge has an ozone generation amount of about 0.1 ppm or less, which is a difference of about three times. Moreover, the minimum value of the ozone generation amount is almost the same level as the positive charging method of the discharge line electrode. In order to grasp the cause of this characteristic tendency, the discharge state and current waveform were confirmed using the discharge electrode shape of pattern [7]. FIG. 7 shows the result.

コロナ放電開始から消費電力約50W/(m3/s)迄の,消費電力の増加と共にオゾン発生量も増加する範囲(領域1とする)では、図7(a)に示すようにコロナ放電はブラシ状に伸びている。ブラシコロナに分類される放電様態である。電流波形は、数十μs周期のパルス状の脈動波形が観測され、電圧の上昇(消費電力の増加)と共にパルスの振幅は大きくなった。 In the range (area 1) in which the amount of ozone generation increases with the increase in power consumption from the start of corona discharge to about 50 W / (m 3 / s), the corona discharge is as shown in FIG. It extends like a brush. It is a discharge mode classified as a brush corona. As for the current waveform, a pulse-like pulsation waveform with a period of several tens of μs was observed, and the amplitude of the pulse increased with an increase in voltage (an increase in power consumption).

次に消費電力約約50W/(m3/s)から約150W/(m3/s)迄の,消費電力の増加に対してオゾン発生量が減少する範囲(領域2とする)ではブラシ状に伸びたコロナ放電が無くなり、図7(b)に示すようにトゲ先端部で球状のコロナ放電が発生した。グローコロナ放電に分類される放電様態である。同時に,トゲ先端部のみならず放電極の端部全体から接地極板に向かって,均一なエアカーテン状の微弱な放電が目視で確認された。一方、電流波形は領域1で増大したパルス状の脈動波形の振幅が小さくなることを確認した。 Next, in the range where the amount of ozone generation decreases with the increase in power consumption from about 50 W / (m 3 / s) to about 150 W / (m 3 / s) (referred to as region 2), the brush shape As shown in FIG. 7B, a spherical corona discharge was generated at the tip of the thorn. It is a discharge mode classified as glow corona discharge. At the same time, a weak discharge of uniform air curtain shape was visually confirmed from not only the tip of the splinter but also from the whole end of the discharge electrode toward the ground electrode plate. On the other hand, it was confirmed that the amplitude of the pulsed pulsation waveform increased in the region 1 in the current waveform was reduced.

最後に消費電力約150W/(m3/s)以上の、再び消費電力の増加と共にオゾン発生量も増加する範囲(領域3とする)では、領域2で観測された球状のコロナ放電から接地極近辺まで延びたストリーマが観測された。ストリーマコロナ放電に分類される放電様態である。電流波形は,再びパルス状の脈動波形となり、その振幅が領域1より大きくなっている。 Finally, in a range where power consumption is about 150 W / (m 3 / s) or more and the amount of ozone generation increases with the increase in power consumption again (referred to as region 3), the spherical electrode from the spherical corona discharge observed in region 2 is grounded. A streamer extending to the vicinity was observed. The discharge mode is classified as streamer corona discharge. The current waveform becomes a pulse-like pulsation waveform again, and its amplitude is larger than that of the region 1.

このように放電様態観測の結果、オゾンの発生量は放電形態に依存していることが判明した。   Thus, as a result of the discharge mode observation, it was found that the amount of ozone generated depends on the discharge mode.

すなわち正荷電の場合、消費電力の増加とともにブラシコロナ、グローコロナ、ストリーマコロナの順番に3つの放電形態が観測された。   That is, in the case of positive charge, as the power consumption increased, three discharge modes were observed in the order of brush corona, glow corona, and streamer corona.

尚、正荷電のパターン〔7〕以外の放電極形状には実験でこそ顕著な特性は見られなかったが、放電形態は消費電力の僅かな差で移行し、その間でオゾン発生特性に極大極小が存在していものと推察される。   In addition, the discharge electrode shape other than the positively charged pattern [7] did not show remarkable characteristics only in the experiment, but the discharge mode shifted with a slight difference in power consumption, and the ozone generation characteristics were maximized and minimized during that time. Is presumed to exist.

今、電気集塵装置から発生するオゾン量を少なくする場合は、正荷電の領域2、即ちコロナ放電の形態がグロー放電となるように電気集塵装置を運用すれば良いことは自明である。   Now, when reducing the amount of ozone generated from the electrostatic precipitator, it is obvious that the electrostatic precipitator may be operated so that the positively charged region 2, that is, the form of corona discharge is glow discharge.

図8に集塵効率の関係を示す。消費電力を50W一定に保ち、大気塵に対する集塵効率をレーザーパーティクルカウンターで測定した。   FIG. 8 shows the relationship of dust collection efficiency. The power consumption was kept constant at 50 W, and the dust collection efficiency against atmospheric dust was measured with a laser particle counter.

負荷電の場合、どのパターンでもほぼ同様の値であった。一方、正荷電の場合、パターン〔7〕の集塵効率が高くなっている。   In the case of negative charge, all patterns had almost the same value. On the other hand, in the case of positive charge, the dust collection efficiency of the pattern [7] is high.

本発明は、コロナ放電によってSPMに電荷を与えて帯電させ、帯電したSPMをクーロン力によって捕集する電気集塵装置であって、特に自動車排ガスの換気に利用される沿道用集塵装置やトンネル用集塵装置に適している。   The present invention relates to an electrostatic precipitator that charges an SPM by corona discharge and charges it, and collects the charged SPM by means of Coulomb force. Suitable for dust collectors.

本実施例による電気集塵装置を示す斜視図The perspective view which shows the electric dust collector by a present Example 本実施例による電気集塵装置で板状放電極を用いた帯電部構成を示す平面図The top view which shows the charging part structure using a plate-shaped discharge electrode with the electrostatic precipitator by a present Example 本実施例による電気集塵装置の放電極板の構成を示す側面図The side view which shows the structure of the discharge plate of the electrostatic precipitator by a present Example 本実施例による電気集塵装置放電極のオゾン発生量特性を調べた実験装置構成図Experimental device configuration diagram examining the ozone generation amount characteristics of the electrostatic precipitator discharge electrode according to the present embodiment 本実施例による電気集塵装置放電極の放電電流特性を示すグラフ((a)負荷電、(b)正荷電)The graph which shows the discharge current characteristic of the electrostatic precipitator discharge electrode by a present Example ((a) negative charge, (b) positive charge) 本実施例による電気集塵装置放電極のオゾン発生量特性を示すグラフ((a)負荷電、(b)正荷電)The graph which shows the ozone generation amount characteristic of the electrostatic precipitator discharge electrode by a present Example ((a) negative charge, (b) positive charge) 本実施例による電気集塵装置放電極の放電の様子と電流波形を示す図((a)領域1、(b)領域2、(c)領域3)The figure which shows the mode of discharge and electric current waveform of the electrostatic precipitator discharge electrode by a present Example ((a) area | region 1, (b) area | region 2, (c) area | region 3) 本実施例による電気集塵装置放電極の集塵効率を示すグラフ((a)負荷電、(b)正荷電)The graph which shows the dust collection efficiency of the electrostatic precipitator discharge electrode by a present Example ((a) negative charge, (b) positive charge)

符号の説明Explanation of symbols

10 突起
12 支持金具
50 電気集塵装置
51A、51B 給電部
52 帯電部
52A 放電極板
52B 接地極板
53 集塵部
53A 荷電極板
53B 集塵極板
DESCRIPTION OF SYMBOLS 10 Protrusion 12 Support metal fitting 50 Electric dust collector 51A, 51B Feeding part 52 Charging part 52A Electrode electrode plate 52B Ground electrode plate 53 Dust collector part 53A Load electrode plate 53B Dust collector electrode plate

Claims (1)

先端が尖った複数の突起を端面に有する放電極板と、平板状の接地極板が風の流れに対し平行にかつ交互に配設され、前記放電極板に高電圧を印加することでコロナ放電を発生し、空気中の粒子状物質に電荷を与える帯電部と、帯電した粒子状物質を捕集する集塵部とを備えた電気集塵装置において、前記放電極板が前記接地極板より電位が高くなるように電界を与える場合に前記コロナ放電の形態はグロー放電で運用することを特徴とする電気集塵装置。 A discharge electrode plate having a plurality of sharpened tips on its end surface and a flat ground electrode plate are arranged in parallel and alternately with the flow of wind, and a corona is applied by applying a high voltage to the discharge plate. In an electrostatic precipitator including a charging unit that generates a discharge and applies a charge to particulate matter in the air, and a dust collecting unit that collects the charged particulate matter, the discharge electrode plate is the ground electrode plate An electrostatic precipitator, wherein the corona discharge is operated by glow discharge when an electric field is applied so that the potential becomes higher.
JP2008010129A 2008-01-21 2008-01-21 Electric dust collector Pending JP2009166006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010129A JP2009166006A (en) 2008-01-21 2008-01-21 Electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010129A JP2009166006A (en) 2008-01-21 2008-01-21 Electric dust collector

Publications (1)

Publication Number Publication Date
JP2009166006A true JP2009166006A (en) 2009-07-30

Family

ID=40967821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010129A Pending JP2009166006A (en) 2008-01-21 2008-01-21 Electric dust collector

Country Status (1)

Country Link
JP (1) JP2009166006A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224515A (en) * 2010-04-22 2011-11-10 Furukawa Industrial Machinery Systems Co Ltd Electric dust collector for tunnel construction
WO2016067554A1 (en) * 2014-10-29 2016-05-06 パナソニックIpマネジメント株式会社 Electrostatic precipitator
CN107684977A (en) * 2017-08-30 2018-02-13 珠海格力电器股份有限公司 A kind of electrodecontamination structure and include its air cleaning unit
WO2021090595A1 (en) 2019-11-05 2021-05-14 富士電機株式会社 Electrostatic precipitator
WO2021176881A1 (en) 2020-03-02 2021-09-10 富士電機株式会社 Dust collector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986957A (en) * 1972-12-25 1974-08-20
JP2001310141A (en) * 2000-02-25 2001-11-06 Matsushita Seiko Co Ltd Dust precipitator
JP2004000976A (en) * 2000-02-25 2004-01-08 Matsushita Ecology Systems Co Ltd Dust collector
WO2006009187A1 (en) * 2004-07-23 2006-01-26 Matsushita Electric Industrial Co., Ltd. Electrostatic precipitator and electrostatic precipitation systm
JP2007035310A (en) * 2005-07-22 2007-02-08 Oita Univ Atmospheric pressure corona discharge generating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986957A (en) * 1972-12-25 1974-08-20
JP2001310141A (en) * 2000-02-25 2001-11-06 Matsushita Seiko Co Ltd Dust precipitator
JP2004000976A (en) * 2000-02-25 2004-01-08 Matsushita Ecology Systems Co Ltd Dust collector
WO2006009187A1 (en) * 2004-07-23 2006-01-26 Matsushita Electric Industrial Co., Ltd. Electrostatic precipitator and electrostatic precipitation systm
JP2007035310A (en) * 2005-07-22 2007-02-08 Oita Univ Atmospheric pressure corona discharge generating device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224515A (en) * 2010-04-22 2011-11-10 Furukawa Industrial Machinery Systems Co Ltd Electric dust collector for tunnel construction
WO2016067554A1 (en) * 2014-10-29 2016-05-06 パナソニックIpマネジメント株式会社 Electrostatic precipitator
JPWO2016067554A1 (en) * 2014-10-29 2017-08-10 パナソニックIpマネジメント株式会社 Electric dust collector
CN107684977A (en) * 2017-08-30 2018-02-13 珠海格力电器股份有限公司 A kind of electrodecontamination structure and include its air cleaning unit
WO2021090595A1 (en) 2019-11-05 2021-05-14 富士電機株式会社 Electrostatic precipitator
KR20210141740A (en) 2019-11-05 2021-11-23 후지 덴키 가부시키가이샤 electric dust collector
WO2021176881A1 (en) 2020-03-02 2021-09-10 富士電機株式会社 Dust collector
KR20220025014A (en) 2020-03-02 2022-03-03 후지 덴키 가부시키가이샤 cyclone

Similar Documents

Publication Publication Date Title
AU2008320310B2 (en) Charging device, air handling device, method for charging, and method for handling air
KR101984321B1 (en) Electrostatic precipitator
EP2343090B1 (en) Device for inactivating and finely filtering viruses and microorganisms in a flow of air
JP2009166006A (en) Electric dust collector
JP2007007589A (en) Electric dust collection device and air cleaning apparatus incorporating the same
KR102026054B1 (en) Flue-gas desulfurization(fgd) including electrostatic precipitator
JP2009072772A (en) Electric dust-collector
JP4875983B2 (en) Electric dust collector
JP2011161330A (en) Apparatus for denitrifying exhaust
JP2011161329A (en) Apparatus for treating exhaust discharged from sintering machine
KR102026010B1 (en) Flue-gas desulfurization(fgd) including electrostatic precipitator
JP3984059B2 (en) Exhaust gas purification device
JP4964515B2 (en) Electric dust collector and method
Yun et al. A novel polymer-arrayed electrostatic precipitator with electrical resistance material for the removal of fine particles
JP2002361117A (en) Electric precipitator
CN215197584U (en) Enhanced plasma waste gas treatment device
JP2000197833A (en) Electric dust collector for tunnel
JP2987310B2 (en) Electrode for electrostatic precipitator
JP2015136683A (en) Electric dust collecting device and dust collecting method
JP2971461B1 (en) Electric dust collector and discharge electrode for dust collector
CN202212259U (en) Electrode bar type smoke charge device
JP2006150242A (en) Air purification apparatus and air purifying method using it
JP2010110692A (en) Charging apparatus and air treatment apparatus
JP2008168172A (en) Electrostatic precipitator
CN110339684A (en) A kind of boiler flue gas desulfurization denitrification apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820