JP4875983B2 - Electric dust collector - Google Patents

Electric dust collector Download PDF

Info

Publication number
JP4875983B2
JP4875983B2 JP2006529260A JP2006529260A JP4875983B2 JP 4875983 B2 JP4875983 B2 JP 4875983B2 JP 2006529260 A JP2006529260 A JP 2006529260A JP 2006529260 A JP2006529260 A JP 2006529260A JP 4875983 B2 JP4875983 B2 JP 4875983B2
Authority
JP
Japan
Prior art keywords
electrode plate
discharge electrode
protrusion
interval
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006529260A
Other languages
Japanese (ja)
Other versions
JPWO2006009187A1 (en
Inventor
篤史 片谷
細野  洋
光 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006529260A priority Critical patent/JP4875983B2/en
Publication of JPWO2006009187A1 publication Critical patent/JPWO2006009187A1/en
Application granted granted Critical
Publication of JP4875983B2 publication Critical patent/JP4875983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electrostatic Separation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、発生する粉塵を捕集する電気集塵装置及び電気集塵システムに関する。   The present invention relates to an electric dust collector and an electric dust collection system for collecting generated dust.

現在、トンネル換気用集塵装置として、粉塵に電荷を与えることで、トンネル内で発生する粉塵を捕集する電気集塵装置が採用されている。
そして、かかる用途の電気集塵装置にあっては、帯電部の放電極として主に放電線が用いられてきた。放電線は長期間使用すると断線することがあるため、放電線に印加される電圧極性は、放電線の寿命の長いマイナス極性(放電極が接地極よりも電位が低い)が採用されることが多かった。
このような状況の中で、放電線にマイナス極性を採用しても断線を生じる可能性が残るため、断線の起こらない複数の突起を端面に有する放電極板も採用されつつあり、複数の突起を端面に有する放電極板やこのような放電極板を利用した集塵装置が提案されている(例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6)。
一方、帯電部と集塵部を備えた集塵ユニットを複数個配設して集塵ブロックを構成し、この集塵ブロックを複数個設け、プラス放電ブロックの処理風量とマイナス放電ブロックの処理風量との差が少なくなるように、複数の集塵ブロックをプラス放電ブロックとマイナス放電ブロックとに集塵ブロック単位で区分することで、集塵機能を低下させることなく、集塵部で集塵されなかった粉塵を中和し、帯電粒子による壁面付着汚染を防止する電気集塵システムがある(特許文献7)。
実開昭61−200146号公報 実開平6−41849号公報 特開平3−232554号公報 特開平9−323048号公報 特開平10−28897号公報 特開2000−126647号公報 特開2003−260383号公報
Currently, as a dust collector for tunnel ventilation, an electric dust collector that collects dust generated in the tunnel by applying an electric charge to the dust is employed.
And in the electrostatic precipitator of such a use, the discharge wire has mainly been used as a discharge electrode of a charging part. Since the discharge wire may break when used for a long period of time, the polarity of the voltage applied to the discharge wire may be a negative polarity with a long life of the discharge wire (the discharge electrode has a lower potential than the ground electrode). There were many.
In such a situation, even if a negative polarity is adopted for the discharge line, there is still a possibility of causing a disconnection. Therefore, a discharge electrode plate having a plurality of protrusions on the end face that are not disconnected is being adopted. Have been proposed (for example, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 5, Patent Document). 6).
On the other hand, a plurality of dust collection units having a charging unit and a dust collection unit are arranged to form a dust collection block, and a plurality of dust collection blocks are provided. By separating multiple dust collection blocks into positive discharge blocks and negative discharge blocks in units of dust collection blocks, the dust collection function is not degraded and dust collection is not performed. There is an electric dust collection system that neutralizes dust and prevents wall surface contamination by charged particles (Patent Document 7).
Japanese Utility Model Publication No. 61-200146 Japanese Utility Model Publication No. 6-41849 JP-A-3-232554 Japanese Patent Laid-Open No. 9-323048 JP-A-10-28897 JP 2000-126647 A JP 2003-260383 A

ところで、電気集塵装置は、帯電部においてコロナ放電を利用するため、副生成物として有害なオゾンが発生する。特にトンネル内では、一酸化窒素が多く存在するため、オゾンによって一酸化窒素が酸化し、有害な二酸化窒素を増加させてしまうという問題もある。特に近年では、トンネル外へ排出されるオゾンや二酸化窒素が地域住民に与える影響も懸念され、オゾンや二酸化窒素の増加を抑えた電気集塵装置が望まれるようになってきた。
一般にオゾンは、コロナ放電電流が増加するほど多く発生する。発生したオゾンは空気中に含まれる一酸化窒素の酸化に消費され、時間と共に徐々に減少する。一方で二酸化窒素は時間と共に増加する。よって、電気集塵装置を通過した空気中のオゾンと二酸化窒素の比率は時間と共に変わっていくが、その和はほぼ一定である。つまり、電気集塵装置の風下側で増加したオゾンと二酸化窒素の増加量の和が電気集塵装置で副次的に生成されるオゾン生成量と言える。電気集塵装置が同一形状の装置で消費電力も同じ場合、プラス放電でもマイナス放電でも集じん効率はほぼ同じ値となるが、オゾン生成量は放電極性によって異なる。放電極として放電線を用いた場合、マイナス極性のオゾン生成量は、プラス極性のオゾン生成量に比較して、単位風量、単位消費電力あたり5倍から10倍程度多い。例えば、プラス極性として8kVの電圧を印加した場合の単位風量、単位消費電力あたりのオゾン生成量が0.010ppmであるのに対して、マイナス極性として8kVの電圧を印加した場合の単位風量、単位消費電力あたりのオゾン生成量は0.049ppmであった。また、プラス極性として9.5kVの電圧を印加した場合の単位風量、単位消費電力あたりのオゾン生成量が0.005ppmであるのに対して、マイナス極性として9.5kVの電圧を印加した場合の単位風量、単位消費電力あたりのオゾン生成量は0.043ppmであった。また、プラス極性として11kVの電圧を印加した場合の単位風量、単位消費電力あたりのオゾン生成量が0.006ppmであるのに対して、マイナス極性として11kVの電圧を印加した場合の単位風量、単位消費電力あたりのオゾン生成量は0.037ppmであった。また、プラス極性として12.5kVの電圧を印加した場合の単位風量、単位消費電力あたりのオゾン生成量が0.004ppmであるのに対して、マイナス極性として12.5kVの電圧を印加した場合の単位風量、単位消費電力あたりのオゾン生成量は0.034ppmであった。
このように、放電線の寿命を考慮すると、マイナス極性が優れるが、オゾン生成量を考慮すると、プラス極性が優れている。
また、複数の突起を端面に有する放電極板を用いる場合には、電圧極性や形状によるオゾン生成量の違いは明確に確認されていなかった。
By the way, since the electrostatic precipitator uses corona discharge in the charging unit, harmful ozone is generated as a by-product. In particular, in the tunnel, since there is a large amount of nitric oxide, there is also a problem that nitrogen monoxide is oxidized by ozone and harmful nitrogen dioxide is increased. Particularly in recent years, there are concerns about the impact of ozone and nitrogen dioxide discharged outside the tunnel on local residents, and an electric dust collector that suppresses the increase in ozone and nitrogen dioxide has been desired.
In general, more ozone is generated as the corona discharge current increases. The generated ozone is consumed by the oxidation of nitric oxide contained in the air and gradually decreases with time. On the other hand, nitrogen dioxide increases with time. Therefore, the ratio of ozone and nitrogen dioxide in the air that has passed through the electrostatic precipitator varies with time, but the sum is almost constant. That is, it can be said that the sum of the increased amount of ozone and nitrogen dioxide increased on the lee side of the electrostatic precipitator is the amount of ozone generated as a secondary generation in the electrostatic precipitator. When the electrostatic precipitator has the same shape and the same power consumption, the dust collection efficiency is almost the same in both positive discharge and negative discharge, but the amount of ozone generated differs depending on the discharge polarity. When a discharge wire is used as the discharge electrode, the amount of negative polarity ozone generation is about 5 to 10 times greater per unit air volume and unit power consumption than the amount of positive polarity ozone generation. For example, the unit air volume when the voltage of 8 kV is applied as the positive polarity and the ozone generation amount per unit power consumption is 0.010 ppm, whereas the unit air volume when the voltage of 8 kV is applied as the negative polarity, the unit The amount of ozone generated per power consumption was 0.049 ppm. In addition, the unit air volume when the voltage of 9.5 kV is applied as the positive polarity and the ozone generation amount per unit power consumption are 0.005 ppm, while the voltage of 9.5 kV is applied as the negative polarity. The ozone generation amount per unit air volume and unit power consumption was 0.043 ppm. Further, the unit air volume when the voltage of 11 kV is applied as the positive polarity and the ozone generation amount per unit power consumption are 0.006 ppm, whereas the unit air volume when the voltage of 11 kV is applied as the negative polarity, the unit The amount of ozone generated per power consumption was 0.037 ppm. In addition, the unit air volume when the voltage of 12.5 kV is applied as the positive polarity and the ozone generation amount per unit power consumption are 0.004 ppm, whereas the voltage when the voltage of 12.5 kV is applied as the negative polarity. The amount of ozone produced per unit air volume and unit power consumption was 0.034 ppm.
Thus, the negative polarity is excellent when considering the life of the discharge wire, but the positive polarity is excellent when considering the amount of ozone generated.
Moreover, when the discharge electrode plate having a plurality of protrusions on the end face is used, the difference in the amount of ozone generated due to the voltage polarity and shape has not been clearly confirmed.

そこで本発明は、断線の心配のない放電極板を用いて、高い集塵能力を有しつつ、オゾン生成量を抑えた電気集塵装置及び電気集塵装置用放電極板を提供することを目的とする。
また本発明は、集塵部で集塵されなかった粉塵を中和し、帯電粒子による壁面付着汚染を防止する電気集塵システムを構成する上で、高い集塵能力を有しつつ、オゾン生成量を抑えた電気集塵システムを提供することを目的とする。
Accordingly, the present invention provides an electrostatic precipitator and an electrostatic precipitator discharge electrode plate that has a high dust collection capability and suppresses the amount of ozone generated while using a discharge electrode plate that does not cause disconnection. Objective.
In addition, the present invention neutralizes the dust that has not been collected by the dust collection unit, and constitutes an electric dust collection system that prevents wall surface contamination caused by charged particles. An object is to provide an electric dust collection system with a reduced amount.

第1の本発明の電気集塵装置は、先端が尖った形状をした複数の突起を端面に有する放電極板と、前記放電極板と並行に配置される接地極板と、前記放電極板と前記接地極板との間にコロナ放電電圧を与える高圧電源とを備え、前記放電極板と前記接地極板との間で形成される電界強度を0.67kV/mmから0.8kV/mm程度、前記放電極板の前記突起の先端角度を10度から40度程度とし、前記放電極板が前記接地極板より電位が高くなるように、8kVから12kV程度の電圧を前記高圧電源から与え、空気中の粒子状物質を帯電させることで前記粒子状物質を集塵部に付着させる電気集塵装置であって、前記放電極板の前記突起の先端角度を20度から40度程度、隣り合う前記突起の先端での突起間隔を12mm以上、前記放電極板と前記接地極板との間隔を12mm以上とし、隣り合う前記突起の先端での突起間隔を、同一電圧下において、前記放電極板が前記接地極板より電位が低くなるように前記高圧電源から給電した場合より、前記放電極板が前記接地極板より電位が高くなるように前記高圧電源から給電した場合に、オゾン生成量が低くなるように設定したことを特徴とする。
第2の本発明は、先端が尖った形状をした複数の突起を端面に有する放電極板と、前記放電極板と並行に配置される接地極板と、前記放電極板と前記接地極板との間にコロナ放電電圧を与える高圧電源とを備え、前記放電極板と前記接地極板との間で形成される電界強度を0.67kV/mmから0.8kV/mm程度、前記放電極板の前記突起の先端角度を10度から40度程度とし、前記放電極板が前記接地極板より電位が高くなるように電圧を前記高圧電源から与え、空気中の粒子状物質を帯電させることで前記粒子状物質を集塵部に付着させる電気集塵装置であって、前記放電極板の前記突起の先端角度を20度程度、前記高圧電源の電圧を9kVから12kV程度、隣り合う前記突起の先端での突起間隔を8mm以上、前記放電極板と前記接地極板との間隔を12mm以上とし、隣り合う前記突起の先端での突起間隔を、同一電圧下において、前記放電極板が前記接地極板より電位が低くなるように前記高圧電源から給電した場合より、前記放電極板が前記接地極板より電位が高くなるように前記高圧電源から給電した場合に、オゾン生成量が低くなるように設定したことを特徴とする。
第3の本発明は、第1の発明において、前記放電極板の前記突起の先端角度を20度から30度程度、前記高圧電源の電圧を9kVから12kV程度としたことを特徴とする。
An electrostatic precipitator according to a first aspect of the present invention includes a discharge electrode plate having a plurality of protrusions with sharpened tips on the end surface, a ground electrode plate arranged in parallel with the discharge electrode plate, and the discharge electrode plate And a high voltage power source for applying a corona discharge voltage between the discharge electrode plate and the ground electrode plate, and an electric field strength formed between the discharge electrode plate and the ground electrode plate is 0.67 kV / mm to 0.8 kV / mm. The tip angle of the projection of the discharge plate is about 10 to 40 degrees, and a voltage of about 8 kV to 12 kV is applied from the high-voltage power supply so that the discharge plate has a higher potential than the ground plate. An electrostatic precipitator for charging the particulate matter in the air by charging the particulate matter in the air, wherein the tip angle of the protrusion of the discharge plate is about 20 to 40 degrees adjacent to the dust collector. The projection spacing at the tip of the matching projection is 12 mm or more, The interval between the discharge electrode plate and the ground electrode plate is 12 mm or more, and the protrusion interval at the tip of the adjacent protrusion is set so that the potential of the discharge electrode plate is lower than that of the ground electrode plate under the same voltage. It is characterized in that the ozone generation amount is set to be lower when power is supplied from the high-voltage power source so that the potential of the discharge electrode plate is higher than that of the ground electrode plate than when power is supplied from a high-voltage power source.
According to a second aspect of the present invention, there is provided a discharge electrode plate having a plurality of protrusions having pointed tips on the end surface, a ground electrode plate disposed in parallel with the discharge electrode plate, the discharge electrode plate, and the ground electrode plate A high-voltage power source for applying a corona discharge voltage between the discharge electrode plate and the ground electrode plate, and the discharge electrode has an electric field strength of about 0.67 kV / mm to 0.8 kV / mm. the tip angle of the protrusion of the plate is about 40 degrees from 10 degrees, the so voltage as the discharge electrode plate becomes higher in potential than the ground plate supplied from said high voltage power supply, to charge the particulate matter in the air An electrostatic precipitator for adhering the particulate matter to a dust collector, wherein the tip angle of the protrusion of the discharge electrode plate is about 20 degrees, and the voltage of the high-voltage power source is about 9 kV to 12 kV. The discharge electrode has a projection interval of 8 mm or more at the tip of the projection. From the high-voltage power source so that the potential of the discharge electrode plate is lower than that of the ground electrode plate under the same voltage. It is characterized in that the ozone generation amount is set to be lower when power is supplied from the high-voltage power source so that the electric potential of the discharge electrode plate is higher than that of the ground electrode plate, compared to the case where power is supplied.
According to a third aspect of the present invention, in the first aspect , the tip angle of the protrusion of the discharge electrode plate is about 20 to 30 degrees, and the voltage of the high-voltage power source is about 9 to 12 kV.

本発明によれば、オゾンの発生量や二酸化窒素の増加量が少なく、高い集塵能力を有する電気集塵装置及び電気集塵装置用放電極板を提供することができる。
また本発明によれば、突起の先端角度が10度から40度程度とし、隣り合う突起の先端での突起間隔を4mm以上とした電気集塵装置用放電極板を用いた場合に、オゾン生成量が低くなるようにプラス放電かマイナス放電かを適切に設定して給電することができる。
ADVANTAGE OF THE INVENTION According to this invention, the amount of generation | occurrence | production of ozone and the increase amount of nitrogen dioxide are few, and the electrostatic precipitator which has a high dust collection capability, and the discharge electrode plate for electrostatic precipitators can be provided.
In addition, according to the present invention, ozone is generated when a discharge electrode plate for an electrostatic precipitator with a protrusion tip angle of about 10 to 40 degrees and a protrusion interval between adjacent protrusion tips of 4 mm or more is used. Power can be supplied by appropriately setting positive discharge or negative discharge so as to reduce the amount.

本発明の第1の実施の形態の電気集塵装置は、放電極板と接地極板との間で形成される電界強度を0.67kV/mmから0.8kV/mm程度、放電極板の突起の先端角度を10度から40度程度とし、放電極板が接地極板より電位が高くなるように、8kVから12kV程度の電圧を高圧電源から与え、放電極板の突起の先端角度を20度から40度程度、隣り合う突起の先端での突起間隔を12mm以上、放電極板と接地極板との間隔を12mm以上とし、隣り合う突起の先端での突起間隔を、同一電圧下において、放電極板が接地極板より電位が低くなるように高圧電源から給電した場合より、放電極板が接地極板より電位が高くなるように高圧電源から給電した場合に、オゾン生成量が低くなるように設定したものである。本実施の形態によれば、突起の先端での突起間隔を所定の寸法以上とすることでオゾンの発生を少なくすることができ、高い集塵能力を得ることができる。
本発明の第2の実施の形態は、放電極板と接地極板との間で形成される電界強度を0.67kV/mmから0.8kV/mm程度、放電極板の突起の先端角度を10度から40度程度とし、放電極板が接地極板より電位が高くなるように、8kVから12kV程度の電圧を高圧電源から与え、放電極板の突起の先端角度を20度程度、高圧電源の電圧を9kVから12kV程度とし、隣り合う突起の先端での突起間隔を8mm以上、放電極板と接地極板との間隔を12mm以上としたものである。本実施の形態によれば、放電線のマイナス極性よりもはるかに少ないオゾン生成量とすることができ、高い集塵能力を得ることができる。
本発明の第3の実施の形態は、第1の実施の形態の電気集塵装置において、放電極板の突起の先端角度を20度から30度程度、高圧電源の電圧を9kVから12kV程度としたものである。本実施の形態によれば、放電線のプラス極性と同レベルのオゾン生成量とすることができ、高い集塵能力を得ることができる。
In the electrostatic precipitator according to the first embodiment of the present invention, the electric field strength formed between the discharge electrode plate and the ground electrode plate is about 0.67 kV / mm to 0.8 kV / mm. The tip angle of the protrusion is set to about 10 to 40 degrees, a voltage of about 8 kV to 12 kV is applied from a high voltage power source so that the potential of the discharge electrode plate is higher than that of the ground electrode plate, and the tip angle of the protrusion of the discharge electrode plate is set to 20 About 40 degrees, the projection interval at the tip of the adjacent projection is 12 mm or more, the interval between the discharge electrode plate and the ground electrode plate is 12 mm or more, and the projection interval at the tip of the adjacent projection is the same voltage, The amount of ozone generated is lower when the discharge electrode plate is fed from a high voltage power source so that the potential is lower than the ground electrode plate than from the high voltage power source. It is set as follows. According to this embodiment, generation of ozone can be a reduced by the protrusion spacing at the tip of the projection and the predetermined size or more, it is possible to obtain a high throng dust capacity.
In the second embodiment of the present invention, the electric field strength formed between the discharge electrode plate and the ground electrode plate is about 0.67 kV / mm to 0.8 kV / mm, and the tip angle of the protrusion of the discharge electrode plate is set. A voltage of about 8 to 12 kV is applied from a high voltage power source so that the potential of the discharge electrode plate is higher than that of the ground electrode plate, and the tip angle of the protrusion of the discharge electrode plate is about 20 degrees. Is set to about 9 kV to 12 kV, the protrusion interval between adjacent protrusions is 8 mm or more, and the interval between the discharge electrode plate and the ground electrode plate is 12 mm or more. According to the present embodiment, the amount of ozone generated can be much smaller than the negative polarity of the discharge line, and a high dust collection capability can be obtained.
According to the third embodiment of the present invention, in the electrostatic precipitator of the first embodiment, the tip angle of the projection of the discharge plate is about 20 degrees to 30 degrees, and the voltage of the high voltage power source is about 9 kV to 12 kV. It is a thing. According to this embodiment, the amount of ozone generated can be the same level as the positive polarity of the discharge line, and a high dust collection capability can be obtained.

以下、本発明の一実施例について図面に基づいて説明する。
図1は、本実施例による電気集塵装置を示す斜視図である。
電気集塵装置50は、空気の流れの上流側に平均電界強度が約0.67kV/mmから0.867kV/mmとなる帯電部52を、下流側に平均電界強度が約900V/mmとなる集塵部53を配置している。尚、ここでいう電界強度とは放電極板と接地極板の間隔Dに対する印加電圧Vの比V/Dのことである。また電気集塵装置50の側面には集塵部53に給電する高圧電源51Aと、帯電部52に給電する高圧電源51Bとが設けられている。
帯電部52は、複数枚の接地極板52Bが所定間隔あけて並設され、接地極板52Bの間に放電極板52Aが配置された構造となっている。集塵部53は、荷電極板53Aと集塵極板53Bとを交互に所定間隔あけて並設している。帯電部52は、放電極板52A又は接地極板52Bに高電圧を印加し、放電極板52Aと接地極板52Bとの間で発生するコロナ放電によって粉塵に電荷を与えて帯電させる。また、集塵部53は、荷電極板53Aに電圧を印加して集塵極板53Bとの間で電界を形成し、帯電した粉塵をクーロン力によって集塵極板53Bに捕集する。なお、本実施例では帯電部52とは別に集塵部53を設けた場合で説明したが、接地極板52Bが集塵部を構成する電気集塵装置であってもよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing an electric dust collector according to the present embodiment.
The electrostatic precipitator 50 has a charging unit 52 with an average electric field strength of about 0.67 kV / mm to 0.867 kV / mm on the upstream side of the air flow, and an average electric field strength of about 900 V / mm on the downstream side. A dust collecting portion 53 is arranged. The electric field strength referred to here is the ratio V / D of the applied voltage V to the distance D between the discharge electrode plate and the ground electrode plate. Further, a high-voltage power source 51 </ b> A that supplies power to the dust collector 53 and a high-voltage power source 51 </ b> B that supplies power to the charging unit 52 are provided on the side surface of the electric dust collector 50.
The charging unit 52 has a structure in which a plurality of ground electrode plates 52B are arranged in parallel at predetermined intervals, and a discharge electrode plate 52A is disposed between the ground electrode plates 52B. The dust collecting portion 53 has load electrode plates 53A and dust collecting electrode plates 53B arranged alternately at predetermined intervals. The charging unit 52 applies a high voltage to the discharge electrode plate 52A or the ground electrode plate 52B, and charges the dust by corona discharge generated between the discharge electrode plate 52A and the ground electrode plate 52B. The dust collection unit 53 applies a voltage to the load electrode plate 53A to form an electric field with the dust collection electrode plate 53B, and collects the charged dust on the dust collection electrode plate 53B by Coulomb force. In the present embodiment, the dust collecting unit 53 is provided separately from the charging unit 52. However, the ground electrode plate 52B may be an electric dust collecting device that constitutes the dust collecting unit.

図2は、本実施例による電気集塵装置の帯電部の構成を示す平面図である。
帯電部52は、複数枚の接地極板52Bが所定間隔あけて平行に配設され、接地極板52Bの間に放電極板52Aが配置されている。このとき、放電極板52Aの表面と接地極板52Bの表面との間の極板間隔Dは12mmから15mm程度とする。
FIG. 2 is a plan view showing the configuration of the charging unit of the electrostatic precipitator according to this embodiment.
In the charging unit 52, a plurality of ground electrode plates 52B are arranged in parallel at predetermined intervals, and a discharge electrode plate 52A is arranged between the ground electrode plates 52B. At this time, the electrode plate interval D between the surface of the discharge electrode plate 52A and the surface of the ground electrode plate 52B is set to about 12 mm to 15 mm.

図3は、本実施例による電気集塵装置の放電極板の構成を示す側面図である。
放電極板52Aは、その端面に先端が尖った形状をした複数の突起10を有している。このとき、複数の突起10は、等間隔に設けられていることが好ましいが、突起10の先端での突起間隔Hは、必ずしも一定間隔でなくてもよい。放電極板52Aの突起10の先端角度Αを10度から40度程度とする。10度より小さくても良いが、10度より小さい角度は加工が困難である。40度を超えても、コロナ放電に必要な鋭利な端部を備えていれば同様の効果を奏する。複数の突起10は、放電極板52Aの風上側端面と風下側端面とに設けている。複数の突起10を、放電極板52Aの風上側端面だけに設けてもよいが、風下側端面にも設けることで集塵性能を高めることができる。放電極板52Aの風上側端面と風下側端面との間の幅は、30mmから150mm程度である。また、放電極板52Aの風上側端面と風下側端面との間に、切り込みを設けることで、複数の突起10を設けてもよい。このように複数段の突起10を設ける場合には、放電極板52Aの風上側端面と風下側端面との間の幅は、150mmから200mm程度とすることが好ましい。それぞれの突起10の高さは、先端角度αと突起間隔Hによって設定されるが、4mmから10mm程度である。なお、突起10の突起間隔Hは、下記に説明するように、4mmから12mmの範囲とすることが好ましい。突起10の突起間隔Hは、12mmを越えると集塵性能が低下するが、特にプラス放電におけるオゾン生成量は低い。従って、複数段の突起10を設けることで、12mmを越えた範囲とすることでもオゾンや二酸化窒素の発生量が少なく、高い集塵能力を有する電気集塵装置とすることができる。なお、本実施例では、放電極板の板厚を0.5mmとした。また、コロナ放電によって突起10の先端形状が変化するのを防止するために突起10の先端には、0.3mmのRを設けた。、この突起10の先端に0.3mmのRを設けることで同一電圧時の放電電流は若干少なくなるが、10%未満であり、オゾン生成量の特性は変わらない。
FIG. 3 is a side view showing the configuration of the discharge electrode plate of the electrostatic precipitator according to the present embodiment.
The discharge electrode plate 52 </ b> A has a plurality of protrusions 10 having a pointed tip at the end surface. At this time, the plurality of protrusions 10 are preferably provided at equal intervals, but the protrusion interval H at the tip of the protrusion 10 does not necessarily have to be a constant interval. The tip angle Α of the projection 10 of the discharge electrode plate 52A is set to about 10 to 40 degrees. Although it may be smaller than 10 degrees, an angle smaller than 10 degrees is difficult to process. Even if the angle exceeds 40 degrees, the same effect can be obtained as long as the sharp end necessary for corona discharge is provided. The plurality of protrusions 10 are provided on the windward end face and the leeward end face of the discharge electrode plate 52A. The plurality of protrusions 10 may be provided only on the windward end surface of the discharge electrode plate 52A, but the dust collection performance can be improved by providing the projections 10 also on the leeward side end surface. The width between the windward end face and the leeward end face of the discharge electrode plate 52A is about 30 mm to 150 mm. Further, a plurality of protrusions 10 may be provided by providing a cut between the windward end face and the leeward end face of the discharge electrode plate 52A. Thus, when providing the multistage protrusion 10, it is preferable that the width between the windward end face and the leeward end face of the discharge electrode plate 52A is about 150 mm to 200 mm. The height of each protrusion 10 is set by the tip angle α and the protrusion interval H, but is about 4 mm to 10 mm. Note that the protrusion interval H of the protrusions 10 is preferably in the range of 4 mm to 12 mm as described below. When the protrusion interval H of the protrusions 10 exceeds 12 mm, the dust collection performance is deteriorated, but the amount of ozone generated in the positive discharge is particularly low. Therefore, by providing a plurality of projections 10, even if the range exceeds 12 mm, the amount of generated ozone and nitrogen dioxide is small, and an electric dust collector having a high dust collection capability can be obtained. In this example, the thickness of the discharge electrode plate was set to 0.5 mm. Further, in order to prevent the tip shape of the projection 10 from changing due to corona discharge, an R of 0.3 mm was provided at the tip of the projection 10. By providing 0.3 mm R at the tip of the protrusion 10, the discharge current at the same voltage is slightly reduced, but it is less than 10%, and the characteristics of the ozone generation amount do not change.

図4から図18は、本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフである。なお、オゾンの生成量は温湿度の影響を受けるため、全ての測定を温度20℃、湿度65%の条件で行った。また、高圧電源は商用の交流電源を昇圧、整流して直流高電圧を生成しているため、高圧電源波形に交流成分(リップル)が残る場合がある。リップルが大きいと放電極板と接地極板間で局部短絡(スパーク)が多くなるため、本実施例ではリップルの大きさが5%(実効値)以下の高圧電源を用いた。
図4は、突起10の先端角度Αを20度、高圧電源51Bから給電する電圧を10kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを15mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが4mmの時には0.071ppm、突起間隔Hが8mmの時には0.009ppm、突起間隔Hが12mmの時には0.005ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが4mmの時には0.027ppm、突起間隔Hが8mmの時には0.031ppm、突起間隔Hが12mmの時には0.031ppmであった。
4 to 18 are graphs showing the relationship between the protrusion interval and the ozone generation amount of the electrostatic precipitator according to this embodiment. Since the amount of ozone produced is affected by temperature and humidity, all measurements were performed under conditions of a temperature of 20 ° C. and a humidity of 65%. Further, since the high-voltage power supply boosts and rectifies a commercial AC power supply to generate a DC high voltage, an AC component (ripple) may remain in the high-voltage power supply waveform. When the ripple is large, local short circuit (spark) increases between the discharge electrode plate and the ground electrode plate. Therefore, in this embodiment, a high voltage power source having a ripple size of 5% (effective value) or less was used.
In FIG. 4, the tip angle Α of the protrusion 10 is 20 degrees, the voltage supplied from the high voltage power source 51B is 10 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.67 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 15 mm.
When power is supplied from the high-voltage power source 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (positive polarity), 0.071 ppm when the protrusion interval H is 4 mm, and 0. It was 0.005 ppm when 009 ppm and the protrusion interval H was 12 mm. When the discharge electrode plate 52A is fed from the high-voltage power source 51B so that the potential is lower than the ground electrode plate 52B (minus polarity), when the projection interval H is 4 mm, it is 0.027 ppm, and when the projection interval H is 8 mm. It was 0.031 ppm when 0.031 ppm and the protrusion interval H was 12 mm.

図5は、突起10の先端角度Αを30度、高圧電源51Bから給電する電圧を10kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mm、とした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを15mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが4mmの時には0.075ppm、突起間隔Hが8mmの時には0.040ppm、突起間隔Hが12mmの時には0.001ppm未満であった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが4mmの時には0.029ppm、突起間隔Hが8mmの時には0.034ppm、突起間隔Hが12mmの時には0.035ppmであった。
FIG. 5 shows that the tip angle 突起 of the protrusion 10 is 30 degrees, the voltage supplied from the high-voltage power supply 51B is 10 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.67 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at this time, the unit power consumption, and the ozone generation amount per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 15 mm.
When power is supplied from the high-voltage power source 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (positive polarity), 0.075 ppm when the protrusion interval H is 4 mm, and 0. It was less than 0.001 ppm when 040 ppm and the protrusion interval H was 12 mm. Further, when the discharge electrode plate 52A is fed from the high voltage power source 51B so that the potential is lower than the ground electrode plate 52B (minus polarity), when the projection interval H is 4 mm, 0.029 ppm and when the projection interval H is 8 mm, When the protrusion spacing H was 12 mm, it was 0.035 ppm.

図6は、突起10の先端角度Αを40度、高圧電源51Bから給電する電圧を10kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを15mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが2.5mmの時には0.059ppm、突起間隔Hが4mmの時には0.045ppm、突起間隔Hが8mmの時には0.029ppm、突起間隔Hが12mmの時には0.015ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが2.5mmの時には0.023ppm、突起間隔Hが4mmの時には0.027ppm、突起間隔Hが8mmの時には0.026ppm、突起間隔Hが12mmの時には0.035ppmであった。
In FIG. 6, the tip angle Α of the protrusion 10 is 40 degrees, the voltage supplied from the high-voltage power supply 51B is 10 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.67 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 15 mm.
When power is supplied from the high-voltage power supply 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (positive polarity), when the projection interval H is 2.5 mm, 0.059 ppm and when the projection interval H is 4 mm It was 0.029 ppm when 0.045 ppm and the protrusion interval H was 8 mm, and 0.015 ppm when the protrusion interval H was 12 mm. Further, when power is supplied from the high voltage power source 51B so that the potential of the discharge electrode plate 52A is lower than that of the ground electrode plate 52B (minus polarity), when the projection interval H is 2.5 mm, 0.023 ppm and the projection interval H is 4 mm. Was 0.027 ppm when the protrusion interval H was 8 mm, and 0.035 ppm when the protrusion interval H was 12 mm.

図7は、突起10の先端角度Αを20度、高圧電源51Bから給電する電圧を12kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.8kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを15mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが4mmの時には0.066ppm、突起間隔Hが8mmの時には0.014ppm、突起間隔Hが12mmの時には0.008ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが4mmの時には0.022ppm、突起間隔Hが8mmの時には0.023ppm、突起間隔Hが12mmの時には0.020ppmであった。
In FIG. 7, the tip angle Α of the protrusion 10 is 20 degrees, the voltage supplied from the high voltage power source 51B is 12 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.8 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 15 mm.
When power is supplied from the high-voltage power supply 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (plus polarity), 0.066 ppm when the projection interval H is 4 mm, and 0. It was 0.008 ppm when 014 ppm and the protrusion interval H was 12 mm. When the discharge electrode plate 52A is fed from the high-voltage power source 51B so that the potential is lower than the ground electrode plate 52B (minus polarity), when the projection interval H is 4 mm, 0.022 ppm and when the projection interval H is 8 mm, It was 0.020 ppm when 0.023 ppm and the protrusion interval H was 12 mm.

図8は、突起10の先端角度Αを30度、高圧電源51Bから給電する電圧を12kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.8kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを15mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが4mmの時には0.074ppm、突起間隔Hが8mmの時には0.028ppm、突起間隔Hが12mmの時には0.006ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが4mmの時には0.024ppm、突起間隔Hが8mmの時には0.026ppm、突起間隔Hが12mmの時には0.025ppmであった。
In FIG. 8, the tip angle Α of the protrusion 10 is 30 degrees, the voltage supplied from the high voltage power source 51B is 12 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.8 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 15 mm.
When power is supplied from the high-voltage power source 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (positive polarity), 0.074 ppm when the protrusion interval H is 4 mm, and 0. It was 0.006 ppm when 028 ppm and the protrusion interval H was 12 mm. When the discharge electrode plate 52A is fed from the high voltage power source 51B so that the potential is lower than the ground electrode plate 52B (minus polarity), when the projection interval H is 4 mm, it is 0.024 ppm, and when the projection interval H is 8 mm. When the projection spacing H was 12 mm, it was 0.025 ppm.

図9は、突起10の先端角度Αを40度、高圧電源51Bから給電する電圧を12kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.8kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを15mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが2.5mmの時には0.070ppm、突起間隔Hが4mmの時には0.072ppm、突起間隔Hが8mmの時には0.019ppm、突起間隔Hが12mmの時には0.011ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが2.5mmの時には0.019ppm、突起間隔Hが4mmの時には0.023ppm、突起間隔Hが8mmの時には0.022ppm、突起間隔Hが12mmの時には0.026ppmであった。
In FIG. 9, the tip angle Α of the protrusion 10 is 40 degrees, the voltage supplied from the high-voltage power supply 51B is 12 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.8 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 15 mm.
When power is supplied from the high-voltage power supply 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (positive polarity), when the projection interval H is 2.5 mm, 0.070 ppm, and when the projection interval H is 4 mm, When the projection spacing H was 12 mm, it was 0.011 ppm when the projection spacing H was 12 mm. Further, when power is supplied from the high voltage power source 51B so that the potential of the discharge electrode plate 52A is lower than that of the ground electrode plate 52B (minus polarity), when the projection interval H is 2.5 mm, 0.019 ppm and the projection interval H is 4 mm. Was 0.023 ppm, when the protrusion interval H was 8 mm, it was 0.022 ppm, and when the protrusion interval H was 12 mm, it was 0.026 ppm.

図10は、突起10の先端角度Αを20度、高圧電源51Bから給電する電圧を9kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.75kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを12mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが4mmの時には0.047ppm、突起間隔Hが8mmの時には0.012ppm、突起間隔Hが12mmの時には0.005ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが4mmの時には0.021ppm、突起間隔Hが8mmの時には0.025ppm、突起間隔Hが12mmの時には0.025ppmであった。
In FIG. 10, the tip angle Α of the protrusion 10 is 20 degrees, the voltage supplied from the high-voltage power supply 51B is 9 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.75 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 12 mm.
When electric power is supplied from the high-voltage power supply 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (plus polarity), 0.047 ppm when the protrusion interval H is 4 mm, and 0. It was 0.005 ppm when 012 ppm and the protrusion interval H was 12 mm. In the case where power is supplied from the high voltage power source 51B so that the potential of the discharge electrode plate 52A is lower than that of the ground electrode plate 52B (negative polarity), when the projection interval H is 4 mm, 0.021 ppm and when the projection interval H is 8 mm, It was 0.025 ppm when 0.025 ppm and the protrusion interval H was 12 mm.

図11は、突起10の先端角度Αを30度、高圧電源51Bから給電する電圧を9kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.75kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを12mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが4mmの時には0.110ppm、突起間隔Hが8mmの時には0.031ppm、突起間隔Hが12mmの時には0.003ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが4mmの時には0.038ppm、突起間隔Hが8mmの時には0.036ppm、突起間隔Hが12mmの時には0.036ppmであった。
In FIG. 11, the tip angle Α of the protrusion 10 is 30 degrees, the voltage supplied from the high voltage power source 51B is 9 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.75 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 12 mm.
When power is supplied from the high-voltage power supply 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (positive polarity), 0.110 ppm when the protrusion interval H is 4 mm, and 0. It was 0.003 ppm when 031 ppm and the protrusion interval H was 12 mm. When the discharge electrode plate 52A is fed from the high voltage power source 51B so that the potential is lower than the ground electrode plate 52B (minus polarity), when the projection interval H is 4 mm, it is 0.038 ppm, and when the projection interval H is 8 mm. When the protrusion spacing H was 12 mm, it was 0.036 ppm.

図12は、突起10の先端角度Αを40度、高圧電源51Bから給電する電圧を9kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.75kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを12mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが2.5mmの時には0.100ppm、突起間隔Hが4mmの時には0.093ppm、突起間隔Hが8mmの時には0.072ppm、突起間隔Hが12mmの時には0.012ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが2.5mmの時には0.030ppm、突起間隔Hが4mmの時には0.031ppm、突起間隔Hが8mmの時には0.034ppm、突起間隔Hが12mmの時には0.026ppmであった。
12, the tip angle Α of the protrusion 10 is 40 degrees, the voltage supplied from the high voltage power source 51B is 9 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.75 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 12 mm.
When power is supplied from the high-voltage power supply 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (plus polarity), when the protrusion interval H is 2.5 mm, 0.100 ppm and when the protrusion interval H is 4 mm It was 0.072 ppm when 0.093 ppm and the protrusion interval H was 8 mm, and 0.012 ppm when the protrusion interval H was 12 mm. Further, when power is supplied from the high voltage power source 51B so that the potential of the discharge electrode plate 52A is lower than that of the ground electrode plate 52B (minus polarity), when the projection interval H is 2.5 mm, 0.030 ppm and the projection interval H is 4 mm. Was 0.031 ppm when the protrusion interval H was 8 mm, and 0.026 ppm when the protrusion interval H was 12 mm.

図13は、突起10の先端角度Αを20度、高圧電源51Bから給電する電圧を8kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを12mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが4mmの時には0.042ppm、突起間隔Hが8mmの時には0.022ppm、突起間隔Hが12mmの時には0.013ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが4mmの時には0.022ppm、突起間隔Hが8mmの時には0.030ppm、突起間隔Hが12mmの時には0.034ppmであった。
In FIG. 13, the tip angle Α of the protrusion 10 is 20 degrees, the voltage supplied from the high-voltage power supply 51B is 8 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.67 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 12 mm.
When power is supplied from the high-voltage power source 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (plus polarity), 0.042 ppm when the projection interval H is 4 mm, and 0. It was 0.013 ppm when 022 ppm and the protrusion interval H was 12 mm. When the discharge electrode plate 52A is fed from the high-voltage power source 51B so that the potential is lower than the ground electrode plate 52B (minus polarity), when the projection interval H is 4 mm, 0.022 ppm and when the projection interval H is 8 mm, It was 0.034 ppm when 0.030 ppm and the protrusion interval H was 12 mm.

図14は、突起10の先端角度Αを30度、高圧電源51Bから給電する電圧を8kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを12mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが4mmの時には0.110ppm、突起間隔Hが8mmの時には0.063ppm、突起間隔Hが12mmの時には0.012ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが4mmの時には0.049ppm、突起間隔Hが8mmの時には0.042ppm、突起間隔Hが12mmの時には0.044ppmであった。
In FIG. 14, the tip angle Α of the protrusion 10 is 30 degrees, the voltage supplied from the high voltage power source 51B is 8 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.67 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 12 mm.
When power is supplied from the high-voltage power supply 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (positive polarity), 0.110 ppm when the protrusion interval H is 4 mm, and 0. It was 0.012 ppm when 063 ppm and the protrusion interval H was 12 mm. Also, when the discharge electrode plate 52A is fed from the high voltage power source 51B so that the potential is lower than the ground electrode plate 52B (minus polarity), when the projection interval H is 4 mm, it is 0.049 ppm, and when the projection interval H is 8 mm. When the protrusion interval H was 12 mm, it was 0.044 ppm.

図15は、突起10の先端角度Αを40度、高圧電源51Bから給電する電圧を8kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを12mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが2.5mmの時には0.107ppm、突起間隔Hが4mmの時には0.098ppm、突起間隔Hが8mmの時には0.093ppm、突起間隔Hが12mmの時には0.027ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが2.5mmの時には0.034ppm、突起間隔Hが4mmの時には0.040ppm、突起間隔Hが8mmの時には0.040ppm、突起間隔Hが12mmの時には0.033ppmであった。
In FIG. 15, the tip angle Α of the protrusion 10 is 40 degrees, the voltage supplied from the high-voltage power supply 51B is 8 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.67 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 12 mm.
When power is supplied from the high-voltage power supply 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (positive polarity), when the projection interval H is 2.5 mm, 0.107 ppm and when the projection interval H is 4 mm, It was 0.093 ppm when 0.098 ppm and the protrusion interval H was 8 mm, and 0.027 ppm when the protrusion interval H was 12 mm. Further, when power is supplied from the high voltage power source 51B so that the potential of the discharge electrode plate 52A is lower than that of the ground electrode plate 52B (minus polarity), when the projection interval H is 2.5 mm, 0.034 ppm and the projection interval H is 4 mm. Was 0.040 ppm when the protrusion interval H was 8 mm, and 0.033 ppm when the protrusion interval H was 12 mm.

図16は、突起10の先端角度Αを10度、高圧電源51Bから給電する電圧を10kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを15mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが4mmの時には0.076ppm、突起間隔Hが8mmの時には0.029ppm、突起間隔Hが12mmの時には0.022ppm、突起間隔Hが20mmの時には0.016ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが4mmの時には0.027ppm、突起間隔Hが8mmの時には0.029ppm、突起間隔Hが12mmの時には0.031ppm、突起間隔Hが20mmの時には0.023ppmであった。
In FIG. 16, the tip angle Α of the protrusion 10 is 10 degrees, the voltage supplied from the high-voltage power source 51B is 10 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.67 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 15 mm.
When power is supplied from the high-voltage power supply 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (plus polarity), 0.076 ppm when the protrusion interval H is 4 mm, and 0. It was 0.022 ppm when the protrusion interval H was 12 mm, and 0.06 ppm when the protrusion interval H was 20 mm. When the discharge electrode plate 52A is fed from the high-voltage power source 51B so that the potential is lower than the ground electrode plate 52B (minus polarity), when the projection interval H is 4 mm, it is 0.027 ppm, and when the projection interval H is 8 mm. It was 0.031 ppm when 0.029 ppm and the protrusion interval H was 12 mm, and 0.023 ppm when the protrusion interval H was 20 mm.

図17は、突起10の先端角度Αを10度、高圧電源51Bから給電する電圧を8kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを12mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが8mmの時には0.059ppm、突起間隔Hが12mmの時には0.026ppm、突起間隔Hが20mmの時には0.021ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが4mmの時には0.029ppm、突起間隔Hが8mmの時には0.027ppm、突起間隔Hが12mmの時には0.024ppm、突起間隔Hが20mmの時には0.023ppmであった。
In FIG. 17, the tip angle Α of the protrusion 10 is 10 degrees, the voltage supplied from the high voltage power source 51B is 8 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.67 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 12 mm.
When electric power is supplied from the high-voltage power supply 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (positive polarity), 0.059 ppm when the projection interval H is 8 mm, and 0. When the protrusion spacing H was 20 mm, it was 0.021 ppm. Further, when the discharge electrode plate 52A is fed from the high voltage power source 51B so that the potential is lower than the ground electrode plate 52B (minus polarity), when the projection interval H is 4 mm, 0.029 ppm and when the projection interval H is 8 mm, When the projection spacing H was 12 mm, it was 0.024 ppm, and when the projection spacing H was 20 mm, it was 0.023 ppm.

図18は、突起10の先端角度Αを10度、高圧電源51Bから給電する電圧を9kV、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.75kV/mmとした時の突起10の先端での突起間隔Hと単位消費電力、単位風量あたりのオゾン生成量の関係を示している。なお、放電極板52Aと接地極板52Bとの極板間隔Dを12mmとした。
放電極板52Aが接地極板52Bよりも電位が高くなるように高圧電源51Bから給電した場合(プラス極性)では、突起間隔Hが4mmの時には0.070ppm、突起間隔Hが8mmの時には0.040ppm、突起間隔Hが12mmの時には0.015ppm、突起間隔Hが20mmの時には0.014ppmであった。また、放電極板52Aが接地極板52Bよりも電位が低くなるように高圧電源51Bから給電した場合(マイナス極性)では、突起間隔Hが4mmの時には0.028ppm、突起間隔Hが8mmの時には0.026ppm、突起間隔Hが12mmの時には0.022ppm、突起間隔Hが20mmの時には0.021ppmであった。
In FIG. 18, the tip angle Α of the protrusion 10 is 10 degrees, the voltage supplied from the high voltage power source 51B is 9 kV, and the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is 0.75 kV / mm. The relationship between the protrusion interval H at the tip of the protrusion 10 at the time, unit power consumption, and the amount of ozone generated per unit air volume is shown. The electrode gap D between the discharge electrode plate 52A and the ground electrode plate 52B was 12 mm.
When power is supplied from the high-voltage power supply 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B (positive polarity), 0.070 ppm when the protrusion interval H is 4 mm, and 0. 0 when the protrusion interval H is 8 mm. It was 0.015 ppm when 040 ppm and the protrusion interval H was 12 mm, and 0.014 ppm when the protrusion interval H was 20 mm. In the case where power is supplied from the high voltage power source 51B so that the potential of the discharge electrode plate 52A is lower than that of the ground electrode plate 52B (negative polarity), when the projection interval H is 4 mm, 0.028 ppm and when the projection interval H is 8 mm, It was 0.022 ppm when 0.026 ppm and the protrusion interval H was 12 mm, and 0.021 ppm when the protrusion interval H was 20 mm.

以上のように本実施例によれば、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mmから0.8kV/mm程度、放電極板52Aの突起10の先端角度を10度から40度程度とし、放電極板52Aが接地極板52Bより電位が高くなるように、8kVから12kV程度の電圧を高圧電源51Bから与える場合では、同一電圧下において、放電極板52Aが接地極板52Bより電位が低くなるように高圧電源51Bから給電した場合より、放電極板52Aが接地極板52Bより電位が高くなるように高圧電源51Bから給電した場合に、オゾン生成量が低くなるように突起間隔Hを設定することで、少ないオゾン生成量とすることができ、高い集塵能力を得ることができる。
また、本実施例によれば、放電極板52Aと接地極板52Bとの極板間隔Dを12mmから15mm程度、放電極板52Aの突起10の先端角度を10度から40度程度とし、放電極板52Aが接地極板52Bより電位が高くなるように、8kVから12kV程度の電圧を高圧電源51Bから与える場合においても、上記同様に突起間隔Hを設定することで、少ないオゾン生成量とすることができ、高い集塵能力を得ることができる。
また、本実施例によれば、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mmから0.8kV/mm程度、放電極板52Aの突起10の先端角度Αを20度から40度程度とし、放電極板52Aが接地極板52Bより電位が高くなるように、8kVから12kV程度の電圧を高圧電源51Bから与え、隣り合う突起10の先端での突起間隔Hを12mm以上とすることで、放電線のマイナス極性よりもはるかに少ないオゾン生成量とすることができる。また、更に放電極板52Aの突起10の先端角度Αを20度から30度程度、高圧電源51Bの電圧を9kVから12kV程度とすることで、放電線のプラス極性と同レベルのオゾン生成量とすることができ、高い集塵能力を得ることができる。
また、本実施例によれば、放電極板52Aと接地極板52Bとの極板間隔Dを12mmから15mm程度、放電極板52Aの突起10の先端角度Αを20度から40度程度とし、放電極板52Aが接地極板52Bより電位が高くなるように、8kVから12kV程度の電圧を高圧電源51Bから与え、隣り合う突起10の先端での突起間隔Hを12mm以上とすることで、放電線のマイナス極性よりもはるかに少ないオゾン生成量とすることができる。また、更に放電極板52Aの突起10の先端角度Αを20度から30度程度、高圧電源51Bの電圧を9kVから12kV程度とすることで、放電線のプラス極性と同レベルのオゾン生成量とすることができる。
また、本実施例によれば、放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mmから0.8kV/mm程度、放電極板52Aの突起10の先端角度Αを20度程度、隣り合う突起10の先端での突起間隔Hを8mm以上とし、放電極板52Aが接地極板52Bより電位が高くなるように、9kVから12kV程度の電圧を高圧電源51Bから与えることで、放電線のマイナス極性よりもはるかに少ないオゾン生成量とすることができる。
また、本実施例によれば、放電極板52Aと接地極板52Bとの極板間隔Dを12mmから15mm程度、放電極板52Aの突起10の先端角度Αを20度程度、隣り合う突起10の先端での突起間隔Hを8mm以上とし、放電極板52Aが接地極板52Bより電位が高くなるように、9kVから12kV程度の電圧を高圧電源51Bから与えることで、放電線のマイナス極性よりもはるかに少ないオゾン生成量とすることができる。
As described above, according to the present embodiment, the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is about 0.67 kV / mm to 0.8 kV / mm, and the protrusion 10 of the discharge electrode plate 52A. In the case where a voltage of about 8 kV to 12 kV is applied from the high voltage power source 51B so that the tip angle of the electrode is about 10 to 40 degrees and the discharge electrode plate 52A has a higher potential than the ground electrode plate 52B, the discharge is performed under the same voltage. When the electrode plate 52A is fed from the high-voltage power source 51B so that the potential is lower than that of the ground electrode plate 52B, the ozone is applied to the discharge electrode plate 52A from the high-voltage power source 51B so that the potential is higher than that of the ground electrode plate 52B. By setting the protrusion interval H so as to reduce the generation amount, a small ozone generation amount can be obtained, and a high dust collection ability can be obtained.
Further, according to the present embodiment, the electrode plate interval D between the discharge electrode plate 52A and the ground electrode plate 52B is set to about 12 mm to 15 mm, the tip angle of the protrusion 10 of the discharge electrode plate 52A is set to about 10 degrees to 40 degrees, Even in the case where a voltage of about 8 kV to 12 kV is applied from the high voltage power source 51B so that the potential of the electrode plate 52A is higher than that of the ground electrode plate 52B, the amount of generated ozone is reduced by setting the protrusion interval H in the same manner as described above. And high dust collection ability can be obtained.
Further, according to the present embodiment, the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is about 0.67 kV / mm to 0.8 kV / mm, and the tip of the projection 10 of the discharge electrode plate 52A. A voltage of about 8 kV to 12 kV is applied from the high-voltage power supply 51B so that the angle Α is about 20 to 40 degrees and the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B. By setting the interval H to 12 mm or more, it is possible to make the amount of ozone generated much smaller than the negative polarity of the discharge line. Further, by setting the tip angle Α of the projection 10 of the discharge plate 52A to about 20 to 30 degrees and the voltage of the high-voltage power supply 51B to about 9 to 12 kV, the amount of ozone generated at the same level as the positive polarity of the discharge line can be obtained. And high dust collection ability can be obtained.
Further, according to the present embodiment, the electrode plate interval D between the discharge electrode plate 52A and the ground electrode plate 52B is about 12 mm to 15 mm, and the tip angle Α of the protrusion 10 of the discharge electrode plate 52A is about 20 degrees to 40 degrees, A voltage of about 8 kV to 12 kV is applied from the high voltage power source 51B so that the potential of the discharge electrode plate 52A is higher than that of the ground electrode plate 52B, and the protrusion interval H at the tip of the adjacent protrusion 10 is set to 12 mm or more. The amount of ozone generated can be much smaller than the negative polarity of the electric wire. Further, by setting the tip angle Α of the projection 10 of the discharge plate 52A to about 20 to 30 degrees and the voltage of the high-voltage power supply 51B to about 9 to 12 kV, the amount of ozone generated at the same level as the positive polarity of the discharge line can be obtained. can do.
Further, according to the present embodiment, the electric field strength formed between the discharge electrode plate 52A and the ground electrode plate 52B is about 0.67 kV / mm to 0.8 kV / mm, and the tip of the projection 10 of the discharge electrode plate 52A. A voltage of about 9 to 12 kV is applied to the high-voltage power supply 51B so that the angle Α is about 20 degrees, the protrusion interval H at the tip of the adjacent protrusion 10 is 8 mm or more, and the discharge plate 52A has a higher potential than the ground electrode plate 52B. The amount of generated ozone can be made much smaller than the negative polarity of the discharge line.
Further, according to the present embodiment, the electrode plate interval D between the discharge electrode plate 52A and the ground electrode plate 52B is about 12 mm to 15 mm, the tip angle の of the protrusion 10 of the discharge electrode plate 52A is about 20 degrees, and the adjacent protrusion 10 By applying a voltage of about 9 kV to 12 kV from the high-voltage power supply 51B so that the protrusion interval H at the tip of the electrode is 8 mm or more and the discharge electrode plate 52A has a higher potential than the ground electrode plate 52B, the negative polarity of the discharge line Much less ozone production.

また、本実施例によれば、先端角度Αが10度から40度程度の複数の突起10を、突起間隔Hが4mm以上となるように設けた放電極板52Aを用い、この放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mmから0.8kV/mm程度とし、8kVから12kV程度の電圧を与える場合には、突起間隔H、先端角度Α、極板間隔D、又は印加する電圧値から、オゾン発生が少なくなるようにプラス放電とマイナス放電を選択することができる。
一実施例として、電気集塵システムとして複数の電気集塵装置を設置する場合で、マイナス放電による電気集塵装置とプラス放電による電気集塵装置とを併設したい場合には、突起間隔Hだけを変更した放電極板52Aを用いることで、他の条件を同じにしてオゾン生成量の少ないシステムを実現することができる。すなわち、例えば電圧を9kV、極板間隔を12mm、突起10の先端角度を30度とした場合、突起間隔Hを4mmとした電気集塵装置はマイナス放電とし、突起間隔Hを10mmとした電気集塵装置はプラス放電とすることで、プラス放電とした電気集塵装置もマイナス放電とした電気集塵装置もオゾン生成量を少なくすることができる(図13参照)。
また他の実施例として、電気集塵システムとして複数の電気集塵装置を設置する場合で、マイナス放電による電気集塵装置とプラス放電による電気集塵装置とを併設したい場合には、電圧だけを変更することで、他の条件を同じにしてオゾン生成量の少ないシステムを実現することができる。すなわち、例えば極板間隔を15mm、突起10の先端角度を40度、突起間隔Hを8mmとした場合、10kVの電圧を印加する電気集塵装置をマイナス放電とし、12kVの電圧を印加する電気集塵装置をプラス放電とすることで、プラス放電とした電気集塵装置もマイナス放電とした電気集塵装置もオゾン生成量を少なくすることができる(図6と図9、又は図11と図14参照)。
また他の実施例として、電気集塵システムとして複数の電気集塵装置を設置する場合で、マイナス放電による電気集塵装置とプラス放電による電気集塵装置とを併設したい場合には、先端角度Αだけを変更することで、他の条件を同じにしてオゾン生成量の少ないシステムを実現することができる。すなわち、例えば電圧を12kV、極板間隔を15mm、突起間隔Hを8mmとした場合、突起10の先端角度を30度とした電気集塵装置はマイナス放電とし、突起10の先端角度を20度とした電気集塵装置はプラス放電とすることで、プラス放電とした電気集塵装置もマイナス放電とした電気集塵装置もオゾン生成量を少なくすることができる(図7、図8参照)。
また、図示はしないが、極板間隔Dを変更することでもオゾン生成量の少ないシステムを実現することができる。
Further, according to the present embodiment, the discharge electrode plate 52A is used by using the discharge electrode plate 52A provided with a plurality of protrusions 10 having a tip angle Α of about 10 to 40 degrees so that the protrusion interval H is 4 mm or more. When the electric field strength formed between the electrode plate and the ground electrode plate 52B is about 0.67 kV / mm to 0.8 kV / mm and a voltage of about 8 kV to 12 kV is applied, the protrusion interval H, the tip angle Α, Positive discharge and negative discharge can be selected from the plate interval D or the voltage value to be applied so that ozone generation is reduced.
As an example, when a plurality of electrostatic precipitators are installed as an electrostatic precipitator system, and it is desired to install an electrostatic precipitator with negative discharge and an electrostatic precipitator with positive discharge, only the protrusion interval H is set. By using the changed discharge electrode plate 52A, it is possible to realize a system with a small amount of ozone generation under the same other conditions. That is, for example, when the voltage is 9 kV, the electrode plate interval is 12 mm, and the tip angle of the protrusion 10 is 30 degrees, the electrostatic precipitator with the protrusion interval H of 4 mm is negatively discharged, and the electric current collector with the protrusion interval H of 10 mm. When the dust device is positively discharged, the amount of ozone generated can be reduced both by the positive dust collector and the negative dust collector (see FIG. 13).
As another example, when a plurality of electrostatic precipitators are installed as an electrostatic precipitator system, and it is desired to install an electrostatic precipitator with negative discharge and an electrostatic precipitator with positive discharge, only the voltage is applied. By changing, it is possible to realize a system with a small amount of ozone generation by making other conditions the same. That is, for example, when the electrode plate interval is 15 mm, the tip angle of the protrusion 10 is 40 degrees, and the protrusion interval H is 8 mm, the electrostatic precipitator that applies a voltage of 10 kV is a negative discharge and the electric collector that applies a voltage of 12 kV is used. By making the dust device positive discharge, both the positive dust collector and the negative dust collector can reduce the amount of ozone generated (FIGS. 6 and 9, or FIGS. 11 and 14). reference).
As another example, when a plurality of electrostatic precipitators are installed as an electrostatic precipitator system, and it is desired to install an electrostatic precipitator with negative discharge and an electrostatic precipitator with positive discharge, the tip angle 先端By changing only this, it is possible to realize a system with a small amount of ozone generation by making other conditions the same. That is, for example, when the voltage is 12 kV, the electrode plate interval is 15 mm, and the protrusion interval H is 8 mm, the electrostatic precipitator in which the tip angle of the protrusion 10 is 30 degrees is negative discharge, and the tip angle of the protrusion 10 is 20 degrees. When the electrostatic precipitator is positively discharged, both the positive precipitator and the negative precipitator can reduce the amount of ozone generated (see FIGS. 7 and 8).
Although not shown, a system with a small amount of ozone generation can also be realized by changing the electrode plate interval D.

以上のように、先端角度Αが10度から40度程度の複数の突起10を、突起間隔Hが4mm以上となるように設けた放電極板52Aを用い、この放電極板52Aと接地極板52Bとの間で形成される電界強度を0.67kV/mmから0.8kV/mm程度とし、8kVから12kV程度の電圧を与える電気集塵装置を複数設置する電気集塵システムにおいて、プラス放電とした電気集塵装置とマイナス放電とした電気集塵装置とを同一システム内に併設する場合には、突起間隔H、先端角度Α、極板間隔D、又は印加する電圧値の中から少なくとも一つのパラメータを変更することで、オゾン発生が少なくなるようにプラス放電とマイナス放電を選択することができる。そして、プラス放電とした電気集塵装置とマイナス放電とした電気集塵装置とを同一システム内に併設することで、それぞれの電気集塵装置で集塵しきれなかった帯電した粒子状物質を中和させることができ、例えばトンネル壁面などへの粒子状物質の付着を防止することができる。
なお、この電気集塵システムにおいては、全ての電気集塵装置についてオゾン発生が少なくなるようにプラス放電かマイナス放電を決定することが好ましいが、例えばプラス放電の場合とマイナス放電の場合でオゾン生成量に大きな違いが生じない設定にある電気集塵装置など、一部の電気集塵装置について、計測上オゾン発生が多くなる電気集塵装置が含まれていたとしても環境に与える影響が無視できる程度であれば構わない。
また、上記実施例では、オゾン生成量に着目して説明したが、特にトンネル内で用いられる電気集塵装置では、トンネル内で多く存在する一酸化窒素とオゾンとの間で化学反応を起こし、二酸化窒素を大量に発生させることから、オゾン生成量を少なくすることは、すなわち二酸化窒素の発生を少なくすることにもなる。
As described above, the discharge electrode plate 52A and the ground electrode plate are provided using the discharge electrode plate 52A provided with the plurality of protrusions 10 having the tip angle Α of about 10 degrees to 40 degrees so that the protrusion interval H is 4 mm or more. In an electric dust collection system in which a plurality of electric dust collectors that provide a voltage of about 8 kV to 12 kV are installed with an electric field strength formed with respect to 52B of about 0.67 kV / mm to 0.8 kV / mm, plus discharge When the electrostatic precipitator and the negative precipitator are provided in the same system, at least one of the protrusion interval H, the tip angle Α, the electrode plate interval D, or the applied voltage value is selected. By changing the parameters, positive discharge and negative discharge can be selected so that ozone generation is reduced. In addition, by installing an electrostatic precipitator with positive discharge and an electrostatic precipitator with negative discharge in the same system, the charged particulate matter that could not be collected by each electric precipitator is kept in the middle. For example, particulate matter can be prevented from adhering to the tunnel wall surface.
In this electrostatic precipitator system, it is preferable to determine positive discharge or negative discharge so that ozone generation is reduced for all electrostatic precipitators. For example, in the case of positive discharge and negative discharge, ozone is generated. The impact on the environment can be ignored even if some electrostatic precipitators, such as electrostatic precipitators that are set so that there is no significant difference in volume, are included, even if they include an electrostatic precipitator that generates more ozone in measurement. It doesn't matter as long as it is about.
Further, in the above embodiment, the explanation was made by paying attention to the amount of ozone generated, but in particular, in the electrostatic precipitator used in the tunnel, a chemical reaction occurs between nitrogen monoxide and ozone, which exist in the tunnel, Since a large amount of nitrogen dioxide is generated, reducing the amount of ozone produced means that the generation of nitrogen dioxide is also reduced.

本発明は、コロナ放電によって粉塵に電荷を与えて帯電させ、帯電した粉塵をクーロン力によって捕集する電気集塵装置であって、特に一酸化窒素の発生も伴う沿道用集塵装置やトンネル用集塵装置に適している。   The present invention is an electrostatic precipitator that charges a dust by corona discharge and charges the dust, and collects the charged dust by Coulomb force. Suitable for dust collector.

本実施例による電気集塵装置を示す斜視図The perspective view which shows the electric dust collector by a present Example 本実施例による電気集塵装置の帯電部の構成を示す平面図The top view which shows the structure of the charging part of the electrostatic precipitator by a present Example 本実施例による電気集塵装置の放電極板の構成を示す側面図The side view which shows the structure of the discharge plate of the electrostatic precipitator by a present Example 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount. 本実施例による電気集塵装置の突起間隔とオゾン生成量との関係を示すグラフThe graph which shows the relationship between the protrusion space | interval of the electrostatic precipitator by this example, and ozone generation amount.

符号の説明Explanation of symbols

10 突起
50 電気集塵装置
51A、51B 高圧電源
52 帯電部
52A 放電極板
52B 接地極板
53 集塵部
53A 荷電極板
53B 集塵極板
10 Projection 50 Electric Dust Collector 51A, 51B High Voltage Power Supply 52 Charging Unit 52A Discharge Electrode Plate 52B Grounding Electrode Plate 53 Dust Collecting Unit 53A Load Electrode Plate 53B Dust Collecting Electrode Plate

Claims (3)

先端が尖った形状をした複数の突起を端面に有する放電極板と、前記放電極板と並行に配置される接地極板と、前記放電極板と前記接地極板との間にコロナ放電電圧を与える高圧電源とを備え、前記放電極板と前記接地極板との間で形成される電界強度を0.67kV/mmから0.8kV/mm程度、前記放電極板の前記突起の先端角度を10度から40度程度とし、前記放電極板が前記接地極板より電位が高くなるように、8kVから12kV程度の電圧を前記高圧電源から与え、空気中の粒子状物質を帯電させることで前記粒子状物質を集塵部に付着させる電気集塵装置であって、
前記放電極板の前記突起の先端角度を20度から40度程度、
隣り合う前記突起の先端での突起間隔を12mm以上、
前記放電極板と前記接地極板との間隔を12mm以上とし、
隣り合う前記突起の先端での突起間隔を、同一電圧下において、前記放電極板が前記接地極板より電位が低くなるように前記高圧電源から給電した場合より、前記放電極板が前記接地極板より電位が高くなるように前記高圧電源から給電した場合に、オゾン生成量が低くなるように設定したことを特徴とする電気集塵装置。
A discharge electrode plate having a plurality of protrusions with sharp tips on its end surface, a ground electrode plate arranged in parallel with the discharge electrode plate, and a corona discharge voltage between the discharge electrode plate and the ground electrode plate An electric field strength formed between the discharge electrode plate and the ground electrode plate is about 0.67 kV / mm to 0.8 kV / mm, and the tip angle of the protrusion of the discharge electrode plate By applying a voltage of about 8 kV to 12 kV from the high-voltage power supply so that the potential of the discharge electrode plate is higher than that of the ground electrode plate, and charging the particulate matter in the air. An electrostatic precipitator for attaching the particulate matter to a dust collector,
The tip angle of the protrusion of the discharge electrode plate is about 20 to 40 degrees,
The projection interval at the tip of the adjacent projection is 12 mm or more,
The interval between the discharge electrode plate and the ground electrode plate is 12 mm or more,
The distance between the protrusions at the tips of the adjacent protrusions is less than that when the discharge electrode plate is fed from the high-voltage power source so that the potential of the discharge electrode plate is lower than that of the ground electrode plate under the same voltage. An electrostatic precipitator, wherein the amount of ozone generation is set low when power is supplied from the high-voltage power supply so that the potential is higher than the plate.
先端が尖った形状をした複数の突起を端面に有する放電極板と、前記放電極板と並行に配置される接地極板と、前記放電極板と前記接地極板との間にコロナ放電電圧を与える高圧電源とを備え、前記放電極板と前記接地極板との間で形成される電界強度を0.67kV/mmから0.8kV/mm程度、前記放電極板の前記突起の先端角度を10度から40度程度とし、前記放電極板が前記接地極板より電位が高くなるように電圧を前記高圧電源から与え、空気中の粒子状物質を帯電させることで前記粒子状物質を集塵部に付着させる電気集塵装置であって、
前記放電極板の前記突起の先端角度を20度程度、
前記高圧電源の電圧を9kVから12kV程度、
隣り合う前記突起の先端での突起間隔を8mm以上、
前記放電極板と前記接地極板との間隔を12mm以上とし、
隣り合う前記突起の先端での突起間隔を、同一電圧下において、前記放電極板が前記接地極板より電位が低くなるように前記高圧電源から給電した場合より、前記放電極板が前記接地極板より電位が高くなるように前記高圧電源から給電した場合に、オゾン生成量が低くなるように設定したことを特徴とする電気集塵装置。
A discharge electrode plate having a plurality of protrusions with sharp tips on its end surface, a ground electrode plate arranged in parallel with the discharge electrode plate, and a corona discharge voltage between the discharge electrode plate and the ground electrode plate An electric field strength formed between the discharge electrode plate and the ground electrode plate is about 0.67 kV / mm to 0.8 kV / mm, and the tip angle of the protrusion of the discharge electrode plate was approximately 40 degrees from 10 degrees, giving a voltage such that the discharge electrode plates becomes higher potential than the ground plate from the high voltage power supply, the particulate matter by charging the particulate matter in the air An electrostatic precipitator that adheres to the dust collector,
The tip angle of the protrusion of the discharge electrode plate is about 20 degrees,
The voltage of the high voltage power source is about 9 kV to 12 kV,
The protrusion interval at the tip of the adjacent protrusion is 8 mm or more,
The interval between the discharge electrode plate and the ground electrode plate is 12 mm or more,
The distance between the protrusions at the tips of the adjacent protrusions is less than that when the discharge electrode plate is fed from the high-voltage power source so that the potential of the discharge electrode plate is lower than that of the ground electrode plate under the same voltage. An electrostatic precipitator, wherein the amount of ozone generation is set low when power is supplied from the high-voltage power supply so that the potential is higher than the plate.
前記放電極板の前記突起の先端角度を20度から30度程度、前記高圧電源の電圧を9kVから12kV程度としたことを特徴とする請求項1に記載の電気集塵装置。2. The electrostatic precipitator according to claim 1 , wherein a tip angle of the protrusion of the discharge electrode plate is about 20 to 30 degrees, and a voltage of the high-voltage power source is about 9 to 12 kV.
JP2006529260A 2004-07-23 2005-07-21 Electric dust collector Active JP4875983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006529260A JP4875983B2 (en) 2004-07-23 2005-07-21 Electric dust collector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004215877 2004-07-23
JP2004215877 2004-07-23
JP2006529260A JP4875983B2 (en) 2004-07-23 2005-07-21 Electric dust collector
PCT/JP2005/013349 WO2006009187A1 (en) 2004-07-23 2005-07-21 Electrostatic precipitator and electrostatic precipitation systm

Publications (2)

Publication Number Publication Date
JPWO2006009187A1 JPWO2006009187A1 (en) 2008-05-01
JP4875983B2 true JP4875983B2 (en) 2012-02-15

Family

ID=35785294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006529260A Active JP4875983B2 (en) 2004-07-23 2005-07-21 Electric dust collector

Country Status (5)

Country Link
JP (1) JP4875983B2 (en)
CN (1) CN101014414B (en)
AU (1) AU2005264525B2 (en)
ES (1) ES2338837B1 (en)
WO (1) WO2006009187A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168172A (en) * 2007-01-09 2008-07-24 Matsushita Electric Ind Co Ltd Electrostatic precipitator
JP2009072743A (en) * 2007-09-25 2009-04-09 Hitachi Plant Technologies Ltd Mobile electrode type electrostatic precipitator
JP2009166006A (en) * 2008-01-21 2009-07-30 Panasonic Corp Electric dust collector
JP5696718B2 (en) * 2012-11-30 2015-04-08 ダイキン工業株式会社 Discharge unit and air purifier
CN103203286A (en) * 2013-03-18 2013-07-17 杭州艾科宁环境技术有限公司 Air-purification and sterilization device with two dust collecting boards and air-purification sterilizer
KR20170077123A (en) * 2014-10-29 2017-07-05 파나소닉 아이피 매니지먼트 가부시키가이샤 Electrostatic precipitator
CN107185716A (en) * 2016-03-15 2017-09-22 哈尔滨宏万智科技开发有限公司 A kind of electrostatic precipitator applied on air compressor
CN105880022A (en) * 2016-05-06 2016-08-24 珠海格力电器股份有限公司 Air purifier and high-pressure electrostatic dust collection device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262680A (en) * 1998-03-17 1999-09-28 Kawasaki Heavy Ind Ltd Electric dust collector
JP2000126648A (en) * 1998-10-27 2000-05-09 Kawasaki Heavy Ind Ltd Electrostatic precipitator and discharge electrode for precipitator
JP2000126647A (en) * 1998-10-27 2000-05-09 Kawasaki Heavy Ind Ltd Electrostatic precipitator
JP2003010731A (en) * 2001-06-29 2003-01-14 Matsushita Seiko Co Ltd Electric dust collecting unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031418Y2 (en) * 1971-04-20 1975-09-12

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262680A (en) * 1998-03-17 1999-09-28 Kawasaki Heavy Ind Ltd Electric dust collector
JP2000126648A (en) * 1998-10-27 2000-05-09 Kawasaki Heavy Ind Ltd Electrostatic precipitator and discharge electrode for precipitator
JP2000126647A (en) * 1998-10-27 2000-05-09 Kawasaki Heavy Ind Ltd Electrostatic precipitator
JP2003010731A (en) * 2001-06-29 2003-01-14 Matsushita Seiko Co Ltd Electric dust collecting unit

Also Published As

Publication number Publication date
ES2338837B1 (en) 2011-02-18
AU2005264525A1 (en) 2006-01-26
JPWO2006009187A1 (en) 2008-05-01
CN101014414A (en) 2007-08-08
CN101014414B (en) 2011-05-11
ES2338837A1 (en) 2010-05-12
AU2005264525B2 (en) 2010-06-24
WO2006009187A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4875983B2 (en) Electric dust collector
US8597415B2 (en) Electric precipitator and air cleaner having the same
JP5816810B2 (en) Electric dust collector
JP2007007589A (en) Electric dust collection device and air cleaning apparatus incorporating the same
JP2010022999A (en) Charging apparatus for electric dust collection
JP3254134B2 (en) Electric dust collector
JP2005205405A (en) Charging equipment, collecting equipment and electrostatic dust collector
JP2868757B1 (en) Electric dust collector
JP2009166006A (en) Electric dust collector
JP4964515B2 (en) Electric dust collector and method
JP2008168172A (en) Electrostatic precipitator
JP2011161355A (en) Dust collecting apparatus
JP2978481B1 (en) Electric dust collector
JP2007069118A (en) Electric dust collector
KR101065967B1 (en) Electrostatic Precipitator
JP3174628B2 (en) Duct type electrostatic precipitator
KR200401155Y1 (en) Electrode film of electric dust collector
RU2655691C1 (en) Electric filter
KR20220085202A (en) Fine Dust Filter and Fine Dust Collecting Apparatus
WO2020217566A1 (en) Electric dust collector
JP6846596B2 (en) Electrostatic precipitator
JP3966551B2 (en) Filtration type dust collector using static electricity
JPS61136453A (en) Ion wind generator
JP4836468B2 (en) Electric dust collector
JP2021084090A (en) Electric dust collector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4875983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150