JP2011161329A - Apparatus for treating exhaust discharged from sintering machine - Google Patents

Apparatus for treating exhaust discharged from sintering machine Download PDF

Info

Publication number
JP2011161329A
JP2011161329A JP2010024463A JP2010024463A JP2011161329A JP 2011161329 A JP2011161329 A JP 2011161329A JP 2010024463 A JP2010024463 A JP 2010024463A JP 2010024463 A JP2010024463 A JP 2010024463A JP 2011161329 A JP2011161329 A JP 2011161329A
Authority
JP
Japan
Prior art keywords
exhaust gas
sintering machine
denitration
dust
electrostatic precipitator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010024463A
Other languages
Japanese (ja)
Inventor
Mutsuo Maki
睦夫 牧
Yoshinori Takahashi
良典 高橋
Koichi Oyama
浩一 大山
Yasuhiko Mori
泰彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2010024463A priority Critical patent/JP2011161329A/en
Publication of JP2011161329A publication Critical patent/JP2011161329A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for treating exhaust discharged from a sintering machine, stably removing nitrogen oxide present in the exhaust for a long period of time with excellent operability utilizing sintered dust as it is as a catalyst, which sintered dust is present in the exhaust generated by the sintering machine. <P>SOLUTION: The apparatus 10 for treating exhaust discharged from a sintering machine, disposed in an exhaust passage 13 for releasing exhaust sucked out of a sintering machine 11 into the atmosphere via an electric dust collector 12, includes a spray means 17 of spraying ammonia into the exhaust present upstream of the electric dust collector 12, whereby nitrogen oxide present in the exhaust can stably be removed for a long period of time with excellent operability. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、焼結機の排ガス路に設ける排ガスの処理装置に関する。 The present invention relates to an exhaust gas treatment apparatus provided in an exhaust gas passage of a sintering machine.

従来、製鉄所では、焼結機を使用して鉄鉱石を焼結している。
この鉄鉱石の焼結時に発生する排ガス中には、焼結ダストと窒素酸化物(NOx)が含まれているため、排ガス路に集塵機及び脱硝装置(例えば、活性炭を使用)を設けて、大気放散する前に焼結ダスト及び窒素酸化物を除去している。
一方、排ガス中から窒素酸化物を除去する触媒として、含水酸化鉄含有鉄鉱石を原料とし、これを加熱処理することにより、原料の鉄鉱石中の含水酸化鉄をα−ヘマタイトに変態させたものが提案されている(例えば、特許文献1参照)。
Conventionally, iron ore is sintered at a steel mill using a sintering machine.
Since the exhaust gas generated during sintering of iron ore contains sintered dust and nitrogen oxides (NOx), a dust collector and a denitration device (for example, using activated carbon) are provided in the exhaust gas path, and the atmosphere Sintering dust and nitrogen oxides are removed before release.
On the other hand, as a catalyst for removing nitrogen oxides from exhaust gas, hydrous iron oxide-containing iron ore is used as a raw material, and this is heat-treated to transform hydrous iron oxide in the raw iron ore into α-hematite Has been proposed (see, for example, Patent Document 1).

特開昭52−30796号公報JP-A-52-30796

しかしながら、前記従来の触媒を、焼結機から発生する排ガスの脱硝に利用する場合には、未だ解決すべき以下のような問題があった。
触媒は、その触媒機能を高めるため、予め加熱等の前処理を行う必要があり、処理コストがかかって不経済であると共に、手間を要するため作業性が悪い。
また、触媒は、窒素酸化物の脱硝能力が失われる前に交換する必要があるため、例えば、触媒のハンドリング設備や、触媒を排ガス中に保持する専用の容器を設ける必要があり、設備費やランニングコストの増大を招くと共に、作業性も悪い。更に、触媒を利用するに際しては、成型や粒度選別を行う必要があり、手間を要するため作業性が悪い。
However, when the conventional catalyst is used for denitration of exhaust gas generated from a sintering machine, there are still the following problems to be solved.
In order to enhance the catalytic function of the catalyst, it is necessary to perform a pretreatment such as heating in advance, which is uneconomical due to the processing cost, and the workability is poor because it requires labor.
In addition, since the catalyst needs to be replaced before the NOx removal ability of nitrogen oxides is lost, for example, it is necessary to provide a catalyst handling facility or a dedicated container for holding the catalyst in the exhaust gas. The running cost is increased and the workability is also poor. Furthermore, when a catalyst is used, it is necessary to perform molding and particle size selection, which is troublesome and laborious.

本発明はかかる事情に鑑みてなされたもので、焼結機から発生した排ガス中の焼結ダストを、触媒としてそのまま利用し、長期にわたって安定に、しかも作業性よく、排ガス中の窒素酸化物を除去可能な焼結機排ガスの処理装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and uses the sintered dust in the exhaust gas generated from the sintering machine as a catalyst as it is, and stably uses nitrogen oxide in the exhaust gas for a long period of time and with good workability. It is an object of the present invention to provide a sinter machine exhaust gas treatment device that can be removed.

上記の課題を解決するためになされた本発明の要旨は、以下の通りである。
(1)焼結機から吸引される排ガスを電気集塵機を介して大気放散するための排ガス路に設けられた焼結機排ガスの処理装置であって、
前記電気集塵機の上流側の排ガスにアンモニアを噴霧する噴霧手段を設けたことを特徴とする焼結機排ガスの処理装置。
The gist of the present invention made to solve the above problems is as follows.
(1) A sintering machine exhaust gas treatment device provided in an exhaust gas path for dissipating exhaust gas sucked from a sintering machine to the atmosphere via an electric dust collector,
An apparatus for treating exhaust gas from a sintering machine, comprising spray means for spraying ammonia to exhaust gas upstream of the electric dust collector.

(2)前記電気集塵機の上流側に、排ガスを昇温するための昇温手段を設けたことを特徴とする(1)記載の焼結機排ガスの処理装置。
(3)前記排ガス路の前記電気集塵機の上流側位置で、かつ、前記噴霧手段より下流側位置に、複数の集塵電極、該集塵電極間に設けた放電電極、及び前記各集塵電極を槌打する槌打機を備える脱硝用電気集塵機を設けたことを特徴とする(1)記載の焼結機排ガスの処理装置。
(2) The apparatus for treating exhaust gas from a sintering machine according to (1), characterized in that a temperature raising means for raising the temperature of the exhaust gas is provided upstream of the electric dust collector.
(3) A plurality of dust collecting electrodes, a discharge electrode provided between the dust collecting electrodes, and each dust collecting electrode at a position upstream of the electric dust collector in the exhaust gas path and downstream of the spraying means. An apparatus for treating exhaust gas from a sintering machine as set forth in (1), wherein an electrostatic precipitator for denitration provided with a hammer is provided.

(4)前記排ガス路はバイパス路を有し、前記脱硝用電気集塵機を前記バイパス路に設け、前記噴霧手段を前記バイパス路の前記脱硝用電気集塵機より上流側位置に設けたことを特徴とする(3)記載の焼結機排ガスの処理装置。
(5)前記排ガス路は、前記焼結機の排鉱部側から排ガスの一部を吸引する流路を有し、前記脱硝用電気集塵機を前記流路に設け、前記噴霧手段を前記流路の前記脱硝用電気集塵機より上流側位置に設けたことを特徴とする(3)記載の焼結機排ガスの処理装置。
(4) The exhaust gas path has a bypass path, the denitration electrostatic precipitator is provided in the bypass path, and the spraying means is provided at a position upstream of the denitration electrostatic precipitator in the bypass path. (3) The processing apparatus of the exhaust gas of a sintering machine as described.
(5) The exhaust gas path has a flow path for sucking a part of the exhaust gas from the exhausting part side of the sintering machine, the denitration electric dust collector is provided in the flow path, and the spraying means is provided in the flow path. The exhaust gas treatment apparatus for a sintering machine according to (3), wherein the exhaust gas treatment apparatus is provided at a position upstream of the denitration electric dust collector.

(6)前記脱硝用電気集塵機の上流側に、排ガスを昇温するための昇温手段を設けたことを特徴とする(3)〜(5)記載の焼結機排ガスの処理装置。
(7)前記脱硝用電気集塵機の前記集塵電極は開口を有する多孔板で構成されていることを特徴とする(3)〜(6)記載の焼結機排ガスの処理装置。
(6) The apparatus for treating exhaust gas from a sintering machine according to any one of (3) to (5), wherein a temperature raising means for raising the temperature of the exhaust gas is provided upstream of the denitration electric dust collector.
(7) The apparatus for treating exhaust gas from a sintering machine according to any one of (3) to (6), wherein the dust collection electrode of the denitration electric dust collector is formed of a perforated plate having an opening.

本発明に係る焼結機排ガスの処理装置は、排ガス路に設けられた電気集塵機の上流側の排ガスに、アンモニアを噴霧する噴霧手段が設けられているので、焼結機から吸引される排ガス中の焼結ダストの集塵能力を備える電気集塵機で、集塵された焼結ダストをそのまま脱硝のための触媒として利用できる。この焼結ダストは鉄鉱石の焼結時に熱負荷(熱処理)を受け、必然的に触媒活性が付与されるので、触媒として、従来必要であった加熱前処理が不要となる。更に、電気集塵機内に発生するイオン風により、排ガスの流れが乱れ、排ガス中の窒素酸化物と焼結ダストとの接触機会(接触頻度)が向上して、脱硝効率が向上する。
従って、本発明の焼結機排ガスの処理装置を使用することで、長期にわたって安定に、しかも作業性よく、排ガス中の窒素酸化物を除去できる。
The apparatus for treating exhaust gas from a sintering machine according to the present invention is provided with a spraying means for spraying ammonia on the exhaust gas upstream of the electrostatic precipitator provided in the exhaust gas passage. The collected dust can be directly used as a catalyst for denitration. This sintered dust is subjected to a heat load (heat treatment) during the sintering of the iron ore, and is inevitably imparted with catalytic activity, so that the heating pretreatment conventionally required as a catalyst becomes unnecessary. Furthermore, the flow of the exhaust gas is disturbed by the ionic wind generated in the electrostatic precipitator, and the contact opportunity (contact frequency) between the nitrogen oxide and the sintered dust in the exhaust gas is improved, so that the denitration efficiency is improved.
Therefore, by using the sintering machine exhaust gas treatment apparatus of the present invention, nitrogen oxides in the exhaust gas can be removed stably over a long period of time and with good workability.

この電気集塵機の上流側に、排ガスを昇温するための昇温手段を設けた場合、例えば、回収される排ガスの温度が低くても、焼結ダストを含む排ガスの温度を、焼結ダストの脱硝能力の向上が図れる温度まで、容易に上昇できる。 When the temperature raising means for raising the temperature of the exhaust gas is provided on the upstream side of the electric dust collector, for example, even if the temperature of the recovered exhaust gas is low, the temperature of the exhaust gas including the sintered dust is reduced. The temperature can be easily increased to a temperature at which the denitration ability can be improved.

また、電気集塵機とアンモニアの噴霧手段との間に脱硝用電気集塵機を設けた場合、この脱硝用電気集塵機が複数の集塵電極を有しているので、排ガス中の微粉の焼結ダストをそのまま各集塵電極に捕集できる。これにより、焼結ダストの比表面積を、成型品よりも大きくできるので、脱硝能力の向上が図れる。
この脱硝用電気集塵機は、各集塵電極を槌打する槌打機を備えているので、使用の経過に伴って触媒能力が低下した焼結ダストを、各集塵電極から容易に落下させることができる。これにより、焼結ダストを排ガス路から取出すことなく交換できるので、作業性が良好になる。
従って、排ガス路の電気集塵機の上流側位置に脱硝用電気集塵機を設けることで、焼結ダストの集塵効率及び脱硝効率が向上する。
In addition, when a denitration electrostatic precipitator is provided between the electrostatic precipitator and the ammonia spraying means, the denitration electrostatic precipitator has a plurality of dust collecting electrodes, so that the fine powdered sintered dust in the exhaust gas can be used as it is. Each dust collecting electrode can collect. Accordingly, the specific surface area of the sintered dust can be made larger than that of the molded product, so that the denitration ability can be improved.
This denitration electrostatic precipitator is equipped with a hammer that strikes each dust collecting electrode, so that sintered dust whose catalytic ability has decreased with the progress of use can be easily dropped from each dust collecting electrode. Can do. As a result, the sintered dust can be replaced without being taken out from the exhaust gas passage, so that workability is improved.
Therefore, the dust collection efficiency and the denitration efficiency of the sintered dust are improved by providing the denitration electric dust collector at the upstream position of the electrostatic dust collector in the exhaust gas passage.

また、排ガス路がバイパス路を有し、このバイパス路に噴霧手段と脱硝用電気集塵機を設けた場合、処理する排ガス量を少なくできるので、脱硝用電気集塵機を小型化できる。
そして、排ガス路が、焼結機の排鉱部側から排ガスの一部を吸引する流路を有し、この流路に噴霧手段と脱硝用電気集塵機を設けた場合、焼結機の給鉱部側から排ガスを吸引する場合と比較して、回収される排ガスの温度を向上できる。これにより、焼結ダストの脱硝能力の更なる向上が図れる。
Further, when the exhaust gas passage has a bypass passage, and the spraying means and the denitration electrostatic precipitator are provided in the bypass passage, the amount of exhaust gas to be processed can be reduced, so that the denitration electrostatic precipitator can be reduced in size.
When the exhaust gas path has a flow path for sucking a part of the exhaust gas from the exhausting part side of the sintering machine and the spraying means and the denitration electric dust collector are provided in the flow path, the supply of the sintering machine Compared with the case where the exhaust gas is sucked from the part side, the temperature of the recovered exhaust gas can be improved. Thereby, the further improvement of the denitration ability of sintered dust can be aimed at.

また、脱硝用電気集塵機の上流側に、排ガスを昇温するための昇温手段を設けた場合、例えば、回収される排ガスの温度が低くても、焼結ダストを含む排ガスの温度を、焼結ダストの脱硝能力の向上が図れる温度まで、容易に上昇できる。
更に、脱硝用電気集塵機の集塵電極を、開口を有する多孔板で構成する場合、この脱硝用電気集塵機内を流れる排ガスの流れを更に大きく乱すことができる。これにより、各集塵電極に集塵された焼結ダストと排ガスとの接触効率が高められ、脱硝能力の更なる向上が図れる。
Further, when a temperature raising means for raising the temperature of the exhaust gas is provided on the upstream side of the denitration electrostatic precipitator, for example, even if the temperature of the recovered exhaust gas is low, the temperature of the exhaust gas containing sintered dust is reduced. It can be easily raised to a temperature at which the denitration ability of the dust can be improved.
Furthermore, when the dust collection electrode of the denitration electrostatic precipitator is formed of a perforated plate having an opening, the flow of exhaust gas flowing through the denitration electrostatic precipitator can be further disturbed. Thereby, the contact efficiency of the sintered dust collected by each dust collection electrode and exhaust gas is raised, and the further denitration capability can be improved.

本発明の第1の実施の形態に係る焼結機排ガスの処理装置の説明図である。It is explanatory drawing of the processing apparatus of the sintering machine exhaust gas which concerns on the 1st Embodiment of this invention. 同焼結機排ガスの処理装置の脱硝用電気集塵機の説明図である。It is explanatory drawing of the electrostatic precipitator for denitration of the processing apparatus of the sintering machine exhaust gas. (A)〜(D)はそれぞれ脱硝用電気集塵機に使用する集塵電極の説明図である。(A)-(D) are explanatory drawings of the dust collection electrode used for the electrostatic precipitator for denitration, respectively. (A)〜(E)はそれぞれ脱硝用電気集塵機に使用する放電電極の説明図である。(A)-(E) is explanatory drawing of the discharge electrode used for the electrostatic precipitator for denitration, respectively. (A)は脱硝用電気集塵機の集塵電極を排ガスの流れに沿って配置した場合の脱硝用電気集塵機内部の排ガスの流れを模式的に示した説明図、(B)は(A)の部分拡大図である。(A) is explanatory drawing which showed typically the flow of the waste gas in the denitration electric dust collector at the time of arrange | positioning the dust collection electrode of the denitration electricity dust collector along the flow of exhaust gas, (B) is the part of (A) It is an enlarged view. 脱硝用電気集塵機の集塵電極を排ガスの流れに対して直交する方向に配置した場合の脱硝用電気集塵機内部の排ガスの流れを模式的に示した説明図である。It is explanatory drawing which showed typically the flow of the waste gas inside the denitration electric dust collector at the time of arrange | positioning the dust collection electrode of the denitration electricity dust collector in the direction orthogonal to the flow of exhaust gas. 荷電時の脱硝用電気集塵機内の状況を模式的に示した説明図である。It is explanatory drawing which showed typically the condition in the electrostatic precipitator for denitrification at the time of charge. 焼結機の給鉱部側から排鉱部側へかけての排ガス温度分布を示す説明図である。It is explanatory drawing which shows the exhaust gas temperature distribution from the supply part side of a sintering machine to the discharge part side. 本発明の第2の実施の形態に係る焼結機排ガスの処理装置の説明図である。It is explanatory drawing of the processing apparatus of the sintering machine exhaust gas which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る焼結機排ガスの処理装置の説明図である。It is explanatory drawing of the processing apparatus of the exhaust gas of the sintering machine which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る焼結機排ガスの処理装置の説明図である。It is explanatory drawing of the processing apparatus of the sintering machine exhaust gas which concerns on the 4th Embodiment of this invention. 排ガス温度が焼結ダストの脱硝率に及ぼす影響を示す説明図である。It is explanatory drawing which shows the influence which exhaust gas temperature has on the denitration rate of sintered dust. 電気集塵機の荷電の有無が脱硝率に及ぼす影響を示す説明図である。It is explanatory drawing which shows the influence which the presence or absence of the electric dust collector has on the NOx removal rate.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の好ましい第1の実施の形態に係る焼結機排ガスの処理装置10は、焼結機11から吸引される排ガスを電気集塵機12を介して大気放散するための排ガス路13に設けられた装置であり、焼結機11から発生した排ガス中の焼結ダストを、排ガス路13から排出することなくそのまま利用して、排ガス中の窒素酸化物(NOx)を除去する装置である。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a sintering machine exhaust gas treatment apparatus 10 according to a preferred first embodiment of the present invention is configured to dissipate exhaust gas sucked from a sintering machine 11 to the atmosphere via an electric dust collector 12. It is an apparatus provided in the exhaust gas passage 13 and removes nitrogen oxides (NOx) in the exhaust gas by directly using the sintered dust in the exhaust gas generated from the sintering machine 11 without discharging from the exhaust gas passage 13. It is a device to do. This will be described in detail below.

焼結機11には、焼結機11から発生した排ガスを下方へ吸引した後に下流側へ流す、メインブロワー(排風機)14を備えた排ガス路13が接続されている。この排ガス路13を流れる排ガスは、排ガス中の窒素酸化物と焼結ダストを除去した後、煙突15により、大気へ放散される。また、排ガス路13には、メインブロワー14の上流側位置に電気集塵機12が設けられ、この電気集塵機12により、電気集塵機12に供給される排ガス中の全ての焼結ダストを集塵している。
この排ガス路13に設けられた焼結機排ガスの処理装置10は、電気集塵機12の上流側位置に設けられた脱硝用電気集塵機16と、その上流側の排ガスにアンモニア(NH)を噴霧する噴霧手段17とを有している。
An exhaust gas path 13 having a main blower (exhaust air) 14 is connected to the sintering machine 11 and the exhaust gas generated from the sintering machine 11 is sucked downward and then flows downstream. The exhaust gas flowing through the exhaust gas passage 13 is diffused to the atmosphere by the chimney 15 after removing nitrogen oxides and sintered dust in the exhaust gas. The exhaust gas passage 13 is provided with an electrostatic precipitator 12 at a position upstream of the main blower 14, and the electrostatic precipitator 12 collects all the sintered dust in the exhaust gas supplied to the electrostatic precipitator 12. .
The sintering machine exhaust gas treatment device 10 provided in the exhaust gas passage 13 sprays ammonia (NH 3 ) on the denitration electrostatic dust collector 16 provided in the upstream position of the electrostatic precipitator 12 and the upstream exhaust gas. Spraying means 17.

脱硝用電気集塵機16は、図2に示すように、排ガス路13に接続されたケーシング18と、このケーシング18内に配置され、排ガス中の焼結ダストを集塵する複数の集塵電極19、及びこの隣り合う集塵電極19間に位置し、外部の高電圧発生装置20に接続された複数の放電電極21とを有している。なお、電気集塵機12は、従来公知の構成であるが、脱硝用電気集塵機16と同様の構成にすることが好ましい。
ケーシング18は、上流側端部が、下流側へ向けて拡幅する逆テーパ状となって、下流側端部が、下流側へ向けて縮幅するテーパ状となった中膨らみ形状である。
これにより、排ガス路13からケーシング18内に流れ込んだ排ガスの流速を低下でき、所定の滞留時間(反応時間)を確保できる。
As shown in FIG. 2, the denitration electric dust collector 16 includes a casing 18 connected to the exhaust gas passage 13, and a plurality of dust collecting electrodes 19 that are disposed in the casing 18 and collect sintered dust in the exhaust gas. And a plurality of discharge electrodes 21 located between the adjacent dust collecting electrodes 19 and connected to an external high voltage generator 20. In addition, although the electrostatic precipitator 12 is a conventionally well-known structure, it is preferable to set it as the structure similar to the denitration electrostatic precipitator 16. FIG.
The casing 18 has an intermediate bulging shape in which the upstream end portion has a reverse taper shape that widens toward the downstream side, and the downstream end portion has a tapered shape that decreases in width toward the downstream side.
Thereby, the flow velocity of the exhaust gas flowing into the casing 18 from the exhaust gas passage 13 can be reduced, and a predetermined residence time (reaction time) can be secured.

また、ケーシング18内には、複数の集塵電極19が、排ガスの流れる方向に対して直交する方向(ここでは、上下方向)に、しかも予め設定した間隔(例えば、10〜40cm程度)を有して、支持部材19aを介して平行に取付けられ、集塵電極19と集塵電極19の間に集塵電極19に対向して、複数の放電電極21からなる放電電極群が取付けられている。なお、放電電極群は、予め設定した間隔(例えば、10〜40cm程度)で各放電電極21が平行に配置され、この各放電電極21は、絶縁碍子22を介してケーシング18に取付けられている。この各放電電極21は、絶縁碍子22内に形成された貫通孔22aを介して、ケーシング18内に挿入され、貫通孔22aと放電電極21との隙間が、シール材22bにより封止されている。また、高電圧発生装置20には、全ての放電電極21が接続されているわけではなく、一部の放電電極21は、高電圧発生装置20に接続された放電電極21と、ケーシング18内で接続されている。
このように、複数の集塵電極19は、ケーシング18に排ガスの流れる方向に対して直交する方向に取付けることが好ましいが、排ガスの流れる方向に沿って(左右方向に)取付けても、また排ガスの流れる方向に傾斜させて取付けてもよい。
In the casing 18, a plurality of dust collecting electrodes 19 have a predetermined interval (for example, about 10 to 40 cm) in a direction orthogonal to the flow direction of the exhaust gas (here, the vertical direction). Then, a discharge electrode group composed of a plurality of discharge electrodes 21 is mounted between the dust collection electrode 19 and the dust collection electrode 19 so as to be opposed to the dust collection electrode 19 through the support member 19a. . In the discharge electrode group, the discharge electrodes 21 are arranged in parallel at a predetermined interval (for example, about 10 to 40 cm), and each discharge electrode 21 is attached to the casing 18 via an insulator 22. . Each discharge electrode 21 is inserted into the casing 18 through a through hole 22a formed in the insulator 22, and a gap between the through hole 22a and the discharge electrode 21 is sealed with a sealing material 22b. . Further, not all the discharge electrodes 21 are connected to the high voltage generator 20, and some of the discharge electrodes 21 are connected to the discharge electrode 21 connected to the high voltage generator 20 and the casing 18. It is connected.
As described above, the plurality of dust collecting electrodes 19 are preferably attached to the casing 18 in a direction orthogonal to the direction in which the exhaust gas flows. However, the dust collecting electrodes 19 may be attached along the direction in which the exhaust gas flows (in the left-right direction). You may incline in the direction which flows.

この集塵電極19は、図2、図3(A)に示すように、金属製の平板に多数の開口23が形成されたパンチングプレート(多孔板の一例)で構成されている。この開口率は、平板の面積の50〜80%程度が好ましい。
なお、集塵電極19は、パンチングプレートに限定されるものではなく、平坦な形状であれば、例えば、図3(B)に示す金網24、又は図3(C)、(D)に示す金属製のパイプ25や棒26を一列に並べたもの(以上、開口を有する多孔板に含まれる)、更には、金属製の平板でもよい。
As shown in FIGS. 2 and 3A, the dust collection electrode 19 is configured by a punching plate (an example of a perforated plate) in which a large number of openings 23 are formed in a metal flat plate. This aperture ratio is preferably about 50 to 80% of the area of the flat plate.
Note that the dust collection electrode 19 is not limited to the punching plate, and may be, for example, a metal mesh 24 shown in FIG. 3B or a metal shown in FIGS. The pipes 25 and the rods 26 made of metal are arranged in a line (included in the perforated plate having openings), or a metal flat plate.

また、放電電極21は、図2、図4(A)に示すように、パイプ27に多数の突起28を取付けた形状のものである。
なお、放電電極は、上記した形状に限定されるものではなく、放電し易い鋭利な形状であれば、例えば、図4(B)に示すように、断面角形の棒の角部を尖らせた星形状の放電電極29や、図4(C)、(D)に示す鋸刃状の放電電極30、31、図4(E)に示す極細(径が0.3〜2mm程度)のワイヤー32でもよい。
The discharge electrode 21 has a shape in which a large number of protrusions 28 are attached to a pipe 27 as shown in FIGS. 2 and 4A.
In addition, the discharge electrode is not limited to the above-described shape. For example, as shown in FIG. 4B, the corner portion of the rod having a square cross section is sharpened as long as it is a sharp shape that is easy to discharge. A star-shaped discharge electrode 29, sawtooth-shaped discharge electrodes 30 and 31 shown in FIGS. 4 (C) and 4 (D), and a very fine wire 32 (diameter of about 0.3 to 2 mm) shown in FIG. 4 (E). But you can.

ここで、脱硝用電気集塵機を作動させた場合のケーシング18内の状況について説明する。
図5(A)、(B)に示すように、集塵電極19を排ガスの流れに沿って配置した場合、全体的に排ガスは、図5(A)の左側から右側へ向けて流れるが、詳細にみると、イオン風(放電電極21から集塵電極19への排ガスの流れ:図中の湾曲した矢印)で旋回や攪拌がなされながら流れる。具体的には、集塵電極19に引き寄せられた排ガスは、そのままイオン風に押されて隣の開口23(ガス通路)に出て行き、今度は、逆向きのイオン風に押され、再度集塵電極19に引き寄せられ、元の開口23に戻る。
上記した状況を繰り返しながら、排ガスは、ケーシング18の左側から右側へと、全体として流れてゆく。
Here, the situation in the casing 18 when the denitration electric dust collector is operated will be described.
As shown in FIGS. 5A and 5B, when the dust collecting electrode 19 is arranged along the flow of the exhaust gas, the exhaust gas generally flows from the left side to the right side of FIG. If it sees in detail, it will flow, turning and stirring by ion wind (flow of the exhaust gas from the discharge electrode 21 to the dust collection electrode 19: the curved arrow in a figure). Specifically, the exhaust gas attracted to the dust collection electrode 19 is pushed by the ionic wind as it is and goes out to the adjacent opening 23 (gas passage). This time, it is pushed by the reverse ionic wind and collected again. It is attracted to the dust electrode 19 and returns to the original opening 23.
While repeating the above situation, the exhaust gas flows from the left side of the casing 18 to the right side as a whole.

また、図6に示すように、集塵電極19と排ガスの流れとを直交させた場合(図2に示す脱硝用電気集塵機16を平断面視した状態。なお、図2に示す最上流側位置の集塵電極19は省略されている。)、基本的には、上記と同じ考え方で、排ガスは、集塵電極19を行ったり来たりしながら、ケーシング18の左側から右側へと、全体として流れてゆく。
以上の状況下では、放電電極21を荷電した場合、図7に示すように、排ガスも焼結ダストも帯電する。このとき、排ガスは集塵電極19に引き寄せられ、これがイオン風となり、一方、焼結ダストは、上記したイオン風と電界(クーロン力)で、集塵電極19に運ばれ捕集される。
In addition, as shown in FIG. 6, when the dust collection electrode 19 and the flow of the exhaust gas are orthogonal to each other (the state in which the denitration electric dust collector 16 shown in FIG. 2 is viewed in a plan view. The dust collecting electrode 19 of the casing 18 is basically omitted from the left side of the casing 18 to the right side while moving back and forth the dust collecting electrode 19 in the same way as described above. It will flow.
Under the above situation, when the discharge electrode 21 is charged, both the exhaust gas and the sintered dust are charged as shown in FIG. At this time, the exhaust gas is attracted to the dust collecting electrode 19 and becomes an ionic wind, while the sintered dust is carried and collected by the dust collecting electrode 19 by the ionic wind and the electric field (Coulomb force) described above.

上記した脱硝用電気集塵機内のガス撹拌性を利用することで、イオン化した排ガスと帯電した焼結ダストの反応が促進されると共に、イオン化した排ガスと帯電した焼結ダストが引き合うため、更に反応が促進される。詳細には、イオン化した排ガスが、焼結ダスト表層の層流層をブレイクスルーする効果があり、これにより、イオン化した排ガスが、アース面の焼結ダスト(Fe)と接触し易くなる。
また、集塵電極で集塵された焼結ダストの集塵電極への付着は、焼結ダストの粒子相互がソフト的(ふんわり)に接触した状態であり、排ガスとの接触面積が非常に大きいことからも、脱硝能力が高い。なお、焼結ダストの粒径は、100μm以下である。
By utilizing the gas stirrability in the denitration electrostatic precipitator described above, the reaction between the ionized exhaust gas and the charged sintered dust is promoted, and the ionized exhaust gas and the charged sintered dust attract each other. Promoted. Specifically, the ionized exhaust gas has an effect of breaking through the laminar flow layer of the sintered dust surface layer, which makes it easier for the ionized exhaust gas to come into contact with the sintered dust (Fe 2 O 3 ) on the ground surface. .
Moreover, the adhesion of the sintered dust collected by the dust collecting electrode to the dust collecting electrode is a state in which the particles of the sintered dust are in soft contact with each other, and the contact area with the exhaust gas is very large. Therefore, the denitration ability is high. The particle size of the sintered dust is 100 μm or less.

図2に示すように、各集塵電極19の下部には、その集塵電極19を槌打する槌打機33が、各々取付けられている。
槌打機33は、例えば、バイブレータやハンマで構成され、これにより集塵電極19に衝撃を付与し、その表面に付着した焼結ダストを、ケーシング18の下部に払い落とすものであり、予め設定した時間間隔で自動的に動作する。なお、ケーシング18の下部には、下方へ向けて縮幅するテーパ状の複数の貯留部34が設けられ、その下端部には、落下した焼結ダストの排出口35が取付けられている。
従って、各槌打機33により、集塵電極19の表面から払い落とされた焼結ダストは、ケーシング18の貯留部34を介して、排出口35から外部へ排出される。
As shown in FIG. 2, a striker 33 that strikes the dust collecting electrode 19 is attached to the lower part of each dust collecting electrode 19.
The hammering machine 33 is composed of, for example, a vibrator or a hammer, thereby giving an impact to the dust collecting electrode 19 and scraping the sintered dust adhering to the surface to the lower part of the casing 18. Automatically at specified time intervals. A plurality of tapered storage portions 34 that are reduced in width downward are provided at the lower portion of the casing 18, and a discharge port 35 for the fallen sintered dust is attached to the lower end portion thereof.
Therefore, the sintered dust removed from the surface of the dust collection electrode 19 by each hammering machine 33 is discharged to the outside through the storage port 34 of the casing 18 from the discharge port 35.

また、図1に示すように、焼結機11と脱硝用電気集塵機16との間には、噴霧手段17が設けられている。
噴霧手段17は、排ガス路13内に、アンモニア(ガス又は液体)の噴出部が配置されたものである。なお、噴出部は、排ガスとアンモニアとの接触効率を高めるため、霧状に噴霧可能なノズルで構成されているが、これに限定されるものではない。
これにより、アンモニアを含有した排ガスは、脱硝用電気集塵機16内で焼結ダストに接触し、この排ガス中の窒素酸化物が、焼結ダスト(特に、酸化鉄(Fe)成分)を触媒として、窒素と水に分解する作用を起こさせ、脱硝が行われる。
Further, as shown in FIG. 1, a spray means 17 is provided between the sintering machine 11 and the denitration electric dust collector 16.
The spraying means 17 has an ammonia (gas or liquid) jetting part disposed in the exhaust gas passage 13. In addition, although the ejection part is comprised with the nozzle which can be sprayed in a mist shape in order to improve the contact efficiency of waste gas and ammonia, it is not limited to this.
As a result, the exhaust gas containing ammonia comes into contact with the sintered dust in the denitration electrostatic precipitator 16, and the nitrogen oxide in the exhaust gas converts the sintered dust (particularly, iron oxide (Fe 2 O 3 ) component). As a catalyst, denitration is performed by causing an action of decomposing into nitrogen and water.

そして、図1に示すように、焼結機11と噴霧手段17との間(脱硝用電気集塵機16の上流側)には、排ガス路13を流れる排ガスを加熱して、排ガスを昇温(追い焚き)するための昇温手段36が設けられている。これにより、排ガス中の焼結ダストの温度を、脱硝能力が顕著となる温度まで上昇させることができる。
焼結機11から吸引される排ガスの温度は、図8に示すように、焼結原料を焼結機11へ供給する給鉱部側の温度が、焼き固めた焼結鉱を排出する排鉱部側の温度よりも低い。このため、図1に示すように、給鉱部側と排鉱部側から吸引された排ガスが、一緒に脱硝用電気集塵機16へ流れた場合、焼結ダストの温度が、脱硝能力を発揮できる程度まで、十分に高くならない場合がある。そこで、この場合は、昇温手段36により排ガスを昇温して、焼結ダストの温度を上昇させる。なお、昇温手段には、例えばバーナ等を使用できる。
As shown in FIG. 1, between the sintering machine 11 and the spraying means 17 (upstream side of the denitration electrostatic precipitator 16), the exhaust gas flowing through the exhaust gas passage 13 is heated to raise (follow up) the exhaust gas. A temperature raising means 36 is provided. As a result, the temperature of the sintered dust in the exhaust gas can be raised to a temperature at which the denitration ability becomes significant.
As shown in FIG. 8, the temperature of the exhaust gas sucked from the sintering machine 11 is the exhaust ore where the temperature on the side of the supply section that supplies the sintering raw material to the sintering machine 11 discharges the sintered ore that has been baked. It is lower than the temperature on the part side. For this reason, as shown in FIG. 1, when the exhaust gas sucked from the supply section side and the discharge section side flows together to the denitration electric dust collector 16, the temperature of the sintered dust can exhibit the denitration ability. To the extent, it may not be high enough. Therefore, in this case, the temperature of the exhaust gas is raised by the temperature raising means 36 to raise the temperature of the sintered dust. For example, a burner can be used as the temperature raising means.

続いて、本発明の第1の実施の形態に係る焼結機排ガスの処理装置10を使用して、焼結機11から吸引される排ガス中の窒素酸化物を除去する方法について説明する。
焼結機11の操業に伴い、メインブロワー14を起動して、焼結機11で発生する排ガスを煙突15側へ吸引する。このとき、脱硝用電気集塵機16の高電圧発生装置20を作動させ、脱硝用電気集塵機16の各集塵電極19に排ガス中の焼結ダストを集塵すると共に、噴霧手段17を作動させ、排ガス中にアンモニアを噴霧する。
なお、大気放散される前に排ガス中の全ての焼結ダストは、電気集塵機12で回収される。
Next, a method for removing nitrogen oxides in the exhaust gas sucked from the sintering machine 11 using the sintering machine exhaust gas treatment apparatus 10 according to the first embodiment of the present invention will be described.
With the operation of the sintering machine 11, the main blower 14 is started and the exhaust gas generated in the sintering machine 11 is sucked to the chimney 15 side. At this time, the high voltage generator 20 of the denitration electrostatic precipitator 16 is activated to collect the sintered dust in the exhaust gas at each dust collection electrode 19 of the denitration electrostatic precipitator 16 and the spraying means 17 is activated to exhaust the exhaust gas. Spray with ammonia.
Note that all the sintered dust in the exhaust gas is collected by the electrostatic precipitator 12 before being diffused into the atmosphere.

また、脱硝用電気集塵機16内に流れ込む排ガスの温度(焼結ダストの温度と同等)が、例えば、150〜450℃程度になるように、昇温手段36により排ガスを昇温させる。
これにより、各集塵電極19に集塵された焼結ダストに、脱硝能力が付与されるため、排ガス中の窒素酸化物を除去できる。なお、脱硝用電気集塵機16内の排ガスの滞留時間(集塵時間)は、通常2〜5秒程度で十分である。
そして、焼結ダストの脱硝能力が低下する前に、槌打機33を作動させて、各集塵電極19に付着した焼結ダストを落下させ、排出口35から排出する。なお、各槌打機33の動作時期は、同時でもよいが、ずらすことが好ましい。これにより、新たな焼結ダストが各集塵電極19に捕集され、常に、集塵電極19のいずれか1又は2以上に付着した焼結ダストが、脱硝機能を発揮できる。
Further, the temperature of the exhaust gas flowing into the denitration electric dust collector 16 (equivalent to the temperature of the sintered dust) is raised by the temperature raising means 36 so that the temperature is about 150 to 450 ° C., for example.
Thereby, since the denitration ability is given to the sintered dust collected by each dust collection electrode 19, the nitrogen oxide in exhaust gas can be removed. The residence time (dust collection time) of the exhaust gas in the denitration electric dust collector 16 is usually about 2 to 5 seconds.
Then, before the denitration ability of the sintered dust is lowered, the hammering machine 33 is operated to drop the sintered dust attached to each dust collecting electrode 19 and discharge it from the discharge port 35. In addition, although the operation time of each hammering machine 33 may be simultaneous, it is preferable to shift. Thereby, new sintered dust is collected by each dust collecting electrode 19, and the sintered dust always adhered to any one or two or more of the dust collecting electrodes 19 can exhibit a denitration function.

次に、本発明の第2の実施の形態に係る焼結機排ガスの処理装置40について説明するが、前記した焼結機排ガスの処理装置10と同一部材に同一番号を付し、詳しい説明を省略する。
図9に示すように、焼結機11とメインブロワー14との間の排ガス路41(排ガス路13と同様の機能を有する)には、その上流側から下流側へかけて、昇温手段36、噴霧手段17、及び電気集塵機42が、順次設けられている。この電気集塵機42は、既設の電気集塵機の構成を、脱硝用電気集塵機16と同様の構成とし、電気集塵機12と同様に排ガス中の全ての焼結ダストを集塵する機能を有するのみならず、更に脱硝用電気集塵機16と同様に脱硝を行う機能も有している。
以上のように、焼結機排ガスの処理装置40は、脱硝機能を備えた電気集塵機42、噴霧手段17、及び昇温手段36を有しているので、新たな電気集塵機の設置を行うことなく、経済的に、しかも焼結ダストを外部へ排出することなく、排ガス中の脱硝を実施できる。
Next, the sintering machine exhaust gas processing apparatus 40 according to the second embodiment of the present invention will be described. The same members as those in the above-described sintering machine exhaust gas processing apparatus 10 are denoted by the same reference numerals, and detailed description will be given. Omitted.
As shown in FIG. 9, in the exhaust gas passage 41 (having the same function as the exhaust gas passage 13) between the sintering machine 11 and the main blower 14, the temperature raising means 36 extends from the upstream side to the downstream side. The spray means 17 and the electrostatic precipitator 42 are sequentially provided. This electrostatic precipitator 42 has the same configuration as that of the denitration electrostatic precipitator 16 in the configuration of the existing electrostatic precipitator, and not only has a function of collecting all the sintered dust in the exhaust gas, like the electrostatic precipitator 12. Further, it has a function of performing denitration similarly to the denitration electrostatic precipitator 16.
As mentioned above, since the processing apparatus 40 of exhaust gas from the sintering machine has the electrostatic precipitator 42 having the denitration function, the spraying means 17, and the temperature raising means 36, it is possible to install a new electrostatic precipitator. The denitration in the exhaust gas can be carried out economically and without discharging the sintered dust to the outside.

続いて、本発明の第3の実施の形態に係る焼結機排ガスの処理装置50について説明するが、前記した焼結機排ガスの処理装置10と同一部材に同一番号を付し、詳しい説明を省略する。
図10に示すように、排ガス路51は、主排ガス路52(排ガス路13と同様の機能を有する)と、主排ガス路52から排ガスの一部(例えば、10〜50%程度)を吸引するブロワー53を備えたバイパス路54を有し、このバイパス路54の上流側から下流側へかけて、昇温手段36、噴霧手段17、及び脱硝用電気集塵機16を順次設けている。なお、バイパス路54は、電気集塵機12の上流側位置に設けられている。
これにより、既存の排ガス路に、脱硝用電気集塵機16、噴霧手段17、及び昇温手段36を直接取付ける必要がなくなるので、例えば、これらの取付けに伴う焼結機11の操業停止期間を短縮でき、焼結鉱の生産効率の低下を抑制できる。
Subsequently, the sintering machine exhaust gas processing apparatus 50 according to the third embodiment of the present invention will be described. The same members as those in the above-described sintering machine exhaust gas processing apparatus 10 are denoted by the same reference numerals, and detailed description will be given. Omitted.
As shown in FIG. 10, the exhaust gas passage 51 sucks a part of the exhaust gas (for example, about 10 to 50%) from the main exhaust gas passage 52 (having the same function as the exhaust gas passage 13) and the main exhaust gas passage 52. A bypass passage 54 having a blower 53 is provided, and a temperature raising means 36, a spraying means 17, and a denitration electric dust collector 16 are sequentially provided from the upstream side to the downstream side of the bypass path 54. The bypass 54 is provided at a position upstream of the electric dust collector 12.
This eliminates the need for directly attaching the denitration electrostatic precipitator 16, the spraying means 17, and the temperature raising means 36 to the existing exhaust gas passage, so that, for example, the operation stop period of the sintering machine 11 associated with these attachments can be shortened. , The reduction in the production efficiency of the sintered ore can be suppressed.

本発明の第4の実施の形態に係る焼結機排ガスの処理装置60について説明するが、前記した焼結機排ガスの処理装置50と同一部材に同一番号を付し、詳しい説明を省略する。
図11に示すように、排ガス路61は、主排ガス路62と、主排ガス路62から排ガスの一部(例えば、10〜50%程度)を吸引するブロワー63を備えた流路64を有し、この流路64の上流側から下流側へかけて、噴霧手段17と脱硝用電気集塵機16を順次設けている。
焼結機11の排鉱部側(例えば、排鉱部側端部から焼結機11の全長の30%までの範囲)に流路64の吸引口(上流側端部)を設けることで、脱硝用電気集塵機16へ流入する排ガスの温度を高めることができる。これは、前記したように、焼結機11の排鉱部側の排ガスの温度が、給鉱部側の排ガスの温度よりも高いことによる(図8参照)。
The sintering machine exhaust gas processing apparatus 60 according to the fourth embodiment of the present invention will be described. The same members as those in the above-described sintering machine exhaust gas processing apparatus 50 are denoted by the same reference numerals, and detailed description thereof will be omitted.
As shown in FIG. 11, the exhaust gas path 61 includes a main exhaust gas path 62 and a flow path 64 including a blower 63 that sucks a part of the exhaust gas (for example, about 10 to 50%) from the main exhaust gas path 62. The spray means 17 and the denitration electric dust collector 16 are sequentially provided from the upstream side to the downstream side of the flow path 64.
By providing the suction port (upstream side end) of the flow path 64 on the side of the sinter unit 11 (for example, the range from the end part of the sinter unit to 30% of the total length of the sintering machine 11), The temperature of the exhaust gas flowing into the denitration electric dust collector 16 can be increased. As described above, this is because the temperature of the exhaust gas on the side of the ore mine of the sintering machine 11 is higher than the temperature of the exhaust gas on the side of the mine supply unit (see FIG. 8).

これにより、脱硝用電気集塵機16に集塵される焼結ダストの温度は、脱硝能力を十分に発揮できる温度を有しているので、昇温手段を設けなくてもよいが、脱硝能力を更に高めるため、昇温手段を脱硝用電気集塵機16の上流側の流路64に設けてもよい。
また、流路64の排出口(下流側端部)は、再度、主排ガス路62に接続されている(ここでは、焼結機11の全長の50%位置よりも下流側の位置)。これにより、流路64を流れることで脱硝がなされた排ガスを、再度、主排ガス路62へ戻すことができるため、全排ガス中に含まれる総窒素酸化物量の低減が図れる。
As a result, the temperature of the sintered dust collected by the denitration electric dust collector 16 has a temperature at which the denitration ability can be sufficiently exhibited. In order to increase the temperature, a heating means may be provided in the flow path 64 upstream of the denitration electrostatic precipitator 16.
Further, the discharge port (downstream end) of the flow path 64 is again connected to the main exhaust gas path 62 (here, a position downstream of the position of 50% of the total length of the sintering machine 11). Thereby, since the exhaust gas denitrated by flowing through the flow path 64 can be returned again to the main exhaust gas path 62, the total amount of nitrogen oxides contained in the total exhaust gas can be reduced.

なお、脱硝用電気集塵機16で回収されなかった残部の焼結ダストは、電気集塵機12で回収される。
以上のように、焼結機排ガスの処理装置60の脱硝用電気集塵機16及び噴霧手段17を、焼結機11の排鉱部側から排ガスの一部を吸引する流路64に設けることで、排ガスの昇温のための熱エネルギーコストの低減が図れ、経済的に排ガス中の脱硝を実施できる。
また、排ガス中には、硫黄(S)があることから、アンモニアを噴霧するとヒューム状の硫安となるが、このヒューム状の硫安を集塵して除去可能となるため、更に好ましい。
The remaining sintered dust that has not been collected by the denitration electric dust collector 16 is collected by the electric dust collector 12.
As described above, by providing the denitration electrostatic precipitator 16 and the spraying means 17 of the sintering machine exhaust gas treatment device 60 in the flow path 64 for sucking a part of the exhaust gas from the exhausting part side of the sintering machine 11, The thermal energy cost for raising the temperature of the exhaust gas can be reduced, and denitration in the exhaust gas can be carried out economically.
Further, since there is sulfur (S) in the exhaust gas, when ammonia is sprayed, it becomes a fume-like ammonium sulfate, which is more preferable because the fume-like ammonium sulfate can be collected and removed.

次に、本発明の作用効果を確認するために行った実施例について説明する。
まず、焼結機から発生した排ガス中の焼結ダストを回収し、排ガスの温度が焼結ダストの脱硝率に及ぼす影響を、図12を参照しながら説明図する。なお、図12は、横軸に排ガス温度(焼結ダストの温度と同等)をとり、縦軸に脱硝率をとっている。
また、焼結ダストには、3mm×3〜8mmのペレット状としたものを使用し、これを、NH/NOのモル比を1.5(NO:300ppm、NH:450ppm)、SOを500ppm(ただし、200〜250℃では0ppm)に調整した空気中に曝して、脱硝能力を調査した。なお、使用した焼結ダストの化学成分を、表1に示す(なお、表1中の合計が100質量%にならないのは四捨五入による)。
Next, examples carried out for confirming the effects of the present invention will be described.
First, the sintered dust in the exhaust gas generated from the sintering machine is collected, and the influence of the temperature of the exhaust gas on the denitration rate of the sintered dust will be described with reference to FIG. In FIG. 12, the horizontal axis represents the exhaust gas temperature (equivalent to the temperature of the sintered dust), and the vertical axis represents the denitration rate.
Further, the sintering dust, using what was 3 mm × 3 to 8 mm in pellets, which, 1.5 molar ratio of NH 3 / NO (NO: 300ppm , NH 3: 450ppm), SO 2 Was exposed to air adjusted to 500 ppm (however, 0 ppm at 200 to 250 ° C.) to investigate the denitration ability. In addition, the chemical component of the used sintered dust is shown in Table 1 (Note that the total in Table 1 is not 100% by mass is rounded off).

Figure 2011161329
Figure 2011161329

図12から、排ガス温度の上昇に伴い、脱硝率が上昇することを確認できた。特に、排ガス温度を300〜400℃程度の範囲内にした場合には、脱硝率を80%以上にでき、焼結機から発生した焼結ダストが、十分な脱硝能力を備えていることを確認できた。
なお、この傾向は、焼結ダストの形状(例えば、粒径等)や化学成分によって多少の変動はあるが、略同等の傾向を示す。
From FIG. 12, it was confirmed that the denitration rate increased as the exhaust gas temperature increased. In particular, when the exhaust gas temperature is in the range of about 300 to 400 ° C., the denitration rate can be increased to 80% or more, and it is confirmed that the sintered dust generated from the sintering machine has sufficient denitration capability. did it.
In addition, although this tendency has some fluctuation | variations depending on the shape (for example, a particle size etc.) and chemical component of sintering dust, this tendency shows a substantially equivalent tendency.

次に、電気集塵機の荷電の有無が、脱硝効率に及ぼす影響を、図13を参照しながら説明する。なお、図13は、横軸に排ガス温度(焼結ダストの温度と同等)をとり、縦軸に脱硝率をとっており、電気集塵機の放電電極を荷電した場合を実線で、荷電しなかった場合を点線で、それぞれ示している。
ここで、排ガス量を100Nm/時間、排ガス中のNOxを170ppm、排ガスへのNH添加量を200ppm、排ガス中の焼結ダストの含有量を0.5g/Nm、荷電電圧を2kV、電流を5mA、荷電時間を2秒とした。
Next, the influence of the presence or absence of charging of the electrostatic precipitator on the denitration efficiency will be described with reference to FIG. In FIG. 13, the horizontal axis represents the exhaust gas temperature (equivalent to the temperature of the sintered dust), the vertical axis represents the denitration rate, and the discharge electrode of the electrostatic precipitator is charged with a solid line and not charged. Each case is indicated by a dotted line.
Here, the amount of exhaust gas is 100 Nm 3 / hour, NOx in the exhaust gas is 170 ppm, the amount of NH 3 added to the exhaust gas is 200 ppm, the content of sintered dust in the exhaust gas is 0.5 g / Nm 3 , the charging voltage is 2 kV, The current was 5 mA and the charging time was 2 seconds.

図13から、荷電を行うことで、焼結ダストと排ガスが帯電して、両者が引き合って凝集し、脱硝効率を向上できることを確認できた。特に、排ガス温度が低い場合は、荷電により脱硝効率が向上できることを確認できた。
以上のことから、焼結機から発生した排ガス中の焼結ダストを、排ガス路から排出することなくそのまま利用し、長期にわたって安定に、しかも作業性よく、排ガス中の窒素酸化物を除去できることを確認できた。
From FIG. 13, it was confirmed that by performing charging, the sintered dust and the exhaust gas were charged and both attracted and aggregated to improve the denitration efficiency. In particular, when the exhaust gas temperature is low, it has been confirmed that the denitration efficiency can be improved by charging.
From the above, it is possible to use the sintered dust in the exhaust gas generated from the sintering machine as it is without discharging from the exhaust gas passage, and to remove nitrogen oxides in the exhaust gas stably over a long period of time and with good workability. It could be confirmed.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の焼結機排ガスの処理装置を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、排ガス中の脱硝を、焼結機排ガスの処理装置のみを用いて実施した場合について説明したが、これに限定されるものではなく、例えば、メインブロワーと煙突との間に、従来公知の活性炭を使用した脱硝装置を設置し、これを併用してもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the sintering apparatus exhaust gas treatment apparatus of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
In the above embodiment, the case where the denitration in the exhaust gas is performed using only the processing device for the exhaust gas of the sintering machine is described. However, the present invention is not limited to this. For example, the main blower, the chimney, Between these, a denitration apparatus using conventionally known activated carbon may be installed and used together.

10:焼結機排ガスの処理装置、11:焼結機、12:電気集塵機、13:排ガス路、14:メインブロワー、15:煙突、16:脱硝用電気集塵機、17:噴霧手段、18:ケーシング、19:集塵電極、19a:支持部材、20:高電圧発生装置、21:放電電極、22:絶縁碍子、22a:貫通孔、22b:シール材、23:開口、24:金網、25:パイプ、26:棒、27:パイプ、28:突起、29〜31:放電電極、32:ワイヤー、33:槌打機、34:貯留部、35:排出口、36:昇温手段、40:焼結機排ガスの処理装置、41:排ガス路、42:電気集塵機、50:焼結機排ガスの処理装置、51:排ガス路、52:主排ガス路、53:ブロワー、54:バイパス路、60:焼結機排ガスの処理装置、61:排ガス路、62:主排ガス路、63:ブロワー、64:流路 10: Sintering machine exhaust gas treatment device, 11: Sintering machine, 12: Electric dust collector, 13: Exhaust gas passage, 14: Main blower, 15: Chimney, 16: Electric dust collector for denitration, 17: Spraying means, 18: Casing 19: Dust collecting electrode, 19a: Support member, 20: High voltage generator, 21: Discharge electrode, 22: Insulator, 22a: Through hole, 22b: Sealing material, 23: Opening, 24: Wire mesh, 25: Pipe , 26: rod, 27: pipe, 28: protrusion, 29-31: discharge electrode, 32: wire, 33: hammering machine, 34: reservoir, 35: discharge port, 36: heating means, 40: sintering Exhaust gas treatment device, 41: exhaust gas passage, 42: electrostatic precipitator, 50: sintering machine exhaust gas treatment device, 51: exhaust gas passage, 52: main exhaust gas passage, 53: blower, 54: bypass passage, 60: sintering Machine exhaust gas treatment equipment, 61: exhaust gas , 62: main exhaust gas channel, 63: blower, 64: flow path

Claims (7)

焼結機から吸引される排ガスを電気集塵機を介して大気放散するための排ガス路に設けられた焼結機排ガスの処理装置であって、
前記電気集塵機の上流側の排ガスにアンモニアを噴霧する噴霧手段を設けたことを特徴とする焼結機排ガスの処理装置。
An apparatus for treating exhaust gas from a sintering machine provided in an exhaust gas passage for dissipating exhaust gas sucked from a sintering machine to the atmosphere via an electric dust collector,
An apparatus for treating exhaust gas from a sintering machine, comprising spray means for spraying ammonia to exhaust gas upstream of the electric dust collector.
請求項1記載の焼結機排ガスの処理装置において、前記電気集塵機の上流側に、排ガスを昇温するための昇温手段を設けたことを特徴とする焼結機排ガスの処理装置。 2. The apparatus for treating exhaust gas from a sintering machine according to claim 1, wherein a temperature raising means for raising the temperature of the exhaust gas is provided upstream of the electrostatic precipitator. 請求項1記載の焼結機排ガスの処理装置において、前記排ガス路の前記電気集塵機の上流側位置で、かつ、前記噴霧手段より下流側位置に、複数の集塵電極、該集塵電極間に設けた放電電極、及び前記各集塵電極を槌打する槌打機を備える脱硝用電気集塵機を設けたことを特徴とする焼結機排ガスの処理装置。 2. The apparatus for treating exhaust gas from a sintering machine according to claim 1, wherein a plurality of dust collecting electrodes are disposed at a position upstream of the electric dust collector in the exhaust gas passage and at a position downstream of the spraying means. An apparatus for treating exhaust gas from a sintering machine, comprising: a discharge electrode provided; and a denitration electric dust collector provided with a hammer for striking each dust collector electrode. 請求項3記載の焼結機排ガスの処理装置において、前記排ガス路はバイパス路を有し、前記脱硝用電気集塵機を前記バイパス路に設け、前記噴霧手段を前記バイパス路の前記脱硝用電気集塵機より上流側位置に設けたことを特徴とする焼結機排ガスの処理装置。 4. The apparatus for treating exhaust gas from a sintering machine according to claim 3, wherein the exhaust gas path has a bypass path, the denitration electrostatic precipitator is provided in the bypass path, and the spraying means is provided from the denitration electrostatic precipitator in the bypass path. An apparatus for treating exhaust gas from a sintering machine, which is provided at an upstream position. 請求項3記載の焼結機排ガスの処理装置において、前記排ガス路は、前記焼結機の排鉱部側から排ガスの一部を吸引する流路を有し、前記脱硝用電気集塵機を前記流路に設け、前記噴霧手段を前記流路の前記脱硝用電気集塵機より上流側位置に設けたことを特徴とする焼結機排ガスの処理装置。 4. The apparatus for treating exhaust gas from a sintering machine according to claim 3, wherein the exhaust gas path has a flow path for sucking a part of the exhaust gas from an exhaust ore portion side of the sintering machine, and the denitration electrostatic precipitator is flowed through the flow. An apparatus for treating exhaust gas from a sintering machine, wherein the apparatus is provided in a passage and the spraying means is provided at a position upstream of the denitration electrostatic precipitator in the passage. 請求項3〜5のいずれか1項に記載の焼結機排ガスの処理装置において、前記脱硝用電気集塵機の上流側に、排ガスを昇温するための昇温手段を設けたことを特徴とする焼結機排ガスの処理装置。 6. The apparatus for treating exhaust gas from a sintering machine according to any one of claims 3 to 5, wherein a temperature raising means for raising the temperature of the exhaust gas is provided upstream of the denitration electrostatic precipitator. Sintering machine exhaust gas treatment equipment. 請求項3〜6のいずれか1項に記載の焼結機排ガスの処理装置において、前記脱硝用電気集塵機の前記集塵電極は開口を有する多孔板で構成されていることを特徴とする焼結機排ガスの処理装置。 The sintering machine exhaust gas treatment apparatus according to any one of claims 3 to 6, wherein the dust collecting electrode of the denitration electric dust collector is formed of a perforated plate having an opening. Exhaust gas treatment equipment.
JP2010024463A 2010-02-05 2010-02-05 Apparatus for treating exhaust discharged from sintering machine Pending JP2011161329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024463A JP2011161329A (en) 2010-02-05 2010-02-05 Apparatus for treating exhaust discharged from sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024463A JP2011161329A (en) 2010-02-05 2010-02-05 Apparatus for treating exhaust discharged from sintering machine

Publications (1)

Publication Number Publication Date
JP2011161329A true JP2011161329A (en) 2011-08-25

Family

ID=44592657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024463A Pending JP2011161329A (en) 2010-02-05 2010-02-05 Apparatus for treating exhaust discharged from sintering machine

Country Status (1)

Country Link
JP (1) JP2011161329A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018126712A (en) * 2017-02-10 2018-08-16 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator
WO2019138922A1 (en) * 2018-01-15 2019-07-18 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator
WO2020026369A1 (en) * 2018-08-01 2020-02-06 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator
CN107198962B (en) * 2017-06-13 2020-06-02 武汉钢铁有限公司 Sintering smoke autocatalytic denitration system capable of coupling and utilizing waste heat of sintering smoke
CN112957886A (en) * 2021-03-11 2021-06-15 于航 Solve too big multitube plasma SOx/NOx control device of traditional volume
CN115739396A (en) * 2022-12-01 2023-03-07 东北农业大学 High-voltage static and acid mist coupled ammonia and dust removal integrated machine for livestock and poultry house and dust removal method
WO2023106867A1 (en) * 2021-12-09 2023-06-15 한국에너지기술연구원 Electric dust collection device and dust collection method using same
KR102661840B1 (en) 2021-12-10 2024-05-07 한국에너지기술연구원 Electrostatic Precipitator capable of shielding bypass flow in hopper and operating method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315259A (en) * 1976-07-28 1978-02-10 Mitsubishi Heavy Ind Ltd Denitrating method for exhaust gas from sintering equipment
JPS53127367A (en) * 1977-04-14 1978-11-07 Taiho Kogyo Co Ltd Treatment of combustion gas
JPS58196828A (en) * 1982-05-10 1983-11-16 Sumitomo Heavy Ind Ltd Desulfurization and denitration of exhaust gas from sintering machine
JPS62289249A (en) * 1986-06-10 1987-12-16 Senichi Masuda Extra-short pulse high voltage impressing type gas purifying apparatus
JPH0429719A (en) * 1990-05-25 1992-01-31 Toa Netsuken Kk Denitration method
JPH07265736A (en) * 1994-03-31 1995-10-17 Ishikawajima Harima Heavy Ind Co Ltd Electric precipitator
JPH1024219A (en) * 1996-07-11 1998-01-27 Mitsubishi Heavy Ind Ltd Waste gas denitrating method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315259A (en) * 1976-07-28 1978-02-10 Mitsubishi Heavy Ind Ltd Denitrating method for exhaust gas from sintering equipment
JPS53127367A (en) * 1977-04-14 1978-11-07 Taiho Kogyo Co Ltd Treatment of combustion gas
JPS58196828A (en) * 1982-05-10 1983-11-16 Sumitomo Heavy Ind Ltd Desulfurization and denitration of exhaust gas from sintering machine
JPS62289249A (en) * 1986-06-10 1987-12-16 Senichi Masuda Extra-short pulse high voltage impressing type gas purifying apparatus
JPH0429719A (en) * 1990-05-25 1992-01-31 Toa Netsuken Kk Denitration method
JPH07265736A (en) * 1994-03-31 1995-10-17 Ishikawajima Harima Heavy Ind Co Ltd Electric precipitator
JPH1024219A (en) * 1996-07-11 1998-01-27 Mitsubishi Heavy Ind Ltd Waste gas denitrating method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018126712A (en) * 2017-02-10 2018-08-16 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator
CN107198962B (en) * 2017-06-13 2020-06-02 武汉钢铁有限公司 Sintering smoke autocatalytic denitration system capable of coupling and utilizing waste heat of sintering smoke
JP7109194B2 (en) 2018-01-15 2022-07-29 三菱重工パワー環境ソリューション株式会社 Electrostatic precipitator
WO2019138922A1 (en) * 2018-01-15 2019-07-18 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator
JP2019122909A (en) * 2018-01-15 2019-07-25 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator
TWI701079B (en) * 2018-01-15 2020-08-11 日商三菱日立電力系統環保股份有限公司 Electric dust collector
US11484890B2 (en) 2018-01-15 2022-11-01 Mitsubishi Heavy Industries Power Environmental Solutions, Ltd. Electrostatic precipitator
WO2020026369A1 (en) * 2018-08-01 2020-02-06 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator
RU2765787C1 (en) * 2018-08-01 2022-02-03 Мицубиси Хэви Индастриз Пауэр Инвайронментал Солюшнз, Лтд. Electric dust collector
CN112957886A (en) * 2021-03-11 2021-06-15 于航 Solve too big multitube plasma SOx/NOx control device of traditional volume
WO2023106867A1 (en) * 2021-12-09 2023-06-15 한국에너지기술연구원 Electric dust collection device and dust collection method using same
KR102661840B1 (en) 2021-12-10 2024-05-07 한국에너지기술연구원 Electrostatic Precipitator capable of shielding bypass flow in hopper and operating method thereof
CN115739396A (en) * 2022-12-01 2023-03-07 东北农业大学 High-voltage static and acid mist coupled ammonia and dust removal integrated machine for livestock and poultry house and dust removal method
CN115739396B (en) * 2022-12-01 2023-05-16 东北农业大学 High-voltage static electricity and acid mist coupling ammonia and dust removing integrated machine for livestock and poultry houses and dust removing method

Similar Documents

Publication Publication Date Title
JP2011161329A (en) Apparatus for treating exhaust discharged from sintering machine
JP2011161330A (en) Apparatus for denitrifying exhaust
JP4894739B2 (en) Wet electric dust collector
JP4856139B2 (en) Electric dust collector
CN107930851A (en) A kind of electrostatic precipitator
KR200473001Y1 (en) Fine Dust and Noxious Gas Removable Cyclone Type Electrostatic Precipitator
JP2011131132A (en) Welding fume collector
KR101852163B1 (en) An apparatus combined electrostatic spraying with electrostatic precipitator for removing fine particulate matter
KR101896948B1 (en) Integrated removal apparatus of removing fine particulate and nitrogen oxide using pulse type high voltage
CN104801159B (en) A kind of plasma flue gas desulfurization denitration dust-removing demercuration integrated apparatus
JP6333697B2 (en) Electric dust collector
JPWO2014122756A1 (en) Dust collector, dust collector electrode selection method and dust collector method
JP4970081B2 (en) Blast furnace gas cleaning equipment and operating method thereof
CN103128001A (en) Dry-wet combination type electrostatic dust extractor and dust extracting method
CN205914281U (en) Electrical dust precipitator
CN110369133B (en) A dust collector is synthesized to sound electricity for belt transportation
JP2012192361A (en) Electrostatic dust catcher
JP2009166006A (en) Electric dust collector
CN207042674U (en) A kind of intercepting type electrostatic precipitator
CN101310867A (en) Dust pretreatment method and device for improving dust collector efficiency
JP2007330898A (en) Dust collector
CN212215906U (en) Plate type cathode and anode structure and wet electric dust collector
KR20130112466A (en) Fine dust and noxious gas removable cyclone type electrostatic precipitator
CN103691210B (en) Centrifugal dust extraction device of coal power unit for thermal power plant
CN107308758A (en) Cavity unit for handling nano-particle or gaseous material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140114