JP2009114505A - Magnetite-iron composite powder and its manufacturing method - Google Patents

Magnetite-iron composite powder and its manufacturing method Download PDF

Info

Publication number
JP2009114505A
JP2009114505A JP2007289392A JP2007289392A JP2009114505A JP 2009114505 A JP2009114505 A JP 2009114505A JP 2007289392 A JP2007289392 A JP 2007289392A JP 2007289392 A JP2007289392 A JP 2007289392A JP 2009114505 A JP2009114505 A JP 2009114505A
Authority
JP
Japan
Prior art keywords
magnetite
composite powder
mass
particle size
iron composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007289392A
Other languages
Japanese (ja)
Inventor
Yukiko Nakamura
由紀子 中村
Satoshi Goto
聡志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2007289392A priority Critical patent/JP2009114505A/en
Publication of JP2009114505A publication Critical patent/JP2009114505A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-performance magnetite-iron composite powder combining fine primary particle size with high σs and also to provide its manufacturing method. <P>SOLUTION: The magnetite-iron composite powder is characterized by having an average primary particle size of 0.3 to 0.7 μm and containing, by mass, 0.01 to <10%, in total, of one or more elements selected from Co, Ni, Cu, Cr and Ca, 0.005 to <0.1% SiO<SB>2</SB>, 0.005 to <0.1% P and magnetite. This magnetite-iron composite powder is manufactured by subjecting iron oxide containing one or more elements selected from Co, Ni, Cu, Cr and Ca, SiO<SB>2</SB>and P to reduction treatment in a reducing atmosphere at >400 to 530°C and further to oxidation treatment in an oxidizing atmosphere to form magnetite. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電磁波吸収用磁性粉、高周波磁芯、磁性塗料や磁気インク等の磁気識別用顔料、磁性流体、触媒等の用途に用いられる金属磁性粉に関し、特に微細な一次粒径と高い飽和磁化σsを併せ持つマグネタイト−鉄複合粉末と、その製造方法に関するものである。   The present invention relates to magnetic powder for electromagnetic wave absorption, high-frequency magnetic core, magnetic identification pigment such as magnetic paint and magnetic ink, magnetic fluid, catalyst, etc., and particularly fine primary particle size and high saturation. The present invention relates to a magnetite-iron composite powder having magnetization σs and a method for producing the same.

パソコンのCPU処理速度の高速化、無線LANの普及などに伴い、圧粉磁心に使用される金属磁性粉に対しても、より高い周波数で優れた電磁気特性を有するものが求められている。従来、金属磁性粉は粒子の電気抵抗が低いために、高周波帯域で渦電流損失の影響を受けやすく、高周波での使用が困難とされていた。   With the increase in the CPU processing speed of personal computers and the widespread use of wireless LAN, metal magnetic powders used for dust cores are also required to have excellent electromagnetic characteristics at higher frequencies. Conventionally, metal magnetic powders are easily affected by eddy current loss in the high frequency band due to the low electrical resistance of the particles, making it difficult to use at high frequencies.

渦電流損失を抑え、高周波で優れた電磁気特性を実現するためには、金属磁性粉の粒子径を微細にすることが有利である。そこで、本発明者らは、微細な酸化鉄を還元した後に酸化処理を行う方法で、平均一次粒径が1μm程度の微細な金属磁性粉を製造する方法を提案した(特許文献1〜4参照)。   In order to suppress eddy current loss and realize excellent electromagnetic characteristics at high frequencies, it is advantageous to make the particle size of the metal magnetic powder fine. Therefore, the present inventors have proposed a method for producing fine metal magnetic powder having an average primary particle size of about 1 μm by a method of performing oxidation treatment after reducing fine iron oxide (see Patent Documents 1 to 4). ).

これらの方法を用いることで、平均一次粒径が0.7〜5μm程度の微細化を実現することができた。しかし、電子回路の高周波化に伴い、さらに高い周波数で使用可能とする要求が高まり、より微細な金属磁性粉が望まれている。   By using these methods, miniaturization with an average primary particle size of about 0.7 to 5 μm could be realized. However, with the increase in the frequency of electronic circuits, there is an increasing demand for use at higher frequencies, and finer metal magnetic powders are desired.

また、自動認識技術の進展に伴い、磁性塗料や磁気インクとして使用される金属磁性粉に対して、より微細かつ均一な粒度分布と高い飽和磁化σsを併せ持つ金属磁性粉が望まれている。
特許第3867562号公報 特開2006−206948号公報 特開2006−274300号公報 特開2007−146259号公報
Further, with the progress of automatic recognition technology, metal magnetic powder having both a finer and more uniform particle size distribution and high saturation magnetization σs is desired for metal magnetic powder used as magnetic paint and magnetic ink.
Japanese Patent No. 3867562 JP 2006-206948 A JP 2006-274300 A JP 2007-146259 A

しかしながら、本発明者らが提案した従来の方法(上記特許文献1〜4参照)では、平均一次粒径を0.7μm程度まで微細にすると、還元反応が不十分となり、高い飽和磁化を持つα−Fe相の生成率が低下して、σsが低下するという問題があった。   However, in the conventional method proposed by the present inventors (see Patent Documents 1 to 4 above), if the average primary particle size is made fine to about 0.7 μm, the reduction reaction becomes insufficient and α having high saturation magnetization. There was a problem that the production rate of the -Fe phase was lowered and σs was lowered.

本発明はこのような事情のもとになされたものであり、飽和磁化σsの高い鉄系の粉末を用いて、微細な一次粒径と高いσsを併せ持つ、高性能なマグネタイト−鉄複合粉末およびその製造方法を提供することを目的とする。   The present invention has been made under such circumstances, and uses a high-performance magnetite-iron composite powder having both a fine primary particle size and a high σs using an iron-based powder having a high saturation magnetization σs, and It aims at providing the manufacturing method.

マグネタイト−鉄複合粉末の平均一次粒径を0.7μm以下に微細化する手段として、還元温度を低温にする方法がある。しかしながら、還元温度を530℃以下に下げると、還元反応の進行が不十分となり、σsの低いマグネタイト相やウスタイト相の比率が多くなり、高いσsを得ることができない。   As a means for reducing the average primary particle size of the magnetite-iron composite powder to 0.7 μm or less, there is a method of reducing the reduction temperature. However, when the reduction temperature is lowered to 530 ° C. or lower, the reduction reaction proceeds insufficiently, the ratio of the magnetite phase or the wustite phase having a low σs increases, and a high σs cannot be obtained.

そこで、本発明者らは、530℃以下の低い還元温度でも還元反応が進行する手段を鋭意検討した。その結果、原料のヘマタイト中に還元反応を促進する成分(Co、Ni、Cu、Cr、Ca)を添加することで、530℃以下の温度でも還元反応が進行し、高いσsを実現できることを見出した。さらに、原料のヘマタイト中に粒成長を抑制する成分(SiO、P)を含有させることで、均一な粒度分布が得られることを見出した。 Therefore, the present inventors diligently studied a means for the reduction reaction to proceed even at a low reduction temperature of 530 ° C. or lower. As a result, it was found that by adding components (Co, Ni, Cu, Cr, Ca) that promote the reduction reaction to the raw material hematite, the reduction reaction proceeds even at a temperature of 530 ° C. or less, and high σs can be realized. It was. Furthermore, it has been found that a uniform particle size distribution can be obtained by containing components (SiO 2 , P) that suppress grain growth in the raw material hematite.

本発明は、上記の知見に基づきなされたもので、以下のような特徴を有する。
[1]平均一次粒径が0.3〜0.7μmであり、Co、Ni、Cu、CrおよびCaの中から選ばれる1種または2種以上を合計で0.01mass%以上、10mass%未満、SiOを0.005mass%以上、0.1mass%未満、Pを0.005mass%以上、0.1mass%未満ならびにマグネタイトを含有することを特徴とするマグネタイト−鉄複合粉末。
[2]Co、Ni、Cu、CrおよびCaの中から選ばれる1種または2種以上、SiOおよびPを含有する酸化鉄を、還元性雰囲気下、400℃超、530℃以下の温度で還元処理を行った後、さらに、酸化性雰囲気下で酸化処理を行いマグネタイトを生成させて、上記[1]に記載のマグネタイト−鉄複合粉末を製造することを特徴とするマグネタイト−鉄複合粉末の製造方法。
The present invention has been made based on the above findings and has the following characteristics.
[1] The average primary particle size is 0.3 to 0.7 μm, and one or two or more selected from Co, Ni, Cu, Cr and Ca are combined in a total of 0.01 mass% or more and less than 10 mass%. the SiO 2 0.005 mass% or more and less than 0.1mass%, P of 0.005 mass% or more, magnetite, characterized in that it contains 0.1mass% less and magnetite - iron composite powder.
[2] An iron oxide containing one or more selected from Co, Ni, Cu, Cr and Ca, SiO 2 and P, at a temperature above 400 ° C. and below 530 ° C. in a reducing atmosphere. After the reduction treatment, the magnetite-iron composite powder described in [1] above is produced by performing an oxidation treatment in an oxidizing atmosphere to generate magnetite. Production method.

本発明によれば、飽和磁化σsが190eum/g以上、平均一次粒径が0.3〜0.7μmのマグネタイト−鉄複合粉末およびその製造方法が提供される。   According to the present invention, a magnetite-iron composite powder having a saturation magnetization σs of 190 eum / g or more and an average primary particle size of 0.3 to 0.7 μm and a method for producing the same are provided.

以下、本発明を実施するための最良の形態の一例を説明する。   Hereinafter, an example of the best mode for carrying out the present invention will be described.

まず、本発明のマグネタイト−鉄複合粉末は、平均一次粒径が0.3〜0.7μm、より好ましくは0.4〜0.6μmの範囲内で良好な電磁気特性を示す。平均一次粒径が0.3μm未満では還元処理時における未反応成分の含有比率が高くなるため、高いσsを得ることができない。また、粒子の保磁力Hcが増大し、圧粉磁芯にした時の初透磁率やコアロスが劣化するため、好ましくない。一方、平均一次粒径が0.7μmを超えると、電子部品として使用する場合は高周波の電磁気特性が劣化し、また、塗料として使用する場合は分散性が劣化するため、好ましくない。   First, the magnetite-iron composite powder of the present invention exhibits good electromagnetic properties when the average primary particle size is in the range of 0.3 to 0.7 μm, more preferably 0.4 to 0.6 μm. If the average primary particle size is less than 0.3 μm, the content ratio of unreacted components during the reduction treatment is high, and thus high σs cannot be obtained. Moreover, since the coercive force Hc of the particles increases and the initial magnetic permeability and core loss when the powder magnetic core is made deteriorate, it is not preferable. On the other hand, when the average primary particle size exceeds 0.7 μm, the electromagnetic characteristics of high frequency deteriorate when used as an electronic component, and the dispersibility deteriorates when used as a paint.

また、本発明のマグネタイト−鉄複合粉末は、530℃以下の低い温度で還元反応を促進させるために、Co、Ni、Cu、CrおよびCaの中から選ばれる1種または2種以上の合計の含有量を、0.01mass%以上、10mass%未満とすることが重要である。Co、Ni、Cu、CrおよびCaの中から選ばれる1種または2種以上の合計の含有量が0.01mass%未満では、還元温度530℃以下での還元反応を促進する効果が低く、σsが低下するため好ましくない。また、Co、Ni、Cu、CrおよびCaの中から選ばれる1種または2種以上の合計の含有量が10mass%以上の場合、複合粉末の組成自体の磁気モーメントの低下や異相の析出によりσsが低下するため、好ましくない。それぞれの含有量のより好ましい範囲は成分によって異なり、Co、NiおよびCuはそれぞれ0.1〜5mass%、CrおよびCaはそれぞれ0.1〜3mass%である。   In addition, the magnetite-iron composite powder of the present invention has a total of one or more selected from Co, Ni, Cu, Cr and Ca in order to promote the reduction reaction at a low temperature of 530 ° C. or lower. It is important that the content is 0.01 mass% or more and less than 10 mass%. When the total content of one or more selected from Co, Ni, Cu, Cr and Ca is less than 0.01 mass%, the effect of promoting the reduction reaction at a reduction temperature of 530 ° C. or lower is low, and σs Is unfavorable because of lowering. When the total content of one or more selected from Co, Ni, Cu, Cr, and Ca is 10 mass% or more, σs is caused by a decrease in the magnetic moment of the composition of the composite powder itself or precipitation of a different phase. Is unfavorable because it decreases. More preferable ranges of the respective contents differ depending on the components, and Co, Ni and Cu are 0.1 to 5 mass%, and Cr and Ca are 0.1 to 3 mass%, respectively.

さらに、本発明のマグネタイト−鉄複合粉末は、還元処理中の粒成長を抑制するために、シリカ(SiO)を0.005mass%以上、0.1mass%未満、および、リン(P)を0.005mass%以上、0.1mass%未満含有させることが重要である。SiOおよびPそれぞれのより好ましい含有量は、0.01mass%以上、0.05mass%未満である。SiOおよびPそれぞれの含有量が、0.005mass%未満では、還元処理中の粒成長の抑制効果が不十分で、0.7μm以下の平均一次粒径を得ることができない。また、SiOおよびPそれぞれの含有量が、0.1mass%を超えると、還元反応が抑制され、還元処理時に未反応成分が多く残留してσsが低下するため、好ましくない。 Further, the magnetite-iron composite powder of the present invention has a silica (SiO 2 ) content of 0.005 mass% or more, less than 0.1 mass%, and phosphorus (P) of 0 to suppress grain growth during the reduction treatment. It is important to contain 0.005 mass% or more and less than 0.1 mass%. The more preferable content of each of SiO 2 and P is 0.01 mass% or more and less than 0.05 mass%. If the content of each of SiO 2 and P is less than 0.005 mass%, the effect of suppressing grain growth during the reduction treatment is insufficient, and an average primary particle size of 0.7 μm or less cannot be obtained. Further, if the content of each of SiO 2 and P exceeds 0.1 mass%, the reduction reaction is suppressed, and a large amount of unreacted components remain during the reduction treatment, which lowers σs.

ここで、本発明に係るマグネタイト−鉄複合粉末は、以下のようにして製造される。まず、出発原料として、製造後のマグネタイト−鉄複合粉末中における、Co、Ni、Cu、CrおよびCaの中から選ばれる1種または2種以上の合計の含有量が0.01mass%以上、10mass%未満、さらに、SiOおよびPそれぞれの含有量が0.005mass%以上、0.1mass%未満となる酸化鉄を用いる。次に、これを水素或いは窒素などの還元性雰囲気下で、400℃超、530℃以下の温度で還元処理を行う。その後、さらに、好ましい範囲として酸素濃度1〜10vol.%の酸化性雰囲気下で、粒子表面を酸化処理してマグネタイトを生成させて安定化した後に、炉より取り出す。マグネタイトの好ましい含有量は0.05〜3mass%である。より好ましくは0.08〜1.2mass%である。 Here, the magnetite-iron composite powder according to the present invention is produced as follows. First, as a starting material, the total content of one or more selected from Co, Ni, Cu, Cr and Ca in the magnetite-iron composite powder after production is 0.01 mass% or more and 10 mass. The iron oxide is used in which the content of each of SiO 2 and P is 0.005 mass% or more and less than 0.1 mass%. Next, this is subjected to reduction treatment at a temperature higher than 400 ° C. and lower than 530 ° C. in a reducing atmosphere such as hydrogen or nitrogen. Thereafter, the oxygen concentration is preferably 1 to 10 vol. After the particle surface is oxidized and magnetite is generated and stabilized in an oxidizing atmosphere of 1%, it is taken out from the furnace. The preferable content of magnetite is 0.05 to 3 mass%. More preferably, it is 0.08-1.2 mass%.

前記出発原料である酸化鉄中にCo、Ni、Cu、CrおよびCaの中から選ばれる1種または2種以上を含有させることで530℃以下の還元温度での還元反応が促進する機構については明らかではないが、NiO、CuO、CoOなどはFeよりも低温で還元される成分であるため、これらの還元成分が核となってFeの還元を促進する機構が考えられる。従って、本発明では、酸化鉄の還元処理過程で原料中にCo、Ni、Cu、CrおよびCaの中から選ばれる1種または2種以上の成分が存在することが重要であり、還元後の鉄粉に、後からこれらの成分を添加する方法では、本発明で得られるような粒子径(一次粒径)の微細化と高σsを併せ持つマグネタイト−鉄複合粉末を製造することはできない。なお、処理温度が400℃以下の場合には、酸化鉄の還元反応が進み難い。 Regarding the mechanism in which the reduction reaction at a reduction temperature of 530 ° C. or less is promoted by containing one or more selected from Co, Ni, Cu, Cr and Ca in the iron oxide as the starting material. is not clear, NiO, CuO, since such CoO is a component which is reduced at a lower temperature than Fe 2 O 3, mechanism by which these reducing components to promote the reduction of Fe 2 O 3 at the core are considered . Therefore, in the present invention, it is important that one or more components selected from Co, Ni, Cu, Cr, and Ca are present in the raw material during the iron oxide reduction treatment process. The method of adding these components to the iron powder later cannot produce a magnetite-iron composite powder having both a refined particle size (primary particle size) and high σs as obtained in the present invention. When the treatment temperature is 400 ° C. or lower, the reduction reaction of iron oxide is difficult to proceed.

また、前記出発原料である酸化鉄中にSiOおよびPが存在することで、還元処理中における粒子の肥大化および粒子間のネック成長が抑制され、微細かつ均一な一次粒径の分布が得られることは、SEM観察およびレーザー回折法による粒径分布測定で確認されている。従って、本発明では、酸化鉄の還元処理過程で原料中にSiOおよびPが存在することが重要であり、還元後の鉄粉に、後からこれらの成分を添加する方法では、本発明で得られるような微細かつ均一な一次粒径のマグネタイト−鉄複合粉末を得ることはできない。 In addition, the presence of SiO 2 and P in the iron oxide that is the starting material suppresses the enlargement of the particles and the neck growth between the particles during the reduction treatment, thereby obtaining a fine and uniform distribution of the primary particle size. It has been confirmed by SEM observation and particle size distribution measurement by laser diffraction method. Therefore, in the present invention, it is important that SiO 2 and P are present in the raw material in the process of reducing iron oxide. In the method of adding these components to the iron powder after the reduction, the present invention A magnetite-iron composite powder having a fine and uniform primary particle size as obtained cannot be obtained.

以上、本発明により、平均一次粒径が0.3〜0.7μm、飽和磁化σsが190emu/g以上、より具体的には、飽和磁化σsが190〜200emu/gのマグネタイト−鉄複合粉末を得ることができる。   As described above, according to the present invention, a magnetite-iron composite powder having an average primary particle size of 0.3 to 0.7 μm and a saturation magnetization σs of 190 emu / g or more, more specifically, a saturation magnetization σs of 190 to 200 emu / g. Obtainable.

なお、本発明に係る微細かつ高σsのマグネタイト−鉄複合粉末は、上述の方法により製造した状態のままで使用しても良いが、さらに機械処理や化成処理を施して、粒子表面の平滑性や絶縁性を改良して使用することもできる。   The fine and high σs magnetite-iron composite powder according to the present invention may be used in the state produced by the above-described method, but is further subjected to mechanical treatment or chemical conversion treatment to smooth the particle surface. It can also be used with improved insulation.

以下に本発明の具体的実施例を記載する。 Specific examples of the present invention will be described below.

[実施例1]
フェライト用酸化鉄(JFEケミカル社製JC−DC、空気透過法により測定した平均粒径0.8μm)に対し、表1に示した添加成分を酸化物の形態で添加し、純水とスチールボールを用いてボールミルで湿式混合した後、乾燥、整粒して各種添加成分を含有する酸化鉄を作製した。これを水素雰囲気中460〜520℃の温度で還元処理して、平均一次粒径の異なる種々の鉄粉を得た。炉内で常温まで冷却した後、炉を開放する前に5vol.%O−N雰囲気で1時間保持することにより、鉄粉の表層にマグネタイトを生成させてから、炉外に取り出した。
[Example 1]
To ferritic iron oxide (JC-DC manufactured by JFE Chemical Co., Ltd., average particle size 0.8 μm measured by air permeation method), the additive components shown in Table 1 were added in the form of oxides, and pure water and steel balls After being wet-mixed with a ball mill using an iron, it was dried and sized to produce iron oxide containing various additive components. This was reduced at a temperature of 460 to 520 ° C. in a hydrogen atmosphere to obtain various iron powders having different average primary particle sizes. After cooling to room temperature in the furnace, 5 vol. The magnetite was produced on the surface layer of the iron powder by holding in a% O 2 —N 2 atmosphere for 1 hour, and then taken out of the furnace.

得られた粉末の構成相をX線回折で測定し、X線回折のα−Feの主要ピーク(d=2.027)とマグネタイト(Fe)の主要ピーク(d=2.533)の強度比からα−Fe相生成率(%)を算出し、マグネタイト含有率(%)は100−[α−Fe相生成率]から算出した。平均一次粒径を空気通過法で測定し、σsをVSM(振動試料型磁力計)で測定した。各試料のSiOおよびPの含有量は、それぞれ0.02〜0.04mass%の範囲であった。 The constituent phases of the obtained powder were measured by X-ray diffraction. The main peak of α-Fe (d = 2.027) and the main peak of magnetite (Fe 3 O 4 ) (d = 2.533) in X-ray diffraction. The α-Fe phase formation rate (%) was calculated from the strength ratio of the magnetite, and the magnetite content rate (%) was calculated from 100- [α-Fe phase formation rate]. The average primary particle size was measured by an air passage method, and σs was measured by a VSM (vibrating sample magnetometer). The content of SiO 2 and P in each sample was in the range of 0.02 to 0.04 mass%, respectively.

本発明例および比較例のα−Fe相生成率(%)、マグネタイト含有率(%)、平均一次粒径、σsを表1に併せて示す。表1に示すように、本発明方法により、530℃以下の低い還元温度で、平均一次粒径0.3〜0.7μm、σs=190〜200emu/gのマグネタイト−鉄複合粉末を得ることができる。   Table 1 shows the α-Fe phase generation rate (%), magnetite content (%), average primary particle size, and σs of the inventive examples and comparative examples. As shown in Table 1, a magnetite-iron composite powder having an average primary particle size of 0.3 to 0.7 μm and σs of 190 to 200 emu / g can be obtained at a low reduction temperature of 530 ° C. or less by the method of the present invention. it can.

Figure 2009114505
Figure 2009114505

[実施例2]
フェライト用高純度酸化鉄(JFEケミカル社製JC−CPW)に対して,還元後にCo=1mass%となるような量のCoOと、還元後の含有量が表2に示す量となるような量のSiOおよびPを酸化物の形態で添加し、純水とスチールボールを用いてボールミルで湿式混合した後、乾燥、整粒して、所定量のCo、SiOおよびPを含有する酸化鉄を作製した。これを水素雰囲気中500℃の温度で還元処理して、SiO、Pの含有量の異なる種々の鉄粉を得た。炉内で常温まで冷却した後、炉を開放する前に5vol.%O−N雰囲気で2時間保持することにより、鉄粉の表層にマグネタイトを生成させてから炉外に取り出し、表2に示す種々のマグネタイト−鉄複合粉末を得た。
[Example 2]
For high-purity iron oxide for ferrite (JC-CPW manufactured by JFE Chemical Co., Ltd.), CoO in such an amount that Co = 1% by mass after reduction and an amount in which the content after reduction becomes the amount shown in Table 2 Of SiO 2 and P in the form of oxides, wet-mixed in a ball mill using pure water and steel balls, dried and sized, iron oxide containing a predetermined amount of Co, SiO 2 and P Was made. This was reduced at a temperature of 500 ° C. in a hydrogen atmosphere to obtain various iron powders having different contents of SiO 2 and P. After cooling to room temperature in the furnace, 5 vol. By holding in a% O 2 —N 2 atmosphere for 2 hours, magnetite was produced on the surface layer of the iron powder and then taken out of the furnace to obtain various magnetite-iron composite powders shown in Table 2.

得られた粉末に対して、上記実施例1と同様の方法で、α−Fe相生成率、マグネタイト含有率(%)平均一次粒径、σsを測定した。   With respect to the obtained powder, the α-Fe phase generation rate, magnetite content rate (%) average primary particle size, and σs were measured in the same manner as in Example 1.

本発明例および比較例のα−Fe相生成率(%)、マグネタイト含有率(%)、平均一次粒径、σsを表2に併せて示す。表2に示すように、本発明により、還元温度500℃で、平均一次粒径0.3〜0.7μm、σs=190〜200emu/gのマグネタイト−鉄複合粉末を得ることができる。   Table 2 shows the α-Fe phase generation rate (%), magnetite content rate (%), average primary particle size, and σs of the inventive examples and comparative examples. As shown in Table 2, a magnetite-iron composite powder having an average primary particle size of 0.3 to 0.7 μm and σs of 190 to 200 emu / g at a reduction temperature of 500 ° C. can be obtained according to the present invention.

Figure 2009114505
Figure 2009114505

以上の実施例1,2で示した通り、本発明によれば、酸化鉄を530℃以下の還元温度で還元して、平均一次粒径平均一次粒径0.3〜0.7μm、σs=190〜200emu/gの微細かつ高σsを併せ持つマグネタイト−鉄複合粉末を得ることができ、高周波インダクタ、電波吸収体、磁性インク、磁性流体、触媒等に用いて好適なマグネタイト−鉄複合粉末を提供することができる。   As shown in Examples 1 and 2 above, according to the present invention, iron oxide is reduced at a reduction temperature of 530 ° C. or lower to obtain an average primary particle size average primary particle size of 0.3 to 0.7 μm, σs = A magnetite-iron composite powder having a fineness of 190 to 200 emu / g and having a high σs can be obtained, and a magnetite-iron composite powder suitable for use in high-frequency inductors, radio wave absorbers, magnetic inks, magnetic fluids, catalysts, etc. is provided. can do.

Claims (2)

平均一次粒径が0.3〜0.7μmであり、
Co、Ni、Cu、CrおよびCaの中から選ばれる1種または2種以上を合計で0.01mass%以上、10mass%未満、
SiOを0.005mass%以上、0.1mass%未満、
Pを0.005mass%以上、0.1mass%未満ならびに
マグネタイトを含有することを特徴とするマグネタイト−鉄複合粉末。
The average primary particle size is 0.3 to 0.7 μm,
One or more selected from Co, Ni, Cu, Cr and Ca in total of 0.01 mass% or more and less than 10 mass%,
The SiO 2 0.005mass% or more and less than 0.1mass%,
A magnetite-iron composite powder characterized by containing P in an amount of 0.005 mass% or more and less than 0.1 mass% and magnetite.
Co、Ni、Cu、CrおよびCaの中から選ばれる1種または2種以上、SiOおよびPを含有する酸化鉄を、還元性雰囲気下、400℃超、530℃以下の温度で還元処理を行った後、さらに、酸化性雰囲気下で酸化処理を行いマグネタイトを生成させて、請求項1に記載のマグネタイト−鉄複合粉末を製造することを特徴とするマグネタイト−鉄複合粉末の製造方法。 Iron oxide containing one or more selected from Co, Ni, Cu, Cr and Ca, SiO 2 and P, is subjected to reduction treatment at a temperature above 400 ° C. and below 530 ° C. in a reducing atmosphere. The method for producing a magnetite-iron composite powder according to claim 1, wherein the magnetite-iron composite powder according to claim 1 is produced by performing an oxidation treatment in an oxidizing atmosphere to produce magnetite.
JP2007289392A 2007-11-07 2007-11-07 Magnetite-iron composite powder and its manufacturing method Pending JP2009114505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007289392A JP2009114505A (en) 2007-11-07 2007-11-07 Magnetite-iron composite powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007289392A JP2009114505A (en) 2007-11-07 2007-11-07 Magnetite-iron composite powder and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009114505A true JP2009114505A (en) 2009-05-28

Family

ID=40781964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289392A Pending JP2009114505A (en) 2007-11-07 2007-11-07 Magnetite-iron composite powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009114505A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033966A (en) * 2011-08-01 2013-02-14 Samsung Electro-Mechanics Co Ltd Metal magnetic powder, magnetic layer material comprising metal magnetic powder, and multilayered chip components comprising magnetic layer using magnetic layer material
WO2018012458A1 (en) * 2016-07-15 2018-01-18 Dowaエレクトロニクス株式会社 Iron powder, production method therefor, precursor production method, molded body for inductor, and inductor
WO2019142611A1 (en) * 2018-01-17 2019-07-25 Dowaエレクトロニクス株式会社 Fe-ni alloy powder, inductor molded article using same, and inductor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033966A (en) * 2011-08-01 2013-02-14 Samsung Electro-Mechanics Co Ltd Metal magnetic powder, magnetic layer material comprising metal magnetic powder, and multilayered chip components comprising magnetic layer using magnetic layer material
WO2018012458A1 (en) * 2016-07-15 2018-01-18 Dowaエレクトロニクス株式会社 Iron powder, production method therefor, precursor production method, molded body for inductor, and inductor
JP2018165397A (en) * 2016-07-15 2018-10-25 Dowaエレクトロニクス株式会社 Iron powder, production method therefor, precursor production method, molded body for inductor, and inductor
CN109475934A (en) * 2016-07-15 2019-03-15 同和电子科技有限公司 The manufacturing method and inductor formed body and inductor of iron powder and its manufacturing method and precursor
JP2021121694A (en) * 2016-07-15 2021-08-26 Dowaエレクトロニクス株式会社 Iron powder and production method thereof, molding for inductor, and inductor
CN109475934B (en) * 2016-07-15 2021-09-28 同和电子科技有限公司 Iron powder and method for producing same, method for producing precursor thereof, molded body for inductor, and inductor
US11247265B2 (en) 2016-07-15 2022-02-15 Dowa Electronics Materials Co., Ltd. Iron powder, silicon oxide coated iron powder,, molded article for inductor, and inductor
JP7132390B2 (en) 2016-07-15 2022-09-06 Dowaエレクトロニクス株式会社 Iron powder, its manufacturing method, molded body for inductor, and inductor
WO2019142611A1 (en) * 2018-01-17 2019-07-25 Dowaエレクトロニクス株式会社 Fe-ni alloy powder, inductor molded article using same, and inductor
JP2019123911A (en) * 2018-01-17 2019-07-25 Dowaエレクトロニクス株式会社 Fe-Ni ALLOY POWDER, AND MOLDED BODY FOR INDUCTOR AND INDUCTOR USING THE SAME
JP7002179B2 (en) 2018-01-17 2022-01-20 Dowaエレクトロニクス株式会社 Fe-Ni alloy powder and inductor moldings and inductors using it

Similar Documents

Publication Publication Date Title
JP5710427B2 (en) Magnetic material, method for manufacturing magnetic material, and inductor element using magnetic material
JP5739348B2 (en) Reactor and manufacturing method thereof
JP2007019134A (en) Method of manufacturing composite magnetic material
WO2012132783A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
JP5732945B2 (en) Fe-Ni alloy powder
WO2011077601A1 (en) Dust core and process for producing same
KR20190101411A (en) Soft Magnetic Powders, Fe-based Nanocrystalline Alloy Powders, Magnetic Components, and Consolidated Magnetic Cores
JP2005057230A (en) Method for producing fe-based amorphous metal powder, and method for manufacturing soft magnetic core using the same
JP6461828B2 (en) Method for producing magnetic particles
JP2006287004A (en) Magnetic core for high frequency and inductance component using it
JP5439888B2 (en) Composite magnetic material and method for producing the same
JP2007046074A (en) Fine metal particle and manufacturing method therefor
JP2012204744A (en) Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same
JP6229166B2 (en) Composite magnetic material for inductor and manufacturing method thereof
JP2009114505A (en) Magnetite-iron composite powder and its manufacturing method
JP2012222062A (en) Composite magnetic material
JP2008069431A (en) Method for producing magnetic particle, and magnetic particle
JP2006274300A (en) Magnetite-iron composite powder for powder magnetic core and powder magnetic core using the same
JP2004281846A (en) High-frequency magnetic material, high-frequency magnetic part using the same, and method for manufacturing the same
JP5257743B2 (en) Fe-based soft magnetic powder, manufacturing method thereof, and dust core
CN110506314B (en) Magnetic material and method for producing the same
JP4775713B2 (en) Coated fine metal powder and magnetic beads
JP4444191B2 (en) High frequency magnetic material, high frequency magnetic device, and method of manufacturing high frequency magnetic material
JP2008143720A (en) Magnetite-iron composite powder, its manufacturing method and dust core
JP2011132581A (en) Method for producing nanoparticle of nickel-iron alloy with high saturation magnetization, and nanoparticle of nickel-iron alloy with high saturation magnetization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228