JP2009102630A - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
JP2009102630A
JP2009102630A JP2008254790A JP2008254790A JP2009102630A JP 2009102630 A JP2009102630 A JP 2009102630A JP 2008254790 A JP2008254790 A JP 2008254790A JP 2008254790 A JP2008254790 A JP 2008254790A JP 2009102630 A JP2009102630 A JP 2009102630A
Authority
JP
Japan
Prior art keywords
rubber
rubber composition
vapor
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008254790A
Other languages
Japanese (ja)
Inventor
Mitsuaki Maeda
光明 前田
Takayuki Yako
貴之 八子
Hideo Takeichi
秀雄 武市
Toshio Morita
利夫 森田
Akihiko Sakata
明彦 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Bridgestone Corp filed Critical Showa Denko KK
Priority to JP2008254790A priority Critical patent/JP2009102630A/en
Publication of JP2009102630A publication Critical patent/JP2009102630A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology attaining high thermal conductivity and high electrical conductivity at a low cost without lowering strength in a rubber composition containing a vapor deposited carbon fiber. <P>SOLUTION: The rubber composition is obtained by blending 1-50 pts.wt. of the vapor deposited carbon fiber having a fiber diameter of 20-120 nm, a fiber length of 2-20 μm and an aspect ratio of 20-1000, per 100 pts.wt. of a rubber component. Preferably, this rubber composition also contains 10-100 pts.wt. of carbon black and/or silica per 100 pts.wt. of the rubber component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はゴム組成物に関し、詳しくは、気相成長炭素繊維を配合したゴム組成物の改良に関する。   The present invention relates to a rubber composition, and more particularly, to an improvement of a rubber composition containing vapor-grown carbon fibers.

一般に、気相成長炭素繊維をゴム中に配合することにより、得られるゴム組成物の熱伝導性および導電性は高くなる。これにより、例えば、ゴム中の熱を放熱しやすくなり、ゴム組成物の耐久性の向上や加硫時間の短縮が可能となることから、気相成長炭素繊維を配合したゴム組成物に係る技術は、これまでに種々提案されてきている(例えば、特許文献1参照)。   In general, the thermal conductivity and conductivity of the resulting rubber composition are increased by blending the vapor-grown carbon fiber with the rubber. As a result, for example, it becomes easy to dissipate heat in the rubber, and the durability of the rubber composition can be improved and the vulcanization time can be shortened. Have been proposed so far (see, for example, Patent Document 1).

また、ゴム物性の改良の目的で、気相成長炭素繊維を加熱処理により黒鉛化してなる黒鉛化気相成長炭素繊維をゴム組成物中に配合することも公知であり、その黒鉛化度が高いほど電気伝導性および熱伝導性の向上効果が高いことが、例えば、特許文献2に開示されている。
特開2003−327753号公報(特許請求の範囲等) 特開平8−127674号公報(特許請求の範囲等)
In addition, for the purpose of improving rubber physical properties, it is also known that a graphitized vapor-grown carbon fiber obtained by graphitizing vapor-grown carbon fiber by heat treatment is blended in a rubber composition, and its degree of graphitization is high. For example, Patent Document 2 discloses that the effect of improving electrical conductivity and thermal conductivity is high.
JP 2003-327753 A (Claims etc.) Japanese Patent Laid-Open No. 8-127664 (claims, etc.)

上述のように、黒鉛化した気相成長炭素繊維を配合することで、配合物の熱伝導性および導電性を高められるなどの利点があるが、この黒鉛化気相成長炭素繊維は表面が安定化しているため、ポリマーの補強性がほとんどなく、強度が低下するという問題があった。また、材料が高価であることから、強度を落とさずに安価に高い伝熱性および導電性のゴム組成物を得るためには、さらに高い伝熱性・導電性を有する材料が必要となる。   As described above, blending graphitized vapor-grown carbon fiber has the advantage of improving the thermal conductivity and conductivity of the blend, but this graphitized vapor-grown carbon fiber has a stable surface. Therefore, there is a problem that the polymer has almost no reinforcing property and the strength is lowered. In addition, since the material is expensive, in order to obtain a rubber composition having high heat conductivity and conductivity at low cost without reducing the strength, a material having higher heat conductivity and conductivity is required.

そこで本発明の目的は、上記問題を解消して、気相成長炭素繊維を配合したゴム組成物において、強度を低下させることなく、安価に高い熱伝導性および導電性を実現できる技術を提供することにある。   Accordingly, an object of the present invention is to solve the above problems and provide a technique capable of realizing high thermal conductivity and conductivity at low cost without reducing strength in a rubber composition containing vapor-grown carbon fibers. There is.

本発明者は鋭意検討した結果、ゴム成分に対し配合する気相成長炭素繊維の寸法を所定に規定することで、上記問題を解消しうるゴム組成物が得られることを見出して、本発明を完成するに至った。   As a result of intensive studies, the present inventor has found that a rubber composition capable of solving the above problems can be obtained by prescribing the dimensions of vapor-grown carbon fibers to be blended with the rubber component. It came to be completed.

すなわち、本発明のゴム組成物は、ゴム成分100重量部に対し、繊維径20nm〜120nm、繊維長2μm〜20μm、アスペクト比20〜1000の気相成長炭素繊維が1〜50重量部配合されてなることを特徴とするものである。   That is, in the rubber composition of the present invention, 1 to 50 parts by weight of vapor grown carbon fiber having a fiber diameter of 20 nm to 120 nm, a fiber length of 2 μm to 20 μm, and an aspect ratio of 20 to 1000 is blended with 100 parts by weight of the rubber component. It is characterized by.

本発明のゴム組成物においては、さらに、前記ゴム成分100重量部に対し、カーボンブラックおよび/またはシリカが10〜100重量部配合されてなることが好ましい。   In the rubber composition of the present invention, it is preferable that 10 to 100 parts by weight of carbon black and / or silica is further blended with 100 parts by weight of the rubber component.

本発明によれば、上記構成としたことにより、気相成長炭素繊維を配合したゴム組成物において、強度を低下させることなく、安価に高い熱伝導性および導電性を実現でき、優れた熱伝導性、導電性および強度、さらにはコスト性を兼ね備えたゴム組成物を実現することが可能となった。   According to the present invention, with the above configuration, in the rubber composition containing the vapor-grown carbon fiber, high thermal conductivity and conductivity can be realized at low cost without reducing the strength, and excellent thermal conductivity is achieved. It has become possible to realize a rubber composition having both properties, electrical conductivity, strength, and cost.

以下、本発明の好適な実施の形態について詳細に説明する。
本発明のゴム組成物は、ゴム成分100重量部に対し、特定の径、繊維長およびアスペクト比を有する気相成長炭素繊維が、1〜50重量部、好適には1〜15重量部配合されてなるものである。ゴム気相成長炭素繊維の配合量が1重量部未満であると十分な熱伝導性および導電性の向上効果が得られず、一方50重量部を超えると強度が低下してしまい、いずれにしても本発明の所期の効果が得られない。
Hereinafter, preferred embodiments of the present invention will be described in detail.
In the rubber composition of the present invention, 1 to 50 parts by weight, preferably 1 to 15 parts by weight of vapor-grown carbon fiber having a specific diameter, fiber length and aspect ratio is blended with respect to 100 parts by weight of the rubber component. It will be. If the amount of the rubber vapor-grown carbon fiber is less than 1 part by weight, sufficient heat conductivity and electrical conductivity cannot be improved. On the other hand, if the amount exceeds 50 parts by weight, the strength decreases. However, the desired effect of the present invention cannot be obtained.

本発明に用いる気相成長炭素繊維は、繊維径が20nm〜120nm、好適には20nm〜100nmであり、繊維長が2μm〜20μm、好適には5μm〜20μm、さらに好適には10μm〜20μmであって、アスペクト比が20〜1000、好適には30〜1000、さらに好適には100〜1000のものである。かかる条件を満足する気相成長炭素繊維を用いることで、本発明による所期の効果を得ることができる。このような気相成長炭素繊維は市場で容易に入手可能であり、例えば、昭和電工(株)製の気相法炭素繊維VGCF−S、VGCF−Xを用いることができる。   The vapor growth carbon fiber used in the present invention has a fiber diameter of 20 nm to 120 nm, preferably 20 nm to 100 nm, and a fiber length of 2 μm to 20 μm, preferably 5 μm to 20 μm, more preferably 10 μm to 20 μm. The aspect ratio is 20 to 1000, preferably 30 to 1000, and more preferably 100 to 1000. By using the vapor-grown carbon fiber that satisfies such conditions, the desired effect of the present invention can be obtained. Such vapor-grown carbon fibers are easily available on the market. For example, vapor grown carbon fibers VGCF-S and VGCF-X manufactured by Showa Denko KK can be used.

また、本発明において、気相成長炭素繊維は、酸化処理して用いてもよい。この酸化処理の方法としては、硝酸、硫酸、過塩素酸またはこれらの酸の混合物で処理する化学的処理や、コロナ放電処理、プラズマ処理、オゾン処理等の物理的処理などが挙げられる。さらに、酸化処理に加えて、カップリング剤で処理した気相成長炭素繊維を用いることもでき、かかるカップリング剤としては、チタネート系、アルミニウム系、シラン系のカップリング剤を挙げることができ、これらカップリング剤を溶剤に溶解して、気相成長炭素繊維に含浸する等の方法で処理することができる。   In the present invention, the vapor growth carbon fiber may be used after being oxidized. Examples of the oxidation treatment method include chemical treatment using nitric acid, sulfuric acid, perchloric acid or a mixture of these acids, and physical treatment such as corona discharge treatment, plasma treatment, and ozone treatment. Furthermore, in addition to the oxidation treatment, vapor-grown carbon fibers treated with a coupling agent can also be used. Examples of such coupling agents include titanate-based, aluminum-based, and silane-based coupling agents, These coupling agents can be treated by a method such as dissolving in a solvent and impregnating the vapor growth carbon fiber.

本発明のゴム組成物においては、ゴム成分に対し上記気相成長炭素繊維を配合してなるものであればよく、それ以外の配合成分には特に制限されるものではない。   In the rubber composition of this invention, what is necessary is just to mix | blend the said vapor growth carbon fiber with respect to a rubber component, and it does not restrict | limit in particular to other compounding components.

ゴム成分としては、特に制限されず、天然ゴム(NR)、汎用合成ゴム、例えば、乳化重合スチレン−ブタジエンゴム、溶液重合スチレン−ブタジエンゴム、高シス−1,4ポリブタジエンゴム、低シス−1,4ポリブタジエンゴム、高シス−1,4ポリイソプレンゴム等、ジエン系特殊ゴム、例えば、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム等、オレフィン系特殊ゴム、例えば、エチレン−プロピレンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリルゴム、クロロスルホン化ポリエチレン等、その他特殊ゴム、例えば、ヒドリンゴム、フッ素ゴム、多硫化ゴム、ウレタンゴム等のいずれを用いることもできる。コストと性能とのバランスから、好ましくは、天然ゴムまたは汎用合成ゴムを用いる。   The rubber component is not particularly limited, and natural rubber (NR), general-purpose synthetic rubber such as emulsion polymerization styrene-butadiene rubber, solution polymerization styrene-butadiene rubber, high cis-1,4 polybutadiene rubber, low cis-1, 4 polybutadiene rubber, high cis-1,4 polyisoprene rubber, diene special rubber, such as nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, olefin special rubber, such as ethylene-propylene rubber, butyl rubber, halogenated Any of butyl rubber, acrylic rubber, chlorosulfonated polyethylene, and other special rubbers such as hydrin rubber, fluorine rubber, polysulfide rubber, and urethane rubber can be used. From the balance between cost and performance, natural rubber or general-purpose synthetic rubber is preferably used.

本発明のゴム組成物のゴム配合中には、上記気相成長炭素繊維に加えて、カーボンブラックおよび/またはシリカを配合することが好ましい。カーボンブラックとしては、HAF級のものなど公知のものを使用することができる。また、その配合量としては、カーボンブラックおよび/またはシリカの総量で、ゴム成分100重量部に対し10〜100重量部の範囲内とすることができる。また、その他、ゴム業界で一般に使用されている添加剤、例えば、加硫剤、加硫促進剤、老化防止剤、プロセスオイル、補強材、軟化剤等を適宜配合することができ、これら配合剤としては、市販品を好適に使用することができる。   During the rubber compounding of the rubber composition of the present invention, it is preferable to compound carbon black and / or silica in addition to the above vapor-grown carbon fiber. As the carbon black, known ones such as those of HAF grade can be used. Moreover, as the compounding quantity, it can be in the range of 10-100 weight part with respect to 100 weight part of rubber components with the total amount of carbon black and / or a silica. In addition, additives commonly used in the rubber industry, such as vulcanizing agents, vulcanization accelerators, anti-aging agents, process oils, reinforcing materials, softeners, etc., can be blended as appropriate. As for, a commercial item can be used conveniently.

加硫剤としては、硫黄、硫黄含有化合物等が挙げられ、その配合量は、ゴム成分100重量部に対し硫黄分として0.1〜10重量部が好ましく、より好ましくは1〜5重量部である。また、加硫促進剤としては、特に限定されるものではないが、例えば、2−メルカプトベンゾチアゾール(M)、ジベンゾチアジルジサルファイド(DM)、N−シクロヘキシル−2−ベンゾチアジル・スルフェンアミド(CZ)等のチアゾール系や、ジフェニルグアジニン(DPG)等のグアジニン系の加硫促進剤が挙げられ、その使用量は一般に、ゴム成分100重量部に対し0.1〜7重量部が好ましく、より好ましくは1〜5重量部である。   Examples of the vulcanizing agent include sulfur and a sulfur-containing compound, and the blending amount thereof is preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight as a sulfur content with respect to 100 parts by weight of the rubber component. is there. The vulcanization accelerator is not particularly limited, and examples thereof include 2-mercaptobenzothiazole (M), dibenzothiazyl disulfide (DM), N-cyclohexyl-2-benzothiazyl sulfenamide ( CZ) and the like, and guanidine-based vulcanization accelerators such as diphenyl guanidine (DPG), and the use amount thereof is generally preferably 0.1 to 7 parts by weight with respect to 100 parts by weight of the rubber component. More preferably, it is 1 to 5 parts by weight.

さらに、プロセスオイルとしては、例えば、パラフィン系、ナフテン系、芳香族系等が挙げられ、引張強度、耐摩耗性の向上を重視する用途には芳香族系が、ヒステリシスロス、低温特性の向上を重視する用途にはナフテン系またはパラフィン系が用いられる。その使用量は、ゴム成分100重量部に対し0〜100重量部が好ましく、100重量部を超えると加硫ゴムの引張強度や低発熱性が悪化する傾向がある。   In addition, examples of process oils include paraffinic, naphthenic, and aromatic oils. For applications that emphasize improvement in tensile strength and wear resistance, aromatic oils have improved hysteresis loss and low-temperature characteristics. Naphthenic or paraffinic are used for important applications. The amount used is preferably 0 to 100 parts by weight with respect to 100 parts by weight of the rubber component, and if it exceeds 100 parts by weight, the tensile strength and low heat build-up of the vulcanized rubber tend to deteriorate.

本発明のゴム組成物は、ゴム成分と、上記所定の気相成長炭素繊維およびその他の配合成分とを混合、混練りすることにより得ることができる。混合方法としては、通常のゴムの混合に使用される公知の手法を用いることができ、特に制限はない。また、本発明のゴム組成物は加硫して使用することが好ましく、架橋方法としては、硫黄、過酸化物、金属酸化物等を添加して加熱により架橋させる方法や、光重合開始剤を添加して光照射により架橋させる方法、電子線や放射線を照射して架橋させる方法等が挙げられる。   The rubber composition of the present invention can be obtained by mixing and kneading a rubber component, the predetermined vapor-grown carbon fiber and other compounding components. As a mixing method, a known method used for mixing ordinary rubber can be used, and there is no particular limitation. The rubber composition of the present invention is preferably used after being vulcanized, and as a crosslinking method, a method of adding sulfur, peroxide, metal oxide or the like and crosslinking by heating, or a photopolymerization initiator is used. Examples thereof include a method of adding and crosslinking by light irradiation, and a method of crosslinking by irradiation with an electron beam or radiation.

本発明のゴム組成物は、例えば、電気電子部品、タイヤのトレッドゴム、ゴムベルト、その他各種製品に幅広く使用することが可能である。   The rubber composition of the present invention can be widely used for, for example, electric and electronic parts, tire tread rubber, rubber belts, and other various products.

以下、本発明を、実施例を用いてより詳細に説明する。
下記の表1および2中に示す各配合にて、実施例および比較例のゴム組成物をそれぞれ調製した。まず、ラボプラストミル(東洋精機(株)製)を用いて、天然ゴム(NR)を70℃にて60rpmで30秒間素練りした後、下記表1および2に示す加硫促進剤および硫黄を除く各添加剤を投入して、70℃にて60rpmで更に混合した(ノンプロ配合)。次いで、得られた混合物を取り出して、冷却、秤量した後、残りの加硫促進剤および硫黄を投入し、プラベンダーを用いて、70℃にて50rpmで再度混合した(プロ配合)。
Hereinafter, the present invention will be described in more detail with reference to examples.
The rubber compositions of Examples and Comparative Examples were prepared with the respective formulations shown in Tables 1 and 2 below. First, using a Laboplast mill (manufactured by Toyo Seiki Co., Ltd.), natural rubber (NR) was masticated at 70 rpm at 60 rpm for 30 seconds, and then vulcanization accelerators and sulfur shown in Tables 1 and 2 below were added. Each additive except was added and further mixed at 70 ° C. at 60 rpm (non-pro blending). Subsequently, after the obtained mixture was taken out, cooled and weighed, the remaining vulcanization accelerator and sulfur were added, and mixed again at 50 ° C. at 70 ° C. using a plastic bender (professional blending).

混練りした混合物を、高温プレスを用いて150℃×15分にて加硫して、2mm厚の加硫ゴムシートを作製した。得られた加硫ゴムシートにつき、下記に従い評価を行った。これらの結果を、下記の表1および2中に併せて示す。   The kneaded mixture was vulcanized at 150 ° C. for 15 minutes using a high-temperature press to prepare a vulcanized rubber sheet having a thickness of 2 mm. The obtained vulcanized rubber sheet was evaluated according to the following. These results are also shown in Tables 1 and 2 below.

<熱伝導率の測定>
京都電子(株)製の迅速熱伝導率計QTM−500を用いて、各加硫ゴムシートの熱伝導率を測定した。
<Measurement of thermal conductivity>
The thermal conductivity of each vulcanized rubber sheet was measured using a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Co., Ltd.

<導電性(体積固有抵抗値)の測定>
超高抵抗測定装置(アドバンテスト製R8340A、TR42サンプルチャンバー)にてφ5cm電極を用いて、1V通電5秒後の各加硫ゴムシートの電気抵抗を測定した。
<Measurement of conductivity (volume resistivity)>
The electrical resistance of each vulcanized rubber sheet after 5 seconds of 1V energization was measured using a φ5 cm electrode with an ultra-high resistance measuring device (advantest R8340A, TR42 sample chamber).

<tanδの測定>
粘弾性試験機(東洋精機(株)製レオログラフソリッドLIR型)を用いて、各加硫ゴムシートの60℃におけるtanδを測定した。
<Measurement of tan δ>
Using a viscoelasticity tester (Rheograph Solid LIR type manufactured by Toyo Seiki Co., Ltd.), tan δ at 60 ° C. of each vulcanized rubber sheet was measured.

<引張試験>
温度20〜22℃湿度50〜60RH%において、JIS K6301に準拠して引張試験を行い、各加硫ゴムシートの300%伸長時の引張り応力(300%モジュラス)および破断強度(Tb)を測定した。
<Tensile test>
A tensile test was performed in accordance with JIS K6301 at a temperature of 20 to 22 ° C and a humidity of 50 to 60 RH%, and the tensile stress (300% modulus) and the breaking strength (Tb) at 300% elongation of each vulcanized rubber sheet were measured. .

Figure 2009102630
*1 昭和電工(株)製,気相法炭素繊維VGCF−R(登録商標)(平均繊維径150nm,平均繊維長8μm,アスペクト比50)
*2 昭和電工(株)製,気相法炭素繊維VGCF−S(平均繊維径100nm,平均繊維長10μm,アスペクト比約100)
*3 昭和電工(株)製,気相法炭素繊維VGCF−X(平均繊維径20nm,平均繊維長20μm,アスペクト比約1000)
*4 N−シクロヘキシル−2−ベンゾチアジル・スルフェンアミド
*5 N−(1,3−ジメチルブチル)−N’−フェニル−P−フェニレンジアミン
Figure 2009102630
* 1 Showa Denko Co., Ltd., vapor grown carbon fiber VGCF-R (registered trademark) (average fiber diameter 150 nm, average fiber length 8 μm, aspect ratio 50)
* 2 Showa Denko Co., Ltd., vapor grown carbon fiber VGCF-S (average fiber diameter 100 nm, average fiber length 10 μm, aspect ratio about 100)
* 3 Showa Denko Co., Ltd., vapor grown carbon fiber VGCF-X (average fiber diameter 20 nm, average fiber length 20 μm, aspect ratio about 1000)
* 4 N-cyclohexyl-2-benzothiazyl sulfenamide * 5 N- (1,3-dimethylbutyl) -N'-phenyl-P-phenylenediamine

Figure 2009102630
Figure 2009102630

上記表1および2中に示すように、本発明の繊維径、繊維長およびアスペクト比に係る条件を満足する気相成長炭素繊維を用いた各実施例のゴム組成物においては、強度を低下させることなく、高い熱伝導性および導電性が得られていることが確認できた。   As shown in Tables 1 and 2 above, in the rubber composition of each example using vapor-grown carbon fibers that satisfy the conditions relating to the fiber diameter, fiber length, and aspect ratio of the present invention, the strength is lowered. It was confirmed that high thermal conductivity and electrical conductivity were obtained.

Claims (3)

ゴム成分100重量部に対し、繊維径20nm〜120nm、繊維長2μm〜20μm、アスペクト比20〜1000の気相成長炭素繊維が1〜50重量部配合されてなることを特徴とするゴム組成物。   A rubber composition comprising 1 to 50 parts by weight of vapor-grown carbon fibers having a fiber diameter of 20 nm to 120 nm, a fiber length of 2 μm to 20 μm, and an aspect ratio of 20 to 1000 with respect to 100 parts by weight of a rubber component. さらに、前記ゴム成分100重量部に対し、カーボンブラックおよび/またはシリカが10〜100重量部配合されてなる請求項1記載のゴム組成物。   The rubber composition according to claim 1, further comprising 10 to 100 parts by weight of carbon black and / or silica based on 100 parts by weight of the rubber component. 前記気相成長炭素繊維の繊維径が20nm〜100nm、繊維長が10μm〜20μm、アスペクト比100〜1000である請求項1または2記載のゴム組成物。   The rubber composition according to claim 1 or 2, wherein the vapor-grown carbon fiber has a fiber diameter of 20 nm to 100 nm, a fiber length of 10 µm to 20 µm, and an aspect ratio of 100 to 1000.
JP2008254790A 2007-10-01 2008-09-30 Rubber composition Pending JP2009102630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254790A JP2009102630A (en) 2007-10-01 2008-09-30 Rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007257687 2007-10-01
JP2008254790A JP2009102630A (en) 2007-10-01 2008-09-30 Rubber composition

Publications (1)

Publication Number Publication Date
JP2009102630A true JP2009102630A (en) 2009-05-14

Family

ID=40526149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254790A Pending JP2009102630A (en) 2007-10-01 2008-09-30 Rubber composition

Country Status (2)

Country Link
JP (1) JP2009102630A (en)
WO (1) WO2009044721A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094088A (en) * 2009-11-02 2011-05-12 Kitagawa Ind Co Ltd High-density elastomeric material
US11795307B2 (en) 2020-12-18 2023-10-24 Toyo Tire Corporation Rubber composition for tire, and tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5519385B2 (en) * 2010-04-16 2014-06-11 住友ゴム工業株式会社 Rubber composition for breaker topping and pneumatic tire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287155A (en) * 1988-05-13 1989-11-17 Asahi Chem Ind Co Ltd Rubber composition
JPH01289843A (en) * 1988-05-16 1989-11-21 Asahi Chem Ind Co Ltd Rubber composition for tire
JPH01289844A (en) * 1988-05-16 1989-11-21 Asahi Chem Ind Co Ltd Rubber composition
WO2003097736A1 (en) * 2002-05-16 2003-11-27 Bridgestone Corporation Rubber composition
JP2004143187A (en) * 2002-08-30 2004-05-20 Bridgestone Corp Rubber composition and pneumatic tire
JP4005005B2 (en) * 2003-08-28 2007-11-07 日信工業株式会社 Carbon fiber composite material and method for producing the same, and carbon fiber composite molded product and method for producing the same
JP4427034B2 (en) * 2006-04-28 2010-03-03 日信工業株式会社 Carbon fiber composite material
JP5290539B2 (en) * 2007-06-08 2013-09-18 バンドー化学株式会社 RUBBER COMPOSITION, RUBBER MOLDED BODY, HEAT-RELEASING SHEET AND METHOD FOR PRODUCING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094088A (en) * 2009-11-02 2011-05-12 Kitagawa Ind Co Ltd High-density elastomeric material
US11795307B2 (en) 2020-12-18 2023-10-24 Toyo Tire Corporation Rubber composition for tire, and tire

Also Published As

Publication number Publication date
WO2009044721A1 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
Guo et al. Enhanced fatigue and durability of carbon black/natural rubber composites reinforced with graphene oxide and carbon nanotubes
JP5178228B2 (en) Rubber composition and method for producing the same
JP5367966B2 (en) Rubber composition for tire
JP2009191197A (en) Rubber composition and method for producing the same
Junkong et al. Cut growth and abrasion behaviour, and morphology of natural rubber filled with MWCNT and MWCNT/carbon black
JP2008222845A (en) Rubber composition for tire
JP2009102630A (en) Rubber composition
JP5632790B2 (en) Rubber composition for bladder and bladder for vulcanization
JP5495413B2 (en) tire
JP7215672B2 (en) Rubber masterbatch and manufacturing method thereof
JP2016014113A (en) Cushion rubber for retreaded tire, and retreaded tire
EP1752489A1 (en) Rubber composition
JP2007070617A (en) Rubber composition
Zhang et al. Influence of partial substitution for carbon black with graphene oxide on dynamic properties of natural rubber composites
JP2008179761A (en) Rubber composition
JP2009007422A (en) Rubber composition and tire
JP4090385B2 (en) Rubber composition
JP2009144131A (en) Rubber composition and tire using the same
JP5495301B2 (en) Side-reinforced run-flat tire
JP2009185145A (en) Manufacturing method for rubber composition, rubber composition, and tire using it
JP2008308632A (en) Rubber composition, and composite material comprising metal material and the rubber composition
JP2008201829A (en) Rubber composition
JP2007045942A (en) Rubber composition and tire using the same
JP4979055B2 (en) Rubber material, rubber composition using the same, and crosslinked rubber
Oriani Reinforcement of ethylene‐acrylic elastomer with a dispersion of grafted PA6 droplets