JP2009046770A - Acrylonitrile-based precursor fiber for carbon fiber - Google Patents

Acrylonitrile-based precursor fiber for carbon fiber Download PDF

Info

Publication number
JP2009046770A
JP2009046770A JP2007212225A JP2007212225A JP2009046770A JP 2009046770 A JP2009046770 A JP 2009046770A JP 2007212225 A JP2007212225 A JP 2007212225A JP 2007212225 A JP2007212225 A JP 2007212225A JP 2009046770 A JP2009046770 A JP 2009046770A
Authority
JP
Japan
Prior art keywords
fiber
carbon fiber
acrylonitrile
spinning
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007212225A
Other languages
Japanese (ja)
Inventor
Hiroko Matsumura
宏子 松村
Yasuyuki Fujii
泰行 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007212225A priority Critical patent/JP2009046770A/en
Publication of JP2009046770A publication Critical patent/JP2009046770A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide acrylonitrile-based precursor fibers for carbon fibers in order to obtain the carbon fibers having high strength developing properties, particularly high CAI (compressive strength remaining after impact) as a composite material used for aircraft. <P>SOLUTION: The acrylonitrile-based precursor fibers for the carbon fibers have an arithmetic mean roughness Ra of a contour curve in a direction parallel to the fiber axis of 3.0-10.0 nm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アクリロニトリル系炭素繊維前駆体繊維に関する。   The present invention relates to an acrylonitrile-based carbon fiber precursor fiber.

従来、アクリル系繊維を前駆体とする炭素繊維はその優れた力学的性質により、航空宇宙用途を始め、スポーツ、レジャー用途の高性能複合材の補強繊維素材として広い範囲で利用されている。炭素繊維の高性能化の要望は年々高まってきており、特に航空機用炭素繊維としては高強度化、高弾性化の方向へと進んでいる。
航空機の一次構造材に使用される複合材料としては、耐衝撃強度の大きいこと、特に損傷許容性に重点をおいた衝撃後残留圧縮強度(以下、CAIと略記する。) の高いことが必須性能として要求されている。一般的には複合材料のCAIを向上させるために、マトリックス樹脂の強靭化と炭素繊維の高伸度化による改良の試みが多くなされてきている。
Conventionally, carbon fibers having acrylic fibers as precursors are widely used as reinforcing fiber materials for high-performance composite materials for aerospace use, sports and leisure use due to their excellent mechanical properties. The demand for higher performance of carbon fibers has been increasing year by year, and in particular, as carbon fiber for aircraft, progress has been made in the direction of higher strength and higher elasticity.
As a composite material used for the primary structural material of aircraft, it must have high impact strength, particularly high residual compressive strength after impact (hereinafter abbreviated as CAI) with emphasis on damage tolerance. As requested. In general, in order to improve the CAI of a composite material, many attempts have been made to improve it by toughening the matrix resin and increasing the elongation of the carbon fiber.

複合材料の強度は炭素繊維の表面状態と密接な関係がある。一般に、表面が極めて平滑な炭素繊維では樹脂との接着性が劣り、複合材料にしたときに強度特性が十分に発揮できない。一方、表面の凹凸が大きい炭素繊維では樹脂との接着性は改善されるが、凹凸が大きすぎると表面欠陥となり、複合材料にしたときの強度に劣るという欠点があった。   The strength of the composite material is closely related to the surface state of the carbon fiber. In general, carbon fibers having an extremely smooth surface have poor adhesion to a resin, and the strength characteristics cannot be exhibited sufficiently when a composite material is formed. On the other hand, the carbon fiber having large surface irregularities improves the adhesion to the resin, but if the irregularities are too large, it has a defect that it becomes a surface defect and inferior in strength when made into a composite material.

そこで、特許文献1には、繊維軸の長手方向に延びる多数の皺を有する炭素繊維であって、その皺の表面に微細な凹凸を有する炭素繊維について開示されている。
また、特許文献2には乾−湿式紡糸法によって表面構造が高度に緻密化された前駆体繊維が開示されている。
特開2005−133274号公報 特開昭63−35821号公報
Therefore, Patent Document 1 discloses a carbon fiber having a large number of wrinkles extending in the longitudinal direction of the fiber axis and having fine irregularities on the surface of the wrinkles.
Patent Document 2 discloses a precursor fiber whose surface structure is highly densified by a dry-wet spinning method.
JP 2005-133274 A JP-A-63-35821

しかしながら、特許文献1における炭素繊維表面の微細な凹凸は、炭素繊維の表面をエッチングすることにより形成されるものであり、該炭素繊維に用いる炭素繊維前駆体の表面形態については制御しておらず、複合材料として満足なCAI値を得るのが困難であった。
また、特許文献2における炭素繊維の前駆体繊維は、炭素繊維の破断の原因となる繊維表面の疵等の欠陥の少ない、緻密性の高い炭素繊維用アクリル系繊維であって、繊維表層部の緻密性が高い炭素繊維製造用アクリル繊維に関するものである。しかし、該前駆体は、表層部の緻密性を高めることによってストランド強度の高い炭素繊維を得るものであり、複合材料としてのCAIの特性を満足させることは困難であった。
However, the fine irregularities on the surface of the carbon fiber in Patent Document 1 are formed by etching the surface of the carbon fiber, and the surface form of the carbon fiber precursor used for the carbon fiber is not controlled. It was difficult to obtain a satisfactory CAI value as a composite material.
Moreover, the precursor fiber of the carbon fiber in Patent Document 2 is a highly dense acrylic fiber for carbon fiber that has few defects such as wrinkles on the fiber surface that cause breakage of the carbon fiber, and is a fiber surface layer portion. The present invention relates to a highly dense acrylic fiber for producing carbon fibers. However, the precursor obtains carbon fibers having high strand strength by increasing the denseness of the surface layer portion, and it has been difficult to satisfy the characteristics of CAI as a composite material.

本発明は、上記事情を鑑みてなされたもので、CAI値の高い炭素繊維を得るための、アクリロニトリル系炭素繊維前駆体繊維、及びその製造方法を目的とする。   This invention is made | formed in view of the said situation, and aims at the acrylonitrile type | system | group carbon fiber precursor fiber for obtaining the carbon fiber with a high CAI value, and its manufacturing method.

本発明のアクリロニトリル系炭素繊維前駆体繊維は、繊維軸に対して平行な方向の輪郭曲線の算術平均粗さRaが3〜10nmであることを特徴とする。   The acrylonitrile-based carbon fiber precursor fiber of the present invention is characterized in that the arithmetic mean roughness Ra of the contour curve in the direction parallel to the fiber axis is 3 to 10 nm.

本発明のアクリロニトリル系炭素繊維前駆体繊維によれば、繊維表面に微細な凹凸を有した炭素繊維を形成することができる。その炭素繊維は、マトリックスとの接着性も良好で、航空機の複合材料としても耐えうるCAI値を得ることができる。   According to the acrylonitrile-based carbon fiber precursor fiber of the present invention, carbon fibers having fine irregularities on the fiber surface can be formed. The carbon fiber has good adhesion to the matrix, and can obtain a CAI value that can withstand as an aircraft composite material.

〔アクリロニトリル系炭素繊維前駆体繊維〕
以下、本発明を詳細に説明する。
本発明の、アクリロニトリル系炭素繊維前駆体繊維は、繊維軸に対して平行な方向の輪郭曲線の算術平均粗さRaが3〜10nmであることを特徴とする。
[Acrylonitrile-based carbon fiber precursor fiber]
Hereinafter, the present invention will be described in detail.
The acrylonitrile-based carbon fiber precursor fiber of the present invention is characterized in that the arithmetic average roughness Ra of the contour curve in the direction parallel to the fiber axis is 3 to 10 nm.

本発明のアクリロニトリル系炭素繊維前駆体繊維の表面は、凝固糸の段階では図1に示すようにフィブリル(小繊維)同士が融着せず、表面にボイド(空隙)が観察される状態であり、この凝固糸の段階で観察されるフィブリルの端部が、最終的なアクリロニトリル系炭素繊維前駆体繊維表面に微細な凹凸としてあらわれてくる。アクリロニトリル系炭素繊維前駆体繊維表面の凹凸の程度は、繊維軸に対して平行な方向の輪郭曲線の算術平均粗さRaにより求められ、Raは3〜10nmであり、3〜8nmであると更に好ましく、3.5〜6nmであると特に好ましい。
輪郭曲線の算術平均粗さRaが上記範囲よりも小さいと、アクリロニトリル系炭素繊維前駆体繊維を炭素繊維とした際、炭素繊維と樹脂との接着性が悪く、複合材料にしたときのCAI(衝撃後残留圧縮強度)に劣り、上記範囲よりも大きいとその凹凸が表面欠陥となり炭素繊維としてのストランド強度が低下する。
尚、本発明の輪郭曲線の算術平均粗さRaは、JIS B0601に定義されている。この算術平均粗さRaは走査型プローブ顕微鏡においてアクリロニトリル系炭素繊維前駆体繊維の表面の形状測定を行い、走査型プローブ顕微鏡に付属の画像解析ソフトウエアでデータ処理することによって求めることができる。
The surface of the acrylonitrile-based carbon fiber precursor fiber of the present invention is a state in which fibrils (small fibers) are not fused together at the stage of the coagulated yarn, and voids (voids) are observed on the surface, The ends of the fibrils observed at the stage of the coagulated yarn appear as fine irregularities on the final acrylonitrile-based carbon fiber precursor fiber surface. The degree of unevenness on the surface of the acrylonitrile-based carbon fiber precursor fiber is determined by the arithmetic average roughness Ra of the contour curve in the direction parallel to the fiber axis, and Ra is 3 to 10 nm, and further 3 to 8 nm. Preferably, it is especially preferable in it being 3.5-6 nm.
When the arithmetic mean roughness Ra of the contour curve is smaller than the above range, when the acrylonitrile-based carbon fiber precursor fiber is a carbon fiber, the adhesion between the carbon fiber and the resin is poor, and the CAI (impact If it is inferior to the post-residual compressive strength and is larger than the above range, the unevenness becomes a surface defect, and the strand strength as carbon fiber decreases.
The arithmetic mean roughness Ra of the contour curve of the present invention is defined in JIS B0601. The arithmetic average roughness Ra can be obtained by measuring the shape of the surface of the acrylonitrile-based carbon fiber precursor fiber with a scanning probe microscope and processing the data with image analysis software attached to the scanning probe microscope.

〔製造方法〕
本発明のアクリロニトリル系炭素繊維前駆体繊維は、ノズルから押出したアクリロニトリル系重合体の溶液を、空気中に吐出した後、繊維表面にスキン層が完全に形成される前に、凝固浴に導入して製造されると好ましい。
〔Production method〕
The acrylonitrile-based carbon fiber precursor fiber of the present invention is introduced into a coagulation bath after the acrylonitrile-based polymer solution extruded from the nozzle is discharged into the air and before the skin layer is completely formed on the fiber surface. It is preferable to be manufactured.

(アクリロニトリル系重合体)
本発明のアクリロニトリル系炭素繊維前駆体繊維を構成するアクリロニトリル系重合体は、アクリロニトリルを90.0質量%以上含有するものである。
該アクリロニトリル系重合体では、アクリロニトリルと共重合可能な他の単量体を1種類もしくは2種類以上使用しても良い。他の単量体としては例えば、(メタ)アクリル酸およびそのエステル類、酢酸ビニル、プロピオン酸ビニル、(メタ)アクリルアミド、ジアセトンアクリルアミド、N−ヒドロキシメチルアクリルアミド、イタコン酸、マレイン酸、フマル酸、クロトン酸、無水マレイン酸、メタクリロニトリル、スチレン、α−メチルスチレン等を挙げることができる。なかでも親水性・水溶性のコモノマーがアクリロニトリルと共重合しやすいので好ましい。
尚、アクリロニトリル系重合体の重合方法としては、溶液重合、懸濁重合等公知の方法のいずれをも採用することができる。
重合によって得たアクリロニトリル系重合体からは、未反応モノマーや重合触媒残滓、その他の不純物類は、極力除くことが好ましい。
(Acrylonitrile polymer)
The acrylonitrile-based polymer constituting the acrylonitrile-based carbon fiber precursor fiber of the present invention contains 90.0% by mass or more of acrylonitrile.
In the acrylonitrile-based polymer, one type or two or more types of other monomers copolymerizable with acrylonitrile may be used. Examples of other monomers include (meth) acrylic acid and esters thereof, vinyl acetate, vinyl propionate, (meth) acrylamide, diacetone acrylamide, N-hydroxymethyl acrylamide, itaconic acid, maleic acid, fumaric acid, Examples include crotonic acid, maleic anhydride, methacrylonitrile, styrene, and α-methylstyrene. Of these, hydrophilic and water-soluble comonomers are preferred because they are easily copolymerized with acrylonitrile.
As a method for polymerizing the acrylonitrile-based polymer, any of known methods such as solution polymerization and suspension polymerization can be employed.
It is preferable to remove as much as possible unreacted monomers, polymerization catalyst residues, and other impurities from the acrylonitrile polymer obtained by polymerization.

(紡糸原液)
次に、得られたアクリロニトリル系重合体を溶剤に溶解して紡糸原液とする。溶剤としては、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等の有機溶剤や、塩化亜鉛、チオシアン酸ナトリウム等の無機化合物の水溶液を使用することができる。しかし、繊維中に金属を含有せず、工程が簡略化される点で有機溶剤が好ましく、その中でも再利用しやすい点からジメチルアセトアミドやジメチルホルムアミドが好ましい。
紡糸する際、繊維内部が緻密である凝固糸を得るためには、紡糸原液はある程度以上のアクリロニトリル系重合体の濃度を有する溶液であることが好ましい。アクリロニトリル系重合体の濃度の下限値としては、17質量%であると好ましく、19質量%以上であると更に好ましい。また、上限値としては、通常25質量%以下であると好ましい。紡糸原液におけるアクリロニトリル系重合体の濃度が17質量%以上であると、繊維内部が緻密である凝固糸を得ることができ、19質量%以上25質量%以下であると、紡糸原液の粘度が適度であり紡糸安定性に優れる。
(Spinning stock solution)
Next, the obtained acrylonitrile polymer is dissolved in a solvent to obtain a spinning dope. As the solvent, organic solvents such as dimethylacetamide, dimethylsulfoxide, dimethylformamide, and aqueous solutions of inorganic compounds such as zinc chloride and sodium thiocyanate can be used. However, an organic solvent is preferable in that the metal is not contained in the fiber and the process is simplified, and among them, dimethylacetamide and dimethylformamide are preferable from the viewpoint of easy reuse.
In order to obtain a coagulated yarn in which the inside of the fiber is dense during spinning, the spinning dope is preferably a solution having a concentration of acrylonitrile polymer of a certain level or more. The lower limit of the concentration of the acrylonitrile polymer is preferably 17% by mass, and more preferably 19% by mass or more. Moreover, as an upper limit, it is preferable normally that it is 25 mass% or less. When the concentration of the acrylonitrile polymer in the spinning dope is 17% by mass or more, a coagulated yarn having a dense fiber interior can be obtained. When the concentration is 19% by mass or more and 25% by mass or less, the viscosity of the spinning dope is moderate. And excellent spinning stability.

(紡糸工程)
本発明のアクリロニトリル系炭素繊維前駆体繊維の製造方法にあっては、繊維表面にスキン層が完全に形成される前に、凝固浴に導入することで、アクリロニトリル系炭素繊維前駆体繊維を得る。
アクリロニトリル系炭素繊維前駆体繊維の紡糸方法として、湿式紡糸方法を適用した場合には紡糸時に即座に繊維のスキン層が形成されるので、本発明の様に、繊維の表面に凹凸を得ることが困難である。一方、乾式紡糸方法を適用した場合は、フィブリル(小繊維)同士が融着して表面が緻密になるので、繊維の表面に繊維軸に垂直な方向の凹凸を得ることが困難である。
(Spinning process)
In the method for producing an acrylonitrile-based carbon fiber precursor fiber of the present invention, an acrylonitrile-based carbon fiber precursor fiber is obtained by introducing it into a coagulation bath before the skin layer is completely formed on the fiber surface.
As a spinning method of acrylonitrile-based carbon fiber precursor fiber, when a wet spinning method is applied, a fiber skin layer is immediately formed at the time of spinning, so that unevenness can be obtained on the surface of the fiber as in the present invention. Have difficulty. On the other hand, when the dry spinning method is applied, the fibrils (small fibers) are fused together to make the surface dense, and it is difficult to obtain irregularities in the direction perpendicular to the fiber axis on the fiber surface.

繊維のスキン層が完全に形成される前に凝固浴に導入するには、ノズルと凝固浴の間の空気中での滞在時間、空気の湿度、温度、さらには共重合体の組成、溶剤、紡糸ノズル、ノズルからの吐出量、原液濃度、凝固浴温度、紡糸速度、紡糸ドラフト等を適正な範囲に制御することが必要となる。尚、繊維のスキン層が完全に形成される前にアクリロニトリル系重合体溶液を凝固浴に導入することができたかどうかは、凝固糸を凍結乾燥した後、走査型電子顕微鏡観察によって確認することができる。
ここでスキン層とは図2に示されるように繊維形成においてフィブリル(小繊維)同士が融着して、繊維表面が緻密になった状態である。一方、スキン層が完全に形成される前の状態とは、図1に示されるように、フィブリル同士が融着せず、表面にボイド(空隙)が観察される状態である。これは、空気中で紡糸原液が引き伸ばされ分子配向が向上し、結果としてフィブリルが形成しやすい状態である。
つまり、本発明では、空気中に紡糸原液を吐出し、繊維の表面が図1に示される状態となった繊維を、凝固浴に導き凝固することで、繊維の表面に微細な凹凸を形成させている。
In order to introduce into the coagulation bath before the fiber skin layer is fully formed, the residence time in air between the nozzle and the coagulation bath, the humidity, temperature of the air, as well as the composition of the copolymer, the solvent, It is necessary to control the spinning nozzle, the discharge amount from the nozzle, the concentration of the stock solution, the coagulation bath temperature, the spinning speed, the spinning draft, and the like within an appropriate range. Whether or not the acrylonitrile polymer solution can be introduced into the coagulation bath before the fiber skin layer is completely formed can be confirmed by observing a scanning electron microscope after freeze-drying the coagulated yarn. it can.
Here, the skin layer is a state in which the fibrils (small fibers) are fused to form a dense fiber surface as shown in FIG. On the other hand, the state before the skin layer is completely formed is a state where fibrils are not fused together and voids (voids) are observed on the surface as shown in FIG. This is a state in which the spinning dope is stretched in the air, the molecular orientation is improved, and fibrils are easily formed as a result.
In other words, in the present invention, the spinning solution is discharged into the air, and the fibers whose surface is in the state shown in FIG. 1 are guided to the coagulation bath and solidified to form fine irregularities on the surface of the fibers. ing.

紡糸時に繊維のスキン層が完全に形成される前にアクリロニトリル系重合体の溶液を凝固浴に導入するには、特にノズル面と凝固浴の距離を適正に制御することが必要となる。
例えば、紡糸ノズル孔径0.10〜0.20mm、ノズルからの吐出量7.0〜8.5g/min、紡糸引き取り速度20.0〜30.0m/minの条件では、ノズル面と凝固浴の距離は1.0〜10.0mmが好ましい。ノズル面と凝固浴の距離が1.0mm以下であると凝固液面が波立ったときに、ノズル面と凝固液面がくっついた状態になるので紡糸の安定性が悪くなり、10.0mm以上であると繊維の表面にスキン層が形成し易くなるため繊維の表面の凹凸を得ることが困難となってくる。
In order to introduce the acrylonitrile-based polymer solution into the coagulation bath before the fiber skin layer is completely formed during spinning, it is particularly necessary to appropriately control the distance between the nozzle surface and the coagulation bath.
For example, under the conditions of a spinning nozzle hole diameter of 0.10 to 0.20 mm, a discharge amount from the nozzle of 7.0 to 8.5 g / min, and a spinning take-up speed of 20.0 to 30.0 m / min, The distance is preferably 1.0 to 10.0 mm. When the distance between the nozzle surface and the coagulation bath is 1.0 mm or less, when the coagulation liquid surface undulates, the nozzle surface and the coagulation liquid surface are in a state of sticking, so that the spinning stability deteriorates and 10.0 mm or more. When it is, it becomes difficult to obtain the unevenness | corrugation of the surface of a fiber since it becomes easy to form a skin layer on the surface of a fiber.

凝固浴としては、紡糸原液に用いられる溶剤を含む水溶液が好適に使用され、含まれる溶剤の濃度を調節して繊維の凝固の速度を調整する。凝固浴の濃度は、使用する溶剤によって異なるが、例えばジメチルアセトアミドやジメチルホルムアミドを使用する場合、その溶剤の濃度は70〜90質量%であると好ましく、75〜85質量%であると更に好ましい。
溶剤の濃度が70質量%以上であるとスキン層の形成が遅くなり、90質量%以下であるとフィブリル(小繊維)同士が融着せず、表面にボイド(空隙)が観察される状態をとることができる。
As the coagulation bath, an aqueous solution containing a solvent used in the spinning dope is preferably used, and the concentration of the contained solvent is adjusted to adjust the speed of coagulation of the fibers. The concentration of the coagulation bath varies depending on the solvent to be used. For example, when dimethylacetamide or dimethylformamide is used, the concentration of the solvent is preferably 70 to 90% by mass, and more preferably 75 to 85% by mass.
When the concentration of the solvent is 70% by mass or more, the formation of the skin layer is delayed, and when it is 90% by mass or less, the fibrils (small fibers) are not fused together and voids (voids) are observed on the surface. be able to.

凝固浴の温度が高すぎると、スキン層の形成が遅くなりすぎてフィブリル同士が融着しやすいので、凝固浴は通常温度が低い方が好ましい。しかし、温度を下げすぎると凝固しにくく、凝固糸の引き取り速度を低下させる必要があり、生産性が低下する。この点を考慮し、凝固浴の温度は通常30℃以下であることが好ましく、5℃以上、20℃以下であると更に好ましい。以上のように凝固浴で得られた繊維を凝固糸とする。   If the temperature of the coagulation bath is too high, the formation of the skin layer becomes too slow and the fibrils tend to fuse together. Therefore, the temperature of the coagulation bath is usually preferably low. However, if the temperature is lowered too much, it is difficult to coagulate, and it is necessary to reduce the take-up speed of the coagulated yarn, and productivity is lowered. Considering this point, the temperature of the coagulation bath is usually preferably 30 ° C. or lower, more preferably 5 ° C. or higher and 20 ° C. or lower. The fiber obtained in the coagulation bath as described above is used as a coagulated yarn.

凝固糸は、さらに延伸(浴中、あるいは空気中)および洗浄を行う。凝固糸の延伸は浴中で行う場合は、沸水中で凝固糸に含まれている溶媒を洗浄しながら湿熱延伸する。空気中で行う場合は、熱板延伸や乾熱延伸により行うことが好ましい。
尚、本発明の製造方法により製造されるアクリロニトリル系炭素繊維前駆体繊維の表面の微細な凸凹は、アクリロニトリル系重合体の溶液を凝固浴に導いた段階ですでに形成されており、その後の延伸、洗浄によって大きく形態が変化するものではない。以上の延伸・洗浄後の凝固糸を工程糸とする。
The coagulated yarn is further drawn (in a bath or in air) and washed. When the coagulated yarn is drawn in a bath, it is wet-heat drawn while washing the solvent contained in the coagulated yarn in boiling water. When carried out in air, it is preferably carried out by hot plate stretching or dry heat stretching.
The fine unevenness on the surface of the acrylonitrile-based carbon fiber precursor fiber produced by the production method of the present invention has already been formed at the stage where the solution of the acrylonitrile-based polymer is introduced into the coagulation bath, and the subsequent stretching The shape does not change greatly by washing. The coagulated yarn after drawing and washing as described above is used as the process yarn.

延伸、洗浄後の工程糸は公知の方法、例えば油浴中に工程糸をくぐらすことによって油剤処理を行う。油剤の種類は特に限定されるものではないが、アミノシリコン系界面活性剤が好適に使用される。   The process yarn after drawing and washing is treated with an oil agent by a known method, for example, passing the process yarn through an oil bath. Although the kind of oil agent is not particularly limited, an aminosilicon surfactant is preferably used.

凝固糸を油剤処理後、乾燥緻密化を行い、アクリロニトリル系炭素繊維前駆体繊維とする。乾燥緻密化の温度は、アクリロニトリル系炭素繊維前駆体繊維のガラス転移温度を越えた温度を選択する。実質的には、凝固糸を含水状態から乾燥状態へと変化させ、アクリロニトリル系炭素繊維前駆体繊維とする際に、ガラス転移温度が異なることもあるため、温度が100〜200℃程度の加熱ローラーに凝固糸を接触させる方法で乾燥緻密化を行うことが好ましい。更に、乾燥緻密化後、後延伸を行うこともできる。
以上の操作で得られたアクリロニトリル系炭素繊維前駆体繊維は、単繊維繊度が0.5〜1.5dtexであると好ましく、0.8〜1.2dtexであると更に好ましい。
After the coagulated yarn is treated with an oil agent, it is dried and densified to obtain an acrylonitrile-based carbon fiber precursor fiber. The temperature for drying densification is selected so as to exceed the glass transition temperature of the acrylonitrile-based carbon fiber precursor fiber. In practice, when the coagulated yarn is changed from a water-containing state to a dry state to obtain an acrylonitrile-based carbon fiber precursor fiber, the glass transition temperature may be different, so the heating roller having a temperature of about 100 to 200 ° C Dry densification is preferably performed by a method in which the coagulated yarn is brought into contact with the material. Further, post-stretching can be performed after drying and densification.
The acrylonitrile-based carbon fiber precursor fiber obtained by the above operation preferably has a single fiber fineness of 0.5 to 1.5 dtex, and more preferably 0.8 to 1.2 dtex.

〔炭素繊維およびその製造方法〕
上記製造方法で得たアクリロニトリル系炭素繊維前駆体繊維を、公知の方法で焼成することにより炭素繊維を得ることができる。焼成方法としては例えば、耐炎化処理、炭素化処理をこの順に行う方法を用いることができる。
[Carbon fiber and method for producing the same]
Carbon fiber can be obtained by firing the acrylonitrile-based carbon fiber precursor fiber obtained by the above production method by a known method. As the firing method, for example, a method of performing flameproofing treatment and carbonization treatment in this order can be used.

(耐炎化処理)
耐炎化処理では、アクリロニトリル系炭素繊維前駆体繊維を、220〜270℃の熱風耐炎化炉を通過させることで耐炎化繊維が得られる。耐炎化工程における雰囲気については、空気、酸素、二酸化窒素、塩化水素などの各酸化性雰囲気を採用できるが、空気雰囲気が低コストであり、好ましい。
(Flame resistance treatment)
In the flameproofing treatment, the flameproofed fiber is obtained by passing the acrylonitrile-based carbon fiber precursor fiber through a hot air flameproofing furnace at 220 to 270 ° C. As the atmosphere in the flameproofing step, various oxidizing atmospheres such as air, oxygen, nitrogen dioxide, hydrogen chloride and the like can be adopted, but the air atmosphere is preferable because it is low in cost.

(炭素化処理)
耐炎化を完了したアクリロニトリル系炭素繊維前駆体繊維は、不活性雰囲気中で炭素化し、炭素繊維を得る。このとき、雰囲気温度は、得られる炭素繊維の性能を高める観点から、1000℃以上が好ましく、1200℃以上がさらに好ましい。さらに必要に応じて2000℃以上で炭化して、黒鉛化繊維とすることもできる。不活性雰囲気としては、窒素などが挙げられる。
(Carbonization treatment)
The acrylonitrile-based carbon fiber precursor fiber that has been flame-resistant is carbonized in an inert atmosphere to obtain a carbon fiber. At this time, the atmospheric temperature is preferably 1000 ° C. or higher, more preferably 1200 ° C. or higher, from the viewpoint of improving the performance of the obtained carbon fiber. Further, if necessary, it can be carbonized at 2000 ° C. or higher to obtain graphitized fiber. Nitrogen etc. are mentioned as an inert atmosphere.

また、ボイド(空隙)等、炭素繊維内部に欠陥の少ない、緻密性の高い炭素繊維を得るために、炭素化処理温度が、350〜500℃及び1000〜1200℃であるときの昇温速度は、500℃/分以下が好ましく、300℃/分以下がより好ましく、150℃/分以下であると更に好ましい。さらに、炭素繊維の緻密性を向上させるためには、炭素化処理温度が350〜500℃の際に、1%以上、好ましくは5%以上延伸すると好ましい。なお、10%を超える延伸は毛羽が発生し易くなるという点で不利である。   Moreover, in order to obtain a highly dense carbon fiber with few defects inside the carbon fiber, such as voids (voids), the rate of temperature increase when the carbonization temperature is 350 to 500 ° C. and 1000 to 1200 ° C. 500 ° C./min or less is preferable, 300 ° C./min or less is more preferable, and 150 ° C./min or less is more preferable. Furthermore, in order to improve the denseness of the carbon fiber, it is preferable that the carbon fiber is stretched by 1% or more, preferably 5% or more when the carbonization treatment temperature is 350 to 500 ° C. Note that stretching exceeding 10% is disadvantageous in that fluff is likely to occur.

(その他の処理)
以上の方法で得られた炭素繊維は、電解液中で電解酸化処理を施したり、気相、または液相での酸化処理を施したりすることにより、炭素繊維の表面に酸素を含む官能基を導入し、複合材料における炭素繊維とマトリックス樹脂との親和性、接着性を高めることができる。
(Other processing)
The carbon fiber obtained by the above method is subjected to an electrolytic oxidation treatment in an electrolytic solution or an oxidation treatment in a gas phase or a liquid phase, whereby functional groups containing oxygen are formed on the surface of the carbon fiber. When introduced, the affinity and adhesion between the carbon fiber and the matrix resin in the composite material can be enhanced.

〔複合材料〕
炭素繊維は、常法によりマトリックスと組み合わせて、中間基材であるプリプレグや、最終生産品である複合材料とすることができる。
マトリックスとして使用する樹脂としては、特に制限はないが、エポキシ樹脂、フェノール樹脂、ポリエステル樹脂、ビニルエステル樹脂、ビスマレイミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリプロピレン樹脂、ABS樹脂などが挙げられる。また、マトリックスには、前記樹脂以外に、セメント、金属、セラミックスなどを使用することもできる。
[Composite material]
Carbon fibers can be combined with a matrix by a conventional method to form a prepreg as an intermediate base material or a composite material as a final product.
Although there is no restriction | limiting in particular as resin used as a matrix, An epoxy resin, a phenol resin, a polyester resin, a vinyl ester resin, a bismaleimide resin, a polyimide resin, a polycarbonate resin, a polyamide resin, a polypropylene resin, an ABS resin etc. are mentioned. In addition to the resin, cement, metal, ceramics, etc. can be used for the matrix.

炭素繊維の表面形態は、炭素繊維とマトリックス樹脂との界面の接着性に大きく影響するものであり、炭素繊維の表面形態を制御することにより、複合材料の目的、用途に応じた性能が得られるようになる。特に、複合材料のCAI試験に際しては、わずかな炭素繊維の表面形状の変化が最終的なCAI値を決定する。
本発明のアクリロニトリル系炭素繊維前駆体繊維からなる炭素繊維のように、表面の凹凸形状が制御された炭素繊維を用いると、炭素繊維とマトリックス樹脂との接着性やその界面にかかる力、エネルギー吸収の状態などが最適となり、CAI値の高い複合材料が提供できる。
The surface morphology of the carbon fiber greatly affects the adhesiveness at the interface between the carbon fiber and the matrix resin, and by controlling the surface morphology of the carbon fiber, performance according to the purpose and application of the composite material can be obtained. It becomes like this. In particular, during CAI testing of composite materials, slight changes in carbon fiber surface shape determine the final CAI value.
When carbon fiber with a controlled surface irregularity shape is used, such as the carbon fiber made of the acrylonitrile-based carbon fiber precursor fiber of the present invention, the adhesion between the carbon fiber and the matrix resin, the force applied to the interface, and the energy absorption Thus, a composite material having a high CAI value can be provided.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
また、本実施例及び比較例における各物性の測定及び評価は以下の方法で行った。各測定の評価は、複数の試料に対して行った測定値の平均値を評価したものである。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
Moreover, the measurement and evaluation of each physical property in the present examples and comparative examples were performed by the following methods. The evaluation of each measurement is an evaluation of an average value of measurement values performed on a plurality of samples.

〔輪郭曲線の算術平均粗さRa〕
アクリロニトリル系炭素繊維前駆体繊維の単糸の両端を、走査型プローブ顕微鏡装置付属の金属製サンプルホルダー板上にカーボンペーストで固定し、走査型プローブ顕微鏡にて、アクリロニトリル系炭素繊維前駆体繊維の測定を以下の条件で行う。
[Arithmetic mean roughness Ra of contour curve]
Both ends of a single yarn of acrylonitrile-based carbon fiber precursor fiber are fixed with a carbon paste on a metal sample holder plate attached to a scanning probe microscope apparatus, and measurement of the acrylonitrile-based carbon fiber precursor fiber with a scanning probe microscope Is performed under the following conditions.

(走査型プローブ顕微鏡測定条件)
装置 :エスアイアイナノテクノロジーズ社 SPI4000プローブステーション、SPA400(ユニット)
走査モード :ダイナミックフォースモード(DFM)(形状像測定)
探針 :エスアイアイナノテクノロジーズ社製 SI−DF−20
走査範囲 :5μm×5μm
Rotation :90℃(繊維軸方向に対して垂直方向にスキャン)
走査速度 :1.0Hz
ピクセル数 :512×512
測定環境 :室温、大気中
単糸1本に対して、上記条件にて1画像を得、得られた画像を走査型プローブ顕微鏡付属の画像解析ソフト(SPIWin)で以下条件にて画像解析を行う。
(Scanning probe microscope measurement conditions)
Apparatus: SII Nano Technologies, Inc. SPI4000 probe station, SPA400 (unit)
Scanning mode: Dynamic force mode (DFM) (shape image measurement)
Probe: SI-DF-20 manufactured by SII Nano Technologies
Scanning range: 5 μm × 5 μm
Rotation: 90 ° C (scan in the direction perpendicular to the fiber axis direction)
Scanning speed: 1.0 Hz
Number of pixels: 512 × 512
Measurement environment: At room temperature and in the air For one single yarn, one image is obtained under the above conditions, and the obtained image is subjected to image analysis under the following conditions with image analysis software (SPIWin) attached to the scanning probe microscope. .

(画像解析条件)
得られた形状像に、「フラット処理」、「メディアン8処理」、「三次傾き補正」を行い、曲面を平面にフィッティング補正した画像を得る。平面補正した画像の表面粗さ解析より、繊維軸に平行な方向の断面プロファイルを計測し、輪郭曲線の算術平均粗さRaを求める。
測定は束になって形成されているアクリロニトリル系炭素繊維前駆体繊維の1つのサンプルについて単糸10本のサンプルを用意し、走査型プローブ顕微鏡で形状測定した。まず、各単糸の測定画像について、繊維軸に平行な方向の断面プロファイルを10点計測して輪郭曲線の算術平均粗さRaを求め、単糸10本のサンプルの平均値を1つのアクリロニトリル系炭素繊維前駆体繊維サンプルの算術平均粗さRaとした。
(Image analysis conditions)
The obtained shape image is subjected to “flat processing”, “median 8 processing”, and “cubic inclination correction” to obtain an image obtained by fitting the curved surface to a plane. From the surface roughness analysis of the plane-corrected image, the cross-sectional profile in the direction parallel to the fiber axis is measured, and the arithmetic average roughness Ra of the contour curve is obtained.
For measurement, a sample of 10 single yarns was prepared for one sample of acrylonitrile-based carbon fiber precursor fibers formed in a bundle, and the shape was measured with a scanning probe microscope. First, with respect to the measurement image of each single yarn, 10 cross-sectional profiles in the direction parallel to the fiber axis were measured to obtain the arithmetic average roughness Ra of the contour curve, and the average value of 10 single yarn samples was determined as one acrylonitrile system. The arithmetic average roughness Ra of the carbon fiber precursor fiber sample was used.

〔ストランド強度〕
ストランド強度はJIS R−7601の方法で測定した。
ストランドの作製は、まず、油化シェル社製「エピコート828」(100部)、無水メチルナジック酸(90部)、ジベンジルジメチルアミン(2部)、アセトン(50部)を混合した組成の樹脂を炭素繊維に含浸させた。次に、50℃で1時間、130℃に1時間かけて炭素繊維を昇温し、130℃、2時間の条件で硬化させ、樹脂含浸ストランドを得た。得られた樹脂含浸ストランドを用い、樹脂含浸ストランド試験法(JIS R−7601に準拠)により樹脂含浸ストランドの引っ張り強度を求めた。
[Strand strength]
The strand strength was measured by the method of JIS R-7601.
First, a strand was prepared by mixing “Epicoat 828” (100 parts) manufactured by Yuka Shell Co., Ltd., methyl nadic acid anhydride (90 parts), dibenzyldimethylamine (2 parts), and acetone (50 parts). Was impregnated into carbon fiber. Next, the carbon fiber was heated up at 50 ° C. for 1 hour and then at 130 ° C. over 1 hour and cured under conditions of 130 ° C. and 2 hours to obtain a resin-impregnated strand. Using the obtained resin-impregnated strand, the tensile strength of the resin-impregnated strand was determined by a resin-impregnated strand test method (based on JIS R-7601).

〔衝撃後残留圧縮強度(CAI)〕
衝撃後残留圧縮強度(CAI)はSACMA法に準拠して次のように行った。三菱レイヨン株式会社製エポキシ樹脂#1053Xと炭素繊維から、炭素繊維目付け198g/m 、樹脂含有率35質量%の一方向プリプレグを作成し〔+45°/0°/−45°/90°〕3sの擬似等方に積層させ、180℃、2時間の条件で硬化させて寸法150mm×100mm×(厚み)4.5mmの試験片を作成した。
[Residual compressive strength after impact (CAI)]
Residual compressive strength after impact (CAI) was performed as follows based on the SACMA method. A unidirectional prepreg with a carbon fiber basis weight of 198 g / m 2 and a resin content of 35% by mass was prepared from epoxy resin # 1053X manufactured by Mitsubishi Rayon Co., Ltd. and carbon fiber [+ 45 ° / 0 ° / −45 ° / 90 °] 3 s The test pieces having dimensions of 150 mm × 100 mm × (thickness) 4.5 mm were prepared by laminating in a pseudo isotropic manner and curing at 180 ° C. for 2 hours.

前記試験片を、3インチ(7.62cm)×5インチ(12.7cm)の矩形穴のあいたスチール製台に固定し、その中心に16mmRのノーズをつけた5.6kgの分銅を落下させ、30Jの衝撃エネルギーを与える。その後に、該試験片を圧縮することによりCAI値を求めた。   The test piece was fixed to a steel base with a rectangular hole measuring 3 inches (7.62 cm) × 5 inches (12.7 cm), and a weight of 5.6 kg with a 16 mmR nose attached to the center was dropped. Gives 30J impact energy. Thereafter, the CAI value was determined by compressing the test piece.

〔実施例1〕
アクリロニトリル96質量%、メタクリル酸1質量%、アクリル酸メチル3質量%、からなる極限粘度〔η〕1.8の重合体を、ジメチルアセトアミドに溶解し、重合体の濃度が23質量%の紡糸原液を調製した。
この紡糸原液を20μおよび5μのフィルターで濾過し、70℃に保持させて、直径0.15mm、孔数2000の口金を用いて乾湿式紡糸法を用いて紡出し凝固糸を得た。なお、凝固浴の組成はジメチルアセトアミド/水=78/22(質量%)、温度15℃、ノズル面と凝固浴の距離は4mmとし、繊維表面にスキン層が完全に形成される前に、紡糸原液を凝固浴に導入した。
得られた凝固糸を空中で延伸し、次いで熱水中で延伸洗浄を行い、シリコン系油剤処理を施し工程糸とした。次に工程糸を乾燥させ、さらに加熱ローラーにて乾熱延伸を行い、全延伸倍率を9倍として、単繊維繊度0.9dtex、2000フィラメントのアクリロニトリル系炭素繊維前駆体繊維を得た。
次に、得られたアクリロニトリル系炭素繊維前駆体繊維に、230℃〜260℃に設定した熱風循環式耐炎化炉を用い、5%の伸長を付与しながら耐炎化処理を施した。耐炎化終了時の繊維密度は1.35g/cmとした。次に耐炎化処理を施した繊維を、窒素雰囲気下、最高温度が1400℃の高温熱処理炉にて炭素化させた。その後、電解酸化処理を5質量%炭酸水素アンモニウム21クーロン/gの条件にて行い、炭素繊維を得た。
以上の操作で得られたアクリロニトリル系炭素繊維前駆体繊維および炭素繊維の特性を表1に示す。
[Example 1]
A spinning stock solution in which a polymer having an intrinsic viscosity [η] 1.8 consisting of 96% by mass of acrylonitrile, 1% by mass of methacrylic acid, and 3% by mass of methyl acrylate is dissolved in dimethylacetamide, and the concentration of the polymer is 23% by mass. Was prepared.
This spinning dope was filtered through 20 μm and 5 μm filters, kept at 70 ° C., and spin-coagulated yarn was obtained by dry and wet spinning using a die having a diameter of 0.15 mm and a hole number of 2000. The composition of the coagulation bath is dimethylacetamide / water = 78/22 (mass%), the temperature is 15 ° C., the distance between the nozzle surface and the coagulation bath is 4 mm, and spinning is performed before the skin layer is completely formed on the fiber surface. The stock solution was introduced into the coagulation bath.
The obtained coagulated yarn was drawn in the air, then drawn and washed in hot water, and treated with a silicon-based oil agent to obtain a process yarn. Next, the process yarn was dried and further subjected to dry heat drawing with a heating roller to obtain an acrylonitrile-based carbon fiber precursor fiber having a single fiber fineness of 0.9 dtex and 2000 filaments with a total draw ratio of 9 times.
Next, the obtained acrylonitrile-based carbon fiber precursor fiber was subjected to flameproofing treatment using a hot air circulation type flameproofing furnace set at 230 ° C. to 260 ° C. while giving 5% elongation. The fiber density at the end of flame resistance was 1.35 g / cm 3 . Next, the flame-treated fiber was carbonized in a high temperature heat treatment furnace having a maximum temperature of 1400 ° C. in a nitrogen atmosphere. Then, the electrolytic oxidation treatment was performed under conditions of 5 mass% ammonium hydrogen carbonate 21 coulomb / g to obtain carbon fibers.
Table 1 shows the characteristics of the acrylonitrile-based carbon fiber precursor fiber and the carbon fiber obtained by the above operation.

〔実施例2〕
電解酸化処理を行わなかった以外は、実施例1と同様の工程を経て炭素繊維を得た。得られたアクリロニトリル系炭素繊維前駆体繊維および炭素繊維の特性を表1に示す。
[Example 2]
A carbon fiber was obtained through the same steps as in Example 1 except that the electrolytic oxidation treatment was not performed. Table 1 shows the characteristics of the obtained acrylonitrile-based carbon fiber precursor fiber and carbon fiber.

〔実施例3〕
アクリロニトリル98質量%、メタクリル酸2質量%からなる、極限粘度〔η〕1.8の重合体を、ジメチルホルムアミドに溶解し、重合体の濃度が23質量%の紡糸原液を調製した。
この紡糸原液を20μおよび5μのフィルターで濾過し、65℃に保持させて、直径0.15mm、孔数2000の口金を用いて乾湿式紡糸法を用いて紡出し凝固糸を得た。なお凝固浴の組成はジメチルホルムアミド/水=79/21(質量%)、温度15℃、ノズル面と凝固浴の距離は2.5mmとし、繊維表面にスキン層が完全に形成される前に、紡糸原液を凝固浴に導入した。
得られた凝固糸を空中で延伸し、次いで熱水中で延伸洗浄を行い、シリコン系油剤処理を施し工程糸とした。次に工程糸を乾燥させ、さらに加熱ローラーにて乾熱延伸を行い、全延伸倍率を9倍として、単繊維繊度0.8dtex、2000フィラメントのアクリロニトリル系炭素繊維前駆体繊維を得た。
得られたアクリロニトリル系炭素繊維前駆体繊維に、実施例1と同様の耐炎化処理、炭素化、電解酸化処理を施して、炭素繊維を得た。以上の操作で得られたアクリロニトリル系炭素繊維前駆体繊維および炭素繊維の特性を表1に示した。
Example 3
A polymer having an intrinsic viscosity [η] of 1.8 consisting of 98% by mass of acrylonitrile and 2% by mass of methacrylic acid was dissolved in dimethylformamide to prepare a spinning dope having a polymer concentration of 23% by mass.
This spinning dope was filtered through 20 μm and 5 μm filters, kept at 65 ° C., and spin-coagulated yarn was obtained by using a wet and wet spinning method using a die having a diameter of 0.15 mm and a hole number of 2000. The composition of the coagulation bath is dimethylformamide / water = 79/21 (mass%), the temperature is 15 ° C., the distance between the nozzle surface and the coagulation bath is 2.5 mm, and before the skin layer is completely formed on the fiber surface, The spinning dope was introduced into the coagulation bath.
The obtained coagulated yarn was drawn in the air, then drawn and washed in hot water, and treated with a silicon-based oil agent to obtain a process yarn. Next, the process yarn was dried and further subjected to dry heat drawing with a heating roller to obtain an acrylonitrile-based carbon fiber precursor fiber having a single fiber fineness of 0.8 dtex and 2000 filaments with a total draw ratio of 9 times.
The obtained acrylonitrile-based carbon fiber precursor fiber was subjected to the same flameproofing treatment, carbonization, and electrolytic oxidation treatment as in Example 1 to obtain carbon fibers. Table 1 shows the characteristics of the acrylonitrile-based carbon fiber precursor fiber and the carbon fiber obtained by the above operation.

〔比較例1〕
実施例1においてノズル面と凝固浴の距離を12mmとし、繊維表面にスキン層が完全に形成されてから、繊維を凝固浴に導入した以外は、実施例1と同様にしてアクリロニトリル系炭素繊維前駆体繊維を得た。さらに得られたアクリロニトリル系炭素繊維前駆体繊維に、実施例1と同様の処理を施して炭素繊維を得た。得られたアクリロニトリル系炭素繊維前駆体繊維および炭素繊維の特性を表1に示した。
[Comparative Example 1]
In Example 1, the distance between the nozzle surface and the coagulation bath was set to 12 mm, and the fiber was introduced into the coagulation bath after the skin layer was completely formed on the fiber surface. Body fibers were obtained. Further, the obtained acrylonitrile-based carbon fiber precursor fiber was subjected to the same treatment as in Example 1 to obtain a carbon fiber. The properties of the obtained acrylonitrile-based carbon fiber precursor fiber and carbon fiber are shown in Table 1.

Figure 2009046770
Figure 2009046770

表1に示すように、実施例1〜3で得られたアクリロニトリル系炭素繊維前駆体繊維は、輪郭曲線の算術平均粗さRaが良好であるので、その炭素繊維によって得られた複合材料のCAI値も良好である。一方、比較例1で得られたアクリロニトリル系炭素繊維前駆体繊維は、輪郭曲線の算術平均粗さRaが低く、その炭素繊維によって得られた複合材料のCAI値も劣っていた。   As shown in Table 1, since the acrylonitrile-based carbon fiber precursor fibers obtained in Examples 1 to 3 have good arithmetic mean roughness Ra of the contour curve, the CAI of the composite material obtained by the carbon fibers The value is also good. On the other hand, the acrylonitrile-based carbon fiber precursor fiber obtained in Comparative Example 1 had a low arithmetic mean roughness Ra of the contour curve, and the CAI value of the composite material obtained from the carbon fiber was also inferior.

スキン層が完全に形成される前のアクリロニトリル系炭素繊維前駆体繊維の凝固糸の走査型電子顕微鏡像である。It is a scanning electron microscope image of the coagulated yarn of the acrylonitrile-based carbon fiber precursor fiber before the skin layer is completely formed. スキン層が形成されたアクリロニトリル系炭素繊維前駆体繊維の凝固糸の走査型電子顕微鏡像である。It is a scanning electron microscope image of the coagulated yarn of the acrylonitrile-type carbon fiber precursor fiber in which the skin layer was formed.

Claims (1)

繊維軸に平行な方向の輪郭曲線の算術平均粗さRaが、3〜10nmである、アクリロニトリル系炭素繊維前駆体繊維。   An acrylonitrile-based carbon fiber precursor fiber having an arithmetic average roughness Ra of a contour curve in a direction parallel to the fiber axis of 3 to 10 nm.
JP2007212225A 2007-08-16 2007-08-16 Acrylonitrile-based precursor fiber for carbon fiber Pending JP2009046770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007212225A JP2009046770A (en) 2007-08-16 2007-08-16 Acrylonitrile-based precursor fiber for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212225A JP2009046770A (en) 2007-08-16 2007-08-16 Acrylonitrile-based precursor fiber for carbon fiber

Publications (1)

Publication Number Publication Date
JP2009046770A true JP2009046770A (en) 2009-03-05

Family

ID=40499246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212225A Pending JP2009046770A (en) 2007-08-16 2007-08-16 Acrylonitrile-based precursor fiber for carbon fiber

Country Status (1)

Country Link
JP (1) JP2009046770A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255159A (en) * 2009-03-31 2010-11-11 Toray Ind Inc Precursor fiber for carbon fiber, method for producing the same and method for producing carbon fiber
WO2010143681A1 (en) * 2009-06-10 2010-12-16 三菱レイヨン株式会社 Carbon fiber bundle that develops excellent mechanical performance
WO2010143680A1 (en) * 2009-06-10 2010-12-16 三菱レイヨン株式会社 Acrylonitrile swollen yarn for carbon fiber, precursor fiber bundle, flame-proof fiber bundle, carbon fiber bundle, and production methods thereof
WO2016031820A1 (en) * 2014-08-27 2016-03-03 三菱レイヨン株式会社 Glossy pilling-resistant acrylic fiber, method for producing same, and spun yarn and knitted fabric including said acrylic fiber
JP2020106639A (en) * 2018-12-27 2020-07-09 Hoya株式会社 Reflection type mask blank, reflection type mask and method for manufacturing semiconductor device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255159A (en) * 2009-03-31 2010-11-11 Toray Ind Inc Precursor fiber for carbon fiber, method for producing the same and method for producing carbon fiber
WO2010143681A1 (en) * 2009-06-10 2010-12-16 三菱レイヨン株式会社 Carbon fiber bundle that develops excellent mechanical performance
WO2010143680A1 (en) * 2009-06-10 2010-12-16 三菱レイヨン株式会社 Acrylonitrile swollen yarn for carbon fiber, precursor fiber bundle, flame-proof fiber bundle, carbon fiber bundle, and production methods thereof
JP4908636B2 (en) * 2009-06-10 2012-04-04 三菱レイヨン株式会社 Carbon fiber bundle with excellent mechanical performance
US20120088103A1 (en) * 2009-06-10 2012-04-12 Mitsubishi Rayon Co., Ltd Carbon fiber bundle that develops high mechanical performance
CN102459722A (en) * 2009-06-10 2012-05-16 三菱丽阳株式会社 Acrylonitrile swollen yarn for carbon fiber, precursor fiber bundle, flame-proof fiber bundle, carbon fiber bundle, and production methods thereof
CN102459728A (en) * 2009-06-10 2012-05-16 三菱丽阳株式会社 Carbon fiber bundle that develops excellent mechanical performance
JP4945684B2 (en) * 2009-06-10 2012-06-06 三菱レイヨン株式会社 Acrylonitrile swelling yarn for carbon fiber, precursor fiber bundle, flame-resistant fiber bundle, carbon fiber bundle, and methods for producing them
TWI396786B (en) * 2009-06-10 2013-05-21 Mitsubishi Rayon Co Carbon fiber strand exhibiting excellent mechanical property
TWI396785B (en) * 2009-06-10 2013-05-21 Mitsubishi Rayon Co Acrylonitrile swollen yarn for carbon fiber, precursor fiber bundle, flameproof fiber bundle, carbon fibre bundle and manufacturing method thereof
KR101340140B1 (en) 2009-06-10 2013-12-10 미츠비시 레이온 가부시키가이샤 Acrylonitrile swollen yarn for carbon fiber, precursor fiber bundle, flame-proof fiber bundle, carbon fiber bundle, and production methods thereof
KR101340225B1 (en) 2009-06-10 2013-12-10 미츠비시 레이온 가부시키가이샤 Carbon fiber bundle that develops excellent mechanical performance
WO2016031820A1 (en) * 2014-08-27 2016-03-03 三菱レイヨン株式会社 Glossy pilling-resistant acrylic fiber, method for producing same, and spun yarn and knitted fabric including said acrylic fiber
JPWO2016031820A1 (en) * 2014-08-27 2017-04-27 三菱レイヨン株式会社 Glossy anti-pill acrylic fiber, method for producing the same, spun yarn and knitted fabric containing the acrylic fiber
US20170233897A1 (en) * 2014-08-27 2017-08-17 Mitsubishi Rayon Co., Ltd. Glossy pilling-resistant acrylic fiber, method for producing same, and spun yarn and knitted fabric containing said acrylic fiber
TWI612188B (en) * 2014-08-27 2018-01-21 Mitsubishi Chem Corp Gloss resistant anti-creping acrylic fiber, its manufacturing method, spinning and braiding
JP2020106639A (en) * 2018-12-27 2020-07-09 Hoya株式会社 Reflection type mask blank, reflection type mask and method for manufacturing semiconductor device
JP7250511B2 (en) 2018-12-27 2023-04-03 Hoya株式会社 Reflective mask blank, reflective mask, and method for manufacturing semiconductor device
US11914281B2 (en) 2018-12-27 2024-02-27 Hoya Corporation Reflective mask blank, reflective mask, and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP4945684B2 (en) Acrylonitrile swelling yarn for carbon fiber, precursor fiber bundle, flame-resistant fiber bundle, carbon fiber bundle, and methods for producing them
JP5765420B2 (en) Carbon fiber bundle and method for producing carbon fiber
JP5100758B2 (en) Carbon fiber strand and method for producing the same
JP5720783B2 (en) Carbon fiber bundle and method for producing carbon fiber bundle
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JP2003073932A (en) Carbon fiber
JP2005133274A (en) Carbon fiber and composite material containing the same
WO2018151255A1 (en) Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for same
JP2010100970A (en) Method for producing carbon fiber
JP2012122164A (en) Carbon fiber excellent in exhibiting mechanical characteristics
JP2002266173A (en) Carbon fiber and carbon fiber-reinforced composite material
JP4953410B2 (en) Carbon fiber and method for producing the same
JP4875238B2 (en) Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JP5999462B2 (en) Carbon fiber with excellent mechanical properties
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JP5313797B2 (en) Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle
JP6729665B2 (en) Acrylonitrile precursor fiber bundle for carbon fiber and method for producing the same
JP6232814B2 (en) Acrylic fiber manufacturing method
JP2015161056A (en) Acrylonitrile precursor fiber bundle for carbon fiber and production method thereof
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2007182645A (en) Method for producing acrylic fiber
JP4754855B2 (en) Method for producing flame-resistant fiber, method for producing carbon fiber
JP2016194191A (en) Carbon fiber excellent in mechanical property appearance
JP2018159139A (en) Acrylic fiber bundle and production method of carbon fiber using the same
CN112030270A (en) Process for preparing refractory carbon fibers