JP2009001469A - Apparatus and method for highly purifying graphite - Google Patents

Apparatus and method for highly purifying graphite Download PDF

Info

Publication number
JP2009001469A
JP2009001469A JP2007166540A JP2007166540A JP2009001469A JP 2009001469 A JP2009001469 A JP 2009001469A JP 2007166540 A JP2007166540 A JP 2007166540A JP 2007166540 A JP2007166540 A JP 2007166540A JP 2009001469 A JP2009001469 A JP 2009001469A
Authority
JP
Japan
Prior art keywords
resonance
microwave
hollow
graphite
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007166540A
Other languages
Japanese (ja)
Other versions
JP2009001469A5 (en
Inventor
Junya Nishino
順也 西野
Hiroshi Nakai
宏 中井
Kenji Suzuki
健次 鈴木
Kazuo Uematsu
和夫 上松
Shoichi Hara
正一 原
Katsumi Takahashi
克巳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007166540A priority Critical patent/JP2009001469A/en
Publication of JP2009001469A publication Critical patent/JP2009001469A/en
Publication of JP2009001469A5 publication Critical patent/JP2009001469A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method for highly purifying graphite, characterized by the following: a graphite material can be highly purified by reacting and eliminating impurity by heating the material at a temperature higher than 2,000°C; the damage of the apparatus is small; and the energy loss is small. <P>SOLUTION: The apparatus comprises a hollow resonance container 10 which has a resonance space 9 enabling microwave 2 to resonate in its inside, can accommodate a work 1 consisting of a graphite material, and is made of a material slightly absorbing microwave, a microwave feeding device 12 for feeding microwave having a specified frequency into the hollow resonance container, and a gas circulation device 14 for circulating a reactive gas 3 for reacting and eliminating impurity in the hollow resonance container. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、2000℃を超える高温に黒鉛材料を加熱して不純物を反応除去し、黒鉛材料を高純度化する黒鉛高純度化装置とその方法に関する。   The present invention relates to a graphite purifying apparatus and method for heating a graphite material to a high temperature exceeding 2000 ° C. to remove impurities by reaction and to purify the graphite material.

黒鉛材料は、耐熱性、高温強度に優れるため、半導体製造分野において広く用いられている。しかし、黒鉛材料は、ホウ素(B)、ケイ素(Si)等の不純物を含んでいるため、半導体製造分野(例えばシリコン単結晶の引き揚げ装置等)で使用するためには、これらの不純物を低減して高純度化する必要がある。   Graphite materials are widely used in the semiconductor manufacturing field because they are excellent in heat resistance and high-temperature strength. However, since the graphite material contains impurities such as boron (B) and silicon (Si), these impurities are reduced for use in the semiconductor manufacturing field (for example, a silicon single crystal lifting device). Need to be highly purified.

従来、黒鉛材料の高純度化は、黒鉛炉に塩化水素などのハロゲン化水素ガスあるいはフロンガスを供給し、黒鉛炉自体に通電して2000℃に以上に加熱して、黒鉛中のホウ素およびケイ素をそれぞれ0.1ppm以下(超高純度黒鉛の場合、高純度黒鉛はホウ素<0.15ppm、ケイ素<0.1ppm)に除去している。   Conventionally, high purity of graphite material has been achieved by supplying hydrogen halide gas such as hydrogen chloride or chlorofluorocarbon gas to a graphite furnace, energizing the graphite furnace itself, and heating it to 2000 ° C. or higher, thereby adding boron and silicon in the graphite. Removed to 0.1 ppm or less (in the case of ultra-high purity graphite, high-purity graphite is boron <0.15 ppm, silicon <0.1 ppm).

またその他の手段として、例えば特許文献1が既に開示されている。   As another means, for example, Patent Document 1 has already been disclosed.

特許文献1の「黒鉛材料の高純度化処理炉および黒鉛材料の高純度化処理方法」は、小型化と加熱源の交換に伴う作業負荷や費用を低減することを目的とする。
そのため、図3に示すように、この文献の黒鉛材料高純度化処理炉は、処理容器52と、反応ガス導入排出部54と、材料配置部56と、材料配置部56を収容する断熱箱66と、マイクロ波照射装置58とを備える。マイクロ波照射装置58は、マイクロ波発信器60と、処理容器52内の断熱箱66の真上に開口が位置するように設けられる導波管62を備える。塩素ガスを処理容器52の内部を流通した状態で、常圧下、導波管62を介して処理容器52内にマイクロ波を照射する。マイクロ波は、断熱箱66に形成されたスリット67を通過して被処理用黒鉛材料Wに照射される。被処理用黒鉛材料Wは2000℃まで加熱され、被処理用黒鉛材料W中に含まれる不純物が揮散されるものである。
The purpose of Patent Document 1 “High-purity treatment furnace for graphite material and high-purity treatment method for graphite material” is to reduce the workload and cost associated with downsizing and replacement of the heat source.
Therefore, as shown in FIG. 3, the graphite material purification furnace of this document includes a processing vessel 52, a reactive gas introduction / exhaust unit 54, a material arrangement unit 56, and a heat insulating box 66 that houses the material arrangement unit 56. And a microwave irradiation device 58. The microwave irradiation device 58 includes a microwave transmitter 60 and a waveguide 62 provided so that an opening is positioned directly above the heat insulating box 66 in the processing container 52. With chlorine gas flowing through the inside of the processing container 52, microwaves are irradiated into the processing container 52 through the waveguide 62 under normal pressure. The microwave passes through the slit 67 formed in the heat insulating box 66 and is irradiated to the graphite material W to be processed. The graphite material W to be processed is heated to 2000 ° C., and impurities contained in the graphite material W to be processed are volatilized.

特開2006−143573号公報、「黒鉛材料の高純度化処理炉および黒鉛材料の高純度化処理方法」Japanese Patent Application Laid-Open No. 2006-143573, “High-purity treatment furnace for graphite material and high-purity treatment method for graphite material”

黒鉛炉を用いた従来の高純度化手段は、黒鉛炉自体に通電して発熱させて2000℃以上に加熱し、かつ腐食性の高いハロゲン化水素ガスを流すため黒鉛炉の損傷が激しい問題点がある。
また、特許文献1では、マイクロ波で黒鉛材料Wを加熱するため、断熱箱66の損傷を低減できるが、スリット67を通してマイクロ波を断熱箱内に伝達する必要があり、マイクロ波の黒鉛材料Wへの伝達効率が低く、マイクロ波の損失が大きい問題点がある。
The conventional high purity means using a graphite furnace has a problem that the graphite furnace is severely damaged because the graphite furnace itself is energized to generate heat and heated to 2000 ° C. or more, and a highly corrosive hydrogen halide gas flows. There is.
In Patent Document 1, since the graphite material W is heated by microwaves, damage to the heat insulating box 66 can be reduced. However, it is necessary to transmit the microwaves through the slits 67 into the heat insulating box. There is a problem that the transmission efficiency to the antenna is low and the loss of microwaves is large.

本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、2000℃を超える高温に黒鉛材料を加熱して、不純物を反応除去して高純度化することができ、かつ装置の損傷が少なく、エネルギー損失も少ない黒鉛高純度化装置とその方法を提供することにある。   The present invention has been developed to solve such problems. That is, the object of the present invention is to increase the purity of graphite by heating the graphite material to a high temperature exceeding 2000 ° C., and removing impurities by reaction removal, reducing damage to the apparatus, and reducing energy loss. It is to provide an apparatus and method.

本発明によれば、内部でマイクロ波が共鳴可能な共鳴空間を有し、黒鉛材料からなるワークを収容可能であり、マイクロ波の吸収が少ない材料からなる中空共鳴容器と、
該中空共鳴容器内に所定の周波数のマイクロ波を供給するマイクロ波供給装置と、
前記中空共鳴容器内に不純物を反応除去するための反応性ガスを流通させるガス流通装置とを備えた、ことを特徴とする黒鉛高純度化装置が提供される。
According to the present invention, there is a resonant space in which microwaves can resonate inside, a hollow resonant container made of a material that can accommodate a workpiece made of graphite material and has a low absorption of microwaves, and
A microwave supply device for supplying microwaves of a predetermined frequency into the hollow resonant container;
There is provided a graphite purification apparatus comprising a gas flow device for flowing a reactive gas for reaction removal of impurities in the hollow resonance vessel.

本発明の好ましい実施形態によれば、前記中空共鳴容器は、前記共鳴空間の形状を変化させマイクロ波の共鳴状態を形成するための可動壁と、前記ワークを共鳴状態におけるマイクロ波強度の高い領域内に保持するためのワーク支持台とを有し、
さらに、前記可動壁を前記共鳴空間の形状を変化させるために移動する壁駆動装置を備える。
According to a preferred embodiment of the present invention, the hollow resonant container includes a movable wall for changing the shape of the resonance space to form a microwave resonance state, and a region having a high microwave intensity in the resonance state of the workpiece. A work support base for holding in,
Furthermore, a wall drive device is provided that moves the movable wall to change the shape of the resonance space.

また、前記マイクロ波供給装置は、所定の周波数のマイクロ波を発生するマイクロ波発生装置と、
発生したマイクロ波を前記中空共鳴容器内に供給する導波管と、
該導波管に取付けられ、中空共鳴容器から反射されるマイクロ波強度を計測する反射電力計とを備える。
The microwave supply device includes a microwave generator that generates a microwave having a predetermined frequency;
A waveguide for supplying the generated microwave into the hollow resonant container;
A reflection wattmeter that is attached to the waveguide and measures the intensity of the microwave reflected from the hollow resonant container.

さらに、前記反射電力計の出力信号を受信し前記壁駆動装置を制御する共鳴制御装置を備え、
該共鳴制御装置により前記出力信号が最小となる位置に前記可動壁を移動させる。
And a resonance control device that receives the output signal of the reflection wattmeter and controls the wall driving device,
The movable wall is moved to a position where the output signal is minimized by the resonance control device.

また、本発明によれば、内部でマイクロ波が共鳴可能な共鳴空間を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器内に黒鉛材料からなるワークを収容し、
該中空共鳴容器内に所定の周波数のマイクロ波を供給してマイクロ波の共鳴状態を形成し、
かつ前記ワークを共鳴状態におけるマイクロ波強度の高い領域内に保持し、
前記中空共鳴容器内に不純物を反応除去するための反応性ガスを流通させる、ことを特徴とする黒鉛高純度化方法が提供される。
Further, according to the present invention, a work made of a graphite material is accommodated in a hollow resonance container made of a material having a resonance space in which microwaves can resonate and having little microwave absorption,
A microwave resonance state is formed by supplying a microwave of a predetermined frequency into the hollow resonance vessel,
And holding the workpiece in a region of high microwave intensity in a resonance state,
There is provided a graphite purification method, characterized in that a reactive gas for reaction removal of impurities is circulated in the hollow resonance vessel.

黒鉛材料は、マイクロ波の良好な吸収物質であり、マイクロ波の照射により容易に高温に加熱される特性がある。   Graphite material is a good microwave absorbing material and has the property of being easily heated to a high temperature by microwave irradiation.

上述した本発明の装置および方法によれば、内部でマイクロ波が共鳴可能な共鳴空間を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器内に、黒鉛材料からなるワークを収容し、中空共鳴容器内に所定の周波数のマイクロ波を供給してマイクロ波の共鳴状態を形成するので、この共鳴状態において中空共鳴容器内にマイクロ波の電界強度の高い領域を少ないエネルギー損失で形成することができる。   According to the above-described apparatus and method of the present invention, a work made of graphite material is accommodated in a hollow resonance container made of a material that has a resonance space in which microwaves can resonate and has little microwave absorption, Since a microwave resonance state is formed by supplying a microwave of a predetermined frequency into the hollow resonance container, a region where the microwave electric field strength is high is formed with low energy loss in the hollow resonance container in this resonance state. Can do.

この電界強度の高い領域に黒鉛材料からなるワークを保持することで、マイクロ波の良好な吸収物質である黒鉛材料に選択的にマイクロ波を照射し、2000℃を超える高温に黒鉛材料を効率よく加熱することができ、この高温において不純物が反応性ガスと反応するので、ホウ素、ケイ素などの不純物を反応除去し、黒鉛材料を高純度化することができる。
また、マイクロ波を吸収して高温に加熱されるのは、黒鉛材料からなるワーク自体であり、その他の構成部材は、マイクロ波の吸収が少なく加熱されない。
By holding a workpiece made of a graphite material in a region where the electric field strength is high, the graphite material, which is a good microwave absorber, is selectively irradiated with microwaves, and the graphite material is efficiently applied to a high temperature exceeding 2000 ° C. Since the impurities can react with the reactive gas at this high temperature, impurities such as boron and silicon can be removed by reaction, and the graphite material can be highly purified.
Further, it is the workpiece itself made of a graphite material that absorbs the microwave and is heated to a high temperature, and the other constituent members absorb little microwave and are not heated.

従って中空共鳴容器やその他の構成機材をワークより低温の比較的穏和な条件に維持出来るため、反応性ガス(ハロゲン化水素ガス等)による腐食が少なく、かつ高純度黒鉛が得られる。   Accordingly, since the hollow resonance vessel and other components can be maintained at relatively mild conditions at a lower temperature than the workpiece, corrosion by a reactive gas (hydrogen halide gas or the like) is reduced and high-purity graphite can be obtained.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明による黒鉛高純度化装置の全体構成図である。
この図に示すように本発明の黒鉛高純度化装置は、中空共鳴容器10、マイクロ波供給装置12、ガス流通装置14、壁駆動装置16および共鳴制御装置18を備える。
FIG. 1 is an overall configuration diagram of a graphite purification apparatus according to the present invention.
As shown in this figure, the graphite purification apparatus of the present invention includes a hollow resonance vessel 10, a microwave supply device 12, a gas flow device 14, a wall driving device 16, and a resonance control device 18.

中空共鳴容器10は、内部でマイクロ波2が共鳴可能な共鳴空間9を有する。この共鳴空間9は、中空円筒形又は中空直方体であるのが好ましいが、本発明はこれに限定されず、内部でマイクロ波が共鳴可能であれば、任意の形状であってもよい。
中空共鳴容器10は、高純度化処理の対象である黒鉛材料からなるワーク1を収容可能に構成されている。この高純度化処理は、例えばバッチ処理であり、ワーク1の収容は、中空共鳴容器10を構成する部材の一部(例えば蓋)を取り外して、実施することができる。
中空共鳴容器10は、マイクロ波の吸収が少ない材料からなる。また、この材料はワーク1が2000℃以上、好ましくは2500℃以上に加熱されても、損傷を受けない耐熱強度が高い材料からなる。このような材料として、例えばグラファイトを用いることができる。
The hollow resonance container 10 has a resonance space 9 in which the microwave 2 can resonate. The resonance space 9 is preferably a hollow cylindrical shape or a hollow rectangular parallelepiped, but the present invention is not limited to this, and may have any shape as long as microwaves can resonate inside.
The hollow resonant container 10 is configured to be able to accommodate a workpiece 1 made of a graphite material that is a target for high-purification processing. This high-purification process is, for example, a batch process, and the work 1 can be accommodated by removing a part (for example, a lid) of a member constituting the hollow resonant container 10.
The hollow resonant container 10 is made of a material that absorbs less microwaves. In addition, this material is made of a material having high heat resistance that is not damaged even when the workpiece 1 is heated to 2000 ° C. or higher, preferably 2500 ° C. or higher. As such a material, for example, graphite can be used.

この例において、中空共鳴容器10は、共鳴空間9の形状を変化させマイクロ波2の共鳴状態を形成するための可動壁(後述する底板10bおよび上蓋10c)と、ワーク1を共鳴状態におけるマイクロ波強度の高い領域内に保持するためのワーク支持台11とを有する。
ワーク支持台11は、この例では、耐熱性の高い石英ガラスからなる支持板であり、中空共鳴容器10の中央下部に位置する。ワーク支持台11はマイクロ波を吸収せず、マイクロ波で加熱されないので、ワーク1よりは低い温度に保持できる。
In this example, the hollow resonant container 10 includes a movable wall (a bottom plate 10b and an upper lid 10c described later) for changing the shape of the resonant space 9 to form a resonant state of the microwave 2, and a microwave in a resonant state. And a work support 11 for holding in a high strength region.
In this example, the work support 11 is a support plate made of quartz glass having high heat resistance, and is located at the lower center of the hollow resonance vessel 10. Since the workpiece support 11 does not absorb microwaves and is not heated by microwaves, it can be held at a temperature lower than that of the workpiece 1.

この例において、中空共鳴容器10は、中空胴部10a、底板10bおよび上蓋10cからなる。
中空胴部10aはこの例では円筒管であるが、矩形管であってもよい。
底板10bは、中空胴部10aの下部にシール材を介して嵌合し、共鳴空間9の底部を形成する。
また、上蓋10cは、中空胴部10aの上部にシール材を介して嵌合し、共鳴空間9の蓋部を形成する。底板10bおよび上蓋10cは互いに平行であり、かつそれぞれ中空胴部10aの軸線に沿って上下動可能に形成されている。シール材は、内部の気密を保持できる限りで、任意の材料からなる。
なお、この例において、可動壁は、底板10bと上蓋10cであるが、本発明はこれに限定されず、可動壁をいずれか一方としてもよい。
In this example, the hollow resonance container 10 includes a hollow body 10a, a bottom plate 10b, and an upper lid 10c.
The hollow body portion 10a is a cylindrical tube in this example, but may be a rectangular tube.
The bottom plate 10b is fitted to the lower portion of the hollow body portion 10a via a sealing material to form the bottom portion of the resonance space 9.
Further, the upper lid 10c is fitted to the upper portion of the hollow body portion 10a via a sealing material to form a lid portion of the resonance space 9. The bottom plate 10b and the upper lid 10c are parallel to each other and are formed to be movable up and down along the axis of the hollow body 10a. The sealing material is made of any material as long as the internal airtightness can be maintained.
In this example, the movable walls are the bottom plate 10b and the upper lid 10c, but the present invention is not limited to this, and the movable wall may be either one.

マイクロ波供給装置12は、中空共鳴容器10内に所定の周波数(例えば2.45GHz)のマイクロ波2を供給する。
この例において、マイクロ波供給装置12は、所定の周波数のマイクロ波2を発生するマイクロ波発生装置12aと、発生したマイクロ波2を中空共鳴容器12内に供給する導波管12bと、反射電力計13とを備える。
導波管12bは、マイクロ波2を低損失で中空共鳴容器12内まで伝播させる形状であり、かつ中空共鳴容器10内の共鳴空間9にマイクロ波2の共鳴状態を形成できる位置に連結されている。この位置は、予めシミュレーション等で決定するが、底板10bを移動して調整してもよい。
反射電力計13は、導波管12bに取付けられ、中空共鳴容器10から反射されるマイクロ波強度を計測する。共鳴空間9にマイクロ波2の共鳴状態が形成されると、反射されるマイクロ波強度が最も弱くなる。
The microwave supply device 12 supplies the microwave 2 having a predetermined frequency (for example, 2.45 GHz) into the hollow resonance container 10.
In this example, the microwave supply device 12 includes a microwave generation device 12a that generates a microwave 2 having a predetermined frequency, a waveguide 12b that supplies the generated microwave 2 into the hollow resonance container 12, and a reflected power. A total of 13.
The waveguide 12b is shaped to propagate the microwave 2 into the hollow resonance container 12 with low loss, and is connected to a position where the resonance state of the microwave 2 can be formed in the resonance space 9 in the hollow resonance container 10. Yes. This position is determined in advance by simulation or the like, but may be adjusted by moving the bottom plate 10b.
The reflected wattmeter 13 is attached to the waveguide 12 b and measures the intensity of the microwave reflected from the hollow resonant container 10. When the resonance state of the microwave 2 is formed in the resonance space 9, the reflected microwave intensity becomes the weakest.

ガス流通装置14は、中空共鳴容器10内に不純物を反応除去するための反応性ガス3を流通させる。反応性ガス3は、例えば、塩化水素などのハロゲン化水素ガスあるいはフロンガスである。
この例において、ガス流通装置14は、供給管14aを介して反応性ガス3を供給するガス供給装置15aと、排気管14bを介して反応性ガス3を排気するガス排気装置15bとを備える。
供給管14aと排気管14bは、上述した中空胴部10aの側面に取付けられるのが好ましいが、その他の箇所、例えば底板10bまたは上蓋10cに取付けてもよい。
また、供給管14aと排気管14bは、共鳴状態におけるマイクロ波強度の低い領域に接続するのがよい。
The gas flow device 14 circulates the reactive gas 3 for reaction removal of impurities in the hollow resonance vessel 10. The reactive gas 3 is, for example, a hydrogen halide gas such as hydrogen chloride or a chlorofluorocarbon gas.
In this example, the gas flow device 14 includes a gas supply device 15a that supplies the reactive gas 3 through the supply pipe 14a, and a gas exhaust device 15b that exhausts the reactive gas 3 through the exhaust pipe 14b.
The supply pipe 14a and the exhaust pipe 14b are preferably attached to the side surface of the hollow body 10a described above, but may be attached to other locations, for example, the bottom plate 10b or the upper lid 10c.
The supply pipe 14a and the exhaust pipe 14b are preferably connected to a region where the microwave intensity is low in a resonance state.

壁駆動装置16は、可動壁(この例では底板10bおよび上蓋10c)を共鳴空間9の形状を変化させるために移動する。
この例において、壁駆動装置16は、底板10bを駆動する底板駆動装置16aと、上蓋10cを駆動する上蓋駆動装置16bとからなる。壁駆動装置16(底板駆動装置16aと上蓋駆動装置16b)は、例えばスクリュージャッキ、直動シリンダ、ボールネジである。
なお、底板駆動装置16aと上蓋駆動装置16bの両方は不可欠ではなく、いずれか一方のみでもよい。
The wall driving device 16 moves the movable walls (in this example, the bottom plate 10b and the upper lid 10c) in order to change the shape of the resonance space 9.
In this example, the wall driving device 16 includes a bottom plate driving device 16a that drives the bottom plate 10b and an upper lid driving device 16b that drives the upper lid 10c. The wall drive device 16 (the bottom plate drive device 16a and the upper lid drive device 16b) is, for example, a screw jack, a linear motion cylinder, or a ball screw.
Note that both the bottom plate driving device 16a and the upper lid driving device 16b are not essential, and only one of them may be used.

共鳴制御装置18は、反射電力計13の出力信号を受信し、壁駆動装置16(この例では上蓋駆動装置16b)を制御する。
この共鳴制御装置18により、反射電力計13の出力信号が最小となる位置に可動壁(この例では上蓋10c)を移動させる。
The resonance control device 18 receives the output signal of the reflected wattmeter 13 and controls the wall driving device 16 (upper lid driving device 16b in this example).
The resonance control device 18 moves the movable wall (in this example, the upper lid 10c) to a position where the output signal of the reflected wattmeter 13 is minimized.

上述した装置を用い、本発明の黒鉛高純度化方法は、以下のステップからなる。
(1)まず、内部でマイクロ波2が共鳴可能な共鳴空間9を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器10内に黒鉛材料からなるワーク1を収容する。
この際、ワーク1を共鳴状態におけるマイクロ波強度の高い領域内に保持する。このマイクロ波強度の高い領域は、予め実験又はシミュレーションにより決定することができる。
(2)中空共鳴容器10内に所定の周波数のマイクロ波2を供給してマイクロ波2の共鳴状態を形成する。共鳴状態の形成とその確認は、上述した壁駆動装置16と反射電力計13を用いることでできる。
(3)次いで、中空共鳴容器10内に不純物を反応除去するための反応性ガス3を流通させる。
Using the apparatus described above, the graphite purification method of the present invention comprises the following steps.
(1) First, a workpiece 1 made of a graphite material is housed in a hollow resonance container 10 made of a material that has a resonance space 9 in which the microwave 2 can resonate and has little microwave absorption.
At this time, the workpiece 1 is held in a region where the microwave intensity is high in the resonance state. This region having a high microwave intensity can be determined in advance by experiments or simulations.
(2) A microwave 2 having a predetermined frequency is supplied into the hollow resonance container 10 to form a resonance state of the microwave 2. Formation and confirmation of the resonance state can be performed by using the wall drive device 16 and the reflection wattmeter 13 described above.
(3) Next, the reactive gas 3 for reaction removal of impurities is circulated in the hollow resonance vessel 10.

図2は、本発明における中空共鳴容器内の電界強度分布図である。この例は、マイクロ波の周波数が2.45GHzであり、共鳴モードはTM011モードである。また、その条件は直径208mm,高さ69mmである。このときの導波管部との結合部の中心高さは25mmとなる。   FIG. 2 is an electric field intensity distribution diagram in the hollow resonance container according to the present invention. In this example, the frequency of the microwave is 2.45 GHz, and the resonance mode is the TM011 mode. The conditions are a diameter of 208 mm and a height of 69 mm. At this time, the center height of the coupling portion with the waveguide portion is 25 mm.

図2において、斜線部分Aで電界強度が大きくなっている。従って、上述したように、ワーク支持台11は、中空共鳴容器10の中央下部に位置するのがよい。   In FIG. 2, the electric field strength is increased in the shaded area A. Therefore, as described above, the work support 11 is preferably located at the lower center of the hollow resonant container 10.

マイクロ波の周波数と共鳴器形状の関係は、数1の式(1)で決定される直径と高さの組み合わせで上記分布(TM011モード)が成立する。
なお、導波管12bと共鳴器10の結合部の底面からの高さは,共鳴器10の直径と高さにより任意に変化するため解析により決定するのがよい。
Regarding the relationship between the frequency of the microwave and the resonator shape, the above distribution (TM011 mode) is established by the combination of the diameter and the height determined by Equation (1) of Formula 1.
It should be noted that the height from the bottom surface of the coupling portion between the waveguide 12b and the resonator 10 is arbitrarily determined depending on the diameter and height of the resonator 10 and is preferably determined by analysis.

Figure 2009001469
Figure 2009001469

上述した本発明の装置および方法によれば、内部でマイクロ波2が共鳴可能な共鳴空間9を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器10内に、黒鉛材料からなるワーク1を収容し、中空共鳴容器10内に所定の周波数のマイクロ波を供給してマイクロ波の共鳴状態を形成するので、この共鳴状態において中空共鳴容器10内にマイクロ波の電界強度の高い領域を少ないエネルギー損失で形成することができる。   According to the apparatus and method of the present invention described above, the workpiece 1 made of a graphite material is placed in the hollow resonance vessel 10 made of a material that has a resonance space 9 in which the microwave 2 can resonate and has little microwave absorption. Since a microwave resonance state is formed by supplying a microwave of a predetermined frequency into the hollow resonance container 10, there are few regions having a high microwave field strength in the hollow resonance container 10 in this resonance state. It can be formed with energy loss.

この電界強度の高い領域に黒鉛材料からなるワーク1を保持することで、マイクロ波の良好な吸収物質である黒鉛材料に選択的にマイクロ波2を照射し、2000℃を超える高温に黒鉛材料を効率よく加熱することができ、この高温において不純物が反応性ガスと反応するので、ホウ素、ケイ素などの不純物を反応除去し、黒鉛材料を高純度化することができる。
また、マイクロ波2を吸収して高温に加熱されるのは、黒鉛材料からなるワーク自体であり、その他の構成部材は、マイクロ波の吸収が少なく加熱されない。
By holding the workpiece 1 made of a graphite material in the region where the electric field strength is high, the graphite material which is a good microwave absorbing material is selectively irradiated with the microwave 2, and the graphite material is heated to a high temperature exceeding 2000 ° C. Heating can be performed efficiently, and impurities react with the reactive gas at this high temperature, so that impurities such as boron and silicon can be removed by reaction, and the graphite material can be highly purified.
Further, it is the workpiece itself made of graphite material that absorbs the microwave 2 and is heated to a high temperature, and the other constituent members absorb little microwave and are not heated.

従って中空共鳴容器10やその他の構成機材をワークより低温の比較的穏和な条件に維持出来るため、反応性ガス(ハロゲン化水素ガス等)による腐食が少なく、かつ高純度黒鉛が得られる。   Accordingly, since the hollow resonance vessel 10 and other components can be maintained at relatively mild conditions at a lower temperature than the workpiece, there is little corrosion due to reactive gas (hydrogen halide gas, etc.), and high-purity graphite can be obtained.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明による黒鉛高純度化装置の全体構成図である。1 is an overall configuration diagram of a graphite purification apparatus according to the present invention. 本発明における中空共鳴容器内の電界強度分布図である。It is an electric field strength distribution map in the hollow resonance container in the present invention. 特許文献1の装置の模式図である。It is a schematic diagram of the apparatus of patent document 1. FIG.

符号の説明Explanation of symbols

1 ワーク(黒鉛材料)、2 マイクロ波、3 反応性ガス、9共鳴空間、
10 中空共鳴容器、10a 中空胴部、10b 底板、10c 上蓋、
11 ワーク支持台、12 マイクロ波供給装置、
12a マイクロ波発生装置、12b 導波管、13 反射電力計、
14 ガス流通装置、14a 供給管、14b 排気管、
15a ガス供給装置、15b ガス排気装置、
16 壁駆動装置、16a 底板駆動装置、16b 上蓋駆動装置、
18 共鳴制御装置
1 work (graphite material), 2 microwave, 3 reactive gas, 9 resonance space,
10 hollow resonance vessel, 10a hollow body, 10b bottom plate, 10c upper lid,
11 Work support base, 12 Microwave supply device,
12a microwave generator, 12b waveguide, 13 reflection wattmeter,
14 gas distribution device, 14a supply pipe, 14b exhaust pipe,
15a gas supply device, 15b gas exhaust device,
16 wall drive device, 16a bottom plate drive device, 16b upper lid drive device,
18 Resonance control device

Claims (5)

内部でマイクロ波が共鳴可能な共鳴空間を有し、黒鉛材料からなるワークを収容可能であり、マイクロ波の吸収が少ない材料からなる中空共鳴容器と、
該中空共鳴容器内に所定の周波数のマイクロ波を供給するマイクロ波供給装置と、
前記中空共鳴容器内に不純物を反応除去するための反応性ガスを流通させるガス流通装置とを備えた、ことを特徴とする黒鉛高純度化装置。
A hollow resonant container made of a material having a resonance space in which microwaves can resonate inside, capable of accommodating a workpiece made of graphite material, and less absorbing microwaves;
A microwave supply device for supplying microwaves of a predetermined frequency into the hollow resonant container;
A graphite purification apparatus, comprising: a gas flow device for circulating a reactive gas for reaction removal of impurities in the hollow resonance vessel.
前記中空共鳴容器は、前記共鳴空間の形状を変化させマイクロ波の共鳴状態を形成するための可動壁と、前記ワークを共鳴状態におけるマイクロ波強度の高い領域内に保持するためのワーク支持台とを有し、
さらに、前記可動壁を前記共鳴空間の形状を変化させるために移動する壁駆動装置を備える、ことを特徴とする請求項1に記載の黒鉛高純度化装置。
The hollow resonance container includes a movable wall for changing the shape of the resonance space to form a microwave resonance state, and a workpiece support base for holding the workpiece in a region having a high microwave intensity in the resonance state. Have
The graphite purification apparatus according to claim 1, further comprising a wall driving device that moves the movable wall to change a shape of the resonance space.
前記マイクロ波供給装置は、所定の周波数のマイクロ波を発生するマイクロ波発生装置と、
発生したマイクロ波を前記中空共鳴容器内に供給する導波管と、
該導波管に取付けられ、中空共鳴容器から反射されるマイクロ波強度を計測する反射電力計とを備える、ことを特徴とする請求項2に記載の黒鉛高純度化装置。
The microwave supply device is a microwave generator for generating microwaves of a predetermined frequency;
A waveguide for supplying the generated microwave into the hollow resonant container;
The graphite purification apparatus according to claim 2, further comprising: a reflection wattmeter that is attached to the waveguide and measures a microwave intensity reflected from the hollow resonance container.
前記反射電力計の出力信号を受信し前記壁駆動装置を制御する共鳴制御装置を備え、
該共鳴制御装置により前記出力信号が最小となる位置に前記可動壁を移動させる、ことを特徴とする請求項3に記載の黒鉛高純度化装置。
A resonance control device for receiving the output signal of the reflected wattmeter and controlling the wall driving device;
The graphite purifying apparatus according to claim 3, wherein the resonance control device moves the movable wall to a position where the output signal is minimized.
内部でマイクロ波が共鳴可能な共鳴空間を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器内に黒鉛材料からなるワークを収容し、
該中空共鳴容器内に所定の周波数のマイクロ波を供給してマイクロ波の共鳴状態を形成し、
かつ前記ワークを共鳴状態におけるマイクロ波強度の高い領域内に保持し、
前記中空共鳴容器内に不純物を反応除去するための反応性ガスを流通させる、ことを特徴とする黒鉛高純度化方法。
It has a resonance space where microwaves can resonate inside, and a work made of graphite material is accommodated in a hollow resonance vessel made of a material that absorbs less microwaves.
A microwave resonance state is formed by supplying a microwave of a predetermined frequency into the hollow resonance vessel,
And holding the workpiece in a region of high microwave intensity in a resonance state,
A method for purifying graphite, wherein a reactive gas for reaction removal of impurities is circulated in the hollow resonance vessel.
JP2007166540A 2007-06-25 2007-06-25 Apparatus and method for highly purifying graphite Pending JP2009001469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166540A JP2009001469A (en) 2007-06-25 2007-06-25 Apparatus and method for highly purifying graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166540A JP2009001469A (en) 2007-06-25 2007-06-25 Apparatus and method for highly purifying graphite

Publications (2)

Publication Number Publication Date
JP2009001469A true JP2009001469A (en) 2009-01-08
JP2009001469A5 JP2009001469A5 (en) 2010-04-30

Family

ID=40318290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166540A Pending JP2009001469A (en) 2007-06-25 2007-06-25 Apparatus and method for highly purifying graphite

Country Status (1)

Country Link
JP (1) JP2009001469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495517B1 (en) 2013-07-01 2015-02-26 한국지질자원연구원 Heating Device using during carbothermal reduction of ghraphitizion processing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298095A (en) * 1988-05-27 1989-12-01 Canon Inc Production of diamondlike carbon film
JPH07106063A (en) * 1993-10-05 1995-04-21 Denki Kogyo Co Ltd Microwave induction heating equipment
JP2005108449A (en) * 2003-09-26 2005-04-21 Toyota Central Res & Dev Lab Inc Microwave heating device
JP2006143573A (en) * 2004-10-21 2006-06-08 Nippon Steel Chem Co Ltd Furnace for highly purifying graphite material and method of highly purifying graphite material
WO2006101084A1 (en) * 2005-03-23 2006-09-28 Bridgestone Corporation Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber
JP2009001468A (en) * 2007-06-25 2009-01-08 Ihi Corp Apparatus and method for producing highly functional carbon fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298095A (en) * 1988-05-27 1989-12-01 Canon Inc Production of diamondlike carbon film
JPH07106063A (en) * 1993-10-05 1995-04-21 Denki Kogyo Co Ltd Microwave induction heating equipment
JP2005108449A (en) * 2003-09-26 2005-04-21 Toyota Central Res & Dev Lab Inc Microwave heating device
JP2006143573A (en) * 2004-10-21 2006-06-08 Nippon Steel Chem Co Ltd Furnace for highly purifying graphite material and method of highly purifying graphite material
WO2006101084A1 (en) * 2005-03-23 2006-09-28 Bridgestone Corporation Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber
JP2009001468A (en) * 2007-06-25 2009-01-08 Ihi Corp Apparatus and method for producing highly functional carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495517B1 (en) 2013-07-01 2015-02-26 한국지질자원연구원 Heating Device using during carbothermal reduction of ghraphitizion processing apparatus

Similar Documents

Publication Publication Date Title
CN100338976C (en) Plasma-assisted process in production line
JP5408605B2 (en) Nanoparticle production apparatus and nanoparticle production method
US5464159A (en) Method for the contamination-free size reduction of semiconductor material, especially silicon
JP2010073655A (en) Temperature adjustment mechanism and plasma treatment device
JP2007059318A (en) Plasma generator
EP2684846A2 (en) Method for producing silicon using microwave, and microwave reduction furnace
JP5029949B2 (en) Apparatus and method for producing highly functional carbon fiber
JP2009001469A (en) Apparatus and method for highly purifying graphite
CN107195524B (en) Plasma processing apparatus, method of plasma processing and the method for manufacturing electronic device
TW200826750A (en) Microwave plasma treatment apparatus, one-body type slot forming member, manufacturing method and method of use for microwave plasma treatment device
JP4926444B2 (en) Graphite material high purity treatment furnace and graphite material high purity treatment method
JP5140916B2 (en) Photochemical treatment apparatus and photochemical treatment method
JP5415285B2 (en) Silicon purification equipment
WO2016021173A1 (en) Microwave composite heating furnace
US8761214B2 (en) Apparatus for stabilizing second harmonic pulse output in a laser system operating by pulses
JP2007317908A (en) Cleaning apparatus
JP5155708B2 (en) Method for hydrogen reduction of chlorosilane-containing gas and apparatus for hydrogen reduction of chlorosilanes
JP6183692B2 (en) Heat treatment equipment
CN101076221A (en) Multiple radiation sources plasma generating and processing
JP2011110446A (en) Treatment apparatus of organic waste liquid, and treatment method of organic waste liquid
JP2005108449A (en) Microwave heating device
JP2007260537A (en) Photochemical treatment device
JP2007152323A (en) Reactor system
JP2005072468A (en) Heat treatment apparatus of semiconductor wafer
JP2007090203A (en) Chemical reaction apparatus heated by microwave

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130930