JP2008513339A5 - - Google Patents

Download PDF

Info

Publication number
JP2008513339A5
JP2008513339A5 JP2007532541A JP2007532541A JP2008513339A5 JP 2008513339 A5 JP2008513339 A5 JP 2008513339A5 JP 2007532541 A JP2007532541 A JP 2007532541A JP 2007532541 A JP2007532541 A JP 2007532541A JP 2008513339 A5 JP2008513339 A5 JP 2008513339A5
Authority
JP
Japan
Prior art keywords
reactor
hydrogen
metal layer
catalyst bed
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007532541A
Other languages
Japanese (ja)
Other versions
JP2008513339A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2005/033295 external-priority patent/WO2006034103A1/en
Publication of JP2008513339A publication Critical patent/JP2008513339A/en
Publication of JP2008513339A5 publication Critical patent/JP2008513339A5/ja
Pending legal-status Critical Current

Links

Claims (17)

a) 水素生成供給原料から水素ガスを含む反応生成物を生成するように適合された触媒床
を含む反応チャンバー;および
b) 触媒床からの反応生成物を受け、反応生成物を(1)水素を含む生成物流および(2)副生成物流に分離するように適合された少なくとも1つの水素選択性水素透過性ガス分離モジュール
を含む反応器であって、
該ガス分離モジュールは、
(i) 多孔質基材;
(ii) 多孔質基材上に重層される中間多孔質金属層;および
(iii) 中間多孔質金属層上に重層される水素選択性膜
を含む、反応器。
a) a reaction chamber comprising a catalyst bed adapted to produce a reaction product comprising hydrogen gas from a hydrogen production feed; and
b) at least one hydrogen selective hydrogen permeable gas separation adapted to receive the reaction product from the catalyst bed and to separate the reaction product into a (1) hydrogen-containing product stream and (2) a by-product stream. A reactor comprising a module,
The gas separation module comprises:
(i) a porous substrate;
(ii) an intermediate porous metal layer overlaid on the porous substrate; and
(iii) A reactor comprising a hydrogen selective membrane overlaid on an intermediate porous metal layer.
少なくとも1つの分布燃焼チャンバーが、前記触媒床と熱伝導的な関係である、請求項1記載の反応器。 The reactor of claim 1, wherein at least one distributed combustion chamber is in a thermally conductive relationship with the catalyst bed . ガス分離モジュールがチューブである、請求項1または2記載の反応器。 The reactor according to claim 1 or 2 , wherein the gas separation module is a tube . 金属水素化物前駆物質が前記反応チャンバーから前記ガス分離モジュールによって分離され、前記金属水素化物前駆物質が、前記ガス分離モジュールを透過する水素と反応して金属水素化物を形成するように配置される、請求項1〜いずれか記載の反応器。 A metal hydride precursor is separated from the reaction chamber by the gas separation module, and the metal hydride precursor is arranged to react with hydrogen permeating the gas separation module to form a metal hydride; The reactor according to any one of claims 1 to 3 . 水素選択性膜が、パラジウムまたはその銅、銀、金、白金、ルテニウム、ロジウム、イットリウム、セリウムおよびインジウムからなる群より選択される少なくとも1種類の金属との合金で形成され、多孔質基材が、多孔質のセラミック基材またはステンレス鋼、クロムおよびニッケルを含む合金、ニッケル系合金、ならびにクロム、ニッケルおよびモリブデンを含む合金からなる群より選択される多孔質金属基材である、請求項1〜いずれか記載の反応器。 A hydrogen-selective membrane is formed of palladium or an alloy thereof with at least one metal selected from the group consisting of copper, silver, gold, platinum, ruthenium, rhodium, yttrium, cerium and indium; A porous ceramic substrate or a porous metal substrate selected from the group consisting of stainless steel, alloys containing chromium and nickel, nickel-based alloys, and alloys containing chromium, nickel and molybdenum. 4. The reactor according to any one of the above . 中間多孔質金属層がパラジウムまたはパラジウムおよびIB族金属を含む、請求項1〜いずれか記載の反応器。 Intermediate porous metal layer includes palladium or palladium and a Group IB metal, a reactor in accordance with claim 1-5. 中間多孔質金属層が、パラジウムおよびIB族金属の交互の層を含む、請求項1〜いずれか記載の反応器。 The reactor according to any of claims 1 to 6 , wherein the intermediate porous metal layer comprises alternating layers of palladium and group IB metals . 中間多孔質金属層が1マイクロメートル〜10マイクロメートルの平均厚さを有する、請求項1〜いずれか記載の反応器。 The reactor according to any one of claims 1 to 7 , wherein the intermediate porous metal layer has an average thickness of 1 micrometer to 10 micrometers . 中間多孔質金属層の平均孔径が多孔質基材の平均孔径未満である、請求項1〜いずれか記載の反応器。 The reactor according to any one of claims 1 to 8 , wherein the average pore size of the intermediate porous metal layer is less than the average pore size of the porous substrate . セラミックの層が、多孔質基材上に重層され、かつ中間多孔質金属層の下にある、請求項1〜いずれか記載の反応器。 Ceramic layers are layered on a porous substrate, and the bottom of the intermediate porous metal layer, the reactor in accordance with claim 1-9. 多孔質基材の表面が酸化される、請求項1〜10いずれか記載の反応器。 A surface of the porous substrate is oxidized, the reactor in accordance with claim 1-10. 多孔質基材の表面を水素選択性金属の核でシードする、請求項1〜11いずれか記載の反応器。 To seed the surface of the porous substrate in the nucleus of the hydrogen-selective metal, the reactor in accordance with claim 1-11. 反応器が水蒸気改質反応器であり、触媒床が水蒸気改質触媒床である、請求項1記載の反応器。   The reactor of claim 1, wherein the reactor is a steam reforming reactor and the catalyst bed is a steam reforming catalyst bed. 反応器が脱水素反応器であり、触媒床が脱水素触媒床である、請求項1記載の反応器。   The reactor of claim 1, wherein the reactor is a dehydrogenation reactor and the catalyst bed is a dehydrogenation catalyst bed. (a) 水素および二酸化炭素とより少ない量の一酸化炭素との混合物を生成させるための改質触媒を含む水蒸気改質反応チャンバー内で、200℃〜700℃の温度および約0.1MPa〜約20MPaの圧力で、水蒸気を水素生成供給原料と反応させること;および
(b) 水素選択性水素透過性ガス分離モジュールを用い、前記反応チャンバーならびに前記二酸化炭素および前記一酸化炭素から水素を分離することを含み;ここで、ガス分離モジュールは、
(i) 多孔質基材;
(ii) 前記多孔質基材上に重層される中間多孔質金属層;および
(iii) 中間多孔質金属層上に重層される水素選択性膜
を含む、水素の生成のための水蒸気改質方法。
(a) in a steam reforming reaction chamber containing a reforming catalyst to produce a mixture of hydrogen and carbon dioxide and a smaller amount of carbon monoxide, at a temperature of 200 ° C. to 700 ° C. and about 0.1 MPa to about 2 Reacting water vapor with the hydrogen production feed at a pressure of 0 MPa; and
(b) using a hydrogen selective hydrogen permeable gas separation module and comprising separating hydrogen from the reaction chamber and the carbon dioxide and the carbon monoxide; wherein the gas separation module comprises:
(i) a porous substrate;
(ii) an intermediate porous metal layer overlaid on the porous substrate; and
(iii) A steam reforming method for producing hydrogen, comprising a hydrogen-selective membrane layered on an intermediate porous metal layer.
請求項1〜14いずれか記載の反応器を使用する、請求項15記載の方法。The process according to claim 15, wherein the reactor according to claim 1 is used. 請求項1記載の反応器を含む一体型水蒸気改質反応器-水素燃料電池であって、水素を含有する生成物流が反応器から該水素燃料電池のアノード区画に送達され、反応器からの副生成物流が該水素燃料電池のカソード区画に送達される、水素燃料電池。   An integrated steam reforming reactor-hydrogen fuel cell comprising a reactor according to claim 1, wherein a product stream containing hydrogen is delivered from the reactor to the anode compartment of the hydrogen fuel cell, and a substream from the reactor. A hydrogen fuel cell, wherein the product stream is delivered to the cathode compartment of the hydrogen fuel cell.
JP2007532541A 2004-09-21 2005-09-19 Reactor and method for steam reforming Pending JP2008513339A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61168204P 2004-09-21 2004-09-21
PCT/US2005/033295 WO2006034103A1 (en) 2004-09-21 2005-09-19 Reactor and process for steam reforming

Publications (2)

Publication Number Publication Date
JP2008513339A JP2008513339A (en) 2008-05-01
JP2008513339A5 true JP2008513339A5 (en) 2008-10-30

Family

ID=35677491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007532541A Pending JP2008513339A (en) 2004-09-21 2005-09-19 Reactor and method for steam reforming

Country Status (7)

Country Link
EP (1) EP1791631A1 (en)
JP (1) JP2008513339A (en)
AU (1) AU2005286955B2 (en)
CA (1) CA2580279A1 (en)
NO (1) NO20071531L (en)
TW (1) TW200624376A (en)
WO (1) WO2006034103A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPG20060028A1 (en) * 2006-04-18 2006-07-18 Leonardo Valentini EQUIPMENT FOR THE THERMO-PHYSICAL CATALYTIC DETACHMENT OF THE LIQUID AMMONIA IN THE NITROGEN AND HYDROGEN CONSTITUENTS IN THE GASEOUS STATE
JP4805735B2 (en) * 2006-06-29 2011-11-02 Jx日鉱日石エネルギー株式会社 Indirect internal reforming type solid oxide fuel cell
JP4805736B2 (en) * 2006-06-29 2011-11-02 Jx日鉱日石エネルギー株式会社 Indirect internal reforming type solid oxide fuel cell
CA2678274A1 (en) 2007-02-20 2008-10-02 Shell Internationale Research Maatschappij B.V. A gas separation membrane system and a method of preparing or reconditioning and the use thereof
US8048199B2 (en) * 2007-02-20 2011-11-01 Shell Oil Company Method of making a leak stable gas separation membrane system
FR2914395B1 (en) * 2007-03-30 2009-11-20 Inst Francais Du Petrole NEW COMPACT EXCHANGER REACTOR USING A POROUS BURNER
WO2008124062A1 (en) 2007-04-05 2008-10-16 Worcester Polytechnic Institute Composite structures with porous anodic oxide layers and methods of fabrication
EP2103586A1 (en) 2008-03-20 2009-09-23 Bp Oil International Limited Process for converting methane into ethane in a membrane reactor
WO2011075845A1 (en) * 2009-12-22 2011-06-30 Airscience Technologies System and process for the production of hydrogen from raw gas using a nanoparticle ceria based catalyst
CN102821831B (en) * 2010-03-26 2015-03-25 国际壳牌研究有限公司 Method and device for forming a supported gas separation membrane
US8652239B2 (en) 2010-05-03 2014-02-18 Worcester Polytechnic Institute High permeance sulfur tolerant Pd/Cu alloy membranes
KR101418194B1 (en) 2010-12-01 2014-07-31 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 SURFACE TREATMENT AGENT FOR Pd OR ALLOY MAINLY COMPOSED OF Pd, AND SURFACE COATING LAYER STRUCTURE OF COPPER SURFACE
JP5672548B2 (en) * 2011-04-07 2015-02-18 有限会社アイエンジ Hydrogen recovery device
JP5850329B2 (en) * 2012-02-28 2016-02-03 株式会社リコー Fluid purification device
DE102012016561B4 (en) * 2012-08-22 2019-05-16 Airbus Defence and Space GmbH Aircraft fuel cell system and use thereof
WO2017146589A1 (en) * 2016-02-25 2017-08-31 Hydrogen Mem-Tech As Hydrogen production from natural gas in combination with injection of co2 for enhanced oil recovery
US20200406212A1 (en) * 2017-12-08 2020-12-31 Haldor Topsøe A/S System and process for synthesis gas production
US11492255B2 (en) 2020-04-03 2022-11-08 Saudi Arabian Oil Company Steam methane reforming with steam regeneration
US11322766B2 (en) 2020-05-28 2022-05-03 Saudi Arabian Oil Company Direct hydrocarbon metal supported solid oxide fuel cell
US11639290B2 (en) 2020-06-04 2023-05-02 Saudi Arabian Oil Company Dry reforming of methane with carbon dioxide at elevated pressure
US11492254B2 (en) * 2020-06-18 2022-11-08 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11583824B2 (en) 2020-06-18 2023-02-21 Saudi Arabian Oil Company Hydrogen production with membrane reformer
JP2023530358A (en) * 2020-06-18 2023-07-14 サウジ アラビアン オイル カンパニー Hydrogen production by membrane reactor
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression
WO2023162352A1 (en) * 2022-02-28 2023-08-31 日本碍子株式会社 Reactor module and separation membrane module

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217506A (en) * 1990-08-10 1993-06-08 Bend Research, Inc. Hydrogen-permeable composite metal membrane and uses thereof
US5139541A (en) * 1990-08-10 1992-08-18 Bend Research, Inc. Hydrogen-permeable composite metal membrane
US5393325A (en) * 1990-08-10 1995-02-28 Bend Research, Inc. Composite hydrogen separation metal membrane
US5498278A (en) * 1990-08-10 1996-03-12 Bend Research, Inc. Composite hydrogen separation element and module
JPH04346824A (en) * 1991-05-21 1992-12-02 Mitsubishi Heavy Ind Ltd Hydrogen separating membrane
JPH0585702A (en) * 1991-09-30 1993-04-06 Mitsubishi Heavy Ind Ltd Production of hydrogen separation membrane
JP3117276B2 (en) * 1992-04-09 2000-12-11 三菱重工業株式会社 Hydrogen separation membrane
JP3621785B2 (en) * 1996-07-12 2005-02-16 トヨタ自動車株式会社 Hydrogen separation structure
US6152987A (en) * 1997-12-15 2000-11-28 Worcester Polytechnic Institute Hydrogen gas-extraction module and method of fabrication
JP2001286742A (en) * 2000-04-10 2001-10-16 Mitsubishi Heavy Ind Ltd Hydrogen separation membrane
JP2002219341A (en) * 2001-01-30 2002-08-06 Kobe Steel Ltd Supporting base for hydrogen-permselective membrane and hydrogen-permselective member
FR2820988B1 (en) * 2001-02-19 2003-04-25 Cie D Etudes Des Technologies COMPOSITE STRUCTURES OF SELECTIVELY HYDROGEN PERMEABLE MEMBRANES AND COMBUSTIBLE GAS PROCESSORS USING THE SAME
DE10135390A1 (en) * 2001-07-25 2003-02-20 Fraunhofer Ges Forschung Metallic solution-diffusion membrane, used for separating and purifying hydrogen for use in the electronics, metals and chemical industry, consists of a macroporous base body with a thin metallic membrane layer
JP4782423B2 (en) * 2002-09-05 2011-09-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ High purity hydrogen production apparatus and method
CA2519769A1 (en) * 2003-03-21 2004-10-07 Worcester Polytechnic Institute Composite gas separation modules having intermediate porous metal layers
ATE454203T1 (en) * 2003-05-02 2010-01-15 Worcester Polytech Inst COMPOSITE GAS SEPARATION MODULES WITH INTERMEDIATE LAYERS AT HIGH TEMPERATURE

Similar Documents

Publication Publication Date Title
JP2008513339A5 (en)
JP2008513337A5 (en)
JP2008513338A5 (en)
Iulianelli et al. Hydrogen production from ethanol via inorganic membrane reactors technology: a review
KR101807112B1 (en) A shell-and-tube type reactor for reforming natural gas and a preparation method of syngas or hydrogen gas by using the same
Tosti et al. Design and process study of Pd membrane reactors
US8747766B2 (en) Hydrogen separation membrane and permselective membrane reactor
EP1829821A1 (en) Membrane process for hydrogen production from reforming of organic products, such as hydrocarbons or alcohols
CA2920507C (en) Processes utilising selectively permeable membranes
Zhu et al. La2NiO4 tubular membrane reactor for conversion of methane to syngas
US20040101472A1 (en) Method for partial oxidation of methane using dense, oxygen selective permeation ceramic membrane
TW200619136A (en) Membrane steam reformer
Taghizadeh et al. Recent advances in membrane reactors for hydrogen production by steam reforming of ethanol as a renewable resource
Hwang et al. A multi-membrane reformer for the direct production of hydrogen via a steam-reforming reaction of methane
KR102075627B1 (en) Pd-based metal dense hydrogen permeation membrane using a Ni-based porous support with methanation catalyst function
US8128896B2 (en) Permselective membrane type reactor
Didenko et al. Pure hydrogen production by steam reforming of methane mixtures with various propane contents in a membrane reactor with the industrial nickel catalyst and a Pd–Ru alloy foil
Jazani et al. Carbon-low, renewable hydrogen production from methanol steam reforming in membrane reactors–a review
Ganguli et al. Hydrogen production using advanced reactors by steam methane reforming: a review
JP2007070165A (en) Membrane-type reactor for shift reaction
WO2007108543A1 (en) Process for producing hydrogen using permselective membrane reactor and permselective membrane reactor
JP2003137505A (en) Reactor using membrane
Lin et al. Hydrogen production from oxidative steam reforming of ethanol in a palladium–silver alloy composite membrane reactor
JP2755685B2 (en) Hydrogen production method for fuel cell
RU2497748C1 (en) Method of obtaining hydrogen