JP2008311048A - Electrode catalyst - Google Patents

Electrode catalyst Download PDF

Info

Publication number
JP2008311048A
JP2008311048A JP2007157076A JP2007157076A JP2008311048A JP 2008311048 A JP2008311048 A JP 2008311048A JP 2007157076 A JP2007157076 A JP 2007157076A JP 2007157076 A JP2007157076 A JP 2007157076A JP 2008311048 A JP2008311048 A JP 2008311048A
Authority
JP
Japan
Prior art keywords
catalyst
electrode
electrode catalyst
conductive polymer
group element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007157076A
Other languages
Japanese (ja)
Other versions
JP5251009B2 (en
Inventor
Yasuko Nishiguchi
靖子 西口
Masahiro Yamashita
全広 山下
Fuyuhiko Kubota
冬彦 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2007157076A priority Critical patent/JP5251009B2/en
Publication of JP2008311048A publication Critical patent/JP2008311048A/en
Application granted granted Critical
Publication of JP5251009B2 publication Critical patent/JP5251009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive polymer complex electrode catalyst as a non-platinum type electrode catalyst for a fuel cell excellent in oxidation/reduction catalytic activity and in durability. <P>SOLUTION: In the electrode catalyst comprising a catalyst component and a catalyst carrying material, the catalyst component contains a conductive polymer metal complex comprising a conductive polymer having repeating unit structure of at least one kind selected from the group comprising indole, isoindole, naphthopyrrole, pyrropyridine, benzimidazole, purine, carbazole, phenoxazine, and phenothiazine, and metal ions and the catalyst carrying material contains a conductor having porous structure. The electrode for the fuel cell uses the electrode catalyst. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高い酸化還元触媒活性と耐久性を示す電極触媒、及びそれを用いた燃料電池用電極に関する。   The present invention relates to an electrode catalyst exhibiting high redox catalyst activity and durability, and a fuel cell electrode using the same.

近年、エネルギー変換効率向上や環境負荷低減を目的とし、水素ガス、メタノール燃料電池、リン酸型燃料電池、固体高分子電解質型燃料電池等の実用化が検討されている。燃料電池は、水の電気分解の逆反応を利用して水素等の燃料の持っているエネルギーを直接電気エネルギーとして取り出す発電システムである。低エネルギーで効率良く酸素還元・燃料酸化を実現させる目的で触媒が用いられており、現在の主流は白金である。白金は高活性で安定性に優れていることから広く用いられているが、希少金属で高価であり、また有限資源であることから、白金使用量の低減が大きな課題となっている。   In recent years, the practical application of hydrogen gas, methanol fuel cells, phosphoric acid fuel cells, solid polymer electrolyte fuel cells, and the like has been studied for the purpose of improving energy conversion efficiency and reducing environmental impact. A fuel cell is a power generation system that uses the reverse reaction of water electrolysis to directly extract the energy of fuel such as hydrogen as electric energy. Catalysts are used for the purpose of efficiently realizing oxygen reduction and fuel oxidation with low energy, and the current mainstream is platinum. Platinum is widely used because it is highly active and excellent in stability, but it is a rare metal and expensive, and because it is a finite resource, reducing the amount of platinum used is a major issue.

白金触媒に対するアプローチとしては、白金の表面積を上げるなどの白金自体の改良、白金触媒層を薄くするなどの構造の改良、白金と他金属の複合型材料や白金以外の新規材料などの探索が挙げられる。ただ、いずれは枯渇してしまうことを考慮に入れると、白金のような貴金属を用いない触媒の開発が期待される。   Approaches to platinum catalysts include improvements to platinum itself, such as increasing the surface area of platinum, improvements to the structure, such as making the platinum catalyst layer thinner, and searching for composite materials of platinum and other metals and new materials other than platinum. It is done. However, considering that it will eventually be depleted, the development of catalysts that do not use precious metals such as platinum is expected.

白金代替として非白金金属を用いた触媒の研究が報告されており、Pd−Ti触媒では、0.5Vの時に電流密度0.1A/cm、Pd−Co−Au触媒では、0.18A/cmという良い値を示しているが、酸素還元率には優れておらず、寿命という意味でも高い耐久性は得られていない(非特許文献1)。
一方、ポリピロール−Co錯体を触媒として用いた研究も報告されている(非特許文献2)。この触媒では、0.5Vの時に電流密度0.2A/cm、酸素還元率は前記Pd触媒と比較すると大きく、出力密度は0.14W/cmと、貴金属触媒を用いた場合に匹敵する性能を示している。しかし、触媒の導電性が低いため抵抗が大きく、本来の触媒性能を発揮できていないと言える。また、耐久性に関しては100時間と、実用性を考えると不十分であると言える。
J.Am.Chem.Soc.,127,13100−13101,2005 Nature,443,63−66,2006
Research on catalysts using non-platinum metals as a substitute for platinum has been reported, with a Pd-Ti catalyst having a current density of 0.1 A / cm 2 at 0.5 V and a Pd-Co-Au catalyst having a current density of 0.18 A / cm 2 . Although a good value of cm 2 is shown, the oxygen reduction rate is not excellent, and high durability is not obtained in terms of life (Non-patent Document 1).
On the other hand, studies using polypyrrole-Co complexes as catalysts have also been reported (Non-patent Document 2). In this catalyst, the current density is 0.2 A / cm 2 at 0.5 V, the oxygen reduction rate is larger than that of the Pd catalyst, and the output density is 0.14 W / cm 2, which is comparable to that when a noble metal catalyst is used. Shows performance. However, since the conductivity of the catalyst is low, the resistance is large and it can be said that the original catalyst performance cannot be exhibited. Moreover, regarding durability, it can be said that it is insufficient when considering practicality, which is 100 hours.
J. et al. Am. Chem. Soc. , 127, 13100-13101, 2005 Nature, 443, 63-66, 2006

本発明は前記事情に着目してなされたものであり、その目的は、燃料電池用電極触媒として高い触媒活性を示し、長寿命の非白金型導電性重合体金属錯体触媒を提供することである。   The present invention has been made paying attention to the above circumstances, and an object thereof is to provide a long-life non-platinum type conductive polymer metal complex catalyst that exhibits high catalytic activity as an electrode catalyst for fuel cells. .

本発明者らは、前記課題を解決するために鋭意検討した結果、触媒成分と触媒担持材料からなる電極触媒であって、前記触媒成分がインドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン、及びフェノチアジンからなる群から選ばれた繰り返し単位構造を有する導電性重合体と金属イオンからなる導電性重合体金属錯体を含み、前記触媒担持材料が細孔構造を有する導電体を含む電極触媒が酸化還元触媒反応に有効で、例えば燃料電池用電極触媒として有用に提供できることを見出し、本発明を完成するに至った。すなわち、本発明は以下の構成よりなる。
1.触媒成分と触媒担持材料からなる電極触媒であって、触媒成分がインドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン、及びフェノチアジンからなる群から選ばれる少なくとも1種の繰り返し単位構造を有する導電性重合体と金属イオンからなる導電性重合体金属錯体を含み、触媒担持材料が細孔構造を有する導電体を含むことを特徴とする電極触媒。
2.金属イオンが、周期律表の3A族元素、4A族元素、5A族元素、6A族元素、7A族元素、8族元素、1B族元素、2B族元素、3B族元素、及び6B族元素から選ばれる少なくとも1種である前記1に記載の導電性重合体金属錯体。
3.金属イオンが、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Ru、Rh、Pd、ランタノイド系列の元素、及びアクチノイド系列の元素から選ばれる少なくとも1種である前記1に記載の導電性重合体金属錯体。
4.触媒担持材料が、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、及びカーボンフィブリルから選ばれる少なくとも1種である前記1〜3のいずれかに記載の電極触媒。
5.前記1〜4のいずれかに記載の電極触媒を用いる電極。
6.前記1〜4のいずれかに記載の電極触媒を用いる燃料電池用電極。
As a result of intensive studies to solve the above problems, the inventors of the present invention are electrode catalysts comprising a catalyst component and a catalyst-supporting material, wherein the catalyst component is indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, An electroconductive polymer having a repeating unit structure selected from the group consisting of purine, carbazole, phenoxazine, and phenothiazine, and an electroconductive polymer metal complex comprising a metal ion, wherein the catalyst-supporting material has a pore structure. The present inventors have found that an electrode catalyst containing a body is effective for an oxidation-reduction catalytic reaction and can be usefully provided, for example, as an electrode catalyst for a fuel cell. That is, the present invention has the following configuration.
1. An electrode catalyst comprising a catalyst component and a catalyst-supporting material, wherein the catalyst component is at least one selected from the group consisting of indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, purine, carbazole, phenoxazine, and phenothiazine. An electrocatalyst comprising a conductive polymer having a repeating unit structure and a conductive polymer metal complex composed of metal ions, and wherein the catalyst support material includes a conductor having a pore structure.
2. The metal ion is selected from 3A group element, 4A group element, 5A group element, 6A group element, 7A group element, 8 group element, 1B group element, 2B group element, 3B group element, and 6B group element of the periodic table 2. The conductive polymer metal complex as described in 1 above, which is at least one kind.
3. The metal ion is at least selected from Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Ru, Rh, Pd, a lanthanoid series element, and an actinide series element 2. The conductive polymer metal complex as described in 1 above, which is one type.
4). 4. The electrode catalyst according to any one of 1 to 3, wherein the catalyst-supporting material is at least one selected from carbon nanotubes, carbon nanohorns, carbon fibers, and carbon fibrils.
5. The electrode using the electrode catalyst in any one of said 1-4.
6). A fuel cell electrode using the electrode catalyst according to any one of 1 to 4 above.

本発明によると、酸化還元触媒反応に有効な導電性重合体金属錯体触媒が提供されるとともに、白金を用いることなく、高い酸化還元触媒活性を示し、長寿命の燃料電池用電極触媒を提供することができる。
本発明の導電性重合体金属錯体電極触媒はポリピロール金属錯体や細孔構造を持たないカーボンブラック等に担持させて調製した電極触媒と比較して高い活性と耐久性の酸化還元触媒能を示す。この機構は明確ではないが、本発明に用いる導電性重合体がポリピロールと比較して共役系が発達しており、より安定な錯体を形成できるためと考えられる。また、触媒担持材料が細孔構造を有することから、触媒の接触面積が増加し導電性が上がり、低抵抗となるためと考えられる。
According to the present invention, a conductive polymer metal complex catalyst effective for a redox catalyst reaction is provided, and a long-life electrode catalyst for a fuel cell that exhibits high redox catalyst activity without using platinum is provided. be able to.
The conductive polymer metal complex electrode catalyst of the present invention exhibits high activity and durability of redox catalytic ability as compared with an electrode catalyst prepared by supporting a polypyrrole metal complex or carbon black having no pore structure. Although this mechanism is not clear, it is considered that the conductive polymer used in the present invention has a conjugated system developed compared to polypyrrole and can form a more stable complex. In addition, since the catalyst-carrying material has a pore structure, the contact area of the catalyst is increased, the conductivity is increased, and the resistance is lowered.

以下、本発明を詳細に説明する。
本願発明の電極触媒は、触媒成分と触媒担持材料からなる電極触媒であって、触媒成分がインドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン、及びフェノチアジンからなる群から選ばれる少なくとも1種の繰り返し単位構造を有する導電性重合体と金属イオンからなる導電性重合体金属錯体を含み、触媒担持材料が細孔構造を有する導電体を含むことを特徴とする。
Hereinafter, the present invention will be described in detail.
The electrode catalyst of the present invention is an electrode catalyst comprising a catalyst component and a catalyst support material, wherein the catalyst component is a group comprising indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, purine, carbazole, phenoxazine, and phenothiazine. The conductive polymer metal complex which consists of a conductive polymer which has at least 1 sort of repeating unit structure chosen from these, and a metal ion, The catalyst support material contains the conductor which has a pore structure, It is characterized by the above-mentioned.

本発明における導電性重合体とは、インドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン、及びフェノチアジンからなる群から選ばれた繰り返し単位構造を有する導電性重合体を言う。前記導電性重合体は、特許第3837602号に記載されている方法により重合することができる。
特許第3837602号
The conductive polymer in the present invention is a conductive polymer having a repeating unit structure selected from the group consisting of indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, purine, carbazole, phenoxazine, and phenothiazine. To tell. The conductive polymer can be polymerized by the method described in Japanese Patent No. 3837602.
Japanese Patent No. 3837602

本発明における金属イオンとしては、目的に応じて適宜選択することができ、例えば、周期律表の3A族元素、4A族元素、5A族元素、6A族元素、7A族元素、8族元素、1B族元素、2B族元素、3B族元素及び6B族元素から選ばれる少なくとも1種の金属イオンが挙げられる。さらに好ましくは、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Ru、Rh、Pd、ランタノイド系列の元素、及びアクチノイド系列の元素から選ばれる少なくとも1種の金属イオンが挙げられる。特にFe、Co、Niのイオンが好ましい。   The metal ion in the present invention can be appropriately selected according to the purpose. For example, a group 3A element, group 4A element, group 5A element, group 6A element, group 7A element, group 8 element, 1B in the periodic table And at least one metal ion selected from group elements, group 2B elements, group 3B elements and group 6B elements. More preferably, at least selected from Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Ru, Rh, Pd, a lanthanoid series element, and an actinide series element One type of metal ion may be mentioned. In particular, ions of Fe, Co, and Ni are preferable.

本発明における導電性重合体金属錯体は、例えば、前記導電性重合体を塩基存在下に脱プロトン化し、得られたアニオン化された導電性重合体を前記の金属イオンの溶液に浸漬又は溶解することにより調製される。また、前記導電性重合体を前記の金属イオンの溶液に浸漬又は溶解することにより調製することもできる。
脱プロトン化を行うに際して用いられる塩基としては、例えば、リチウム、カリウム、ナトリウム、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水素化リチウム、水素化ナトリウム、水素化カルシウム、カリウムt−ブトキシド、ナトリウムエトキシド、ナトリウムメトキシド、ブチルリチウム、フェニルリチウム、リチウムジイソプロピルアミド等が挙げられる。
In the conductive polymer metal complex in the present invention, for example, the conductive polymer is deprotonated in the presence of a base, and the resulting anionized conductive polymer is immersed or dissolved in the metal ion solution. It is prepared by. It can also be prepared by immersing or dissolving the conductive polymer in the metal ion solution.
Examples of the base used for deprotonation include lithium, potassium, sodium, lithium hydroxide, potassium hydroxide, sodium hydroxide, lithium hydride, sodium hydride, calcium hydride, potassium t-butoxide, and sodium. Examples include ethoxide, sodium methoxide, butyl lithium, phenyl lithium, lithium diisopropylamide and the like.

金属イオンの溶液としては、例えば、前記金属イオンをジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の溶媒に溶解させた溶液が挙げられる。例えば、前記金属の塩酸塩、硝酸塩、硫酸塩、リン酸塩、酢酸塩等を前記の溶媒に溶解させることによって、金属イオンの溶液を得ることができる。   Examples of the metal ion solution include a solution in which the metal ion is dissolved in a solvent such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone. For example, a metal ion solution can be obtained by dissolving the metal hydrochloride, nitrate, sulfate, phosphate, acetate, and the like in the solvent.

触媒担持材料としては、細孔構造を有する導電体を用いる。例えば、細孔構造を有するカーボンナノチューブ、カーボンナノホーン、カーボンファイバー、カーボンフィブリルを用いることができる。これらはBET比表面積が大きく、カーボンブラックや黒鉛を用いた場合よりも触媒成分との接触面積が大きくなり、高い触媒活性が得られる点で好ましい。
カーボンナノチューブ、カーボンナノホーンについては、単層体のものは製法によっては半導体性のものが多くできる場合があり、精製も困難であるため、導電性を示す多層体のものを用いることが好ましい。しかし、多層体のものでも層数が多すぎると単位重量当たりの導電経路数が低下するので、直径1000nm以下、好ましくは500nm以下、より好ましくは100nm以下のカーボンナノチューブ、カーボンナノホーンが好ましい。カーボンファイバー、カーボンフィブリルについては、直径800nm以下、好ましくは400nm以下、より好ましくは100nm以下のものが好ましい。直径は透過型電子顕微鏡によって観察された画像を処理することによって求められる円相当直径で示される。
細孔構造を有する触媒担持材料のBET比表面積は、好ましくは500〜2500m/g、より好ましくは1000〜2500m/gの導電体が好ましい。BET比表面積は、常法BET法によって測定される値である。
As the catalyst support material, a conductor having a pore structure is used. For example, carbon nanotubes, carbon nanohorns, carbon fibers, and carbon fibrils having a pore structure can be used. These are preferable in that the BET specific surface area is large, the contact area with the catalyst component is larger than when carbon black or graphite is used, and high catalytic activity is obtained.
As for carbon nanotubes and carbon nanohorns, single-layered carbon nanotubes and carbon nanohorns can be made more semiconducting depending on the production method, and it is difficult to purify them. However, even when the number of layers is too large, the number of conductive paths per unit weight is lowered even in a multilayer body. Therefore, carbon nanotubes and carbon nanohorns having a diameter of 1000 nm or less, preferably 500 nm or less, more preferably 100 nm or less are preferable. As for carbon fibers and carbon fibrils, those having a diameter of 800 nm or less, preferably 400 nm or less, more preferably 100 nm or less are preferable. The diameter is indicated by a circle-equivalent diameter obtained by processing an image observed by a transmission electron microscope.
The BET specific surface area of the catalyst-carrying material having a pore structure is preferably a conductor having a BET specific surface area of preferably 500 to 2500 m 2 / g, more preferably 1000 to 2500 m 2 / g. The BET specific surface area is a value measured by a conventional BET method.

次に本発明の電極触媒の調製方法について説明する。
本発明の電極触媒は、例えば、前記の導電性重合体金属錯体を、スラリーやペースト、懸濁液にした触媒担持材料に添加し、次いでろ過、洗浄及び乾燥により調製することができる。
Next, a method for preparing the electrode catalyst of the present invention will be described.
The electrode catalyst of the present invention can be prepared, for example, by adding the conductive polymer metal complex to a catalyst support material in a slurry, paste, or suspension, followed by filtration, washing, and drying.

本発明の電極触媒を用いた触媒層付ガス拡散層電極の作製方法の一例について説明する。
ナフィオンなどのプロトン伝導性ポリマー溶液に、前記手法により調製した電極触媒に少量の超純水及びイソプロパノールを加え、均一になるまで攪拌し、電極触媒ペーストを調製する。この電極触媒ペーストをカーボンペーパーに金属付着量が0.01〜0.2mg/cmになるように、より好ましくは0.05〜0.1mg/cmになるように、アプリケーターを用いて均一に塗布、乾燥することによって、カソード用もしくはアノード用の触媒層付ガス拡散層電極を作製することができる。
An example of a method for producing a gas diffusion layer electrode with a catalyst layer using the electrode catalyst of the present invention will be described.
A small amount of ultrapure water and isopropanol are added to a proton conductive polymer solution such as Nafion to the electrode catalyst prepared by the above-described method, and the mixture is stirred until uniform to prepare an electrode catalyst paste. As metal deposition amount of this electrode catalyst paste on the carbon paper is 0.01~0.2mg / cm 2, more preferably to be 0.05 to 0.1 / cm 2, uniformly using an applicator A gas diffusion layer electrode with a catalyst layer for a cathode or an anode can be produced by coating and drying the substrate.

本発明の電極触媒は、白金触媒に代わる燃料電池用電極触媒として用いることができる。
例えば、前記方法で作製した本発明の電極触媒を担持したカソード用の触媒層付ガス拡散層電極を作製し、更に同様の手法で白金触媒を担持したアノード用の触媒層付ガス拡散層電極を作製し、前記2種類の触媒層付ガス拡散層電極の間に、触媒層がプロトン交換膜に接するようにプロトン交換膜を挟み、ホットプレス機により膜電極接合体を作製し、この膜電極接合体を燃料電池セルに組み込んで、アノード側には水素ガスを、カソード側には酸素を供給することによって燃料電池を作製することができる。
The electrode catalyst of the present invention can be used as a fuel cell electrode catalyst instead of a platinum catalyst.
For example, a gas diffusion layer electrode with a catalyst layer for a cathode carrying the electrode catalyst of the present invention produced by the above-described method is produced, and a gas diffusion layer electrode with a catalyst layer for an anode carrying a platinum catalyst by the same method. A proton exchange membrane is sandwiched between the two types of gas diffusion layer electrodes with catalyst layers so that the catalyst layer is in contact with the proton exchange membrane, and a membrane electrode assembly is produced by a hot press machine. A fuel cell can be produced by incorporating a body into a fuel cell and supplying hydrogen gas to the anode side and oxygen to the cathode side.

以下に実例を用いて本発明を具体的に説明するが、本発明はもとより下記の実施例によって制限を受けるものではなく、前後記の主旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術範囲に含まれる。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. Of course, it is also possible and they are all included in the technical scope of the present invention.

(発電特性)
デュポン社製20%ナフィオン(登録商標)溶液に、調製した電極触媒と少量の超純水及びイソプロパノールを加え、均一になるまで攪拌し、触媒ペーストを調製した。この触媒ペーストを、別途疎水化した東レ製カーボンペーパーTGPH−060に金属付着量が0.1mg/cmになるようにアプリケーターを用いて均一に塗布、乾燥して、カソード用の触媒層付ガス拡散層を作製した。同様の手法で、市販の40%白金触媒担持カーボンを用いて、別途疎水化した前記カーボンペーパー上に電極触媒層を形成することで、アノード用の触媒層付ガス拡散層を作製した(0.4mg−白金/cm)。前記2種類の触媒層付ガス拡散層の間に、触媒層がプロトン交換膜に接するように膜を挟み、ホットプレス機により180℃、3分間加熱することで膜電極接合体(以下MEAと略記する場合もある)を作製した。このMEAを用い、評価用燃料電池セルに組み込んで、アノード側には水素ガスを、カソード側には酸素を供給し、セル温度80℃、常圧、水素利用率を70%、酸素利用率を40%とし、ガス加湿は水素及び酸素を85℃のバブラーを通して行い、電流−電圧特性試験を実施した。耐久性は、0.5Vの電圧をかけ、電流密度の経時変化をとることで耐久性評価を行った。
(Power generation characteristics)
The prepared electrode catalyst, a small amount of ultrapure water and isopropanol were added to a DuPont 20% Nafion (registered trademark) solution, and the mixture was stirred until uniform to prepare a catalyst paste. This catalyst paste is uniformly applied to a separately hydrophobicized Toray carbon paper TGPH-060 using an applicator so that the metal adhesion amount is 0.1 mg / cm 2 , dried, and then a gas with a catalyst layer for the cathode A diffusion layer was prepared. By using a commercially available 40% platinum catalyst-supporting carbon in the same manner, an electrode catalyst layer was formed on the carbon paper separately hydrophobized to produce a gas diffusion layer with a catalyst layer for the anode (0. 4 mg-platinum / cm < 2 >). A membrane electrode assembly (hereinafter abbreviated as MEA) is obtained by sandwiching a membrane between the two types of gas diffusion layers with a catalyst layer so that the catalyst layer is in contact with the proton exchange membrane and heating it at 180 ° C. for 3 minutes with a hot press machine. In some cases). This MEA is incorporated into an evaluation fuel cell, hydrogen gas is supplied to the anode side, oxygen is supplied to the cathode side, the cell temperature is 80 ° C., normal pressure, the hydrogen utilization rate is 70%, and the oxygen utilization rate is 40%, gas humidification was carried out with hydrogen and oxygen through a bubbler at 85 ° C., and a current-voltage characteristic test was conducted. Durability was evaluated by applying a voltage of 0.5 V and taking the current density over time.

(実施例1)
イソインドール100mg、テトラn−ブチルアンモニウムパークロレート1.2gをアセトニトリル30mlに溶解し、電解液を調製した。この電解液を用いて、ネサガラスを陽極、白金を陰極として定電位法(1.2V対銀/塩化銀電極)で電解重合を行ったところ、陽極板上に黒色のフィルム状生成物が得られた。次いで、前記電解液と同濃度のテトラn−ブチルアンモニウムパークロレート/アセトニトリル溶液中で脱ドーピングを行い、その後電極よりフィルムを剥離し、すり鉢を用いて粉末状に粉砕し、脱ドーピングしたポリイソインドール粉末を得た。予め、モレキュラーシーブス、水素化カルシウムで乾燥、蒸留したジメチルスルホキシド50mlにカリウムt−ブトキシド150mgを溶解し塩基溶液を調製した。この塩基溶液に前記の脱ドーピングしたポリイソインドール粉末を添加し、窒素雰囲気下、50℃で3時間攪拌し、脱プロトン化を行った。脱プロトン化ポリインドール粉末をろ過し、ジメチルスルホキシドに引き続いてアセトンで洗浄し、真空乾燥した。予め、モレキュラーシーブス、水素化カルシウムで乾燥、蒸留したジメチルスルホキシド50mlに硝酸コバルト280mgを溶解させ、これに前記の脱プロトン化したポリイソインドール粉末を添加し、窒素雰囲気下、50℃で3時間攪拌し、ポリイソインドール−コバルト錯体を得た。得られたポリインドール金属錯体の粉末をろ過し、ジメチルスルホキシド、アセトンの順に洗浄し、真空乾燥した。
得た導電性重合体金属錯体を、触媒担持材料として用いるカーボンナノチューブ(平均直径:75nm、BET比表面積:1200m/g)を分散させた懸濁液に含浸させ、ろ過、水洗を行い、100℃で乾燥させ、電極触媒を調製した。これを用い、前記手法によりMEAを作製し、3時間後、500時間後、及び1000時間後の発電特性を評価した。その結果を表1に示す。
Example 1
An electrolyte was prepared by dissolving 100 mg of isoindole and 1.2 g of tetra n-butylammonium perchlorate in 30 ml of acetonitrile. Using this electrolytic solution, electropolymerization was performed by the constant potential method (1.2 V vs. silver / silver chloride electrode) using nesa glass as an anode and platinum as a cathode, and a black film-like product was obtained on the anode plate. It was. Next, dedoping is performed in a tetra n-butylammonium perchlorate / acetonitrile solution having the same concentration as the electrolyte solution, and then the film is peeled off from the electrode, pulverized into a powder using a mortar, and then dedoped polyisoindole. A powder was obtained. A base solution was prepared by dissolving 150 mg of potassium t-butoxide in 50 ml of dimethyl sulfoxide previously dried and distilled with molecular sieves and calcium hydride. The dedoped polyisoindole powder was added to the base solution, and the mixture was stirred at 50 ° C. for 3 hours in a nitrogen atmosphere to perform deprotonation. The deprotonated polyindole powder was filtered, washed with dimethyl sulfoxide followed by acetone and vacuum dried. 280 mg of cobalt nitrate was dissolved in 50 ml of dimethyl sulfoxide previously dried and distilled with molecular sieves and calcium hydride, and the above deprotonated polyisoindole powder was added thereto, followed by stirring at 50 ° C. for 3 hours in a nitrogen atmosphere. As a result, a polyisoindole-cobalt complex was obtained. The obtained polyindole metal complex powder was filtered, washed with dimethyl sulfoxide and acetone in that order, and dried in vacuo.
The obtained conductive polymer metal complex is impregnated in a suspension in which carbon nanotubes (average diameter: 75 nm, BET specific surface area: 1200 m 2 / g) used as a catalyst supporting material are dispersed, filtered and washed with water. The electrode catalyst was prepared by drying at 0 ° C. Using this, an MEA was produced by the above method, and the power generation characteristics after 3 hours, 500 hours, and 1000 hours were evaluated. The results are shown in Table 1.

(実施例2)
実施例1と同様にし、硝酸コバルトの代わりに塩化第二鉄を加え、ポリイソインドール−鉄錯体電極触媒を得た。MEAを作製し、発電特性を評価した。その結果を表1に示す。
(実施例3)
実施例1と同様にし、硝酸コバルトの代わりに硝酸ニッケルを加え、ポリイソインドール−ニッケル錯体電極触媒を得た。MEAを作製し、発電特性を評価した。その結果を表1に示す。
(Example 2)
In the same manner as in Example 1, ferric chloride was added instead of cobalt nitrate to obtain a polyisoindole-iron complex electrode catalyst. An MEA was produced and the power generation characteristics were evaluated. The results are shown in Table 1.
(Example 3)
In the same manner as in Example 1, nickel nitrate was added instead of cobalt nitrate to obtain a polyisoindole-nickel complex electrode catalyst. An MEA was produced and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例4)
実施例1と同様にし、イソインドールの代わりにナフトピロールを用いてポリナフトピロール−コバルト錯体電極触媒を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(実施例5)
実施例1と同様にし、イソインドールの代わりにインドールを用いてポリインドール−コバルト錯体電極触媒を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
Example 4
In the same manner as in Example 1, polynaphthopyrrole-cobalt complex electrode catalyst was obtained using naphthopyrrole instead of isoindole. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.
(Example 5)
In the same manner as in Example 1, a polyindole-cobalt complex electrode catalyst was obtained using indole instead of isoindole. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.

(実施例6)
実施例1と同様にし、イソインドールの代わりにピロロピリジンを用いてポリピロロピリジン−コバルト錯体電極触媒を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(実施例7)
実施例1と同様にし、イソインドールの代わりにベンズイミダゾールを用いてポリベンズイミダゾール−コバルト錯体電極触媒を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(Example 6)
In the same manner as in Example 1, a pyrrolopyridine-cobalt complex electrode catalyst was obtained using pyrrolopyridine instead of isoindole. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.
(Example 7)
In the same manner as in Example 1, polybenzimidazole-cobalt complex electrode catalyst was obtained using benzimidazole instead of isoindole. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.

(実施例8)
実施例1と同様にし、イソインドールの代わりにプリンを用いてポリプリン−コバルト錯体電極触媒を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(実施例9)
実施例1と同様にし、イソインドールの代わりにカルバゾールを用いてポリカルバゾール−コバルト錯体電極触媒を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(Example 8)
In the same manner as in Example 1, a purine-cobalt complex electrode catalyst was obtained using purine instead of isoindole. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.
Example 9
In the same manner as in Example 1, a carbazole was used instead of isoindole to obtain a polycarbazole-cobalt complex electrode catalyst. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.

(実施例10)
実施例1と同様にし、イソインドールの代わりにフェノキサジンを用いてポリフェノキサジン−コバルト錯体電極触媒を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(実施例11)
実施例1と同様にし、イソインドールの代わりにフェノチアジンを用いてポリフェノチアジン−コバルト錯体電極触媒を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(Example 10)
In the same manner as in Example 1, a polyphenoxazine-cobalt complex electrode catalyst was obtained using phenoxazine instead of isoindole. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.
(Example 11)
In the same manner as in Example 1, a polyphenothiazine-cobalt complex electrode catalyst was obtained using phenothiazine instead of isoindole. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.

(実施例12)
実施例1と同様にし、カーボンナノチューブの代わりにカーボンナノホーン(管状部直径が約2〜3nmで、管状部長さは30nm、BET比表面積:700m/g)を用い、ポリイソインドール−コバルト錯体電極触媒を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(実施例13)
実施例1と同様にし、カーボンナノチューブの代わりにカーボンファイバー(平均直径:100nm、BET比表面積:800m/g)を用い、ポリイソインドール−コバルト錯体を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(実施例14)
実施例1と同様にし、カーボンナノチューブの代わりにカーボンフィブリル(平均直径:300nm、空隙率:75%)を用い、ポリイソインドール−コバルト錯体を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(Example 12)
A polyisoindole-cobalt complex electrode was used in the same manner as in Example 1, except that carbon nanohorns (tubular portion diameter was about 2-3 nm, tubular portion length was 30 nm, BET specific surface area: 700 m 2 / g) were used instead of carbon nanotubes. A catalyst was obtained. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.
(Example 13)
In the same manner as in Example 1, a carbon fiber (average diameter: 100 nm, BET specific surface area: 800 m 2 / g) was used in place of the carbon nanotube to obtain a polyisoindole-cobalt complex. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.
(Example 14)
In the same manner as in Example 1, carbon fibrils (average diameter: 300 nm, porosity: 75%) were used in place of carbon nanotubes to obtain a polyisoindole-cobalt complex. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.

(実施例15)
イソインドール100mg、テトラn−ブチルアンモニウムパークロレート1.2gをアセトニトリル30mlに溶解し、電解液を調製した。この電解液を用いて、ネサガラスを陽極、白金を陰極として定電位法(1.2V対銀/塩化銀電極)で電解重合を行ったところ、陽極板上に黒色のフィルム状生成物が得られた。次いで、前記電解液と同濃度のテトラn−ブチルアンモニウムパークロレート/アセトニトリル溶液中で脱ドーピングを行い、その後電極よりフィルムを剥離し、すり鉢を用いて粉末状に粉砕し、脱ドーピングしたポリイソインドール粉末を得た。予め、モレキュラーシーブス、水素化カルシウムで乾燥、蒸留したジメチルスルホキシド50mlに硝酸コバルト280mgを溶解させ、これに前記の脱ドーピングしたポリイソインドール粉末を添加し、窒素雰囲気下、50℃で3時間攪拌し、ポリイソインドール−コバルト錯体を得た。得られたポリインドール金属錯体の粉末をろ過し、ジメチルスルホキシド、アセトンの順に洗浄し、真空乾燥した。
得た導電性重合体金属錯体を、触媒担持材料として用いるカーボンナノチューブ(平均直径:75nm、BET比表面積:1200m/g)を分散させた懸濁液に含浸させ、ろ過、水洗を行い、100℃で乾燥させ、電極触媒を調製した。これを用い、前記手法によりMEAを作製し、3時間後、500時間後、及び1000時間後の発電特性を評価した。その結果を表1に示す。
(Example 15)
An electrolyte was prepared by dissolving 100 mg of isoindole and 1.2 g of tetra n-butylammonium perchlorate in 30 ml of acetonitrile. Using this electrolytic solution, electropolymerization was performed by the constant potential method (1.2 V vs. silver / silver chloride electrode) using nesa glass as an anode and platinum as a cathode, and a black film-like product was obtained on the anode plate. It was. Next, dedoping is performed in a tetra n-butylammonium perchlorate / acetonitrile solution having the same concentration as the electrolytic solution, and then the film is peeled off from the electrode, pulverized into a powder using a mortar, and then dedoped polyisoindole. A powder was obtained. 280 mg of cobalt nitrate was dissolved in 50 ml of dimethyl sulfoxide dried and distilled with molecular sieves and calcium hydride in advance, and the above-mentioned dedope polyisoindole powder was added thereto, followed by stirring at 50 ° C. for 3 hours in a nitrogen atmosphere. A polyisoindole-cobalt complex was obtained. The obtained polyindole metal complex powder was filtered, washed with dimethyl sulfoxide and acetone in that order, and dried in vacuo.
The obtained conductive polymer metal complex is impregnated in a suspension in which carbon nanotubes (average diameter: 75 nm, BET specific surface area: 1200 m 2 / g) used as a catalyst support material are dispersed, filtered, washed with water, and 100 The electrode catalyst was prepared by drying at 0 ° C. Using this, an MEA was produced by the above method, and the power generation characteristics after 3 hours, 500 hours, and 1000 hours were evaluated. The results are shown in Table 1.

(実施例16)
実施例15と同様にし、イソインドールの代わりにナフトピロールを用い、ポリナフトピロール−コバルト錯体電極触媒を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(実施例17)
実施例15と同様にし、イソインドールの代わりにインドールを用い、ポリインドール−コバルト錯体を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(Example 16)
In the same manner as in Example 15, naphthopyrrole was used instead of isoindole to obtain a polynaphthopyrrole-cobalt complex electrode catalyst. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.
(Example 17)
In the same manner as in Example 15, indole was used instead of isoindole to obtain a polyindole-cobalt complex. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.

(比較例1)
イソインドール100mg、テトラn−ブチルアンモニウムパークロレート1.2gをアセトニトリル30mlに溶解し、電解液を調製した。この電解液を用いて、ネサガラスを陽極、白金を陰極として定電位法(1.2V対銀/塩化銀電極)で電解重合を行ったところ、陽極板上に黒色のフィルム状生成物が得られた。次いで、前記電解液と同濃度のテトラn−ブチルアンモニウムパークロレート/アセトニトリル溶液中で脱ドーピングを行い、その後電極よりフィルムを剥離し、すり鉢を用いて粉末状に粉砕し、脱ドーピングしたポリイソインドール粉末を得た。予め、モレキュラーシーブス、水素化カルシウムで乾燥、蒸留したジメチルスルホキシド50mlにカリウムt−ブトキシド150mgを溶解し塩基溶液を調製した。この塩基溶液に前記の脱ドーピングしたポリイソインドール粉末を添加し、窒素雰囲気下、50℃で3時間攪拌し、脱プロトン化を行った。脱プロトン化ポリインドール粉末をろ過し、ジメチルスルホキシドに引き続いてアセトンで洗浄し、真空乾燥した。予め、モレキュラーシーブス、水素化カルシウムで乾燥、蒸留したジメチルスルホキシド50mlに硝酸コバルト280mgを溶解させ、これに前記の脱プロトン化したポリイソインドール粉末を添加し、窒素雰囲気下、50℃で3時間攪拌し、ポリイソインドール−コバルト錯体を得た。得られたポリインドール金属錯体の粉末をろ過し、ジメチルスルホキシド、アセトンの順に洗浄し、真空乾燥した。
得た導電性重合体金属錯体を、触媒担持材料として用いるカーボンブラックVulcan XC72(平均粒径:30nm、BET比表面積:254m/g)を分散させた懸濁液に含浸させ、ろ過、水洗を行い、100℃で乾燥させ、電極触媒を調製した。これを用い、前記手法によりMEAを作製し、3時間後、500時間後、及び1000時間後の発電特性を評価した。その結果を表1に示す。
(Comparative Example 1)
An electrolyte was prepared by dissolving 100 mg of isoindole and 1.2 g of tetra n-butylammonium perchlorate in 30 ml of acetonitrile. Using this electrolytic solution, electropolymerization was performed by the constant potential method (1.2 V vs. silver / silver chloride electrode) using nesa glass as an anode and platinum as a cathode, and a black film-like product was obtained on the anode plate. It was. Next, dedoping is performed in a tetra n-butylammonium perchlorate / acetonitrile solution having the same concentration as the electrolyte solution, and then the film is peeled off from the electrode, pulverized into a powder using a mortar, and then dedoped polyisoindole. A powder was obtained. A base solution was prepared by dissolving 150 mg of potassium t-butoxide in 50 ml of dimethyl sulfoxide previously dried and distilled with molecular sieves and calcium hydride. The dedoped polyisoindole powder was added to the base solution, and the mixture was stirred at 50 ° C. for 3 hours in a nitrogen atmosphere to perform deprotonation. The deprotonated polyindole powder was filtered, washed with dimethyl sulfoxide followed by acetone and vacuum dried. 280 mg of cobalt nitrate was dissolved in 50 ml of dimethyl sulfoxide previously dried and distilled with molecular sieves and calcium hydride, and the above deprotonated polyisoindole powder was added thereto, followed by stirring at 50 ° C. for 3 hours in a nitrogen atmosphere. As a result, a polyisoindole-cobalt complex was obtained. The obtained polyindole metal complex powder was filtered, washed with dimethyl sulfoxide and acetone in that order, and dried in vacuo.
The obtained conductive polymer metal complex is impregnated in a suspension in which carbon black Vulcan XC72 (average particle size: 30 nm, BET specific surface area: 254 m 2 / g) used as a catalyst support material is dispersed, filtered and washed with water. And dried at 100 ° C. to prepare an electrode catalyst. Using this, an MEA was produced by the above method, and the power generation characteristics after 3 hours, 500 hours, and 1000 hours were evaluated. The results are shown in Table 1.

(比較例2)
比較例1と同様にし、イソインドールの代わりにピロールを用いて同様のポリピロール−コバルト錯体を得た。次いで、MEAを作製、発電特性を評価した。その結果を表1に示す。
(Comparative Example 2)
In the same manner as in Comparative Example 1, a similar polypyrrole-cobalt complex was obtained using pyrrole instead of isoindole. Next, an MEA was produced and power generation characteristics were evaluated. The results are shown in Table 1.

表1に示す結果の通り、本発明の細孔構造を有する導電体に担持させた導電性重合体金属錯体触媒は、従来用いられている白金触媒に代わる燃料電池用電極触媒として用いることにより、高い触媒活性を示した。さらに1000時間経過しても触媒活性は保持されており、耐久性の高い燃料電池用電極触媒を得ることができた。   As shown in Table 1, the conductive polymer metal complex catalyst supported on the conductor having the pore structure of the present invention is used as an electrode catalyst for a fuel cell instead of the conventionally used platinum catalyst. High catalytic activity was exhibited. Furthermore, the catalytic activity was maintained even after 1000 hours, and a highly durable electrode catalyst for a fuel cell could be obtained.

Figure 2008311048
Figure 2008311048

本発明の導電性重合体金属錯体と細孔構造を有する導電体を含む電極触媒は、高い酸化還元触媒活性と耐久性を示し、燃料電池電極用触媒として有用である。即ち、水素ガス、メタノール燃料電池、リン酸型燃料電池、固体高分子電解質型燃料電池等における電極触媒として好適に使用できる。   The electrode catalyst containing the conductive polymer metal complex of the present invention and a conductor having a pore structure exhibits high redox catalyst activity and durability, and is useful as a fuel cell electrode catalyst. That is, it can be suitably used as an electrode catalyst in hydrogen gas, methanol fuel cells, phosphoric acid fuel cells, solid polymer electrolyte fuel cells and the like.

Claims (6)

触媒成分と触媒担持材料からなる電極触媒であって、触媒成分がインドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン、及びフェノチアジンからなる群から選ばれる少なくとも1種の繰り返し単位構造を有する導電性重合体と金属イオンからなる導電性重合体金属錯体を含み、触媒担持材料が細孔構造を有する導電体を含むことを特徴とする電極触媒。   An electrode catalyst comprising a catalyst component and a catalyst-supporting material, wherein the catalyst component is at least one selected from the group consisting of indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, purine, carbazole, phenoxazine, and phenothiazine. An electrocatalyst comprising a conductive polymer having a repeating unit structure and a conductive polymer metal complex composed of metal ions, and wherein the catalyst support material includes a conductor having a pore structure. 金属イオンが、周期律表の3A族元素、4A族元素、5A族元素、6A族元素、7A族元素、8族元素、1B族元素、2B族元素、3B族元素、及び6B族元素から選ばれる少なくとも1種である請求項1に記載の電極触媒。   The metal ion is selected from 3A group element, 4A group element, 5A group element, 6A group element, 7A group element, 8 group element, 1B group element, 2B group element, 3B group element, and 6B group element of the periodic table The electrode catalyst according to claim 1, which is at least one selected from the group consisting of: 金属イオンが、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Ru、Rh、Pd、ランタノイド系列の元素、及びアクチノイド系列の元素から選ばれる少なくとも1種である請求項1に記載の電極触媒。   The metal ion is at least selected from Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Ru, Rh, Pd, a lanthanoid series element, and an actinide series element The electrode catalyst according to claim 1, which is one type. 触媒担持材料が、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、及びカーボンフィブリルから選ばれる少なくとも1種である請求項1〜3のいずれかに記載の電極触媒。   The electrode catalyst according to any one of claims 1 to 3, wherein the catalyst-supporting material is at least one selected from carbon nanotubes, carbon nanohorns, carbon fibers, and carbon fibrils. 請求項1〜4のいずれかに記載の電極触媒を用いる電極。   The electrode using the electrode catalyst in any one of Claims 1-4. 請求項1〜4のいずれかに記載の電極触媒を用いる燃料電池用電極。   The electrode for fuel cells using the electrode catalyst in any one of Claims 1-4.
JP2007157076A 2007-06-14 2007-06-14 Electrocatalyst Expired - Fee Related JP5251009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007157076A JP5251009B2 (en) 2007-06-14 2007-06-14 Electrocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157076A JP5251009B2 (en) 2007-06-14 2007-06-14 Electrocatalyst

Publications (2)

Publication Number Publication Date
JP2008311048A true JP2008311048A (en) 2008-12-25
JP5251009B2 JP5251009B2 (en) 2013-07-31

Family

ID=40238486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157076A Expired - Fee Related JP5251009B2 (en) 2007-06-14 2007-06-14 Electrocatalyst

Country Status (1)

Country Link
JP (1) JP5251009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167407A1 (en) 2018-03-02 2019-09-06 国立大学法人東北大学 Catalyst, liquid composition, electrode, catalyst electrode for electrochemical reaction, fuel cell, and air battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190609A (en) * 2005-01-07 2006-07-20 Nissan Motor Co Ltd Electrode for fuel cell
JP3837602B2 (en) * 1992-10-21 2006-10-25 東洋紡績株式会社 Method for producing conductive polymer having excellent stability
JP2008189837A (en) * 2007-02-06 2008-08-21 Toyobo Co Ltd Electroconductive polymer-metal complex and oxidation-reduction catalyst electrode using the same
JP2008192502A (en) * 2007-02-06 2008-08-21 Toyobo Co Ltd Manufacturing method of conductive polymer metal complex, and electrode catalyst using it
JP2008270176A (en) * 2007-03-28 2008-11-06 Sumitomo Chemical Co Ltd Membrane-electrode assembly and fuel cell using this

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837602B2 (en) * 1992-10-21 2006-10-25 東洋紡績株式会社 Method for producing conductive polymer having excellent stability
JP2006190609A (en) * 2005-01-07 2006-07-20 Nissan Motor Co Ltd Electrode for fuel cell
JP2008189837A (en) * 2007-02-06 2008-08-21 Toyobo Co Ltd Electroconductive polymer-metal complex and oxidation-reduction catalyst electrode using the same
JP2008192502A (en) * 2007-02-06 2008-08-21 Toyobo Co Ltd Manufacturing method of conductive polymer metal complex, and electrode catalyst using it
JP2008270176A (en) * 2007-03-28 2008-11-06 Sumitomo Chemical Co Ltd Membrane-electrode assembly and fuel cell using this

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167407A1 (en) 2018-03-02 2019-09-06 国立大学法人東北大学 Catalyst, liquid composition, electrode, catalyst electrode for electrochemical reaction, fuel cell, and air battery
KR20200138250A (en) 2018-03-02 2020-12-09 아줄 에너지 인크. Catalyst, liquid composition, electrode, catalyst electrode for electrochemical reaction, fuel cell and air cell
US11772084B2 (en) 2018-03-02 2023-10-03 AZUL Energy Inc. Catalyst, liquid composition, electrode, catalyst electrode for electrochemical reaction, fuel cell, and air battery

Also Published As

Publication number Publication date
JP5251009B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5819490B2 (en) Three-way platinum alloy catalyst
Dutta et al. Enhancements of catalyst distribution and functioning upon utilization of conducting polymers as supporting matrices in DMFCs: a review
Gangeri et al. Electrocatalytic performances of nanostructured platinum–carbon materials
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JPWO2006003950A1 (en) Composite, catalyst structure, electrode for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
JP2007099551A (en) Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell
WO2012160957A1 (en) Electrode catalyst and method for producing same
JP2010221126A (en) Catalyst carrier, catalyst body, and manufacturing method therefor
US8247521B2 (en) Acid-doped polyelectrolyte modified carbon nanotubes and their use in high temperature PEM fuel cell electrodes
Patel et al. Carbon nanotube based anodes and cathodes for microbial fuel cells
JP5251009B2 (en) Electrocatalyst
JP2005197071A (en) Membrane electrode assembly and its manufacturing method, and fuel cell using the same and its manufacturing method
JP5114657B2 (en) Process for producing conductive polymer metal complex and electrocatalyst using the same
JP6297939B2 (en) Cathode electrode structure and membrane / electrode assembly
JP2008189837A (en) Electroconductive polymer-metal complex and oxidation-reduction catalyst electrode using the same
JP2008177023A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it
JP2009001845A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP2008149485A (en) Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell
JP2009001846A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP2012099296A (en) Catalyst for fuel batteries, method of manufacturing the same, film-electrode assembly, and fuel battery
JP2008198438A (en) Polymer electrolyte fuel cell
JP2007227088A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method and treating method, and polymer electrolyte fuel cell
JP2007227064A (en) Electrode for solid polymer fuel cell, its manufacturing method and activation method, as well as solid polymer fuel cell
Alam et al. Iron Triad-Based Bimetallic M–N–C Nanomaterials as Highly Active Bifunctional Oxygen Electrocatalysts
JP2008069494A (en) Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5251009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees