JP2008270176A - Membrane-electrode assembly and fuel cell using this - Google Patents

Membrane-electrode assembly and fuel cell using this Download PDF

Info

Publication number
JP2008270176A
JP2008270176A JP2008058587A JP2008058587A JP2008270176A JP 2008270176 A JP2008270176 A JP 2008270176A JP 2008058587 A JP2008058587 A JP 2008058587A JP 2008058587 A JP2008058587 A JP 2008058587A JP 2008270176 A JP2008270176 A JP 2008270176A
Authority
JP
Japan
Prior art keywords
membrane
catalyst
group
fuel cell
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008058587A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Koshino
伸能 古志野
Hiroshi Shinoda
浩志 信田
Taiga Sakai
大雅 坂井
Shin Saito
伸 齋藤
Hideyuki Higashimura
秀之 東村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008058587A priority Critical patent/JP2008270176A/en
Publication of JP2008270176A publication Critical patent/JP2008270176A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode assembly superior in stability with low cost and a fuel cell using the same. <P>SOLUTION: This is a membrane electrode assembly having a catalyst layer including an electrode catalyst on both sides of an electrolyte membrane. At least one of the catalyst layers includes a non-precious metal based electrode catalyst and the electrolyte membrane is a hydrocarbon based electrolyte membrane. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、膜−電極接合体およびこれを用いた燃料電池に関し、さらに詳しく言えば、本発明は、非貴金属系電極触媒と炭化水素系電解質膜とを有する膜−電極接合体およびこれを用いた燃料電池に関する。   The present invention relates to a membrane-electrode assembly and a fuel cell using the same. More specifically, the present invention relates to a membrane-electrode assembly having a non-noble metal-based electrode catalyst and a hydrocarbon-based electrolyte membrane, and the same. Relates to the fuel cell.

現在、実用化に向けて開発が進められている固体高分子形燃料電池や直接メタノール型燃料電池においては、その電極触媒として白金が一般的に用いられている。しかし、白金のコストが高いことや、埋蔵量が限られているため将来的に資源が枯渇してしまうおそれがあることなどの問題がある。
白金に代替する触媒を燃料電池の電極触媒に用いた例として、例えば特許文献1には、パラジウムを電極触媒とした膜−電極接合体が記載されている。また、非特許文献1には、ルテニウムを電極触媒とした膜−電極接合体が開示されている。
しかしながら、特許文献1及び非特許文献1で開示されているような電極触媒は、いずれも貴金属であり、白金と同様に将来的な安定供給を確保することが困難であると予想される。
Currently, platinum is generally used as an electrode catalyst in solid polymer fuel cells and direct methanol fuel cells that are being developed for practical use. However, there are problems such as the high cost of platinum and the possibility that resources will be depleted in the future due to limited reserves.
As an example of using a catalyst that replaces platinum as an electrode catalyst of a fuel cell, for example, Patent Document 1 describes a membrane-electrode assembly using palladium as an electrode catalyst. Non-Patent Document 1 discloses a membrane-electrode assembly using ruthenium as an electrode catalyst.
However, the electrode catalysts as disclosed in Patent Document 1 and Non-Patent Document 1 are both noble metals, and it is expected that it is difficult to secure a stable supply in the future like platinum.

貴金属以外を電極触媒に用いた例としては、例えば、非特許文献2には、コバルト/ピロール/カーボン複合体を電極触媒とした膜−電極接合体が記載されている。また、非特許文献3には、ヘモグロビン炭化物を電極触媒とした膜−電極接合体が記載されている。   As an example of using an electrode catalyst other than the noble metal, for example, Non-Patent Document 2 describes a membrane-electrode assembly using a cobalt / pyrrole / carbon composite as an electrode catalyst. Non-Patent Document 3 describes a membrane-electrode assembly using hemoglobin carbide as an electrode catalyst.

上記の膜−電極接合体は、いずれもナフィオン膜(登録商標)に代表されるフッ素系電解質膜が使用されており、フッ素系電解質膜は、フッ素を使用する点から価格が割高となる問題があった。
また、フッ素系電解質膜は、燃料電池の部材としての使用に伴い、膜からフッ素イオンが溶出等し、膜の劣化をもたらす、又は燃料電池の膜以外の部材の腐食をもたらす等の問題があり、この膜を用いた膜−電極接合体は、未だ安定性が十分とはいえなかった。
特開2006−260909号公報 “Journal of Power Sources”,Vol.153,p.11-17(2006) “Nature”,Vol.443,p.63-66(2006) “Chemistry of Materials”,Vol.18,No.5,p.1303-1311(2006)
Each of the membrane-electrode assemblies uses a fluorine-based electrolyte membrane represented by a Nafion membrane (registered trademark), and the fluorine-based electrolyte membrane has a problem that the price is high because fluorine is used. there were.
Further, with the use of a fluorine-based electrolyte membrane as a member of a fuel cell, there is a problem that fluorine ions are eluted from the membrane to cause deterioration of the membrane or corrosion of members other than the fuel cell membrane. The membrane-electrode assembly using this membrane has not yet been sufficiently stable.
JP 2006-260909 A “Journal of Power Sources”, Vol.153, p.11-17 (2006) “Nature”, Vol.443, p.63-66 (2006) “Chemistry of Materials”, Vol.18, No.5, p.1303-1311 (2006)

本発明は、安価で、安定性に優れた膜−電極接合体、およびそれを用いた燃料電池を提供することを目的とする。   An object of the present invention is to provide a membrane-electrode assembly that is inexpensive and excellent in stability, and a fuel cell using the membrane-electrode assembly.

本発明の課題は、下記の手段によって解決された。
[1]電極触媒を含む触媒層を電解質膜の両側に備えた膜−電極接合体であって、前記触媒層の少なくとも一方が非貴金属系電極触媒を含んでおり、前記電解質膜が炭化水素系電解質膜であることを特徴とする膜−電極接合体。
[2]前記非貴金属系電極触媒が、非貴金属錯体を用いてなる電極触媒であることを特徴とする前記[1]項に記載の膜−電極接合体。
[3]前記炭化水素系電解質膜が、芳香族炭化水素系高分子電解質を含むことを特徴とする前記[1]又は[2]項に記載の膜−電極接合体。
[4]前記炭化水素系電解質膜が、プロトン伝導性を有する芳香族炭化水素系電解質膜であることを特徴とする前記[1]〜[3]のいずれか1項に記載の膜−電極接合体。
[5]前記[1]〜[4]のいずれかに1項に記載の膜−電極接合体を備えることを特徴とする燃料電池。
The problems of the present invention have been solved by the following means.
[1] A membrane-electrode assembly having a catalyst layer containing an electrode catalyst on both sides of an electrolyte membrane, wherein at least one of the catalyst layers contains a non-noble metal-based electrode catalyst, and the electrolyte membrane is a hydrocarbon type A membrane-electrode assembly, which is an electrolyte membrane.
[2] The membrane-electrode assembly according to the above [1], wherein the non-noble metal-based electrode catalyst is an electrode catalyst using a non-noble metal complex.
[3] The membrane-electrode assembly according to [1] or [2], wherein the hydrocarbon-based electrolyte membrane contains an aromatic hydrocarbon-based polymer electrolyte.
[4] The membrane-electrode junction according to any one of [1] to [3], wherein the hydrocarbon electrolyte membrane is an aromatic hydrocarbon electrolyte membrane having proton conductivity. body.
[5] A fuel cell comprising the membrane-electrode assembly according to any one of [1] to [4].

本発明の膜−電極接合体は、非貴金属系電極触媒と炭化水素系電解質膜とを用いることで、膜−電極接合体の製造コストを大幅に削減することができ、安定性に優れる。よって、該接合体を用いた燃料電池は、コストを抑えることができ、しかも安定性に優れる。   The membrane-electrode assembly of the present invention uses a non-noble metal-based electrode catalyst and a hydrocarbon-based electrolyte membrane, so that the production cost of the membrane-electrode assembly can be greatly reduced, and the stability is excellent. Therefore, the fuel cell using the joined body can reduce the cost and is excellent in stability.

以下、本発明について詳細に説明する。
[膜−電極接合体]
本発明の膜−電極接合体(Membrane Electrode Assembly;以下、「MEA」ともいう。)は、電極触媒を含む触媒層を電解質膜の両側に備えており、前記触媒層の少なくとも一方が非貴金属系電極触媒を含んでおり、前記電解質膜が炭化水素系電解質膜であることを特徴とする。
Hereinafter, the present invention will be described in detail.
[Membrane-electrode assembly]
The membrane-electrode assembly (hereinafter also referred to as “MEA”) of the present invention includes a catalyst layer containing an electrode catalyst on both sides of an electrolyte membrane, and at least one of the catalyst layers is non-noble metal-based. An electrode catalyst is included, and the electrolyte membrane is a hydrocarbon-based electrolyte membrane.

(電極触媒)
本発明の膜−電極接合体における非貴金属系電極触媒とは、触媒成分として非貴金属元素を含まない電極触媒のことである。貴金属元素とは、理化学辞典(第5版、第3刷、1998年、岩波書店)に記載されているように、金、銀、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金をいう。したがって、本発明の非貴金属系電極触媒は、前記貴金属元素を除いた元素、つまり遷移元素及び/又は典型元素より構成される。
(Electrode catalyst)
The non-noble metal-based electrode catalyst in the membrane-electrode assembly of the present invention is an electrode catalyst that does not contain a non-noble metal element as a catalyst component. A noble metal element means gold, silver, ruthenium, rhodium, palladium, osmium, iridium, and platinum as described in the physics and chemistry dictionary (5th edition, 3rd printing, 1998, Iwanami Shoten). Therefore, the non-noble metal-based electrode catalyst of the present invention is composed of elements excluding the noble metal elements, that is, transition elements and / or typical elements.

本発明に用いる電極触媒として、カソード(酸素極、あるいは空気極)の電極触媒としては、下記の酸素還元反応に対して触媒作用を有する材料である。
2 + 4H+ +4e- → 2H2
As the electrode catalyst used in the present invention, the cathode (oxygen electrode or air electrode) electrode catalyst is a material having a catalytic action for the following oxygen reduction reaction.
O 2 + 4H + + 4e → 2H 2 O

上記反応に対して触媒作用を有する材料としては、例えば、特開2006−59578号公報、P.A.Vigato,S.Tamburini,“Coordination Chemistry Reviews”,Vol.248,p.1717-2128(2004)、Tatsuhiro Okada et al.,“Journal of Inorganic and Organometallic Polymers”,Vol.9,No.4,p.199-219(1999)等に記載されている金属錯体および金属錯体の熱処理物、特表2006−504232号公報等に記載されている金属イオン担持ポリマーの熱処理物、特開2005−161203号公報等に記載されている金属オキシナイトライド、特開2004−95263号公報、特開2005−50759号公報等に記載されている金属酸化物、特開2003−249231号公報等に記載されている難黒鉛化性炭素を主成分とする炭素材料、特開2004−330181号公報等に記載されている窒素含有活性炭化物、特開2004−362802号公報等に記載されている窒素原子及び/又はホウ素原子がドープされたカーボンアロイ微粒子などを例示することができる。   Examples of the material having a catalytic action with respect to the above reaction include, for example, JP-A No. 2006-59578, PAVigato, S. Tamburini, “Coordination Chemistry Reviews”, Vol. 248, p. 1717-2128 (2004), Tatsuhiro. Okada et al., “Journal of Inorganic and Organometallic Polymers”, Vol. 9, No. 4, p. 199-219 (1999), etc., and heat treated products of metal complexes, JP 2006-504232 A Heat treated product of metal ion-supported polymer described in Japanese Patent Application Publication No. 2005-161203, Metal Oxynitride described in Japanese Patent Application Publication No. 2005-161203, Japanese Patent Application Publication No. 2004-95263, Japanese Patent Application Publication No. 2005-50759 Metal oxides described in JP-A-2003-249231, carbon materials mainly containing non-graphitizable carbon, JP-A-2004-330181, etc. Examples thereof include nitrogen-containing activated carbides, carbon alloy fine particles doped with nitrogen atoms and / or boron atoms described in JP-A No. 2004-362802, and the like.

前記カソードの電極触媒は、触媒単独で用いてもよいし、複数の材料を組み合わせた複合材料として用いてもよい。また、その使用形態は、その機能を失わない限り特に限定されないが、カーボンブラックやカーボンナノチューブなどのカーボン担体、チタン酸化物などの耐酸性を有する金属酸化物、導電性を有する高分子などに担持させて使用すると好ましい。   The cathode electrode catalyst may be used alone or as a composite material in which a plurality of materials are combined. The form of use is not particularly limited as long as the function is not lost, but it is supported on a carbon carrier such as carbon black or carbon nanotube, an acid-resistant metal oxide such as titanium oxide, or a conductive polymer. It is preferable to use them.

前記カソードの電極触媒としては、酸素還元活性の高い材料を用いることが好ましい。このような材料としては、金属錯体、熱処理された金属錯体、金属イオン担持ポリマーの熱処理物、金属オキシナイトライド、金属酸化物が例示され、さらに好ましくは、金属錯体、金属錯体の熱処理物、金属イオン担持ポリマーの熱処理物であり、特に好ましくは、金属錯体および金属錯体の熱処理物である。   As the cathode electrode catalyst, a material having high oxygen reduction activity is preferably used. Examples of such materials include metal complexes, heat-treated metal complexes, heat-treated products of metal ion-supported polymers, metal oxynitrides, and metal oxides. More preferably, metal complexes, heat-treated products of metal complexes, metals A heat-treated product of an ion-supported polymer, particularly preferably a metal complex and a heat-treated product of a metal complex.

前記の金属錯体としては、大木道則他編「化学辞典」(第1版、1994年、東京化学同人)142頁に記載されるウェルナー錯体、同1117頁に記載される非ウェルナー錯体、高分子学会燃料電池材料研究会編「燃料電池と高分子」(共立出版、2005年11月10日発行、共立出版)の103〜112頁に記載されている金属錯体などを用いることができる。とりわけ、ピリジン、フェナントロリン、ピロール、フェノールなどの芳香環構造を有する有機化合物を配位子とする金属錯体を用いることで、触媒活性が向上することから好ましい。該金属錯体として、下記式(X−1)〜(X−15)で表される金属錯体が例示される。より好ましくは、(X−1)〜(X−12)であり、特に好ましくは、(X−1)〜(X−7)である。式中の金属錯体の配位子の水素原子は、メチル基、エチル基、ブチル基などのアルキル基、クロロ基、ブロモ基などのハロゲノ基、フェニル基、ピリジル基などの芳香族基で置換されてもよい。式中のMおよびMは非貴金属元素に属する金属原子を表す。MおよびMは、それぞれ互いに同一であっても異なっていてもよい。なお、式中、錯体の電荷は省略してある。 Examples of the metal complexes include Michinori Oki et al., “Chemical Dictionary” (1st edition, 1994, Tokyo Kagaku Dojin) page 142, Werner complex described in page 1117, Non-Werner complex described in page 1117, Polymer Society of Japan The metal complexes described in pages 103 to 112 of “Fuel Cell and Polymer” edited by Fuel Cell Material Research Group (Kyoritsu Shuppan, published on November 10, 2005, Kyoritsu Shuppan) can be used. In particular, the use of a metal complex having an organic compound having an aromatic ring structure such as pyridine, phenanthroline, pyrrole or phenol as a ligand is preferable because the catalytic activity is improved. Examples of the metal complex include metal complexes represented by the following formulas (X-1) to (X-15). More preferred are (X-1) to (X-12), and particularly preferred are (X-1) to (X-7). The hydrogen atom of the ligand of the metal complex in the formula is substituted with an alkyl group such as a methyl group, an ethyl group or a butyl group, a halogeno group such as a chloro group or a bromo group, or an aromatic group such as a phenyl group or a pyridyl group. May be. M 1 and M 2 in the formula represent a metal atom belonging to a non-noble metal element. M 1 and M 2 may be the same as or different from each other. In the formula, the charge of the complex is omitted.

Figure 2008270176
Figure 2008270176

金属錯体の熱処理物とは、前記の金属錯体を、窒素などの不活性ガス雰囲気下において熱処理された金属錯体であり、熱処理する際の温度は、好ましくは250℃以上であり、より好ましくは300℃以上、さらに好ましくは400℃以上、特に好ましくは500℃以上である。また、熱処理にかかる温度の上限は、好ましくは1500℃以下であり、より好ましくは1200℃以下、特に好ましくは1000℃以下である。熱処理を行う装置は、特に限定されるものではなく、管状炉、オーブン、ファーネス、IHホットプレート等を用いることができる。   The heat-treated product of the metal complex is a metal complex obtained by heat-treating the metal complex in an inert gas atmosphere such as nitrogen, and the temperature during the heat treatment is preferably 250 ° C. or more, more preferably 300 ° C or higher, more preferably 400 ° C or higher, particularly preferably 500 ° C or higher. Moreover, the upper limit of the temperature concerning heat processing becomes like this. Preferably it is 1500 degrees C or less, More preferably, it is 1200 degrees C or less, Most preferably, it is 1000 degrees C or less. The apparatus for performing the heat treatment is not particularly limited, and a tubular furnace, oven, furnace, IH hot plate, or the like can be used.

前記カソードの電極触媒に含まれる金属元素として、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、ニオブ、モリブデン、カドミウム、インジウム、スズ、アンチモン、テルル、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、ハフニウム、タンタル、タングステン、レニウムなどを例示することができる。   As the metal element contained in the cathode electrode catalyst, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, niobium, molybdenum, cadmium, indium, tin, antimony, Examples include tellurium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, hafnium, tantalum, tungsten, rhenium, and the like.

より好ましくは、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ハフニウム、タンタル、タングステンであり、さらに好ましくは、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、タンタル及びタングステンである。
これらの中でも、特に好ましくは、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群から選ばれる元素である。
More preferably, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, niobium, molybdenum, lanthanum, cerium, praseodymium, neodymium, samarium, hafnium, tantalum, tungsten More preferably vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, tantalum and tungsten.
Among these, an element selected from the group consisting of vanadium, chromium, manganese, iron, cobalt, nickel and copper is particularly preferable.

また、本発明に用いる電極触媒として、アノード(燃料極)の電極触媒としては、下記に示すような酸化反応に対して触媒作用を有する材料である。
(燃料として水素を使用する場合)
2 → 2H+ + 2e-
(燃料としてメタノールを使用する場合)
CH3OH + H2O → CO2 + 6H+ + 6e-
Further, as the electrode catalyst used in the present invention, the anode (fuel electrode) electrode catalyst is a material having a catalytic action for the oxidation reaction as shown below.
(When using hydrogen as fuel)
H 2 → 2H + + 2e
(When using methanol as fuel)
CH 3 OH + H 2 O → CO 2 + 6H + + 6e

アノード用燃料としては、上記に例示した水素又はメタノールに限定されるものではなく、その他にも、エタノールやプロパノールなどの炭素数2〜10のアルコール類、ジメチルエーテルやジエチルエーテルなどの炭素数2〜10のエーテル類、ギ酸やホルムアルデヒドなどの炭素数1〜5のアルデヒド類、メタンやエタン、ケロシンなどの炭素数1〜20の炭化水素、アンモニア、ヒドラジン、アンモニアボランなどの含窒素化合物などを使用することができる。   The fuel for the anode is not limited to hydrogen or methanol exemplified above, but also other alcohols having 2 to 10 carbon atoms such as ethanol and propanol, and 2 to 10 carbon atoms such as dimethyl ether and diethyl ether. Ethers, aldehydes having 1 to 5 carbon atoms such as formic acid and formaldehyde, hydrocarbons having 1 to 20 carbon atoms such as methane, ethane, and kerosene, and nitrogen-containing compounds such as ammonia, hydrazine, and ammonia borane. Can do.

アノードの電極触媒としては、上記例示した燃料の中でも、水素、アルコール類、あるいはエーテル類を用いた場合にこれらの酸化反応に対して高い触媒活性を有する材料を用いることが好ましい。このような材料としては、例えば、特開2006−59578号公報、P.A.Vigato,S.Tamburini,“Coordination Chemistry Reviews”,Vol.248,p.1717-2128(2004)、Tatsuhiro Okada et al.,“Journal of Inorganic and Organometallic Polymers”,Vol.9,No.4,p.199-219(1999)等に記載されている金属錯体および金属錯体の熱処理物、特開2004−31174号公報等に記載されている配位高分子金属錯体、特開昭60−31827号公報等に記載されている金属錯体を担持した水和酸化チタン、特表2006−504232号公報等に記載されている金属イオン担持ポリマーの熱処理物、“Electrochemical and Solid-State Letters”,Vol.9,No.3,p.A160-A162(2006)等に記載されている炭化モリブデン、特開2006−12773号公報等に記載されている炭化タングステン、特開2005−50760号公報等に記載されている金属酸化物、特開2006−120407号公報等に記載されているチタンホウ化物、特開2005−310418号公報等に記載されている遷移金属ケイ化物、特開2004−241307号公報等に記載されているヘテロポリ酸などが例示される。   As the anode electrode catalyst, it is preferable to use a material having high catalytic activity for these oxidation reactions when hydrogen, alcohols, or ethers are used among the fuels exemplified above. Examples of such a material include, for example, JP 2006-59578 A, PAVigato, S. Tamburini, “Coordination Chemistry Reviews”, Vol. 248, p. 1717-2128 (2004), Tatsuhiro Okada et al., “ Journal of Inorganic and Organometallic Polymers ”, Vol.9, No.4, p.199-219 (1999), etc., described in JP 2004-31174 A, etc. Coordination polymer metal complexes, hydrated titanium oxides supporting metal complexes described in JP-A-60-31827, etc., metal ion-supporting polymers described in JP-T-2006-504232, etc. Heat treated material, molybdenum carbide described in “Electrochemical and Solid-State Letters”, Vol. 9, No. 3, p.A160-A162 (2006), and the like, described in JP-A No. 2006-12773, etc. Tungsten carbide, JP200 Metal oxides described in JP-A-5-50760, titanium borides described in JP-A 2006-120407, transition metal silicides described in JP-A 2005-310418, etc. Examples include heteropolyacids described in Japanese Unexamined Patent Publication No. 2004-241307.

前記アノードの電極触媒は、触媒単独で用いてもよいし、複数の材料を組み合わせた複合材料として用いてもよい。また、その使用形態は、その機能を失わない限り特に限定されないが、カーボンブラックやカーボンナノチューブなどのカーボン担体、チタン酸化物などの耐酸性を有する金属酸化物、導電性を有する高分子などに担持させて使用すると好ましい。前記アノードの電極触媒に含まれる金属元素は、前記カソードの電極触媒に含まれる金属元素として説明し例示したものと同じである。   The anode electrode catalyst may be used alone or as a composite material in which a plurality of materials are combined. The form of use is not particularly limited as long as the function is not lost, but it is supported on a carbon carrier such as carbon black or carbon nanotube, an acid-resistant metal oxide such as titanium oxide, or a conductive polymer. It is preferable to use them. The metal element contained in the anode electrode catalyst is the same as described and exemplified as the metal element contained in the cathode electrode catalyst.

また、前記カソードの電極触媒およびアノードの電極触媒として例示した材料は、それぞれカソード用あるいはアノード用と限定されるものではなく、その機能を効率よく発揮できる部位に使用することが好ましい。また、カソードの電極触媒とアノードの電極触媒の両方が、非貴金属系電極触媒であることが好ましいが、本発明の趣旨を失わない限りにおいて、その一部に白金などの貴金属電極触媒を含んでいてもよく、少なくともカソード側あるいはアノード側のどちらか一方に非貴金属系電極触媒を用いることがより好ましい。触媒層中の白金量が多い場合、燃料電池作製のコストが高くなってしまうことから、触媒層中の白金量は少ない方が好ましい。触媒層中の非貴金属系電極触媒の総質量と触媒層中の非貴金属系電極触媒および白金の総質量との関係Pを、下記式(1)のように定義した場合、
P=(触媒層中の白金の総質量)/(触媒層中の非貴金属系電極触媒及び白金の総質量)式(1)
Pの値として、好ましくは0.8以下、より好ましくは0.7以下、さらに好ましくは0.6以下、特に好ましくは0.5以下である。Pの下限は0である。
Further, the materials exemplified as the cathode electrode catalyst and the anode electrode catalyst are not limited to those for the cathode and the anode, respectively, and it is preferable to use the materials for the sites where the functions can be efficiently exhibited. Further, it is preferable that both the cathode electrode catalyst and the anode electrode catalyst are non-noble metal-based electrode catalysts. However, as long as the gist of the present invention is not lost, a part thereof includes a noble metal electrode catalyst such as platinum. It is more preferable to use a non-noble metal-based electrode catalyst on at least one of the cathode side and the anode side. When the amount of platinum in the catalyst layer is large, the cost for producing the fuel cell becomes high. Therefore, it is preferable that the amount of platinum in the catalyst layer is small. When the relationship P between the total mass of the non-noble metal-based electrocatalyst in the catalyst layer and the total mass of the non-noble metal-based electrocatalyst and platinum in the catalyst layer is defined as in the following formula (1):
P = (total mass of platinum in catalyst layer) / (total mass of non-noble metal electrode catalyst and platinum in catalyst layer) Formula (1)
The value of P is preferably 0.8 or less, more preferably 0.7 or less, still more preferably 0.6 or less, and particularly preferably 0.5 or less. The lower limit of P is 0.

(電解質膜)
本発明において、炭化水素系電解質膜としては、好ましくはプロトン伝導性を有する炭化水素系電解質膜が用いられ、これは通常炭化水素系高分子電解質より構成される。ここで、「炭化水素系高分子電解質」とは、かかる元素質量組成比において、フッ素原子等のハロゲン原子含有量が25質量%以下(好ましくは0〜5質量%)である高分子電解質を意味する。該炭化水素系高分子電解質は、酸性基を有する高分子電解質または塩基性基を有する高分子電解質の、いずれも適用することが可能である。一層発電性能に優れた燃料電池が得られるため、酸性基を有する高分子電解質がより好ましい。前記酸性基としては、例えば、スルホン酸基、カルボン酸基、ホスホン酸基、ホスフィン酸基、スルホニルイミド基(−SO2NHSO2−)、フェノール性水酸基等が挙げられ、スルホン酸基またはホスホン酸基がより好ましく、スルホン酸基が特に好ましい。
(Electrolyte membrane)
In the present invention, a hydrocarbon-based electrolyte membrane having proton conductivity is preferably used as the hydrocarbon-based electrolyte membrane, which is usually composed of a hydrocarbon-based polymer electrolyte. Here, the “hydrocarbon polymer electrolyte” means a polymer electrolyte in which the content of halogen atoms such as fluorine atoms is 25% by mass or less (preferably 0 to 5% by mass) in the element mass composition ratio. To do. As the hydrocarbon-based polymer electrolyte, either a polymer electrolyte having an acidic group or a polymer electrolyte having a basic group can be applied. A polymer electrolyte having an acidic group is more preferable because a fuel cell having further excellent power generation performance can be obtained. Examples of the acidic group include a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, a phosphinic acid group, a sulfonylimide group (—SO 2 NHSO 2 —), a phenolic hydroxyl group, and the like. Groups are more preferred, and sulfonic acid groups are particularly preferred.

かかる炭化水素系高分子電解質の代表例としては、例えば(A)主鎖が脂肪族炭化水素からなる炭化水素系高分子にスルホン酸基および/またはホスホン酸基を導入した高分子電解質;(B)主鎖が芳香環を有する高分子にスルホン酸基および/またはホスホン酸基を導入した高分子電解質;(C)主鎖が、脂肪族炭化水素とシロキサン基、フォスファゼン基などの無機の単位構造からなる重合体にスルホン酸基および/またはホスホン酸基を導入した高分子電解質;(D)前記(A)〜(C)のスルホン酸基および/またはホスホン酸基導入前の高分子を構成する繰り返し単位から選ばれるいずれか2種以上の繰り返し単位からなる共重合体にスルホン酸基および/またはホスホン酸基を導入した高分子電解質;(E)主鎖あるいは側鎖に窒素原子を含む炭化水素系高分子に、硫酸やリン酸等の酸性化合物をイオン結合により導入した高分子電解質等が挙げられる。   Representative examples of such hydrocarbon polymer electrolytes include, for example, (A) a polymer electrolyte in which a sulfonic acid group and / or a phosphonic acid group are introduced into a hydrocarbon polymer whose main chain is an aliphatic hydrocarbon; ) A polymer electrolyte in which a sulfonic acid group and / or a phosphonic acid group is introduced into a polymer having an aromatic ring in the main chain; (C) an inorganic unit structure such as an aliphatic hydrocarbon, a siloxane group, or a phosphazene group in the main chain. A polymer electrolyte in which a sulfonic acid group and / or phosphonic acid group is introduced into a polymer comprising: (D) the polymer before introduction of the sulfonic acid group and / or phosphonic acid group in (A) to (C) above; A polyelectrolyte obtained by introducing a sulfonic acid group and / or a phosphonic acid group into a copolymer composed of any two or more types of repeating units selected from repeating units; The hydrocarbon polymer containing atom, polymeric electrolytes introduced by ionic bonding of the acidic compound such as sulfuric acid or phosphoric acid.

前記(A)の高分子電解質としては、例えば、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリ(α−メチルスチレン)スルホン酸が挙げられる。   Examples of the polymer electrolyte (A) include polyvinyl sulfonic acid, polystyrene sulfonic acid, and poly (α-methylstyrene) sulfonic acid.

前記(B)の高分子電解質としては、主鎖が酸素原子等のヘテロ原子で中断されているものであってもよく、例えば、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリ(アリーレン・エーテル)、ポリイミド、ポリ((4−フェノキシベンゾイル)−1,4−フェニレン)、ポリフェニレンスルフィド、ポリフェニルキノキサレン等の単独重合体のそれぞれにスルホン酸基が導入されたもの、スルホアリール化ポリベンズイミダゾール、スルホアルキル化ポリベンズイミダゾール、特開平9−110982号公報等に記載されているホスホアルキル化ポリベンズイミダゾール、J.Appl.Polym.Sci.,18,1969(1974)等に記載されているホスホン化ポリ(フェニレンエーテル)が挙げられる。   The polymer electrolyte (B) may be one in which the main chain is interrupted by a hetero atom such as an oxygen atom. For example, polyether ether ketone, polysulfone, polyether sulfone, poly (arylene ether) ), Polyimide, poly ((4-phenoxybenzoyl) -1,4-phenylene), polyphenylene sulfide, polyphenylquinoxalene and other homopolymers each having a sulfonic acid group introduced therein, sulfoarylated polybenz Imidazole, sulfoalkylated polybenzimidazole, phosphoalkylated polybenzimidazole described in JP-A-9-110882, and the like; Appl. Polym. Sci. , 18, 1969 (1974) and the like, and phosphonated poly (phenylene ether).

また、前記(C)の高分子電解質としては例えば、Polymer Prep.,41,No.1,70(2000)に記載されたポリフォスファゼンにスルホン酸基が導入されたものが挙げられ、これはホスホン酸基を有するポリシロキサンの製造方法に準じて容易に製造することができる。   Examples of the polymer electrolyte (C) include Polymer Prep. , 41, no. 1, 70 (2000), in which a sulfonic acid group is introduced into the polyphosphazene, which can be easily produced according to the method for producing a polysiloxane having a phosphonic acid group.

前記(D)の高分子電解質としては、ランダム共重合体にスルホン酸基および/またはホスホン酸基が導入されたものでも、交互共重合体にスルホン酸基および/またはホスホン酸基が導入されたものでも、ブロック共重合体にスルホン酸基および/またはホスホン酸基が導入されたものでもよい。ランダム共重合体にスルホン酸基が導入されたものとしては、例えば、特開平11−116679号公報に記載のスルホン化ポリエーテルスルホン重合体が挙げられる。   As the polymer electrolyte (D), a sulfonic acid group and / or a phosphonic acid group is introduced into a random copolymer, but a sulfonic acid group and / or a phosphonic acid group is introduced into an alternating copolymer. The sulfonic acid group and / or the phosphonic acid group may be introduced into the block copolymer. Examples of the sulfonic acid group introduced into the random copolymer include sulfonated polyethersulfone polymers described in JP-A-11-116679.

また前記(E)の高分子電解質としては、例えば、特表平11−503262号公報に記載のリン酸を含有させたポリベンズイミダゾール等が挙げられる。   Examples of the polymer electrolyte (E) include polybenzimidazole containing phosphoric acid described in JP-T-11-503262.

上記の高分子電解質の中でも、高い発電性能と耐久性を両立させるという観点から、前記の(B)又は(D)の高分子電解質が好ましい。   Among the above polymer electrolytes, the polymer electrolyte (B) or (D) is preferable from the viewpoint of achieving both high power generation performance and durability.

中でも、耐熱性やリサイクルの容易さの観点から、前記炭化水素系電解質膜が芳香族系高分子電解質を含むことが好ましい。該芳香族系高分子電解質としては、高分子鎖の主鎖に芳香環を有し、側鎖および/または主鎖に酸性基を有する高分子化合物が挙げられる。芳香族系高分子電解質は、溶媒に可溶なものが通常使用され、これらは公知の溶液キャスト法にて、容易に所望の膜厚の電解質膜を得ることができる。
これらの芳香族系高分子電解質の酸性基は、高分子の主鎖を構成している芳香族環に直接置換していても、主鎖を構成している芳香環に連結基を介して結合していても、または、それらの組み合わせであってもよい。
Among these, from the viewpoint of heat resistance and ease of recycling, it is preferable that the hydrocarbon electrolyte membrane contains an aromatic polymer electrolyte. Examples of the aromatic polymer electrolyte include a polymer compound having an aromatic ring in the main chain of the polymer chain and an acidic group in the side chain and / or the main chain. As the aromatic polymer electrolyte, those soluble in a solvent are usually used, and an electrolyte membrane having a desired film thickness can be easily obtained by a known solution casting method.
Even if the acidic group of these aromatic polyelectrolytes is directly substituted on the aromatic ring constituting the main chain of the polymer, it is bonded to the aromatic ring constituting the main chain via a linking group. Or a combination thereof.

「主鎖に芳香環を有する高分子」とは、例えば、主鎖がポリアリーレンのように、2価の芳香族基同士が連結されているものや、2価の芳香族基が、2価の基を介して連結し主鎖を構成しているものをいう。該2価の基としては、−O−、−S−、カルボニル基、スルフィニル基、スルホニル基、アミド基、エステル基、炭酸エステル基、炭素数1〜4程度のアルキレン基、炭素数1〜4程度のフッ素置換アルキレン基、炭素数2〜4程度のアルケニレン基、炭素数2〜4程度のアルキニレン基が挙げられる。また、芳香族基としては、フェニレン基、ナフタレン基、アトラセニレン基、フルオレンジイル基等の芳香族基、ピリジンジイル基、フランジイル基、チオフェンジイル基、イミダゾリル基、インドールジイル基、キノキサリンジイル基等の芳香族複素環基が挙げられる。
また、該2価の芳香族基は、前記の酸性基以外に、置換基を有していてもよく、該置換基としては、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基、炭素数6〜20のアリール基、炭素数6〜20のアリールオキシ基、ニトロ基、ハロゲン原子が挙げられる。なお、置換基としてハロゲン原子を有する場合や、前記芳香族基を連結する2価の基としてフッ素置換アルキレン基を有している場合、当該芳香族系高分子電解質の元素質量組成比で表して、ハロゲン原子が25質量%以下(好ましくは0〜5質量%)とする。
“Polymer having an aromatic ring in the main chain” means, for example, a polymer in which the main chain is connected to each other such as polyarylene or a divalent aromatic group is divalent. It is connected via the group of and constitutes the main chain. Examples of the divalent group include —O—, —S—, a carbonyl group, a sulfinyl group, a sulfonyl group, an amide group, an ester group, a carbonic acid ester group, an alkylene group having about 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms. And a fluorine-substituted alkylene group having about 2 to 4 carbon atoms, an alkenylene group having about 2 to 4 carbon atoms, and an alkynylene group having about 2 to 4 carbon atoms. In addition, aromatic groups include aromatic groups such as phenylene group, naphthalene group, atracenylene group, fluorenediyl group, pyridinediyl group, frangyl group, thiophenediyl group, imidazolyl group, indolediyl group, quinoxalinediyl group, etc. The aromatic heterocyclic group of these is mentioned.
Further, the divalent aromatic group may have a substituent in addition to the acidic group, and examples of the substituent include an alkyl group having 1 to 20 carbon atoms and an alkoxy group having 1 to 20 carbon atoms. Group, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, a nitro group, and a halogen atom. In addition, when it has a halogen atom as a substituent, or when it has a fluorine-substituted alkylene group as a divalent group linking the aromatic group, it is represented by the element mass composition ratio of the aromatic polymer electrolyte. The halogen atom is 25% by mass or less (preferably 0 to 5% by mass).

好適な芳香族系高分子電解質としては、該芳香族系高分子電解質を膜にしたとき、プロトン伝導性に寄与する酸性基を有するドメインと、機械的強度に寄与するイオン交換基を実質的に有さないドメインとを併せ持つ膜、すなわち相分離、好ましくはミクロ相分離した膜が得られるものであると好ましい。ここでいうミクロ相分離構造とは、例えば、透過型電子顕微鏡(TEM)で見た場合に、酸性基を有するブロック(A)の密度が高い微細な相(ミクロドメイン)と、イオン交換基を実質的に有さないブロック(B)の密度が高い微細な相(ミクロドメイン)とが混在し、各ミクロドメイン構造のドメイン幅すなわち恒等周期が数nm〜数百nmであるような構造を指す。好ましくは5nm〜100nmのミクロドメイン構造を有するものが挙げられる。なお、このようなミクロ相分離構造の膜を得やすい芳香族系高分子電解質としては、酸性基を有するブロックと実質的にイオン交換基を有さないブロックとをともに有するブロック共重合体あるいはグラフト共重合体であると、これらは、異種のポリマーブロック同士が化学結合で結合されていることにより、分子鎖サイズのオーダーでの微視的相分離が生じやすいことから好適に用いることができ、中でもブロック共重合体が好適である。   As a preferred aromatic polymer electrolyte, when the aromatic polymer electrolyte is used as a membrane, a domain having an acidic group contributing to proton conductivity and an ion exchange group contributing to mechanical strength are substantially included. It is preferable to obtain a membrane having both domains not possessed, that is, a phase-separated, preferably microphase-separated membrane. The microphase separation structure here means, for example, a fine phase (microdomain) having a high density of the block (A) having an acidic group and an ion exchange group when viewed with a transmission electron microscope (TEM). A structure in which fine phases (microdomains) having a high density of blocks (B) that do not substantially exist are mixed, and the domain width of each microdomain structure, that is, the identity period is several nm to several hundred nm. Point to. Those having a microdomain structure of 5 nm to 100 nm are preferable. In addition, as an aromatic polymer electrolyte that easily obtains a membrane having such a microphase separation structure, a block copolymer or graft having both a block having an acidic group and a block having substantially no ion exchange group As a copolymer, these can be preferably used because microscopic phase separation in the order of molecular chain size is likely to occur due to chemical bonds between different polymer blocks. Of these, block copolymers are preferred.

また、前記の好適なブロック共重合体において、「イオン交換基を有するブロック」とは、かかるブロックを構成する繰り返し単位1個あたりに、イオン交換基が平均0.5個以上含まれているブロックであることを意味し、繰り返し単位1個あたりで平均1.0個以上含まれているとより好ましい。一方、「イオン交換基を実質的に有しないブロック」とは、かかるブロックを構成する繰り返し単位1個あたりに、イオン交換基が平均0.5個未満であるセグメントであることを意味し、繰り返し単位1個あたりで平均0.1個以下であるとより好ましく、平均0.05個以下であるとさらに好ましい。   In the above preferred block copolymer, the “block having an ion exchange group” means a block containing an average of 0.5 or more ion exchange groups per one repeating unit constituting the block. It is more preferable that an average of 1.0 or more per repeating unit is included. On the other hand, “a block having substantially no ion exchange group” means a segment having an average of less than 0.5 ion exchange groups per repeating unit constituting such a block. The average per unit is preferably 0.1 or less, and more preferably 0.05 or less on average.

特に好適なブロック共重合体の代表例としては、例えば特開2005−126684号公報および特開2005−139432号公報に記載された芳香族ポリエーテル構造を有し、イオン交換基を有するブロックとイオン交換基を実質的に有さないブロックとからなるブロック共重合体を挙げることができるが、国際公開WO2006/95919号パンフレットに記載された酸性基を有するポリアリーレンブロックを有するブロック共重合体は、イオン伝導性と耐水性を高水準で達成する電解質膜を形成できることから、本発明の触媒層との相乗効果で、より発電性能に優れた膜−電極接合体を提供することができる。   As typical examples of particularly suitable block copolymers, for example, blocks and ions having an aromatic polyether structure described in JP-A-2005-126684 and JP-A-2005-139432 having an ion exchange group Although a block copolymer consisting of a block having substantially no exchange group can be mentioned, the block copolymer having a polyarylene block having an acidic group described in International Publication WO2006 / 95919 is, Since an electrolyte membrane that achieves ion conductivity and water resistance at a high level can be formed, a membrane-electrode assembly with more excellent power generation performance can be provided by a synergistic effect with the catalyst layer of the present invention.

前記高分子電解質の分子量は、その構造などにより最適範囲を適宜求めることができるが、GPC(ゲルパーミエイションクロマトグラフィー)法によるポリスチレン換算の数平均分子量で表して、1000〜1000000が好ましい。当該数平均分子量としては5000以上、とりわけ10000以上が好ましく、一方、500000以下、とりわけ300000以下が好ましい。   The molecular weight of the polymer electrolyte can be suitably determined within the optimum range depending on its structure and the like, and is preferably 1,000 to 1,000,000, expressed in terms of polystyrene-reduced number average molecular weight by GPC (gel permeation chromatography) method. The number average molecular weight is preferably 5,000 or more, particularly 10,000 or more, and is preferably 500,000 or less, particularly preferably 300,000 or less.

さらに、本発明の膜−電極接合体に係る炭化水素系電解質膜は、前記に例示した高分子電解質に加え、所望の特性に応じて、プロトン伝導性を著しく低下させない範囲で他の成分を含んでいてもよい。このような他の成分としては、通常の高分子に使用される可塑剤、安定剤、離型剤、保水剤等の添加剤が挙げられる。   Furthermore, the hydrocarbon-based electrolyte membrane according to the membrane-electrode assembly of the present invention contains other components in addition to the polymer electrolyte exemplified above, as long as the proton conductivity is not significantly reduced, depending on the desired properties. You may go out. Examples of such other components include additives such as plasticizers, stabilizers, mold release agents, and water retention agents that are used in ordinary polymers.

特に、燃料電池の動作中に、炭化水素系電解質膜に隣接する触媒層において過酸化物が生成し、この過酸化物が拡散しながらラジカル種に変化し、これが炭化水素系電解質膜を構成している高分子電解質を劣化させることがある。かかる不都合を回避するために、高分子電解質には、ラジカル耐性を付与し得る安定剤を添加することが好ましい。好適な添加剤としては、耐酸化性や耐ラジカル性等の化学的安定性を高めるための安定化剤が挙げられる。該安定化剤としては、例えば特開2003−201403号公報、特開2003−238678号公報、又は特開2003−282096号公報に例示されているような添加剤が挙げられる。あるいは、特開2005−38834号公報または特開2006−66391号公報に記載されているホスホン酸基含有ポリマーが挙げられる。   In particular, during the operation of the fuel cell, peroxide is generated in the catalyst layer adjacent to the hydrocarbon electrolyte membrane, and this peroxide diffuses and changes into radical species, which constitutes the hydrocarbon electrolyte membrane. May deteriorate the polymer electrolyte. In order to avoid such inconvenience, it is preferable to add a stabilizer capable of imparting radical resistance to the polymer electrolyte. Suitable additives include stabilizers for enhancing chemical stability such as oxidation resistance and radical resistance. Examples of the stabilizer include additives as exemplified in JP-A No. 2003-201403, JP-A No. 2003-238678, or JP-A No. 2003-282096. Or the phosphonic acid group containing polymer described in Unexamined-Japanese-Patent No. 2005-38834 or Unexamined-Japanese-Patent No. 2006-66391 is mentioned.

また、前記電解質膜の機械的強度を向上させる目的で、当該高分子電解質と所定の支持体とを複合化した複合膜を用いることもできる。支持体としては、フィブリル形状や多孔膜形状等の基材が挙げられる。本発明に用いる炭化水素系電解質膜として、膜厚の薄い炭化水素系電解質膜を用いることにより燃料電池の抵抗を低減できることから好ましい。好ましい膜厚としては、200μm以下であり、より好ましくは、150μm以下であり、さらに好ましくは、100μm以下であり、特に好ましくは、50μm以下である。また、炭化水素系電解質膜の膜厚が薄過ぎると、ガスのクロスリークが起こりやすくなることから、膜厚は、1μm以上が好ましく、より好ましくは、3μm以上、特に好ましくは5μm以上である。   For the purpose of improving the mechanical strength of the electrolyte membrane, a composite membrane in which the polymer electrolyte and a predetermined support are combined can be used. Examples of the support include substrates such as a fibril shape and a porous membrane shape. The use of a thin hydrocarbon-based electrolyte membrane as the hydrocarbon-based electrolyte membrane used in the present invention is preferable because the resistance of the fuel cell can be reduced. The preferred film thickness is 200 μm or less, more preferably 150 μm or less, still more preferably 100 μm or less, and particularly preferably 50 μm or less. In addition, if the thickness of the hydrocarbon-based electrolyte membrane is too thin, gas cross-leakage tends to occur. Therefore, the thickness is preferably 1 μm or more, more preferably 3 μm or more, and particularly preferably 5 μm or more.

[燃料電池]
次に、上述した膜−電極接合体を備える燃料電池の好ましい一実施態様について、添付の図面に基づいて詳細に説明する。
図1は、本発明の好適な一実施態様の燃料電池のセルについての縦断面図である。図1に示すように、燃料電池10は、膜−電極接合体20を備えている。膜−電極接合体20は、上述した炭化水素系電解質膜12(プロトン伝導膜)と、これを挟む一対の触媒層14a,14bとから構成されている。燃料電池10は、ガス拡散層16a,16b及びセパレータ18a,18bを含有しており、膜−電極接合体20の両側に、これを挟むようにガス拡散層16a,16b及びセパレータ18a,18bが順に形成されている。
[Fuel cell]
Next, a preferred embodiment of a fuel cell including the above-described membrane-electrode assembly will be described in detail with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view of a cell of a fuel cell according to a preferred embodiment of the present invention. As shown in FIG. 1, the fuel cell 10 includes a membrane-electrode assembly 20. The membrane-electrode assembly 20 includes the above-described hydrocarbon-based electrolyte membrane 12 (proton conducting membrane) and a pair of catalyst layers 14a and 14b sandwiching the membrane. The fuel cell 10 includes gas diffusion layers 16a and 16b and separators 18a and 18b, and the gas diffusion layers 16a and 16b and separators 18a and 18b are sequentially arranged on both sides of the membrane-electrode assembly 20 so as to sandwich them. Is formed.

膜−電極接合体20における炭化水素系電解質膜12に隣接する触媒層14a,14bは、燃料電池における電極層として機能する層であり、これらのいずれか一方がアノード電極層となり、他方がカソード電極層となる。かかる触媒層14a,14bとしては、上述した炭化水素系高分子電解質あるいはナフィオン(登録商標)などのフッ素系高分子電解質と、上述した電極触媒とを含む触媒組成物から形成されたものが好適である。
かかる触媒層14a,14bのうち少なくとも一方は、上述した非貴金属系電極触媒を含んでなる電極触媒であるが、両方とも当該非貴金属系電極触媒であることが好適である。また、非貴金属系電極触媒は、水素又は酸素との酸化還元反応を活性化できる貴金属系電極触媒と共に使用してもよい。該貴金属系触媒としては、白金の微粒子が好ましく、触媒層14a,14bは、活性炭や黒鉛等の粒子状または繊維状のカーボンに白金の微粒子が担持されてなるものであってもよい。
The catalyst layers 14a and 14b adjacent to the hydrocarbon-based electrolyte membrane 12 in the membrane-electrode assembly 20 are layers that function as electrode layers in the fuel cell, and either one of them serves as an anode electrode layer and the other serves as a cathode electrode. Become a layer. The catalyst layers 14a and 14b are preferably formed from a catalyst composition containing the above-described hydrocarbon polymer electrolyte or a fluorine-based polymer electrolyte such as Nafion (registered trademark) and the above-described electrode catalyst. is there.
At least one of the catalyst layers 14a and 14b is an electrode catalyst including the above-described non-noble metal-based electrode catalyst, and both are preferably the non-noble metal-based electrode catalyst. The non-noble metal electrode catalyst may be used together with a noble metal electrode catalyst capable of activating a redox reaction with hydrogen or oxygen. The noble metal catalyst is preferably platinum fine particles, and the catalyst layers 14a and 14b may be formed by supporting fine particles of platinum on particulate or fibrous carbon such as activated carbon or graphite.

ガス拡散層16a,16bは、膜−電極接合体20の両側を挟むように設けられており、触媒層14a,14bへの原料ガスの拡散を促進するものである。このガス拡散層16a,16bは、電子伝導性を有する多孔質材料により構成されるものが好ましい。例えば、多孔質性のカーボン不織布やカーボンペーパーが、原料ガスを触媒層14a,14bへ効率的に輸送することができるため、好ましい。   The gas diffusion layers 16a and 16b are provided so as to sandwich both sides of the membrane-electrode assembly 20, and promote the diffusion of the raw material gas into the catalyst layers 14a and 14b. The gas diffusion layers 16a and 16b are preferably made of a porous material having electron conductivity. For example, a porous carbon non-woven fabric or carbon paper is preferable because the raw material gas can be efficiently transported to the catalyst layers 14a and 14b.

これらの炭化水素系電解質膜12、触媒層14a,14b及びガス拡散層16a,16bから膜−電極−ガス拡散層接合体(MEGA)が構成されている。このようなMEGAは、例えば、以下に示す方法により製造することができる。
まず、高分子電解質を含む溶液と触媒とを混合して触媒組成物のスラリーを形成する。
これを、ガス拡散層16a,16bを形成するためのカーボン不織布やカーボンペーパー等の上にスプレーやスクリーン印刷方法により塗布し、溶媒等を蒸発させることで、ガス拡散層上に触媒層が形成された積層体を得る。そして、得られた一対の積層体をそれぞれの触媒層が対向するように配置するとともに、その間に炭化水素系電解質膜12を配置し、これらを圧着する。こうして、上述した構造のMEGAが得られる。なお、ガス拡散層上への触媒層の形成は、例えば、所定の基材(ポリイミド、ポリ(テトラフルオロエチレン)等)の上に触媒組成物を塗布・乾燥して触媒層を形成した後、これをガス拡散層に熱プレスで転写することにより行うこともできる。
These hydrocarbon-based electrolyte membrane 12, catalyst layers 14a and 14b, and gas diffusion layers 16a and 16b constitute a membrane-electrode-gas diffusion layer assembly (MEGA). Such MEGA can be manufactured by the method shown below, for example.
First, a solution containing a polymer electrolyte and a catalyst are mixed to form a slurry of a catalyst composition.
The catalyst layer is formed on the gas diffusion layer by applying this onto a carbon nonwoven fabric or carbon paper for forming the gas diffusion layers 16a and 16b by spraying or screen printing, and evaporating the solvent. A laminated body is obtained. And while arrange | positioning so that each catalyst layer may oppose a pair of laminated body obtained, the hydrocarbon type electrolyte membrane 12 is arrange | positioned between them, and these are crimped | bonded. Thus, MEGA having the above-described structure is obtained. In addition, the formation of the catalyst layer on the gas diffusion layer is, for example, after forming the catalyst layer by applying and drying the catalyst composition on a predetermined substrate (polyimide, poly (tetrafluoroethylene), etc.) This can also be performed by transferring to a gas diffusion layer by hot pressing.

セパレータ18a,18bは、電子伝導性を有する材料で形成されており、かかる材料としては、例えば、カーボン、樹脂モールドカーボン、チタン、ステンレス等が挙げられる。かかるセパレータ18a,18bは、触媒層14a,14b側に、燃料ガス等の流路となる溝(図示せず)が形成されていると好ましい。   Separator 18a, 18b is formed with the material which has electronic conductivity, As this material, carbon, resin mold carbon, titanium, stainless steel etc. are mentioned, for example. The separators 18a and 18b are preferably provided with grooves (not shown) serving as a flow path for fuel gas or the like on the catalyst layers 14a and 14b side.

そして、燃料電池10は、上述したようなMEGAを、一対のセパレータ18a,18bで挟み込み、これらを接合することで得ることができる。   The fuel cell 10 can be obtained by sandwiching MEGA as described above between a pair of separators 18a and 18b and joining them together.

なお、本発明の燃料電池は、必ずしも上述した構成を有するものに限られず、その趣旨を逸脱しない範囲で適宜異なる構成を有していてもよい。また、燃料電池10は、上述した構造を有するものを、ガスシール体等で封止したものであってもよい。   The fuel cell of the present invention is not necessarily limited to the above-described configuration, and may have a different configuration as long as it does not depart from the spirit of the fuel cell. The fuel cell 10 may be one having the above-described structure sealed with a gas seal body or the like.

さらに、図1に示した燃料電池セル10は、固体高分子型燃料電池の最小単位であり、一枚のセルの出力は限られているため、必要な出力が得られるように複数のセルを直列に接続して、燃料電池スタックとして実用に供することが好ましい。   Furthermore, the fuel cell 10 shown in FIG. 1 is the minimum unit of the polymer electrolyte fuel cell, and since the output of one cell is limited, a plurality of cells are arranged so that the required output can be obtained. It is preferable that they are connected in series and put to practical use as a fuel cell stack.

本発明の燃料電池は、燃料が水素である場合は固体高分子型燃料電池として、また燃料がメタノール水溶液である場合は直接メタノール型燃料電池として動作することができる。   The fuel cell of the present invention can operate as a solid polymer fuel cell when the fuel is hydrogen, and as a direct methanol fuel cell when the fuel is an aqueous methanol solution.

本発明の膜−電極接合体を備えた燃料電池は、例えば、自動車用電源、家庭用電源、携帯電話、携帯用パソコン等のモバイル機器用小型電源等として用いることができる。   The fuel cell provided with the membrane-electrode assembly of the present invention can be used as, for example, a small power source for mobile devices such as an automobile power source, a household power source, a mobile phone, and a portable personal computer.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は実施例に制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not restrict | limited to an Example.

実施例1
[非貴金属系電極触媒(A)の製造]
以下の手順に従い,非貴金属系電極触媒(A)を製造した。
(金属錯体(A)の調製)
下記反応式に示される金属錯体(A)を以下の方法で調製した。
Example 1
[Production of non-noble metal-based electrode catalyst (A)]
A non-noble metal-based electrode catalyst (A) was produced according to the following procedure.
(Preparation of metal complex (A))
A metal complex (A) represented by the following reaction formula was prepared by the following method.

Figure 2008270176
Figure 2008270176

窒素雰囲気下において0.476gの塩化コバルト6水和物と0.412gの4−tert−ブチル−2,6−ジホルミルフェノールを含んだ10mlエタノール溶液を50mlナスフラスコに入れ、室温にて攪拌した。この溶液に0.216gのo−フェニレンジアミンを5mlのエタノールに溶解させた溶液を徐々に添加した。上記混合物を2時間還流することにより茶褐色沈殿が生成した。この沈殿を濾取し、乾燥することで金属錯体(A)を得た(収量0.465g:収率63%)。なお、上記反応式において、「Cl2」とは、2当量の塩素イオンが対イオンとしてあることを示し、「2H2O」とは、2当量の水分子が他の配位子としてあることを示す。
元素分析値(%):C3638Cl2Co244として、
(計算値)C,55.47;H,4.91;N,7.19.
(実測値)C,56.34;H,4.83;N,7.23.
Under a nitrogen atmosphere, 10 ml ethanol solution containing 0.476 g cobalt chloride hexahydrate and 0.412 g 4-tert-butyl-2,6-diformylphenol was placed in a 50 ml eggplant flask and stirred at room temperature. . A solution prepared by dissolving 0.216 g of o-phenylenediamine in 5 ml of ethanol was gradually added to this solution. The mixture was refluxed for 2 hours to produce a brown precipitate. The precipitate was collected by filtration and dried to obtain a metal complex (A) (yield 0.465 g: yield 63%). In the above reaction formula, “Cl 2 ” means that 2 equivalents of chlorine ions are used as counter ions, and “2H 2 O” means that 2 equivalents of water molecules are used as other ligands. Indicates.
Elemental analysis value (%): C 36 H 38 Cl 2 Co 2 N 4 O 4
(Calculated value) C, 55.47; H, 4.91; N, 7.19.
(Measured value) C, 56.34; H, 4.83; N, 7.23.

(非貴金属系電極触媒(A)の調製)
金属錯体(A)とカーボン担体(ケッチェンブラックEC300J、商品名、ライオン社製)とを質量比1:1で混合し、エタノール中、室温にて15分間攪拌後、室温にて1.5Torr(199.983Pa)の減圧下で12時間乾燥させた。前記混合物を、石英を炉心管とする管状炉を用いて200ml/minの窒素気流下において、600℃で2時間熱処理することにより、非貴金属系電極触媒(A)を得た。
(Preparation of non-noble metal electrode catalyst (A))
A metal complex (A) and a carbon carrier (Ketjen Black EC300J, trade name, manufactured by Lion Corporation) were mixed at a mass ratio of 1: 1, stirred in ethanol at room temperature for 15 minutes, and then 1.5 Torr (at room temperature). 199.983 Pa) under reduced pressure for 12 hours. The mixture was heat-treated at 600 ° C. for 2 hours under a nitrogen flow of 200 ml / min using a tubular furnace having quartz as a furnace core tube to obtain a non-noble metal-based electrode catalyst (A).

[炭化水素系電解質膜の製造]
(高分子電解質の調製)
国際公開WO2006/095919号パンフレットの実施例1に記載の方法に準拠して、下記化学式を持つ高分子電解質を得た(ポリスチレン換算の数平均分子量:12万、ポリスチレン換算の重量平均分子量:23万)。得られた高分子電解質のイオン交換容量は2.2meq/gであった。なお、下式中、「block」は、下式化合物が、2種類のブロックそれぞれ1つ以上から構成されるブロック共重合体であることを意味する。
[Manufacture of hydrocarbon electrolyte membrane]
(Preparation of polymer electrolyte)
In accordance with the method described in Example 1 of International Publication WO2006 / 095919, a polymer electrolyte having the following chemical formula was obtained (number average molecular weight in terms of polystyrene: 120,000, weight average molecular weight in terms of polystyrene: 230,000). ). The obtained polymer electrolyte had an ion exchange capacity of 2.2 meq / g. In the following formula, “block” means that the compound of the following formula is a block copolymer composed of one or more of two types of blocks.

Figure 2008270176
Figure 2008270176

(添加剤の調製)
溶媒としてジフェニルスルホンを用い、炭酸カリウムの存在下、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシビフェニル及び4,4’−ジクロロジフェニルスルホンを4:6:10のモル比にて反応させることにより、ランダム共重合体を調製した。次いで、この共重合体に対して、特開2003−282096号公報に記載の方法に準じてブロモ化およびホスホン酸エステル化処理を行った後、更に加水分解することにより、ビフェノール構造に由来するユニット1つに対してブロモ基を約0.2個、ホスホン酸基(−P(O)(OH)2で表される基)を約1.7個含む構造を有する添加剤1を得た。
(Preparation of additives)
Diphenyl sulfone is used as a solvent, and 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxybiphenyl and 4,4′-dichlorodiphenyl sulfone are reacted at a molar ratio of 4: 6: 10 in the presence of potassium carbonate. Thus, a random copolymer was prepared. Next, the copolymer is subjected to bromination and phosphonate esterification treatment according to the method described in JP-A No. 2003-282096, and then further hydrolyzed to give a unit derived from a biphenol structure. Additive 1 having a structure containing about 0.2 bromo groups and about 1.7 phosphonic acid groups (groups represented by —P (O) (OH) 2 ) per one was obtained.

(炭化水素系電解質膜の製造)
前記で得られた高分子電解質と添加剤1を質量比で9:1に混合したものを、ジメチルスルホキシド(DMSO)に約15質量%の濃度となるように溶解させて、高分子電解質溶液を調製した。次いで、この高分子電解質溶液をガラス板上に滴下した。それから、ワイヤーコーターを用いて高分子電解質溶液をガラス板上に均一に塗り広げた。この際、ワイヤーコーターのクリアランスを変えることで、塗工厚みをコントロールした。塗布後、高分子電解質溶液を80℃で常圧乾燥した。それから、得られた膜を1N塩酸に浸漬した後、イオン交換水で洗浄し、さらに常温乾燥することによって膜厚30μmの炭化水素系電解質膜を得た。
(Manufacture of hydrocarbon electrolyte membrane)
A polymer electrolyte solution obtained by mixing the additive 1 with a mass ratio of 9: 1 was dissolved in dimethyl sulfoxide (DMSO) to a concentration of about 15% by mass to obtain a polymer electrolyte solution. Prepared. Next, this polymer electrolyte solution was dropped on a glass plate. Then, the polymer electrolyte solution was uniformly spread on the glass plate using a wire coater. At this time, the coating thickness was controlled by changing the clearance of the wire coater. After application, the polymer electrolyte solution was dried at 80 ° C. under normal pressure. Then, the obtained membrane was immersed in 1N hydrochloric acid, washed with ion-exchanged water, and dried at room temperature to obtain a hydrocarbon electrolyte membrane having a thickness of 30 μm.

[カソード用触媒インクの作製]
市販の5質量%ナフィオン溶液(溶媒:15〜20質量%の水が入った低級アルコール)1.43mLに前記で得られた非貴金属系電極触媒(A)を0.2g投入し、さらにエタノールを11.2mL、水を2.1mL加えた。得られた混合物を1時間超音波処理した後、スターラーで5時間攪拌してカソード用触媒インクを得た。
[Preparation of catalyst ink for cathode]
0.23 g of the non-noble metal electrode catalyst (A) obtained above was added to 1.43 mL of a commercially available 5% by mass Nafion solution (solvent: lower alcohol containing 15 to 20% by mass of water), and ethanol was further added. 11.2 mL and 2.1 mL of water were added. The obtained mixture was subjected to ultrasonic treatment for 1 hour, and then stirred for 5 hours with a stirrer to obtain a cathode catalyst ink.

[アノード用触媒インクの作製]
市販の5質量%ナフィオン溶液(溶媒:15〜20質量%の水が入った低級アルコール)6mLに50質量%白金が担持された白金担持カーボン(SA50BK、商品名、エヌ・イー・ケムキャット製)を0.83g投入し、さらにエタノールを13.2mL加えた。得られた混合物を1時間超音波処理した後、スターラーで5時間攪拌してアノード用触媒インクを得た。
[Preparation of anode catalyst ink]
Commercially available 5% Nafion solution (solvent: lower alcohol containing 15-20% by mass of water) 6 mL of platinum-supported carbon (SA50BK, trade name, manufactured by N.E. Chemcat) on which 50% by mass of platinum is supported 0.83 g was added, and 13.2 mL of ethanol was further added. The obtained mixture was subjected to ultrasonic treatment for 1 hour and then stirred with a stirrer for 5 hours to obtain an anode catalyst ink.

[MEAの作製]
次に、特開2004−089976号公報に記載の方法に準拠して、触媒インクを前記電解質膜にスプレー塗付した。
まず、7cm角に切り出した前記電解質膜の方面中央部における5.2cm角の領域に、スプレー法にて上記のアノード用触媒インクを塗布した。この際、吐出口から膜までの距離は6cm、ステージ温度は75℃に設定した。同様にして8回の重ね塗りをした後、ステージ上に15分間放置し、溶媒を除去して、0.60mg/cm2の白金触媒が配置されたアノード用触媒層を前記電解質膜上に形成させた。また、同様にして、カソード用触媒インクを前記電解質膜の反対面にスプレー塗布し、0.60mg/cm2の非貴金属系電極触媒(A)が配置されたカソード用触媒層を前記電解質膜上に形成させることで膜−電極接合体(MEA)を得た。なお、前記触媒量の各値は、カーボン担体を含まない値である。
[Production of MEA]
Next, in accordance with the method described in Japanese Patent Application Laid-Open No. 2004-089976, the catalyst ink was sprayed onto the electrolyte membrane.
First, the anode catalyst ink was applied to a 5.2 cm square region in the center of the electrolyte membrane cut into a 7 cm square by a spray method. At this time, the distance from the discharge port to the film was set to 6 cm, and the stage temperature was set to 75 ° C. Similarly, after eight times of overcoating, the substrate was left on the stage for 15 minutes to remove the solvent, and an anode catalyst layer on which 0.60 mg / cm 2 of platinum catalyst was disposed was formed on the electrolyte membrane. I let you. Similarly, a cathode catalyst ink is spray-coated on the opposite surface of the electrolyte membrane, and a cathode catalyst layer on which 0.60 mg / cm 2 of the non-noble metal-based electrode catalyst (A) is disposed is formed on the electrolyte membrane. To form a membrane-electrode assembly (MEA). Each value of the catalyst amount is a value not including a carbon support.

[燃料電池セルの発電性能評価]
市販のJARI標準セルを用いて燃料電池セルを製造した。すなわち、前記で得られた膜−電極接合体の両外側に、5.2cm角に切り出したカーボンクロスと、ガス通路用の溝を切削加工したカーボン製セパレータを配し、さらにその外側に集電体及びエンドプレートを順に配置し、これらをボルトで締め付けることによって、有効膜面積25cm2の燃料電池セルを組み立てて作製した。
[Evaluation of power generation performance of fuel cells]
A fuel cell was manufactured using a commercially available JARI standard cell. That is, a carbon cloth cut into a 5.2 cm square and a carbon separator cut into a gas passage groove are arranged on both outer sides of the membrane-electrode assembly obtained above, and a current collector is further provided on the outer side thereof. The body and the end plate were arranged in order, and these were tightened with bolts to assemble and produce a fuel cell having an effective membrane area of 25 cm 2 .

得られた燃料電池セルを30℃に保ちながら、アノードに加湿水素、カソードに加湿空気をそれぞれ供給した。この際、セルのガス出口における背圧が0.1MPaGとなるようにした。各原料ガスの加湿は、バブラーにガスを通すことで行い、水素用バブラーの水温は30℃、空気用バブラーの水温は30℃とした。ここで、水素のガス流量は529mL/min、空気のガス流量は1665mL/minとした。そして、電流を掃引したときの電圧を記録し、燃料電池セルの発電性能を評価した。   While maintaining the obtained fuel cell at 30 ° C., humidified hydrogen was supplied to the anode and humidified air was supplied to the cathode. At this time, the back pressure at the gas outlet of the cell was set to 0.1 MPaG. Each source gas was humidified by passing the gas through a bubbler. The water temperature of the hydrogen bubbler was 30 ° C., and the water temperature of the air bubbler was 30 ° C. Here, the hydrogen gas flow rate was 529 mL / min, and the air gas flow rate was 1665 mL / min. The voltage when the current was swept was recorded, and the power generation performance of the fuel cell was evaluated.

図2は、上記作製した燃料電池セルの電流−電位曲線である。縦軸はセル電圧(V)を表し、横軸は電流密度(Acm-2)を表す。 FIG. 2 is a current-potential curve of the fuel cell produced as described above. The vertical axis represents the cell voltage (V), and the horizontal axis represents the current density (Acm −2 ).

実施例2
[非貴金属系電極触媒(B)の製造]
以下の手順に従い、非貴金属系電極触媒(B)を製造した。
(金属錯体(B)の調製)
下記反応式に示される金属錯体(B)を以下の方法で調製した。なお、原料となる配位子は、「Tetrahedron」,Vol.55,p.8377(1999)に記載の方法を参考にして合成した。なお、式中、Meはメチル基をEtはエチル基を、Acはアセチル基を表す。
Example 2
[Production of non-noble metal electrode catalyst (B)]
A non-noble metal-based electrocatalyst (B) was produced according to the following procedure.
(Preparation of metal complex (B))
A metal complex (B) represented by the following reaction formula was prepared by the following method. The ligand used as a raw material is “Tetrahedron”, Vol. 55, p. 8377 (1999). In the formulae, Me represents a methyl group, Et represents an ethyl group, and Ac represents an acetyl group.

Figure 2008270176
Figure 2008270176

まず、窒素雰囲気下において、1.388gの配位子と1.245gの酢酸コバルト4水和物を含んだ2−メトキシエタノール200ml溶液を500mlのナスフラスコに入れ、80℃に加熱しながら2時間攪拌し、褐色固体が生成した。この固体を濾取し、さらに2−メトキシエタノール(MeOEtOH)20mlで洗浄、乾燥することで金属錯体(B)を得た(収量1.532g:収率74%)。なお、上記反応式の右側における「(OAc)2」は、2当量の酢酸イオンが対イオンとして存在することを示し、「MeOEtOH」は、2−メトキシエタノール分子が配位子として存在することを示す。
元素分析値(%):C4950Co248として、
(計算値)C:62.56、H:5.36、N:5.96、Co:12.53.
(実測値)C:62.12、H:5.07、N:6.03、Co:12.74.
First, in a nitrogen atmosphere, a 200 ml solution of 2-methoxyethanol containing 1.388 g of a ligand and 1.245 g of cobalt acetate tetrahydrate was placed in a 500 ml eggplant flask and heated to 80 ° C. for 2 hours. Upon stirring, a brown solid was formed. This solid was collected by filtration, further washed with 20 ml of 2-methoxyethanol (MeOEtOH) and dried to obtain a metal complex (B) (yield 1.532 g: yield 74%). “(OAc) 2 ” on the right side of the above reaction formula indicates that 2 equivalents of acetate ion is present as a counter ion, and “MeOEtOH” indicates that 2-methoxyethanol molecule is present as a ligand. Show.
Elemental analysis value (%): C 49 H 50 Co 2 N 4 O 8
(Calculated values) C: 62.56, H: 5.36, N: 5.96, Co: 12.53.
(Measured value) C: 62.12, H: 5.07, N: 6.03, Co: 12.74.

(非貴金属系電極触媒(B)の調製)
金属錯体(B)とカーボン担体(ケッチェンブラックEC600JD、商品名、ライオン社製)とを質量比1:4で混合し、エタノール中、室温にて15分間攪拌後、室温にて1.5Torr(199.983Pa)の減圧下で12時間乾燥させた。前記混合物を、石英を炉心管とする管状炉を用いて200ml/minの窒素気流下において、800℃で2時間熱処理することにより、非貴金属系電極触媒(B)を得た。
(Preparation of non-noble metal-based electrocatalyst (B))
A metal complex (B) and a carbon support (Ketjen Black EC600JD, trade name, manufactured by Lion Corporation) were mixed at a mass ratio of 1: 4, stirred in ethanol at room temperature for 15 minutes, and then 1.5 Torr (at room temperature). 199.983 Pa) under reduced pressure for 12 hours. The mixture was heat-treated at 800 ° C. for 2 hours under a nitrogen flow of 200 ml / min using a tubular furnace having quartz as a furnace core tube to obtain a non-noble metal electrode catalyst (B).

[炭化水素系電解質膜の製造]
(高分子電解質の調製)
国際公開WO2006/095919号パンフレットの実施例1に記載の方法に準拠して、下記化学式を持つ高分子電解質を得た(ポリスチレン換算の数平均分子量:12万、ポリスチレン換算の重量平均分子量:23万)。得られた高分子電解質のイオン交換容量は2.5meq/gであった。なお、下式中、「block」は、下式化合物が、2種類のブロックそれぞれ1つ以上から構成されるブロック共重合体であることを意味する。
[Manufacture of hydrocarbon electrolyte membrane]
(Preparation of polymer electrolyte)
In accordance with the method described in Example 1 of International Publication WO2006 / 095919, a polymer electrolyte having the following chemical formula was obtained (number average molecular weight in terms of polystyrene: 120,000, weight average molecular weight in terms of polystyrene: 230,000). ). The obtained polymer electrolyte had an ion exchange capacity of 2.5 meq / g. In the following formula, “block” means that the compound of the following formula is a block copolymer composed of one or more of two types of blocks.

Figure 2008270176
Figure 2008270176

(炭化水素系電解質膜の製造)
前記で得られた高分子電解質と添加剤1を、ジメチルスルホキシド(DMSO)に約15質量%の濃度となるように溶解させて、高分子電解質溶液を調製した。次いで、この高分子電解質溶液をガラス板上に滴下した。それから、ワイヤーコーターを用いて高分子電解質溶液をガラス板上に均一に塗り広げた。この際、ワイヤーコーターのクリアランスを変えることで、塗工厚みをコントロールした。塗布後、高分子電解質溶液を80℃で常圧乾燥した。それから、得られた膜を1N塩酸に浸漬した後、イオン交換水で洗浄し、さらに常温乾燥することによって膜厚20μmの炭化水素系電解質膜を得た。
(Manufacture of hydrocarbon electrolyte membrane)
The polymer electrolyte obtained above and additive 1 were dissolved in dimethyl sulfoxide (DMSO) to a concentration of about 15% by mass to prepare a polymer electrolyte solution. Next, this polymer electrolyte solution was dropped on a glass plate. Then, the polymer electrolyte solution was uniformly spread on the glass plate using a wire coater. At this time, the coating thickness was controlled by changing the clearance of the wire coater. After application, the polymer electrolyte solution was dried at 80 ° C. under normal pressure. Then, the obtained membrane was immersed in 1N hydrochloric acid, washed with ion-exchanged water, and further dried at room temperature to obtain a hydrocarbon electrolyte membrane having a thickness of 20 μm.

[カソード用触媒インクの作製]
市販の5質量%ナフィオン溶液(溶媒:水と低級アルコールの混合物)7.56gに前記で得られた非貴金属系電極触媒(B)を0.75g投入し、さらにエタノールを35.5g、水を5.25g加えた。得られた混合物を1時間超音波処理した後、スターラーで5時間攪拌して非貴金属系電極触媒インク(B)を得た。
[Preparation of catalyst ink for cathode]
0.75 g of the non-noble metal electrode catalyst (B) obtained above was added to 7.56 g of a commercially available 5% by mass Nafion solution (solvent: mixture of water and lower alcohol), and further 35.5 g of ethanol and water were added. 5.25 g was added. The obtained mixture was subjected to ultrasonic treatment for 1 hour and then stirred for 5 hours with a stirrer to obtain a non-noble metal-based electrode catalyst ink (B).

[アノード用触媒インクの作製]
市販の5質量%ナフィオン溶液(溶媒:水と低級アルコールの混合物)6mLに50質量%白金が担持された白金担持カーボン(SA50BK、商品名、エヌ・イー・ケムキャット製)を0.83g投入し、さらにエタノールを13.2mL加えた。得られた混合物を1時間超音波処理した後、スターラーで5時間攪拌してアノード用触媒インクを得た。
[Preparation of anode catalyst ink]
0.83 g of platinum-supported carbon (SA50BK, trade name, manufactured by N.E. Chemcat) in which 50% by mass of platinum is supported in 6 mL of a commercially available 5% by mass Nafion solution (solvent: mixture of water and lower alcohol), Furthermore, 13.2 mL of ethanol was added. The obtained mixture was subjected to ultrasonic treatment for 1 hour and then stirred with a stirrer for 5 hours to obtain an anode catalyst ink.

[MEAの作製]
次に、特開2004−089976号公報に記載の方法に準拠して、触媒インクを前記電解質膜にスプレー塗付した。
まず、7cm角に切り出した前記電解質膜の方面中央部における5.2cm角の領域に、スプレー法にて上記のアノード用触媒インクを塗布した。この際、吐出口から膜までの距離は6cm、ステージ温度は75℃に設定した。同様にして8回の重ね塗りをした後、ステージ上に15分間放置し、溶媒を除去して、0.6mg/cm2の白金担持カーボンが配置されたアノード用触媒層を前記電解質膜上に形成させた。また、同様にして、カソード用触媒インクを前記電解質膜の反対面にスプレー塗布し、0.76mg/cm2の非貴金属系電極触媒(B)が配置されたカソード用触媒層を前記電解質膜上に形成させることで膜−電極接合体(MEA)を得た。なお、前記触媒量の各値は、カーボン担体を含まない値である。
[Production of MEA]
Next, in accordance with the method described in Japanese Patent Application Laid-Open No. 2004-089976, the catalyst ink was sprayed onto the electrolyte membrane.
First, the anode catalyst ink was applied to a 5.2 cm square region in the center of the electrolyte membrane cut into a 7 cm square by a spray method. At this time, the distance from the discharge port to the film was set to 6 cm, and the stage temperature was set to 75 ° C. Similarly, after eight times of overcoating, the substrate was left on the stage for 15 minutes, the solvent was removed, and an anode catalyst layer on which 0.6 mg / cm 2 of platinum-supported carbon was arranged was formed on the electrolyte membrane. Formed. Similarly, a cathode catalyst ink is spray-coated on the opposite surface of the electrolyte membrane, and a cathode catalyst layer on which 0.76 mg / cm 2 of the non-noble metal-based electrode catalyst (B) is disposed is formed on the electrolyte membrane. To form a membrane-electrode assembly (MEA). Each value of the catalyst amount is a value not including a carbon support.

[燃料電池セルの発電性能評価]
市販のJARI標準セルを用いて燃料電池セルを製造した。すなわち、前記で得られた膜−電極接合体の両外側に、5.2cm角に切り出したカーボンクロスと、ガス通路用の溝を切削加工したカーボン製セパレータを配し、さらにその外側に集電体及びエンドプレートを順に配置し、これらをボルトで締め付けることによって、有効膜面積25cm2の燃料電池セルを組み立てて作製した。
[Evaluation of power generation performance of fuel cells]
A fuel cell was manufactured using a commercially available JARI standard cell. That is, a carbon cloth cut into a 5.2 cm square and a carbon separator cut into a gas passage groove are arranged on both outer sides of the membrane-electrode assembly obtained above, and a current collector is further provided on the outer side thereof. The body and the end plate were arranged in order, and these were tightened with bolts to assemble and produce a fuel cell having an effective membrane area of 25 cm 2 .

得られた燃料電池セルを80℃に保ちながら、アノードに加湿水素、カソードに加湿空気をそれぞれ供給した。この際、セルのガス出口における背圧が0.1MPaGとなるようにした。各原料ガスの加湿は、バブラーにガスを通すことで行い、水素用バブラーの水温は70℃、空気用バブラーの水温は70℃とした。水素のガス流量は70mL/min、空気のガス流量は174mL/minとし、燃料電池セルの発電を行った。   While maintaining the obtained fuel cell at 80 ° C., humidified hydrogen was supplied to the anode and humidified air was supplied to the cathode. At this time, the back pressure at the gas outlet of the cell was set to 0.1 MPaG. Each source gas was humidified by passing the gas through a bubbler. The water temperature of the hydrogen bubbler was 70 ° C., and the water temperature of the air bubbler was 70 ° C. The hydrogen gas flow rate was 70 mL / min, and the air gas flow rate was 174 mL / min.

図3は、上記作製した燃料電池セルを0.4Vの定電圧で運転した時の経過時間に対する電流密度のプロットである。縦軸はセル電圧(V)を表し、横軸は経過時間(h:時間)を表す。   FIG. 3 is a plot of current density versus elapsed time when the fuel cell produced above was operated at a constant voltage of 0.4V. The vertical axis represents cell voltage (V), and the horizontal axis represents elapsed time (h: time).

次に、上記作製した燃料電池セルを用いて、水素のガス流量を529mL/min、空気のガス流量を1665mL/minに設定し、電流を掃引したときの電圧を記録し、燃料電池セルの発電性能を評価した。
図4は、上記作製した燃料電池セルの電流−電位曲線である。縦軸はセル電圧(V)を表し、横軸は電流密度(Acm-2)を表す。
Next, using the produced fuel cell, the hydrogen gas flow rate was set to 529 mL / min, the air gas flow rate was set to 1665 mL / min, the voltage when the current was swept was recorded, and the power generation of the fuel cell Performance was evaluated.
FIG. 4 is a current-potential curve of the fuel cell produced as described above. The vertical axis represents the cell voltage (V), and the horizontal axis represents the current density (Acm −2 ).

実施例3
実施例2で作製した燃料電池セルを用いて、アノード側が非貴金属系電極触媒(B)、カソード側が白金担持カーボンとなるように接続した後、水素のガス流量を529mL/min、空気のガス流量を1665mL/minに設定し、電流を掃引したときの電圧を記録し、燃料電池セルの発電性能を評価した。
Example 3
Using the fuel battery cell produced in Example 2, after connecting the anode side to the non-noble metal electrode catalyst (B) and the cathode side to platinum-supporting carbon, the hydrogen gas flow rate was 529 mL / min, and the air gas flow rate Was set to 1665 mL / min, the voltage when the current was swept was recorded, and the power generation performance of the fuel cell was evaluated.

図5は、アノード側(水素極側)触媒として非貴金属系電極触媒(B)を用いた燃料電池セルの電流−電位曲線である。縦軸はセル電圧(V)を表し、横軸は電流密度(Acm-2)を表す。 FIG. 5 is a current-potential curve of a fuel cell using a non-noble metal electrode catalyst (B) as an anode side (hydrogen electrode side) catalyst. The vertical axis represents the cell voltage (V), and the horizontal axis represents the current density (Acm −2 ).

実施例4
[非貴金属系電極触媒(C)の製造]
以下の手順に従い、非貴金属系電極触媒(C)を製造した。
(金属錯体(C)の調製)
金属錯体(C)を以下の反応式に従って、化合物(A)、化合物(B)および化合物(C)を経由して合成した。
[化合物(A)の合成]
Example 4
[Production of non-noble metal electrode catalyst (C)]
A non-noble metal-based electrode catalyst (C) was produced according to the following procedure.
(Preparation of metal complex (C))
Metal complex (C) was synthesized via compound (A), compound (B) and compound (C) according to the following reaction formula.
[Synthesis of Compound (A)]

Figure 2008270176
Figure 2008270176

アルゴン雰囲気下で、3.945gの2,9−ジ(3’−ブロモ−5’−tert−ブチル−2’−メトキシフェニル)−1,10−フェナントロリン、3.165gの1−N−Boc−ピロール−2−ボロン酸、0.138gのトリス(ベンジリデンアセトン)ジパラジウム、0.247gの2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル、5.527gのリン酸カリウムを200mLのジオキサンと20mLの水の混合溶媒に溶解し、60℃にて6時間攪拌した。反応終了後、放冷して蒸留水、クロロホルムを加えて、有機層を抽出した。得られた有機層を濃縮して、黒い残留物を得た。これを、シリカゲルカラムを用いて精製し、化合物(A)を得た。
1H−NMR(300MHz,CDCl3)δ1.34(s,18H),1.37(s
,18H),3.30(s,6H),6.21(m,2H),6.27(m,2H),7.37(m,2H),7.41(s,2H),7.82(s,2H),8.00(s,2H),8.19(d,J=8.6Hz,2H),8.27(d,J=8.6Hz,2H).
[化合物(B)の合成]
Under an argon atmosphere, 3.945 g of 2,9-di (3′-bromo-5′-tert-butyl-2′-methoxyphenyl) -1,10-phenanthroline, 3.165 g of 1-N-Boc- Pyrrole-2-boronic acid, 0.138 g of tris (benzylideneacetone) dipalladium, 0.247 g of 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl, 5.527 g of potassium phosphate and 200 mL of dioxane It melt | dissolved in the mixed solvent of 20 mL water, and stirred at 60 degreeC for 6 hours. After completion of the reaction, the mixture was allowed to cool, distilled water and chloroform were added, and the organic layer was extracted. The resulting organic layer was concentrated to give a black residue. This was refine | purified using the silica gel column, and the compound (A) was obtained.
1 H-NMR (300 MHz, CDCl 3 ) δ 1.34 (s, 18 H), 1.37 (s
18H), 3.30 (s, 6H), 6.21 (m, 2H), 6.27 (m, 2H), 7.37 (m, 2H), 7.41 (s, 2H), 7 .82 (s, 2H), 8.00 (s, 2H), 8.19 (d, J = 8.6 Hz, 2H), 8.27 (d, J = 8.6 Hz, 2H).
[Synthesis of Compound (B)]

Figure 2008270176
Figure 2008270176

窒素雰囲気下で0.904gの化合物(A)を10mLの無水ジクロロメタンに溶解させる。ジクロロメタン溶液を−78℃に冷却しながら、8.8mLの三臭化ホウ素(1.0Mジクロロメタン溶液)をゆっくり滴下した。滴下後、10分間そのまま攪拌させた後、室温まで攪拌させながら放置した。3時間後、反応溶液を0℃まで冷却させ、飽和NaHCO3水溶液を加えたのち、クロロホルムを加えて抽出し、有機層を濃縮した。得られた褐色の残留物を、シリカゲルカラムで精製し、化合物(B)を得た。
1H−NMR(300MHz,CDCl3)δ1.40(s,18H),6.25(m,2H),6.44(m,2H),6.74(m,2H),7.84(s,2H),7.89(s,2H),7.92(s,2H),8.35(d,J=8.4Hz,2H),8.46(d,J=8.4Hz,2H),10.61(s,2H),15.88(s,2H).
[化合物(C)の合成]
Under a nitrogen atmosphere, 0.904 g of compound (A) is dissolved in 10 mL of anhydrous dichloromethane. While the dichloromethane solution was cooled to −78 ° C., 8.8 mL of boron tribromide (1.0 M dichloromethane solution) was slowly added dropwise. After dropping, the mixture was allowed to stir for 10 minutes and then allowed to stand while stirring to room temperature. After 3 hours, the reaction solution was cooled to 0 ° C., saturated aqueous NaHCO 3 solution was added, chloroform was added for extraction, and the organic layer was concentrated. The resulting brown residue was purified with a silica gel column to obtain compound (B).
1 H-NMR (300 MHz, CDCl 3 ) δ 1.40 (s, 18H), 6.25 (m, 2H), 6.44 (m, 2H), 6.74 (m, 2H), 7.84 ( s, 2H), 7.89 (s, 2H), 7.92 (s, 2H), 8.35 (d, J = 8.4 Hz, 2H), 8.46 (d, J = 8.4 Hz, 2H), 10.61 (s, 2H), 15.88 (s, 2H).
[Synthesis of Compound (C)]

Figure 2008270176
Figure 2008270176

0.061gの化合物(B)と0.012gのベンズアルデヒドを5mLのプロピオン酸に溶解させ、140℃で7時間加熱した。その後、プロピオン酸を留去して、得られた黒い残渣をシリカゲルカラムで精製して化合物(C)を得た。前記の操作を繰り返すことで、0.2gの化合物(C)を得た。
1H−NMR(300MHz,CDCl3)δ1.49(s,18H),6.69(d,J=4.8Hz,2H),7.01(d,J=4.8Hz,2H),7.57(m,5H),7.90(s,4H),8.02(s,2H),8.31(d,J=8.1Hz,2H),8.47(d,J=8.1Hz,2H).
[金属錯体(C)の合成]
0.061 g of compound (B) and 0.012 g of benzaldehyde were dissolved in 5 mL of propionic acid and heated at 140 ° C. for 7 hours. Thereafter, propionic acid was distilled off, and the resulting black residue was purified with a silica gel column to obtain compound (C). By repeating the above operation, 0.2 g of Compound (C) was obtained.
1 H-NMR (300 MHz, CDCl 3 ) δ 1.49 (s, 18H), 6.69 (d, J = 4.8 Hz, 2H), 7.01 (d, J = 4.8 Hz, 2H), 7 .57 (m, 5H), 7.90 (s, 4H), 8.02 (s, 2H), 8.31 (d, J = 8.1 Hz, 2H), 8.47 (d, J = 8 .1Hz, 2H).
[Synthesis of Metal Complex (C)]

Figure 2008270176
Figure 2008270176

窒素雰囲気下において、0.20gの化合物(C)と0.17gの酢酸コバルト4水和物を含んだ15mLのメタノール、25mLのクロロホルムの混合溶液を、攪拌しながら5時間還流した。得られた溶液を濃縮乾固させると青色固体を得た。これを水で洗浄することにより、金属錯体(C)を得た。
ESI−MS[M+・]:866.0
(非貴金属系電極触媒(C)の調製)
金属錯体(C)とカーボン担体(ケッチェンブラックEC300J、商品名、ライオン社製)とを質量比1:4で混合し、エタノール中、室温にて15分間攪拌後、室温にて1.5Torr(199.983Pa)の減圧下で12時間乾燥させた。前記混合物を、石英を炉心管とする管状炉を用いて200ml/minの窒素気流下において、600℃で2時間熱処理することにより、非貴金属系電極触媒(C)を得た。
[非貴金属系電極触媒インク(C)の作製]
市販の5質量%ナフィオン溶液(溶媒:水と低級アルコールの混合物)4.61gに前記で得られた非貴金属系電極触媒(C)を0.46g投入し、さらに水3.29g、およびエタノール21.65gを加えた。得られた混合物を1時間超音波処理した後、スターラーで5時間攪拌して非貴金属系電極触媒インク(C)を得た。
[MEAの作製]
実施例2で用いた電解質膜と同じ電解質膜の片面へ、前記調製した非貴金属系電極触媒インク(C)を、反対側の面へ実施例2で調製した非貴金属系電極触媒インク(B)を、前記記載の方法に従い、スプレー塗布することで、膜−電極接合体(MEA)を得た。作製した膜−電極接合体の片面には、0.60mg/cm2の非貴金属系電極触媒(B)が、反対側の片面には0.54mg/cm2の非貴金属系電極触媒(C)が配置されている。なお、前記触媒量の各値は、カーボン担体を含まない値である。
[燃料電池セルの発電性能評価]
前記で得られた膜−電極接合体を用いて、実施例3に記載の方法に従い、燃料電池セルを作製した。非貴金属系電極触媒(B)が水素側に、非貴金属系電極触媒(C)が空気側となるように接続し、水素のガス流量を529mL/min、空気のガス流量を1665mL/minに設定し、燃料電池セルの開回路電圧を測定すると0.76Vであった。
Under a nitrogen atmosphere, a mixed solution of 15 mL of methanol and 25 mL of chloroform containing 0.20 g of the compound (C) and 0.17 g of cobalt acetate tetrahydrate was refluxed for 5 hours with stirring. The resulting solution was concentrated to dryness to give a blue solid. This was washed with water to obtain a metal complex (C).
ESI-MS [M + ·]: 866.0
(Preparation of non-noble metal-based electrocatalyst (C))
A metal complex (C) and a carbon support (Ketjen Black EC300J, trade name, manufactured by Lion Corporation) were mixed at a mass ratio of 1: 4, stirred in ethanol at room temperature for 15 minutes, and then 1.5 Torr (at room temperature). 199.983 Pa) under reduced pressure for 12 hours. The mixture was heat-treated at 600 ° C. for 2 hours under a nitrogen flow of 200 ml / min using a tubular furnace having quartz as a furnace core tube to obtain a non-noble metal-based electrode catalyst (C).
[Preparation of non-noble metal electrode catalyst ink (C)]
0.46 g of the non-noble metal-based electrocatalyst (C) obtained above was added to 4.61 g of a commercially available 5% by mass Nafion solution (solvent: mixture of water and lower alcohol), and further 3.29 g of water and ethanol 21 .65 g was added. The obtained mixture was subjected to ultrasonic treatment for 1 hour and then stirred with a stirrer for 5 hours to obtain a non-noble metal-based electrode catalyst ink (C).
[Production of MEA]
The prepared non-noble metal electrode catalyst ink (C) is applied to one side of the same electrolyte membrane as the electrolyte membrane used in Example 2, and the non-noble metal electrode catalyst ink (B) prepared in Example 2 is applied to the opposite surface. The membrane-electrode assembly (MEA) was obtained by spray-coating according to the method described above. Fabricated film - the one surface of the electrode assembly, the non-noble metal-based electrode catalyst of 0.60mg / cm 2 (B) is a non-noble metal-based electrode catalyst on one side opposite to 0.54mg / cm 2 (C) Is arranged. Each value of the catalyst amount is a value not including a carbon support.
[Evaluation of power generation performance of fuel cells]
Using the membrane-electrode assembly obtained above, a fuel cell was produced according to the method described in Example 3. Connect the non-noble metal electrode catalyst (B) to the hydrogen side and the non-noble metal electrode catalyst (C) to the air side, and set the hydrogen gas flow rate to 529 mL / min and the air gas flow rate to 1665 mL / min. And when the open circuit voltage of the fuel cell was measured, it was 0.76V.

実施例1〜4の結果から明らかなように、非貴金属系電極触媒と炭化水素系電解質膜とを有する膜−電極接合体を用いた燃料電池は、発電性能を大幅に低下させることなく、貴金属の使用量を半分以下とすることができることから、燃料電池の製造コストを大幅に削減することができる。また、実施例2の結果から、非貴金属系電極触媒と炭化水素系電解質膜とを有する膜−電極接合体を用いた場合、安定して発電することが示された。   As is clear from the results of Examples 1 to 4, the fuel cell using the membrane-electrode assembly having the non-noble metal-based electrode catalyst and the hydrocarbon-based electrolyte membrane does not significantly reduce the power generation performance, and the noble metal Therefore, the manufacturing cost of the fuel cell can be greatly reduced. Moreover, from the results of Example 2, it was shown that when a membrane-electrode assembly having a non-noble metal-based electrode catalyst and a hydrocarbon-based electrolyte membrane was used, power was stably generated.

図1は、本発明の好適な一実施態様の燃料電池のセルについての縦断面図である。FIG. 1 is a longitudinal sectional view of a cell of a fuel cell according to a preferred embodiment of the present invention. 図2は、実施例1の膜−電極接合体を用いた燃料電池セルの電流−電位曲線である。FIG. 2 is a current-potential curve of a fuel cell using the membrane-electrode assembly of Example 1. 図3は、実施例2の膜−電極接合体を用いた燃料電池セルの経過時間に対する電流密度のプロットである。FIG. 3 is a plot of current density versus elapsed time of a fuel cell using the membrane-electrode assembly of Example 2. 図4は、実施例2の膜−電極接合体を用いた燃料電池セルの電流−電位曲線である。4 is a current-potential curve of a fuel cell using the membrane-electrode assembly of Example 2. FIG. 図4は、実施例3の膜−電極接合体を用いた燃料電池セルの電流−電位曲線である。4 is a current-potential curve of a fuel cell using the membrane-electrode assembly of Example 3. FIG.

符号の説明Explanation of symbols

10 燃料電池(燃料電池セル)
12 炭化水素系電解質膜(プロトン伝導膜)
14a,14b 触媒層
16a,16b ガス拡散層
18a,18b セパレータ
20 膜−電極接合体
10 Fuel cell (fuel cell)
12 Hydrocarbon electrolyte membrane (proton conducting membrane)
14a, 14b Catalyst layers 16a, 16b Gas diffusion layers 18a, 18b Separator 20 Membrane-electrode assembly

Claims (5)

電極触媒を含む触媒層を電解質膜の両側に備えた膜−電極接合体であって、前記触媒層の少なくとも一方が非貴金属系電極触媒を含んでおり、前記電解質膜が炭化水素系電解質膜であることを特徴とする膜−電極接合体。   A membrane-electrode assembly comprising a catalyst layer containing an electrode catalyst on both sides of an electrolyte membrane, wherein at least one of the catalyst layers contains a non-noble metal-based electrode catalyst, and the electrolyte membrane is a hydrocarbon-based electrolyte membrane A membrane-electrode assembly characterized by being. 前記非貴金属系電極触媒が、非貴金属錯体を用いてなる電極触媒であることを特徴とする請求項1に記載の膜−電極接合体。   The membrane-electrode assembly according to claim 1, wherein the non-noble metal-based electrode catalyst is an electrode catalyst using a non-noble metal complex. 前記炭化水素系電解質膜が、芳香族炭化水素系高分子電解質を含むことを特徴とする請求項1又は2に記載の膜−電極接合体。   The membrane-electrode assembly according to claim 1 or 2, wherein the hydrocarbon-based electrolyte membrane includes an aromatic hydrocarbon-based polymer electrolyte. 前記炭化水素系電解質膜が、プロトン伝導性を有する炭化水素系電解質膜であることを特徴とする請求項1〜3のいずれか1項に記載の膜−電極接合体。   The membrane-electrode assembly according to any one of claims 1 to 3, wherein the hydrocarbon-based electrolyte membrane is a hydrocarbon-based electrolyte membrane having proton conductivity. 請求項1〜4のいずれか1項に記載の膜−電極接合体を備えることを特徴とする燃料電池。   A fuel cell comprising the membrane-electrode assembly according to any one of claims 1 to 4.
JP2008058587A 2007-03-28 2008-03-07 Membrane-electrode assembly and fuel cell using this Pending JP2008270176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058587A JP2008270176A (en) 2007-03-28 2008-03-07 Membrane-electrode assembly and fuel cell using this

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007084371 2007-03-28
JP2008058587A JP2008270176A (en) 2007-03-28 2008-03-07 Membrane-electrode assembly and fuel cell using this

Publications (1)

Publication Number Publication Date
JP2008270176A true JP2008270176A (en) 2008-11-06

Family

ID=40049379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058587A Pending JP2008270176A (en) 2007-03-28 2008-03-07 Membrane-electrode assembly and fuel cell using this

Country Status (1)

Country Link
JP (1) JP2008270176A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311048A (en) * 2007-06-14 2008-12-25 Toyobo Co Ltd Electrode catalyst
US8354137B2 (en) 2009-06-29 2013-01-15 Toppan Printing Co., Ltd. Manufacturing method of electrode catalyst layer for fuel cell
US9570759B2 (en) 2009-09-29 2017-02-14 Toppan Printing Co., Ltd. Manufacturing method of electrode catalyst layer, membrane electrode assembly using the same, fuel cell using the same and complex particles
KR20230146509A (en) 2021-02-18 2023-10-19 도판 인사츠 가부시키가이샤 Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
US11843148B2 (en) 2019-08-08 2023-12-12 Toppan Inc. Fuel cell membrane electrode assembly and polymer electrolyte fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168442A (en) * 2001-12-03 2003-06-13 Honda Motor Co Ltd Fuel electrode for solid polymer-type fuel cell and solid polymer-type fuel cell as well as controlling method of solid polymer-type fuel cell
JP2005235437A (en) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc Electrolyte membrane electrode joint body for solid polymer type fuel cell and solid polymer type fuel cell
JP2008218041A (en) * 2007-02-28 2008-09-18 Tdk Corp Catalyst and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168442A (en) * 2001-12-03 2003-06-13 Honda Motor Co Ltd Fuel electrode for solid polymer-type fuel cell and solid polymer-type fuel cell as well as controlling method of solid polymer-type fuel cell
JP2005235437A (en) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc Electrolyte membrane electrode joint body for solid polymer type fuel cell and solid polymer type fuel cell
JP2008218041A (en) * 2007-02-28 2008-09-18 Tdk Corp Catalyst and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311048A (en) * 2007-06-14 2008-12-25 Toyobo Co Ltd Electrode catalyst
US8354137B2 (en) 2009-06-29 2013-01-15 Toppan Printing Co., Ltd. Manufacturing method of electrode catalyst layer for fuel cell
US9570759B2 (en) 2009-09-29 2017-02-14 Toppan Printing Co., Ltd. Manufacturing method of electrode catalyst layer, membrane electrode assembly using the same, fuel cell using the same and complex particles
US11843148B2 (en) 2019-08-08 2023-12-12 Toppan Inc. Fuel cell membrane electrode assembly and polymer electrolyte fuel cell
KR20230146509A (en) 2021-02-18 2023-10-19 도판 인사츠 가부시키가이샤 Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell

Similar Documents

Publication Publication Date Title
KR20090121374A (en) Membrane-electrode assembly and fuel cell using the membrane-electrode assembly
Maiyalagan et al. Components for PEM fuel cells: An overview
KR101233343B1 (en) Membrane-electrode assembly for fuel cell, method of producing same and fuel cell system comprising same
CN101627496A (en) Membrane-electrode assembly and fuel cell using the membrane-electrode assembly
EP1788655B1 (en) Polymer membrane for fuel cell, method of preparing same, and membrane-electrode assemby for fuel cell comprising same
KR101329494B1 (en) Ion conducting membrane
JP4745942B2 (en) Cathode catalyst for fuel cell, membrane electrode assembly for fuel cell, and fuel cell system
KR20080028490A (en) Electrode electrolyte for use in solid polymer fuel cell
EP2134768B1 (en) Proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups and use thereof in proton exchange membrane fuel cells
JP2012519929A (en) Improved membrane electrode assembly
WO2011059115A1 (en) Membrane electrode assembly and fuel cell using same
US7786244B2 (en) Development and characterization of novel proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups
US20150162619A1 (en) Electrode catalyst, method for preparing same, and membrane electrode assembly and fuel cell including same
JP2008270176A (en) Membrane-electrode assembly and fuel cell using this
TW200921978A (en) Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell
KR20070091936A (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
EP2169751A1 (en) Membrane-electrode assembly, method for producing the same and solid polymer fuel cell
TW200915647A (en) Membrane-electrode assembly, method for producing the same and solid polymer fuel cell
JP5063642B2 (en) Polymer compound, membrane-electrode assembly for fuel cell including the same, and fuel cell system including the same
KR100740125B1 (en) Cathode catalyst for fuel cell and membrane-electrode assembly for fuel cell comprising same
CN101507033B (en) Membrane electrode assembly for fuel cell and fuel cell
US8349514B2 (en) Electrode catalyst for fuel cells, method of preparing the electrode catalyst, and fuel cell including electrode containing the electrode catalyst
KR20090032772A (en) Membrane electrode assembly for fuel cell, method for preparing same, and fuel cell system including same
KR20080041844A (en) Membrane-electrode assembly for fuel cell, method of producing same, and fuel cell system comprising same
JPWO2013161405A1 (en) Composition for electrolyte membrane, solid polymer electrolyte membrane, method for producing the electrolyte membrane, membrane-electrode assembly, polymer electrolyte fuel cell, water electrolysis cell, and water electrolysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625