JP5114657B2 - Process for producing conductive polymer metal complex and electrocatalyst using the same - Google Patents

Process for producing conductive polymer metal complex and electrocatalyst using the same Download PDF

Info

Publication number
JP5114657B2
JP5114657B2 JP2007026857A JP2007026857A JP5114657B2 JP 5114657 B2 JP5114657 B2 JP 5114657B2 JP 2007026857 A JP2007026857 A JP 2007026857A JP 2007026857 A JP2007026857 A JP 2007026857A JP 5114657 B2 JP5114657 B2 JP 5114657B2
Authority
JP
Japan
Prior art keywords
group
conductive polymer
metal complex
catalyst
polymer metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007026857A
Other languages
Japanese (ja)
Other versions
JP2008192502A (en
Inventor
靖子 西口
冬彦 久保田
陽子 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2007026857A priority Critical patent/JP5114657B2/en
Publication of JP2008192502A publication Critical patent/JP2008192502A/en
Application granted granted Critical
Publication of JP5114657B2 publication Critical patent/JP5114657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、導電性重合体金属錯体の製造方法と、その導電性重合体金属錯体を用いた高い酸化還元触媒活性と耐久性を示す酸化還元触媒、及び燃料電池用電極触媒に関する。   The present invention relates to a method for producing a conductive polymer metal complex, a redox catalyst having high redox catalyst activity and durability using the conductive polymer metal complex, and a fuel cell electrode catalyst.

近年、エネルギー変換効率向上や環境負荷低減を目的とし、水素ガス、メタノール燃料電池、リン酸型燃料電池、固体高分子電解質型燃料電池等の実用化が検討されている。燃料電池は、水の電気分解の逆反応を利用して水素等の燃料の持っているエネルギーを直接電気エネルギーとして取り出す発電システムである。低エネルギーで効率良く酸素還元・燃料酸化を実現させる目的で触媒が用いられており、現在の主流は白金である。白金は高活性で安定性に優れていることから広く用いられているが、希少金属で高価であり、また有限資源であることから、白金使用量の低減が大きな課題となっている。   In recent years, the practical application of hydrogen gas, methanol fuel cells, phosphoric acid fuel cells, solid polymer electrolyte fuel cells, and the like has been studied for the purpose of improving energy conversion efficiency and reducing environmental impact. A fuel cell is a power generation system that uses the reverse reaction of water electrolysis to directly extract the energy of fuel such as hydrogen as electric energy. Catalysts are used for the purpose of efficiently realizing oxygen reduction and fuel oxidation with low energy, and the current mainstream is platinum. Platinum is widely used because it is highly active and excellent in stability, but it is a rare metal and expensive, and because it is a finite resource, reducing the amount of platinum used has become a major issue.

白金触媒に対するアプローチとしては、白金の表面積を上げるなどの白金自体の改良、白金触媒層を薄くするなどの構造の改良、白金と他金属の複合型材料や白金以外の新規材料などの探索が挙げられる。ただ、いずれは枯渇してしまうことを考慮に入れると、白金のような貴金属を用いない触媒の開発が期待される。   Approaches to platinum catalysts include improvements to platinum itself, such as increasing the surface area of platinum, improvements to the structure, such as making the platinum catalyst layer thinner, and searching for composite materials of platinum and other metals and new materials other than platinum. It is done. However, considering that it will eventually be depleted, the development of a catalyst that does not use noble metals such as platinum is expected.

白金代替として非白金金属を用いた触媒の研究が報告されており、Pd−Ti触媒では、0.5Vの時に電流密度0.1A/cm、Pd−Co−Au触媒では、0.18A/cmという良い値を示しているが、酸素還元率には優れておらず、寿命という意味でも高い耐久性は得られていない(非特許文献1)。
一方、ポリピロール−Co錯体を触媒として用いた研究も報告されている(非特許文献2)。この触媒では、0.5Vの時に電流密度0.2A/cm、酸素還元率も前記Pd触媒と比較すると大きく、出力密度は0.14W/cmと、貴金属触媒を用いた場合に匹敵する性能を示している。しかし、耐久性に関しては100時間と、実用性を考えると不十分であると言える。
J.Am.Chem.Soc.,127,13100−13101,2005 Nature,443,63−66,2006
Research on catalysts using non-platinum metals as a substitute for platinum has been reported, with a Pd-Ti catalyst having a current density of 0.1 A / cm 2 at 0.5 V and a Pd-Co-Au catalyst having a current density of 0.18 A / cm 2 . Although a good value of cm 2 is shown, the oxygen reduction rate is not excellent, and high durability is not obtained in terms of life (Non-patent Document 1).
On the other hand, studies using polypyrrole-Co complexes as catalysts have also been reported (Non-patent Document 2). This catalyst has a current density of 0.2 A / cm 2 at 0.5 V, an oxygen reduction rate larger than that of the Pd catalyst, and an output density of 0.14 W / cm 2 , comparable to that when a noble metal catalyst is used. Shows performance. However, the durability is 100 hours, which is insufficient when considering practicality.
J. et al. Am. Chem. Soc. , 127, 13100-13101, 2005 Nature, 443, 63-66, 2006

本発明は前記事情に着目してなされたものであり、その目的は、酸化還元触媒特に燃料電池用電極触媒として高い酸化還元触媒活性を示す長寿命の非白金型導電性重合体金属錯体触媒を提供することである。
本発明の製造方法は、従来の導電性重合体を重合後に金属錯体化行う導電性重合体金属錯体の調製方法に比べ、金属イオン導入量が上がり、活性中心となる金属イオンが増加するため、高活性の触媒を得ることが出来る点で有用である。
The present invention has been made by paying attention to the above circumstances, and its purpose is to provide a long-life non-platinum type conductive polymer metal complex catalyst exhibiting high redox catalyst activity as an oxidation-reduction catalyst, particularly a fuel cell electrode catalyst. Is to provide.
Compared with the preparation method of the conductive polymer metal complex in which the production method of the present invention performs metal complexation after polymerizing a conventional conductive polymer, the amount of metal ions introduced is increased and the number of metal ions as active centers increases. This is useful in that a highly active catalyst can be obtained.

本発明者らは、前記課題を解決するために鋭意検討した結果、脱プロトン化可能な水素原子を結合した原子として、窒素原子を有することを特徴とするインドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン、およびフェノチアジンからなる群から選ばれた構造を有するモノマーを塩基で脱プロトン化し、金属イオン共存下で重合した導電性重合体金属錯体が酸化還元触媒反応に有効で、燃料電池用電極触媒として提供できることを見出し、本発明を完成するに至った。すなわち、本発明は以下の構成よりなる。
1.脱プロトン化可能な水素原子を結合した原子として、窒素原子を有するインドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン、およびフェノチアジンからなる群から選ばれた構造を有するモノマーを、金属イオン共存下で重合することを特徴とする導電性重合体金属錯体の製造方法。
2.請求項1記載のモノマーを塩基で脱プロトン化し、金属イオン共存下で重合することを特徴とする導電性重合体金属錯体の製造方法。
3.金属イオンが、周期律表の3A族元素、4A族元素、5A族元素、6A族元素、7A族元素、8族元素、1B族元素、2B族元素、3B族元素及び6B族元素から選ばれる少なくとも1種の金属イオンである前記1.又は2.に記載の導電性重合体金属錯体の製造方法。
4.金属イオンが、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Ru、Rh、Pd、ランタノイド系列の元素、及びアクチノイド系列の元素から選ばれる少なくとも1種の金属イオンである前記1.又は2.に記載の導電性重合体金属錯体の製造方法。
5.前記1.〜4.のいずれか1項に記載の方法により製造した導電性重合体金属錯体を用いる酸化還元触媒。
6.前記5.に記載の酸化還元触媒を用いる燃料電池用電極触媒。
As a result of intensive studies to solve the above problems, the present inventors have found that indole, isoindole, naphthopyrrole, pyrrolopyridine, which has a nitrogen atom as an atom bonded to a deprotonable hydrogen atom , Benzimidazole, purine, carbazole, phenoxazine, and a monomer selected from the group consisting of phenothiazine, deprotonated with a base, and polymerized in the presence of metal ions. The inventors have found that it is effective and can be provided as an electrode catalyst for a fuel cell, and have completed the present invention. That is, the present invention has the following configuration.
1. It has a structure selected from the group consisting of indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, purine, carbazole, phenoxazine, and phenothiazine having a nitrogen atom as an atom bonded with a deprotonable hydrogen atom. A method for producing a conductive polymer metal complex, wherein a monomer is polymerized in the presence of a metal ion.
2. A method for producing a conductive polymer metal complex, wherein the monomer according to claim 1 is deprotonated with a base and polymerized in the presence of a metal ion.
3. The metal ion is selected from Group 3A element, Group 4A element, Group 5A element, Group 6A element, Group 7A element, Group 8 element, Group 1B element, Group 2B element, Group 3B element and Group 6B element of the periodic table 1. The at least one metal ion. Or 2. The manufacturing method of the conductive polymer metal complex as described in 1 above.
4). The metal ion is at least selected from Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Ru, Rh, Pd, a lanthanoid series element, and an actinide series element The aforementioned 1. which is one kind of metal ion. Or 2. The manufacturing method of the conductive polymer metal complex as described in 1 above.
5. 1 above. ~ 4. A redox catalyst using the conductive polymer metal complex produced by the method according to any one of the above.
6). 5. above. An electrode catalyst for fuel cells using the oxidation-reduction catalyst described in 1.

本発明によると、酸化還元触媒反応に有効な導電性重合体金属錯体が提供されるとともに、白金を用いることなく、高い酸化還元触媒活性を示し、長寿命の燃料電池用電極触媒を提供することができる。
本発明の製造方法は、従来の導電性重合体を重合後に金属錯体化行う導電性重合体金属錯体の調製方法に比べ、金属イオン導入量が上がり、活性中心となる金属イオンが増加するため、高活性の触媒を得ることが出来る点で有用である。
According to the present invention, a conductive polymer metal complex effective for a redox catalyst reaction is provided, and a long-life electrode catalyst for a fuel cell is provided that exhibits high redox catalytic activity without using platinum. Can do.
Compared with the preparation method of the conductive polymer metal complex in which the production method of the present invention performs metal complexation after polymerizing a conventional conductive polymer, the amount of metal ions introduced is increased and the number of metal ions as active centers increases. This is useful in that a highly active catalyst can be obtained.

以下、本発明を詳細に説明する。
本発明に係る脱プロトン化可能な水素原子を結合した原子として窒素原子を有する構造を有するモノマーとしては、インドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン、およびフェノチアジン、及びそれらの誘導体が挙げられる。
Hereinafter, the present invention will be described in detail.
Monomers having a structure having a nitrogen atom as an atom bonded with a deprotonable hydrogen atom according to the present invention include indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, purine, carbazole, phenoxazine, and phenothiazine. , And their derivatives.

本発明の導電性重合体金属錯体の製造方法は、上記モノマーを、金属イオンを共存させた下で電解重合することにより、導電性重合体金属錯体を製造する方法である。また、上記モノマーを塩基存在下に脱プロトン化し、次いで金属イオンを共存させた下で電解重合することにより、導電性重合体金属錯体を製造する方法である。
例えば、モノマーであるイソインドールを溶媒であるジメチルスルホキシドに溶解させ、金属イオンとして硝酸コバルトを添加し、イソインドール−コバルト錯体を得る。このモノマー−金属錯体溶液に、電解質としてテトラt−ブチルアンモニウムパークロレートを加え、電解重合用の電解液を調製する。この電解液を電解重合することによって導電性重合体金属錯体であるポリイソインドール−コバルト錯体を製造する方法である。
また、モノマーであるイソインドールと塩基であるカリウムt−ブトキシドを溶媒であるジメチルスルホキシドに溶解・反応させ、脱プロトン化されたイソインドールアニオンを得る。次いでこれに金属イオンとして硝酸コバルトを添加し、イソインドール−コバルト錯体を得る。このモノマー−金属錯体溶液に、電解質としてテトラt−ブチルアンモニウムパークロレートを加え、電解重合用の電解液を調製する。この電解液を電解重合することによって導電性重合体金属錯体であるポリイソインドール−コバルト錯体を製造する方法である。
The method for producing a conductive polymer metal complex of the present invention is a method for producing a conductive polymer metal complex by electrolytic polymerization of the above monomer in the presence of a metal ion. Further, it is a method for producing a conductive polymer metal complex by deprotonating the monomer in the presence of a base and then performing electropolymerization in the presence of a metal ion.
For example, isoindole as a monomer is dissolved in dimethyl sulfoxide as a solvent, and cobalt nitrate is added as a metal ion to obtain an isoindole-cobalt complex. Tetra-t-butylammonium perchlorate is added as an electrolyte to the monomer-metal complex solution to prepare an electrolytic solution for electrolytic polymerization. This is a method for producing a polyisoindole-cobalt complex which is a conductive polymer metal complex by electrolytic polymerization of this electrolytic solution.
Further, isoindole anion as a monomer and potassium t-butoxide as a base are dissolved and reacted in dimethyl sulfoxide as a solvent to obtain a deprotonated isoindole anion. Next, cobalt nitrate is added as a metal ion to obtain an isoindole-cobalt complex. Tetra-t-butylammonium perchlorate is added as an electrolyte to the monomer-metal complex solution to prepare an electrolytic solution for electrolytic polymerization. This is a method for producing a polyisoindole-cobalt complex which is a conductive polymer metal complex by electrolytic polymerization of this electrolytic solution.

本発明において、モノマーの脱プロトン化に用いる塩基としては、リチウム、カリウム、ナトリウム、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水素化リチウム、水素化ナトリウム、水素化カルシウム、カリウムt−ブトキシド、ナトリウムエトキシド、ナトリウムメトキシド、ブチルリチウム、フェニルリチウム、リチウムジイソプロピルアミド等が挙げられる。   In the present invention, the base used for deprotonation of the monomer includes lithium, potassium, sodium, lithium hydroxide, potassium hydroxide, sodium hydroxide, lithium hydride, sodium hydride, calcium hydride, potassium t-butoxide, Sodium ethoxide, sodium methoxide, butyl lithium, phenyl lithium, lithium diisopropylamide and the like can be mentioned.

本発明において、プロトン化されたモノマーまたは脱プロトン化されたモノマーの金属錯体化に用いる金属イオンとしては、目的に応じて適宜選択することができ、例えば、周期律表の3A族元素、4A族元素、5A族元素、6A族元素、7A族元素、8族元素、1B族元素、2B族元素、3B族元素及び6B族元素から選ばれる少なくとも1種の金属イオンが挙げられる。さらに好ましくは、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Ru、Rh、Pd、ランタノイド系列の元素、及びアクチノイド系列の元素から選ばれる少なくとも1種の金属イオンが挙げられる。特にFe、Co、Niのイオンが好ましい。
金属イオンは、例えば、例えば、前記金属の塩酸塩、硝酸塩、硫酸塩、リン酸塩、酢酸塩等を溶媒に溶解させることで金属錯体化することができる。
In the present invention, the metal ion used for the metal complexation of the protonated monomer or the deprotonated monomer can be appropriately selected according to the purpose. For example, the group 3A element, group 4A in the periodic table And at least one metal ion selected from the group consisting of element, 5A element, 6A group element, 7A group element, 8 group element, 1B group element, 2B group element, 3B group element and 6B group element. More preferably, at least selected from Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Ru, Rh, Pd, a lanthanoid series element, and an actinide series element One type of metal ion may be mentioned. In particular, ions of Fe, Co, and Ni are preferable.
For example, the metal ion can be converted into a metal complex by dissolving, for example, a hydrochloride, nitrate, sulfate, phosphate, acetate, or the like of the metal in a solvent.

次に本発明の酸化還元触媒の調製方法について説明する。
本発明の酸化還元触媒は、例えば、前記の方法で製造した導電性重合体金属錯体を、スラリーやペースト、懸濁液にした導電性担体に添加し、次いでろ過、洗浄及び乾燥により調製することができる。導電性担体としては、特に限定されるものではなく、例えば、導電性が良好で安価なVulcan XC72などのカーボンブラック、黒鉛をはじめ、炭素繊維、カーボンナノチューブ等の炭素材料が望ましい。この場合、導電性担体の平均粒子径は0.03μm以上0.1μm以下とすることが、高い触媒活性が得られる点で望ましい。
次に本発明の酸化還元触媒の調製方法について説明する。
Next, a method for preparing the redox catalyst of the present invention will be described.
The oxidation-reduction catalyst of the present invention is prepared, for example, by adding the conductive polymer metal complex produced by the above-described method to a slurry, paste or suspension of a conductive carrier, and then filtering, washing and drying. Can do. The conductive carrier is not particularly limited. For example, carbon black such as Vulcan XC72, graphite, carbon fiber, and carbon nanotube such as carbon fiber and carbon nanotube are preferable because of good conductivity and low cost. In this case, it is desirable that the average particle size of the conductive carrier is 0.03 μm or more and 0.1 μm or less in view of obtaining high catalytic activity.
Next, a method for preparing the redox catalyst of the present invention will be described.

本発明の酸化還元触媒を用いた電極の作製方法の一例について説明する。
ナフィオンなどのプロトン伝導性ポリマー溶液に、前記手法により調製した酸化還元触媒に少量の超純水及びイソプロパノールを加え、均一になるまで攪拌し、酸化還元触媒ペーストを調製する。この酸化還元触媒ペーストをカーボンペーパーに金属付着量が0.01〜0.2mg/cmになるように、より好ましくは0.05〜0.1mg/cmになるように、アプリケーターを用いて均一に塗布、乾燥することによって、カソードもしくはアノード用の触媒層付ガス拡散層である酸化還元触媒を用いた(担持した)電極を作製することができる。
An example of an electrode manufacturing method using the oxidation-reduction catalyst of the present invention will be described.
To a proton conductive polymer solution such as Nafion, a small amount of ultrapure water and isopropanol are added to the redox catalyst prepared by the above method, and stirred until uniform to prepare a redox catalyst paste. As metal deposition amount redox catalyst paste on the carbon paper is 0.01~0.2mg / cm 2, more preferably to be 0.05 to 0.1 / cm 2, using an applicator By uniformly applying and drying, an electrode using (supported) an oxidation-reduction catalyst which is a gas diffusion layer with a catalyst layer for a cathode or an anode can be produced.

本発明の導電性重合体金属錯体を用いた酸化還元触媒は、白金触媒に代わる燃料電池用電極触媒として用いることができる。例えば、前記方法で作製した本発明の導電性重合体金属錯体触媒を担持したカソード用の触媒層付ガス拡散層を作製し、同様の手法で、白金触媒を担持したアノード用の触媒層付ガス拡散層を作製し、前記2種類の触媒層付ガス拡散層の間に、触媒層がプロトン交換膜に接するようにプロトン交換膜を挟み、ホットプレス機により膜電極接合体を作製し、この膜電極接合体を燃料電池セルに組み込んで、アノード側には水素ガスを、カソード側には酸素を供給することによって燃料電池を作製することができる。   The redox catalyst using the conductive polymer metal complex of the present invention can be used as an electrode catalyst for a fuel cell instead of a platinum catalyst. For example, a gas diffusion layer with a catalyst layer for a cathode carrying the conductive polymer metal complex catalyst of the present invention produced by the above-described method is produced, and a gas with a catalyst layer for an anode carrying a platinum catalyst is produced in the same manner. A diffusion layer was prepared, and a proton exchange membrane was sandwiched between the two types of gas diffusion layers with catalyst layer so that the catalyst layer was in contact with the proton exchange membrane, and a membrane electrode assembly was produced by a hot press machine. A fuel cell can be fabricated by incorporating an electrode assembly into a fuel cell and supplying hydrogen gas to the anode side and oxygen to the cathode side.

以下に実例を用いて本発明を具体的に説明するが、本発明はもとより下記の実施例によって制限を受けるものではなく、前後記の主旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術範囲に含まれる。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. Of course, it is also possible and they are all included in the technical scope of the present invention.

(発電特性)
デュポン社製20%ナフィオン(登録商標)溶液に、調製した導電性重合体金属錯体触媒と少量の超純水及びイソプロパノールを加え、均一になるまで攪拌し、触媒ペーストを調製した。この触媒ペーストを、別途疎水化した東レ製カーボンペーパーTGPH−060に金属付着量が0.1mg/cmになるようにアプリケーターを用いて均一に塗布、乾燥して、カソード用の触媒層付ガス拡散層を作製した。同様の手法で、市販の40%白金触媒担持カーボンを用いて、別途疎水化した前記カーボンペーパー上に電極触媒層を形成することで、アノード用の触媒層付ガス拡散層を作製した(0.4mg−白金/cm)。前記2種類の触媒層付ガス拡散層の間に、触媒層がプロトン交換膜に接するように膜を挟み、ホットプレス機により180℃、3分間加熱することで膜電極接合体(以下MEAと略記する場合もある)を作製した。このMEAを用い、評価用燃料電池セルに組み込んで、アノード側には水素ガスを、カソード側には酸素を供給し、セル温度80℃、常圧、水素利用率を70%、酸素利用率を40%とし、ガス加湿は水素及び酸素を85℃のバブラーを通して行い、電流−電圧特性試験を実施した。0.5Vの電圧をかけ、電流密度の経時変化をとることで耐久性評価を行った。
(Power generation characteristics)
To the 20% Nafion (registered trademark) solution manufactured by DuPont, the prepared conductive polymer metal complex catalyst, a small amount of ultrapure water and isopropanol were added and stirred until uniform to prepare a catalyst paste. This catalyst paste is uniformly applied to a separately hydrophobicized Toray carbon paper TGPH-060 using an applicator so that the metal adhesion amount is 0.1 mg / cm 2 , dried, and then a gas with a catalyst layer for the cathode A diffusion layer was prepared. By using a commercially available 40% platinum catalyst-supporting carbon in the same manner, an electrode catalyst layer was formed on the carbon paper separately hydrophobized to produce a gas diffusion layer with a catalyst layer for the anode (0. 4 mg-platinum / cm < 2 >). A membrane electrode assembly (hereinafter abbreviated as MEA) is obtained by sandwiching a membrane between the two types of gas diffusion layers with a catalyst layer so that the catalyst layer is in contact with the proton exchange membrane and heating it at 180 ° C. for 3 minutes with a hot press machine. In some cases). This MEA is incorporated into an evaluation fuel cell, hydrogen gas is supplied to the anode side, oxygen is supplied to the cathode side, the cell temperature is 80 ° C., normal pressure, the hydrogen utilization rate is 70%, and the oxygen utilization rate is 40%, gas humidification was carried out with hydrogen and oxygen through a bubbler at 85 ° C., and a current-voltage characteristic test was conducted. Durability was evaluated by applying a voltage of 0.5 V and taking the change in current density over time.

(実施例1)
イソインドール100mg、カリウムt−ブトキシド150mgを、予め、モレキュラーシーブス、水素化カルシウムで乾燥、蒸留したジメチルスルホキシド50mlに溶解させ、窒素雰囲気下、50℃で3時間攪拌し、イソインドールアニオンを得た。ここに硝酸コバルト280mgを添加しイソインドール−コバルト錯体を得た。これに電解質としてテトラt−ブチルアンモニウムパークロレート1.2gを加え、電解液を調製した。この電解液を用いて、ネサガラスを陽極、白金を陰極として定電位法(1.2V対銀/塩化銀電極)で電解重合を行ったところ、陽極板上にフィルム状生成物(ポリイソインドール−コバルト錯体)が得られた。電極よりフィルムを剥離し、すり鉢を用いて粉末状に粉砕し、真空乾燥した。
得た導電性重合体金属錯体を、導電性担体として用いるカーボンブラックVulcan XC72の水溶液に含浸させ、ろ過、水洗を行い、100℃で乾燥させ、酸化還元触媒を調製した。これを用い、前記手法によりMEAを作製し、発電特性を評価した。その結果を表1に示す。
Example 1
100 mg of isoindole and 150 mg of potassium t-butoxide were dissolved in 50 ml of dimethyl sulfoxide previously dried and distilled with molecular sieves and calcium hydride, and stirred at 50 ° C. for 3 hours in a nitrogen atmosphere to obtain an isoindole anion. To this was added 280 mg of cobalt nitrate to obtain an isoindole-cobalt complex. To this was added 1.2 g of tetra-t-butylammonium perchlorate as an electrolyte to prepare an electrolytic solution. Using this electrolytic solution, electropolymerization was performed by a constant potential method (1.2 V vs. silver / silver chloride electrode) using nesa glass as an anode and platinum as a cathode. A film-like product (polyisoindole- A cobalt complex). The film was peeled off from the electrode, ground into a powder using a mortar, and vacuum dried.
The obtained conductive polymer metal complex was impregnated with an aqueous solution of carbon black Vulcan XC72 used as a conductive carrier, filtered, washed with water, and dried at 100 ° C. to prepare a redox catalyst. Using this, an MEA was produced by the above-described method, and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例2)
実施例1と同様にし、硝酸コバルトの代わりに塩化第二鉄を加え、ポリイソインドール−鉄錯体を得た。MEAを作製し、発電特性を評価した。その結果を表1に示す。
(Example 2)
In the same manner as in Example 1, ferric chloride was added instead of cobalt nitrate to obtain a polyisoindole-iron complex. An MEA was produced and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例3)
実施例1と同様にし、硝酸コバルトの代わりに硝酸ニッケルを加え、ポリイソインドール−ニッケル錯体を得た。MEAを作製し、発電特性を評価した。その結果を表1に示す。
(Example 3)
In the same manner as in Example 1, nickel nitrate was added instead of cobalt nitrate to obtain a polyisoindole-nickel complex. An MEA was produced and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例4)
実施例1で用いたイソインドールの代わりにナフトピロールを用いて同様のポリナフトピロール−コバルト錯体を得た。次いで、同様にしてMEAを作製、発電特性を評価した。その結果を表1に示す。
Example 4
A similar polynaphthopyrrole-cobalt complex was obtained using naphthopyrrole instead of isoindole used in Example 1. Next, an MEA was produced in the same manner, and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例5)
実施例1で用いたイソインドールの代わりにインドールを用いて同様のポリインドール−コバルト錯体を得た。次いで、同様にしてMEAを作製、発電特性を評価した。その結果を表1に示す。
(Example 5)
A similar polyindole-cobalt complex was obtained using indole instead of isoindole used in Example 1. Next, an MEA was produced in the same manner, and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例6)
実施例1で用いたイソインドールの代わりにピロロピリジンを用いて同様のポリピロロピリジン−コバルト錯体を得た。次いで、同様にしてMEAを作製、発電特性を評価した。その結果を表1に示す。
(Example 6)
A similar polypyrrolopyridine-cobalt complex was obtained using pyrrolopyridine instead of isoindole used in Example 1. Next, an MEA was produced in the same manner, and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例7)
実施例1で用いたイソインドールの代わりにベンズイミダゾールを用いて同様のポリベンズイミダゾール−コバルト錯体を得た。次いで、同様にしてMEAを作製、発電特性を評価した。その結果を表1に示す。
(Example 7)
A similar polybenzimidazole-cobalt complex was obtained using benzimidazole instead of isoindole used in Example 1. Next, an MEA was produced in the same manner, and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例8)
実施例1で用いたイソインドールの代わりにプリンを用いて同様のポリプリン−コバルト錯体を得た。次いで、同様にしてMEAを作製、発電特性を評価した。その結果を表1に示す。
(Example 8)
A similar polypurine-cobalt complex was obtained using purine instead of isoindole used in Example 1. Next, an MEA was produced in the same manner, and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例9)
実施例1で用いたイソインドールの代わりにカルバゾールを用いて同様のポリカルバゾール−コバルト錯体を得た。次いで、同様にしてMEAを作製、発電特性を評価した。その結果を表1に示す。
Example 9
A similar polycarbazole-cobalt complex was obtained using carbazole instead of isoindole used in Example 1. Next, an MEA was produced in the same manner, and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例10)
実施例1で用いたイソインドールの代わりにフェノキサジンを用いて同様のポリフェノキサジン−コバルト錯体を得た。次いで、同様にしてMEAを作製、発電特性を評価した。その結果を表1に示す。
(Example 10)
A similar polyphenoxazine-cobalt complex was obtained using phenoxazine instead of isoindole used in Example 1. Next, an MEA was produced in the same manner, and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例11)
実施例1で用いたイソインドールの代わりにフェノチアジンを用いて同様のポリフェノチアジン−コバルト錯体を得た。次いで、同様にしてMEAを作製、発電特性を評価した。その結果を表1に示す。
(実施例12)
イソインドール100mgを、予め、モレキュラーシーブス、水素化カルシウムで乾燥、蒸留したジメチルスルホキシド50mlに溶解させ、ここに硝酸コバルト280mgを添加しイソインドール−コバルト錯体を得た。これに電解質としてテトラt−ブチルアンモニウムパークロレート1.2gを加え、電解液を調製した。この電解液を用いて、ネサガラスを陽極、白金を陰極として定電位法(1.2V対銀/塩化銀電極)で電解重合を行ったところ、陽極板上にフィルム状生成物(ポリイソインドール−コバルト錯体)が得られた。電極よりフィルムを剥離し、すり鉢を用いて粉末状に粉砕し、真空乾燥した。
得た導電性重合体金属錯体を、導電性担体として用いるカーボンブラックVulcan XC72の水溶液に含浸させ、ろ過、水洗を行い、100℃で乾燥させ、酸化還元触媒を調製した。これを用い、前記手法によりMEAを作製し、発電特性を評価した。その結果を表1に示す。
(Example 11)
A similar polyphenothiazine-cobalt complex was obtained using phenothiazine instead of isoindole used in Example 1. Next, an MEA was produced in the same manner, and the power generation characteristics were evaluated. The results are shown in Table 1.
(Example 12)
100 mg of isoindole was dissolved in 50 ml of dimethyl sulfoxide previously dried and distilled with molecular sieves and calcium hydride, and 280 mg of cobalt nitrate was added thereto to obtain an isoindole-cobalt complex. To this was added 1.2 g of tetra-t-butylammonium perchlorate as an electrolyte to prepare an electrolytic solution. Using this electrolytic solution, electropolymerization was performed by a constant potential method (1.2 V vs. silver / silver chloride electrode) using nesa glass as an anode and platinum as a cathode. A film-like product (polyisoindole- A cobalt complex). The film was peeled off from the electrode, ground into a powder using a mortar, and vacuum dried.
The obtained conductive polymer metal complex was impregnated with an aqueous solution of carbon black Vulcan XC72 used as a conductive carrier, filtered, washed with water, and dried at 100 ° C. to prepare a redox catalyst. Using this, an MEA was produced by the above-described method, and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例13)
実施例12で用いたイソインドールの代わりにナフトピロールを用いて同様のポリナフトピロール−コバルト錯体を得た。次いで、同様にしてMEAを作製、発電特性を評価した。その結果を表1に示す。
(Example 13)
A similar polynaphthopyrrole-cobalt complex was obtained using naphthopyrrole instead of isoindole used in Example 12. Next, an MEA was produced in the same manner, and the power generation characteristics were evaluated. The results are shown in Table 1.

(実施例14)
実施例12で用いたイソインドールの代わりにインドールを用いて同様のポリインドール−コバルト錯体を得た。次いで、同様にしてMEAを作製、発電特性を評価した。その結果を表1に示す。
(Example 14)
A similar polyindole-cobalt complex was obtained using indole instead of isoindole used in Example 12. Next, an MEA was produced in the same manner, and the power generation characteristics were evaluated. The results are shown in Table 1.

(比較例1)
ピロール100mg、カリウムt−ブトキシド150mgを、予め、モレキュラーシーブス、水素化カルシウムで乾燥、蒸留したジメチルスルホキシド50mlに溶解させ、窒素雰囲気下、50℃で3時間攪拌し、イソインドールアニオンを得た。ここに硝酸コバルトを添加し、テトラt−ブチルアンモニウムパークロレート2.1gを加え、電解液を調製した。この電解液を用いて、ネサガラスを陽極、白金を陰極として定電位法(1.2V対銀/塩化銀電極)で電解重合を試みたが、重合体は得られなかった。
したがって、以下の製造法によりポリマー金属錯体を得た。ピロール100mg、テトラn−ブチルアンモニウムパークロレート2.1gをアセトニトリル30mlに溶解し、電解液を調製した。この電解液を用いて、ネサガラスを陽極、白金を陰極として定電位法(1.2V対銀/塩化銀電極)で電解重合を行ったところ、陽極板上に黒色のフィルム状生成物が得られた。次いで、上記電解液と同濃度のテトラn−ブチルアンモニウムパークロレート/アセトニトリル溶液中で脱ドーピングを行い、その後電極よりフィルムを剥離し、すり鉢を用いて粉末状に粉砕し脱ドーピングしたポリピロール粉末を得た。予め、モレキュラーシーブス、水素化カルシウムで乾燥、蒸留したジメチルスルホキシド50mlに硝酸コバルト500mgを溶解した塩基溶液を調製した。この塩基溶液に上記の脱ドーピングしたポリピロール粉末を添加し、窒素雰囲気下、50℃で3時間攪拌し、ポリピロール金属錯体を得た。得られたポリピロール金属錯体の粉末をろ過し、ジメチルスルホキシド、アセトンの順に洗浄し、真空乾燥した。
得た導電性重合体金属錯体を、導電性担体として用いるカーボンブラックVulcan XC72の水溶液に含浸させ、ろ過、水洗を行い、100℃で乾燥させ、酸化還元触媒を調製した。これを用い、前記手法によりMEAを作製し、発電特性を評価した。その結果を表1に示す。
(Comparative Example 1)
100 mg of pyrrole and 150 mg of potassium t-butoxide were dissolved in 50 ml of dimethyl sulfoxide previously dried and distilled with molecular sieves and calcium hydride, and stirred at 50 ° C. for 3 hours in a nitrogen atmosphere to obtain an isoindole anion. Cobalt nitrate was added thereto, and 2.1 g of tetra-t-butylammonium perchlorate was added to prepare an electrolytic solution. Using this electrolytic solution, electropolymerization was attempted by a constant potential method (1.2 V vs. silver / silver chloride electrode) using nesa glass as an anode and platinum as a cathode, but no polymer was obtained.
Therefore, a polymer metal complex was obtained by the following production method. An electrolyte solution was prepared by dissolving 100 mg of pyrrole and 2.1 g of tetra-n-butylammonium perchlorate in 30 ml of acetonitrile. Using this electrolytic solution, electropolymerization was performed by the constant potential method (1.2 V vs. silver / silver chloride electrode) using nesa glass as an anode and platinum as a cathode, and a black film-like product was obtained on the anode plate. It was. Next, dedoping is performed in a tetra n-butylammonium perchlorate / acetonitrile solution having the same concentration as the above electrolytic solution, and then the film is peeled off from the electrode and pulverized into a powder using a mortar to obtain a dedope polypyrrole powder. It was. A base solution in which 500 mg of cobalt nitrate was dissolved in 50 ml of dimethyl sulfoxide previously dried and distilled with molecular sieves and calcium hydride was prepared. The dedoped polypyrrole powder was added to this base solution and stirred at 50 ° C. for 3 hours in a nitrogen atmosphere to obtain a polypyrrole metal complex. The obtained powder of the polypyrrole metal complex was filtered, washed with dimethyl sulfoxide and acetone in this order, and dried in vacuum.
The obtained conductive polymer metal complex was impregnated with an aqueous solution of carbon black Vulcan XC72 used as a conductive carrier, filtered, washed with water, and dried at 100 ° C. to prepare a redox catalyst. Using this, an MEA was produced by the above-described method, and the power generation characteristics were evaluated. The results are shown in Table 1.

表1に示す結果の通り、本発明の製造方法により調製した導電性重合体金属錯体は、白金触媒に代わる燃料電池用電極触媒として用いることにより、高い酸化還元触媒活性を示した。さらに600時間経過しても活性は保持されており、耐久性の高い燃料電池用電極触媒を得ることができる。   As shown in Table 1, the conductive polymer metal complex prepared by the production method of the present invention showed high redox catalytic activity when used as an electrode catalyst for a fuel cell instead of a platinum catalyst. Further, the activity is maintained even after 600 hours have elapsed, and a highly durable fuel cell electrode catalyst can be obtained.

Figure 0005114657
Figure 0005114657

本発明によると、高い酸化還元触媒活性と耐久性を示し、燃料電池電極用触媒として有用である。
即ち、水素ガス、メタノール燃料電池、リン酸型燃料電池、固体高分子電解質型燃料電池等における電極として好適に使用できる。
According to the present invention, it exhibits high redox catalyst activity and durability, and is useful as a fuel cell electrode catalyst.
That is, it can be suitably used as an electrode in hydrogen gas, methanol fuel cells, phosphoric acid fuel cells, solid polymer electrolyte fuel cells and the like.

Claims (7)

脱プロトン化可能な水素原子を結合した原子として、窒素原子を有するインドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン、およびフェノチアジンからなる群から選ばれた構造を有するモノマーを、周期律表の3A族元素、4A族元素、5A族元素、6A族元素、7A族元素、8族元素、1B族元素、2B族元素、3B族元素及び6B族元素から選ばれる少なくとも1種の金属イオン共存下で重合することを特徴とする導電性重合体金属錯体の製造方法。 It has a structure selected from the group consisting of indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, purine, carbazole, phenoxazine, and phenothiazine having a nitrogen atom as an atom bonded with a deprotonable hydrogen atom. The monomer is at least selected from Group 3A element, Group 4A element, Group 5A element, Group 6A element, Group 7A element, Group 8 element, Group 1B element, Group 2B element, Group 3B element and Group 6B element of the periodic table A method for producing a conductive polymer metal complex, which comprises polymerizing in the presence of one metal ion. 請求項1記載のモノマーを塩基で脱プロトン化し、請求項1記載の金属イオン共存下で重合することを特徴とする導電性重合体金属錯体の製造方法。 A method for producing a conductive polymer metal complex, wherein the monomer according to claim 1 is deprotonated with a base and polymerized in the presence of the metal ion according to claim 1 . 金属イオンが、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Ru、Rh、Pd、ランタノイド系列の元素、及びアクチノイド系列の元素から選ばれる少なくとも1種の金属イオンである請求項1又は2に記載の導電性重合体金属錯体の製造方法。   The metal ion is at least selected from Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Ru, Rh, Pd, a lanthanoid series element, and an actinide series element The method for producing a conductive polymer metal complex according to claim 1, which is one kind of metal ion. 脱プロトン化可能な水素原子を結合した原子として、窒素原子を有するインドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン、及びフェノチアジンからなる群から選ばれた構造を有する導電性重合体と、周期律表の3A族元素、4A族元素、5A族元素、6A族元素、7A族元素、8族元素、1B族元素、2B族元素、3B族元素及び6B族元素から選ばれる少なくとも1種の金属イオンからなる導電性重合体金属錯体。It has a structure selected from the group consisting of indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, purine, carbazole, phenoxazine, and phenothiazine having a nitrogen atom as an atom bonded with a deprotonable hydrogen atom. From conductive polymer and 3A group element, 4A group element, 5A group element, 6A group element, 7A group element, 8 group element, 1B group element, 2B group element, 3B group element and 6B group element of the periodic table A conductive polymer metal complex comprising at least one selected metal ion. 金属イオンが、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Ru、Rh、Pd、ランタノイド系列の元素、及びアクチノイド系列の元素から選ばれる少なくとも1種である請求項4に記載の導電性重合体金属錯体。The metal ion is at least selected from Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Ru, Rh, Pd, a lanthanoid series element, and an actinide series element The conductive polymer metal complex according to claim 4, which is one type. 請求項1〜のいずれか1項に記載の方法により製造した導電性重合体金属錯体又は請求項4〜5のいずれか1項記載の導電性重合体金属錯体を用いる酸化還元触媒。 The oxidation reduction catalyst using the conductive polymer metal complex manufactured by the method of any one of Claims 1-3 , or the conductive polymer metal complex of any one of Claims 4-5 . 請求項に記載の酸化還元触媒を用いる燃料電池用電極触媒。 A fuel cell electrode catalyst using the oxidation-reduction catalyst according to claim 6 .
JP2007026857A 2007-02-06 2007-02-06 Process for producing conductive polymer metal complex and electrocatalyst using the same Expired - Fee Related JP5114657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026857A JP5114657B2 (en) 2007-02-06 2007-02-06 Process for producing conductive polymer metal complex and electrocatalyst using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026857A JP5114657B2 (en) 2007-02-06 2007-02-06 Process for producing conductive polymer metal complex and electrocatalyst using the same

Publications (2)

Publication Number Publication Date
JP2008192502A JP2008192502A (en) 2008-08-21
JP5114657B2 true JP5114657B2 (en) 2013-01-09

Family

ID=39752393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026857A Expired - Fee Related JP5114657B2 (en) 2007-02-06 2007-02-06 Process for producing conductive polymer metal complex and electrocatalyst using the same

Country Status (1)

Country Link
JP (1) JP5114657B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9287568B2 (en) 2007-04-12 2016-03-15 3M Innovative Properties Company High performance, high durability non-precious metal fuel cell catalysts
JP5251009B2 (en) * 2007-06-14 2013-07-31 東洋紡株式会社 Electrocatalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166225A (en) * 1989-11-25 1991-07-18 Toyobo Co Ltd Electroconductive polymer and production thereof

Also Published As

Publication number Publication date
JP2008192502A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
Park et al. Material design and engineering of next-generation flow-battery technologies
Yuan et al. Improved performance of proton exchange membrane fuel cells with p-toluenesulfonic acid-doped Co-PPy/C as cathode electrocatalyst
Dutta et al. Enhancements of catalyst distribution and functioning upon utilization of conducting polymers as supporting matrices in DMFCs: a review
JPWO2006003950A1 (en) Composite, catalyst structure, electrode for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
WO2012160957A1 (en) Electrode catalyst and method for producing same
JP2007099551A (en) Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell
CN104701549B (en) A carbon-free membrane electrode assembly
Duan et al. Surface Engineering Route to Non-pyrolysis MOFs with High-Density Co–N x Sites and 3D Conductive Networks for Efficient Oxygen Reduction
KR102131140B1 (en) Noble metal-free catalyst system for fuel system
US8247521B2 (en) Acid-doped polyelectrolyte modified carbon nanotubes and their use in high temperature PEM fuel cell electrodes
JP2006309973A (en) Fuel cell electrode catalyst and fuel cell
JP5114657B2 (en) Process for producing conductive polymer metal complex and electrocatalyst using the same
JP4429022B2 (en) Membrane electrode assembly and method for producing the same, fuel cell using the same, and method for producing the same
Zhao et al. Innovating rechargeable Zn-air batteries for low charging voltage and high energy efficiency
JP2008189837A (en) Electroconductive polymer-metal complex and oxidation-reduction catalyst electrode using the same
JP5251009B2 (en) Electrocatalyst
JP6297939B2 (en) Cathode electrode structure and membrane / electrode assembly
JP5795495B2 (en) Modified aromatic amine, redox catalyst, electrode catalyst for fuel cell and fuel cell
JP2008177023A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it
JP2008149485A (en) Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell
US11929513B2 (en) Fuel cells, bifunctional catalysts thereof, and preparation methods therefor
JP2005044664A (en) Electrode catalyst and its manufacturing method
WO2020213648A1 (en) Catalyst, electrode, membrane electrode assembly, and air cell
KR100834008B1 (en) Metal catalyst electrode supported in conductive polymer and fuel cell comprising same
JP2009001845A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R151 Written notification of patent or utility model registration

Ref document number: 5114657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees