JP2008149485A - Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell - Google Patents

Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell Download PDF

Info

Publication number
JP2008149485A
JP2008149485A JP2006337207A JP2006337207A JP2008149485A JP 2008149485 A JP2008149485 A JP 2008149485A JP 2006337207 A JP2006337207 A JP 2006337207A JP 2006337207 A JP2006337207 A JP 2006337207A JP 2008149485 A JP2008149485 A JP 2008149485A
Authority
JP
Japan
Prior art keywords
composite material
fuel cell
fibrous carbon
carbon material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006337207A
Other languages
Japanese (ja)
Inventor
Atsushi Fukushima
敦 福島
Shinichi Toyosawa
真一 豊澤
Hideo Sugiyama
秀夫 杉山
Shinichiro Sugi
信一郎 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006337207A priority Critical patent/JP2008149485A/en
Publication of JP2008149485A publication Critical patent/JP2008149485A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material which contains a carbon fiber material having an ideal structure as the carrier of the catalyst layer of a solid polymer type fuel cell and preferably usable in the electrode of the solid polymer type fuel cell. <P>SOLUTION: The composite material is composed of a conductive substrate and the carbon fiber material arranged on the conductive substrate and the carbon fiber material comprises three-dimensional continuous carbon fiber obtained by the electrolytic polymerization of a compound having an aromatic ring to form a fibril-like polymer and baking the fibril-like polymer. The presence ratio of the carbon fiber material at the region of 15 vol.% from the surface of the composite material is 80-200% with respect the presence ratio of the region of 40 vol.% from the interface with the conductive substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複合材料及びその製造方法、並びに該複合材料を用いた固体高分子型燃料電池用電極及び固体高分子型燃料電池に関し、特に構造傾斜を有する複合材料と、該複合材料を電極に用いた固体高分子型燃料電池に関するものである。   The present invention relates to a composite material, a method for producing the same, and an electrode for a solid polymer fuel cell and a solid polymer fuel cell using the composite material, and more particularly, a composite material having a structural gradient, and the composite material as an electrode. The present invention relates to the used polymer electrolyte fuel cell.

昨今、発電効率が高く、環境への負荷が小さい電池として、燃料電池が注目を集めており、広く研究開発が行われている。燃料電池の中でも、出力密度が高く作動温度が低い固体高分子型燃料電池は、小型化や低コスト化が他のタイプの燃料電池よりも容易なことから、電気自動車用電源、分散発電システム、家庭用のコージェネレーションシステムとして広く普及することが期待されている。   In recent years, fuel cells have attracted attention as a battery with high power generation efficiency and a low environmental load, and extensive research and development has been conducted. Among fuel cells, polymer electrolyte fuel cells with high output density and low operating temperature are easier to reduce in size and cost than other types of fuel cells. It is expected to spread widely as a household cogeneration system.

一般に固体高分子型燃料電池においては、固体高分子電解質膜を挟んで一対の電極を配置すると共に、一方の電極の表面に水素等の燃料ガスを接触させ、もう一方の電極の表面に酸素を含有する酸素含有ガスを接触させ、この時起こる電気化学反応を利用して、電極間から電気エネルギーを取り出している(非特許文献1及び2参照)。また、上記電極の高分子電解質膜に接する側には触媒層が配設されており、高分子電解質膜と触媒層とガスとの三相界面で電気化学反応が起こる。そのため、固体高分子型燃料電池の発電効率を向上させるためには、上記電気化学反応の反応場を大きくする必要がある。   In general, in a polymer electrolyte fuel cell, a pair of electrodes are arranged with a polymer electrolyte membrane sandwiched between them, a fuel gas such as hydrogen is brought into contact with the surface of one electrode, and oxygen is applied to the surface of the other electrode. The oxygen-containing gas contained is brought into contact, and electric energy is taken out between the electrodes by using an electrochemical reaction that occurs at this time (see Non-Patent Documents 1 and 2). A catalyst layer is disposed on the electrode in contact with the polymer electrolyte membrane, and an electrochemical reaction occurs at the three-phase interface between the polymer electrolyte membrane, the catalyst layer, and the gas. Therefore, in order to improve the power generation efficiency of the polymer electrolyte fuel cell, it is necessary to increase the reaction field of the electrochemical reaction.

上記電気化学反応の反応場を大きくすることが可能な触媒層を形成するために、一般に、白金等の貴金属触媒をカーボンブラック等の粒状カーボン上に担持した触媒粉を含有するペースト又はスラリーを、カーボンペーパー等の導電性の多孔質支持体上に塗布する方法が採られている。しかしながら、この方法で形成された触媒層を備える固体高分子型燃料電池は、発電効率が低かった。   In order to form a catalyst layer capable of increasing the reaction field of the electrochemical reaction, generally, a paste or slurry containing catalyst powder in which a noble metal catalyst such as platinum is supported on granular carbon such as carbon black, The method of apply | coating on electroconductive porous supports, such as carbon paper, is taken. However, the polymer electrolyte fuel cell including the catalyst layer formed by this method has low power generation efficiency.

これに対して、本発明者らは、カーボンペーパー等の導電性の多孔質支持体上に電解重合等の方法で3次元連続状の炭素繊維を生成させ、該炭素繊維上に電気メッキにより貴金属を担持して作製した電極を固体高分子型燃料電池に使用することで、固体高分子型燃料電池の発電効率が向上することを見出している(特許文献1参照)。   On the other hand, the present inventors generated a three-dimensional continuous carbon fiber by a method such as electrolytic polymerization on a conductive porous support such as carbon paper, and electroplated the noble metal on the carbon fiber. It has been found that the power generation efficiency of a polymer electrolyte fuel cell is improved by using an electrode prepared by supporting the polymer in a polymer electrolyte fuel cell (see Patent Document 1).

日本化学会編,「化学総説No.49,新型電池の材料化学」,学会出版センター,2001年,p.180−182The Chemical Society of Japan, “Chemical Review No. 49, Material Chemistry of New Batteries”, Academic Publishing Center, 2001, p. 180-182 「固体高分子型燃料電池<2001年版>」,技術情報協会,2001年,p.14−15“Polymer fuel cell <2001 edition>”, Technical Information Association, 2001, p. 14-15 国際公開第2004/063438号パンフレットInternational Publication No. 2004/063438 Pamphlet

上述のように、上記特許文献1に記載の方法で得られる繊維状炭素材料は、3次元連続状であり、粒状カーボンよりも、固体高分子型燃料電池の触媒層の担体として優れているものの、該触媒層の担体として理想的な構造は、依然として明らかではなかった。   As described above, the fibrous carbon material obtained by the method described in Patent Document 1 is three-dimensional continuous, and is superior to granular carbon as a support for the catalyst layer of a solid polymer fuel cell. The ideal structure as a support for the catalyst layer has not yet been clarified.

そこで、本発明の目的は、固体高分子型燃料電池の触媒層の担体として理想的な構造を有する繊維状炭素材料を含み、固体高分子型燃料電池の電極に好適に用いることが可能な複合材料及びその製造方法を提供することにある。また、本発明の他の目的は、かかる複合材料を用いた固体高分子型燃料電池用電極及び固体高分子型燃料電池を提供することにある。   Accordingly, an object of the present invention is a composite that includes a fibrous carbon material having an ideal structure as a support for a catalyst layer of a polymer electrolyte fuel cell and can be suitably used for an electrode of a polymer electrolyte fuel cell. It is in providing a material and its manufacturing method. Another object of the present invention is to provide an electrode for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell using such a composite material.

本発明者らは、上記目的を達成するために鋭意検討した結果、上記3次元連続状炭素繊維は、電解重合の際の電位や電流密度に依存して表面構造が変化し、特定の条件で電解重合を行うことで、深さ方向に構造傾斜を有する基板/繊維状炭素材料の複合材料が得られ、また、繊維状炭素材料中の表面に近い部分と基板に近い部分における繊維状炭素材料の存在率の比が特定の範囲にある複合材料を固体高分子型燃料電池の電極に用いた場合、固体高分子型燃料電池が優れた発電性能を示すことを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the surface structure of the three-dimensional continuous carbon fiber changes depending on the electric potential and current density at the time of electrolytic polymerization, and under certain conditions. By performing electropolymerization, a composite material of a substrate / fibrous carbon material having a structural gradient in the depth direction is obtained, and the fibrous carbon material in a portion close to the surface in the fibrous carbon material and a portion close to the substrate In order to complete the present invention, it is found that when a composite material having a ratio of abundance ratios in a specific range is used for an electrode of a polymer electrolyte fuel cell, the polymer electrolyte fuel cell exhibits excellent power generation performance. It came.

即ち、本発明の複合材料は、導電性基板と、該導電性基板上に配設された繊維状炭素材料とからなり、
前記繊維状炭素材料が、芳香環を有する化合物を電解重合してフィブリル状ポリマーを生成させ、該フィブリル状ポリマーを焼成して生成させた3次元連続状炭素繊維であって、
前記繊維状炭素材料は、表面から15体積%の部分の存在率が前記導電性基板との界面から40体積%の部分の存在率に対して80〜200%であることを特徴とする。
That is, the composite material of the present invention comprises a conductive substrate and a fibrous carbon material disposed on the conductive substrate,
The fibrous carbon material is a three-dimensional continuous carbon fiber produced by electropolymerizing a compound having an aromatic ring to produce a fibril polymer, and firing the fibril polymer,
The fibrous carbon material is characterized in that the abundance ratio of a 15 volume% portion from the surface is 80 to 200% with respect to the abundance ratio of 40 volume% from the interface with the conductive substrate.

本発明の複合材料においては、前記繊維状炭素材料は、表面から15体積%の部分の存在率が前記導電性基板との界面から40体積%の部分の存在率に対して100〜200%であることが好ましい。   In the composite material of the present invention, the fibrous carbon material has an abundance ratio of 15% by volume from the surface with respect to an abundance ratio of 40% by volume from the interface with the conductive substrate. Preferably there is.

また、本発明の複合材料の製造方法は、導電性基板上で芳香環を有する化合物を0.65〜1.2Vの電圧及び/又は5〜50mA/cm2の電流密度で電解重合してフィブリル状ポリマーを生成させ、該フィブリル状ポリマーを焼成することを特徴とする。 In the method for producing a composite material of the present invention, a compound having an aromatic ring is electropolymerized on a conductive substrate at a voltage of 0.65 to 1.2 V and / or a current density of 5 to 50 mA / cm 2 to form a fibrillated polymer. It is produced, and the fibrillated polymer is calcined.

更に、本発明の固体高分子型燃料電池用電極は、上記の複合材料と、該複合材料上に担持された金属触媒とを含むことを特徴とし、本発明の固体高分子型燃料電池は、かかる電極を具えることを特徴とする。   Furthermore, an electrode for a polymer electrolyte fuel cell of the present invention comprises the above composite material and a metal catalyst supported on the composite material, and the polymer electrolyte fuel cell of the present invention comprises: It is characterized by comprising such an electrode.

本発明によれば、導電性基板と繊維状炭素材料とからなり、繊維状炭素材料における表面から15体積%の部分の繊維状炭素材料の存在率が導電性基板との界面から40体積%の部分の繊維状炭素材料の存在率に対する割合が80〜200%であって、固体高分子型燃料電池の電極に好適に用いることが可能な複合材料を提供することができる。   According to the present invention, it is composed of a conductive substrate and a fibrous carbon material, and the abundance of the fibrous carbon material in a portion of 15% by volume from the surface of the fibrous carbon material is 40% by volume from the interface with the conductive substrate. The ratio of the part to the abundance of the fibrous carbon material is 80 to 200%, and a composite material that can be suitably used for an electrode of a polymer electrolyte fuel cell can be provided.

<複合材料及びその製造方法>
以下に、本発明の複合材料を詳細に説明する。本発明の複合材料は、導電性基板と、該導電性基板上に配設された繊維状炭素材料とからなり、該繊維状炭素材料が、芳香環を有する化合物を電解重合してフィブリル状ポリマーを生成させ、該フィブリル状ポリマーを焼成して生成させた3次元連続状炭素繊維であって、前記繊維状炭素材料は、表面から15体積%の部分の存在率が前記導電性基板との界面から40体積%の部分の存在率に対して80〜200%であることを特徴とする。複合材料の繊維状炭素材料部分が深さ方向に構造傾斜を有し、繊維状炭素材料表面から15体積%の部分の繊維状炭素材料の存在率[(見かけ体積−空隙の体積)/見かけ体積×100(%)]が、導電性基板との界面から40体積%の部分の繊維状炭素材料の存在率に対して80〜200%であれば、保水性とガスの拡散性(透過性)のバランスが、固体高分子型燃料電池の電極の触媒層の担体として最適であるため、該複合材料を固体高分子型燃料電池の電極に用いることで、固体高分子型燃料電池の発電性能を向上させることができる。
<Composite material and its manufacturing method>
Below, the composite material of this invention is demonstrated in detail. The composite material of the present invention comprises a conductive substrate and a fibrous carbon material disposed on the conductive substrate, and the fibrous carbon material electropolymerizes a compound having an aromatic ring to produce a fibril-like polymer. And a three-dimensional continuous carbon fiber formed by firing the fibril polymer, wherein the fibrous carbon material has an abundance ratio of 15% by volume from the surface to the interface with the conductive substrate. It is characterized by being 80-200% with respect to the abundance of the portion of 40 volume%. The fibrous carbon material portion of the composite material has a structure inclination in the depth direction, and the abundance ratio of the fibrous carbon material in a portion of 15% by volume from the surface of the fibrous carbon material [(apparent volume−volume of void) / apparent volume] × 100 (%)] is 80 to 200% with respect to the abundance of the fibrous carbon material in a portion of 40% by volume from the interface with the conductive substrate, water retention and gas diffusibility (permeability) Is optimal as a support for the catalyst layer of the electrode of the polymer electrolyte fuel cell. Therefore, the power generation performance of the polymer electrolyte fuel cell can be improved by using the composite material for the electrode of the polymer electrolyte fuel cell. Can be improved.

なお、繊維状炭素材料表面から15体積%の部分の繊維状炭素材料の存在率が導電性基板との界面から40体積%の部分の繊維状炭素材料の存在率に対して80%未満では、燃料電池に用いた場合、固体高分子電解質膜に隣接する表面側部分における繊維状炭素材料の存在率が低すぎ、保水性が低下すると共に、金属触媒の担体としての表面積が不十分で、燃料電池の発電性能が低下し、一方、200%を超えると、固体高分子電解質膜に隣接する表面側部分における繊維状炭素材料の存在率が高すぎ、ガスの拡散性が低下し、燃料電池の発電性能が低下する。なお、保水性と表面積の観点から、繊維状炭素材料表面から15体積%の部分の繊維状炭素材料の存在率は、導電性基板との界面から40体積%の部分の繊維状炭素材料の存在率に対して100%以上であることが好ましい。   In addition, if the abundance of the fibrous carbon material of 15 volume% from the surface of the fibrous carbon material is less than 80% with respect to the abundance of the fibrous carbon material of 40 volume% from the interface with the conductive substrate, When used in a fuel cell, the abundance of the fibrous carbon material in the surface side portion adjacent to the solid polymer electrolyte membrane is too low, the water retention is reduced, and the surface area as a support for the metal catalyst is insufficient, and the fuel On the other hand, when the power generation performance of the battery deteriorates, if it exceeds 200%, the abundance of the fibrous carbon material in the surface side portion adjacent to the solid polymer electrolyte membrane is too high, the gas diffusibility decreases, and the fuel cell Power generation performance is reduced. From the viewpoint of water retention and surface area, the abundance of 15% by volume of the fibrous carbon material from the surface of the fibrous carbon material is the presence of 40% by volume of the fibrous carbon material from the interface with the conductive substrate. The ratio is preferably 100% or more.

本発明の複合材料に用いる導電性基板としては、多孔質なものが好ましく、多孔質な導電性基板としては、カーボンペーパー、多孔質カーボン布等が挙げられ、これらの中でも、カーボンペーパーが好ましい。   As the conductive substrate used in the composite material of the present invention, a porous substrate is preferable, and examples of the porous conductive substrate include carbon paper and porous carbon cloth. Among these, carbon paper is preferable.

一方、本発明の複合材料の繊維状炭素材料部分は、導電性基板上で芳香環を有する化合物を電解重合してフィブリル状ポリマーを生成させ、該フィブリル状ポリマーを焼成することで作製する。ここで、電解重合は、0.65〜1.2Vの電圧及び/又は5〜50mA/cm2の電流密度で実施することが好ましい。電圧及び/又は電流密度がこの範囲であれば、保水性とガスの拡散性のバランスが良好な複合材料を容易に得ることができる。 On the other hand, the fibrous carbon material portion of the composite material of the present invention is produced by electropolymerizing a compound having an aromatic ring on a conductive substrate to form a fibril polymer, and firing the fibril polymer. Here, the electropolymerization is preferably performed at a voltage of 0.65 to 1.2 V and / or a current density of 5 to 50 mA / cm 2 . When the voltage and / or current density is within this range, a composite material having a good balance between water retention and gas diffusibility can be easily obtained.

上記繊維状炭素材料の原料として用いる芳香環を有する化合物としては、ベンゼン環を有する化合物、芳香族複素環を有する化合物を挙げることができる。ここで、ベンゼン環を有する化合物としては、アニリン及びアニリン誘導体が好まく、芳香族複素環を有する化合物としては、ピロール、チオフェン及びこれらの誘導体が好ましい。これら芳香環を有する化合物は、一種単独で用いてもよいし、二種以上の混合物として用いてもよい。   Examples of the compound having an aromatic ring used as a raw material for the fibrous carbon material include a compound having a benzene ring and a compound having an aromatic heterocyclic ring. Here, aniline and aniline derivatives are preferred as the compound having a benzene ring, and pyrrole, thiophene and derivatives thereof are preferred as the compound having an aromatic heterocycle. These compounds having an aromatic ring may be used singly or as a mixture of two or more.

上記電解重合においては、電解溶液中に原料の芳香環を有する化合物と共に、酸を混在させることが好ましい。この場合、酸の負イオンがドーパントとして合成されるフィブリル状ポリマー中に取り込まれ、導電性に優れたフィブリル状ポリマーが得られ、このフィブリル状ポリマーを用いることにより繊維状炭素材料の導電性を向上させることができる。なお、電解重合の際に混在させる酸としては、種々のものを使用することができ、H2SO4、HBF4、HCl、HClO4等を例示することができる。また、該酸の濃度は、0.1〜3mol/Lの範囲が好ましく、0.5〜2.5mol/Lの範囲が更に好ましい。 In the electrolytic polymerization, it is preferable to mix an acid together with a compound having an aromatic ring as a raw material in the electrolytic solution. In this case, the negative ions of the acid are incorporated into the fibril polymer synthesized as a dopant to obtain a fibril polymer excellent in conductivity, and the conductivity of the fibrous carbon material is improved by using this fibril polymer. Can be made. As the acid to be mixed at the time of electrolytic polymerization, can be used various ones, H 2 SO 4, HBF 4 , HCl, may be exemplified HClO 4 or the like. The acid concentration is preferably in the range of 0.1 to 3 mol / L, more preferably in the range of 0.5 to 2.5 mol / L.

上記電解重合では、例えば、芳香環を有する化合物及びH2SO4、HBF4等の酸を含む電解溶液中に、上記導電性基板からなる作用極及び対極を浸漬し、上述の範囲の電圧を印加したり、上述の範囲の電流密度の電流を通電すればよく、これにより作用極上にフィブリル状ポリマーが生成する。ここで、対極としては、ステンレススチール、白金、カーボン等の良導電性物質からなる板や多孔質支持体等を用いることができる。また、芳香環を有する化合物の電解溶液中の濃度は、0.05〜3mol/Lの範囲が好ましく、0.25〜1.5mol/Lの範囲が更に好ましい。更に、電解溶液には、上記成分に加え、pHを調製するために可溶性塩等を適宜添加してもよい。 In the above electrolytic polymerization, for example, a compound having an aromatic ring and an electrolyte solution containing H 2 SO 4, acids such as HBF 4, by immersing the working electrode and a counter electrode made of the conductive substrate, a voltage in the range of above It may be applied or a current having a current density in the above-mentioned range may be applied, thereby producing a fibril polymer on the working electrode. Here, as the counter electrode, a plate made of a highly conductive material such as stainless steel, platinum, or carbon, a porous support, or the like can be used. The concentration of the compound having an aromatic ring in the electrolytic solution is preferably in the range of 0.05 to 3 mol / L, and more preferably in the range of 0.25 to 1.5 mol / L. Furthermore, in addition to the above components, a soluble salt or the like may be appropriately added to the electrolytic solution in order to adjust the pH.

上記電解重合で生成するフィブリル状ポリマーは、一般に三次元連続構造を有し、直径が10nm〜60nmであることが好ましく、10nm〜30nmであることが更に好ましく、長さが0.5μm〜100mmであることが好ましく、1μm〜10mmであることが更に好ましい。   The fibrillar polymer produced by the electrolytic polymerization generally has a three-dimensional continuous structure, preferably has a diameter of 10 nm to 60 nm, more preferably 10 nm to 30 nm, and a length of 0.5 μm to 100 mm. The thickness is preferably 1 μm to 10 mm.

次に、上記電解重合で生成したフィブリル状ポリマーを焼成し炭化することで、3次元連続状の繊維状炭素材料(炭素繊維)を生成させる。なお、焼成の前に、フィブリル状ポリマーを水や有機溶剤等の溶媒で洗浄し、乾燥させることが好ましい。ここで、乾燥方法としては、特に制限されるものではないが、風乾、真空乾燥の他、流動床乾燥装置、気流乾燥機、スプレードライヤー等を使用した方法を例示することができる。   Next, the fibrillated polymer produced by the electrolytic polymerization is fired and carbonized to produce a three-dimensional continuous fibrous carbon material (carbon fiber). In addition, it is preferable to wash the fibrillated polymer with a solvent such as water or an organic solvent and dry it before firing. Here, the drying method is not particularly limited, and examples thereof include a method using a fluidized bed drying device, an air dryer, a spray dryer, etc., in addition to air drying and vacuum drying.

上記焼成工程における焼成条件としては、特に限定されるものではなく、最適導電率となるように適宜設定すればよいが、特に高導電率を必要とする場合は、温度500〜3000℃、好ましくは600〜2800℃で、0.5〜6時間焼成することが好ましい。なお、焼成工程は、非酸化性雰囲気中で行うことが好ましく、該非酸化性雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気等を挙げることができ、場合によっては水素雰囲気とすることもできる。   The firing conditions in the firing step are not particularly limited, and may be set as appropriate so as to obtain optimum conductivity. Particularly, when high conductivity is required, the temperature is 500 to 3000 ° C., preferably Baking is preferably performed at 600 to 2800 ° C. for 0.5 to 6 hours. Note that the firing step is preferably performed in a non-oxidizing atmosphere, and examples of the non-oxidizing atmosphere include a nitrogen atmosphere, an argon atmosphere, and a helium atmosphere. In some cases, a hydrogen atmosphere can also be used.

上記のようにして得られる繊維状炭素材料は、直径が10nm〜60nmであることが好ましく、10nm〜30nmであることが更に好ましく、長さが0.5μm〜100mmであることが好ましく、1μm〜10mmであることが更に好ましく、表面抵抗が106〜10-2Ωの範囲であることが好ましく、104〜10-2Ωの範囲であることが更に好ましい。また、該繊維状炭素材料は、残炭率が95〜30%であることが好ましく、90〜40%であることが更に好ましい。該繊維状炭素材料は、カーボン全体が3次元に連続した構造を有するため、粒状カーボンよりも導電性が高い。 The fibrous carbon material obtained as described above preferably has a diameter of 10 nm to 60 nm, more preferably 10 nm to 30 nm, and a length of 0.5 μm to 100 mm, preferably 1 μm to 10 mm. The surface resistance is preferably in the range of 10 6 to 10 −2 Ω, and more preferably in the range of 10 4 to 10 −2 Ω. The fibrous carbon material preferably has a residual carbon ratio of 95 to 30%, and more preferably 90 to 40%. The fibrous carbon material has a higher conductivity than granular carbon because the entire carbon has a three-dimensional continuous structure.

<固体高分子型燃料電池用電極>
本発明の固体高分子型燃料電池用電極は、上述した複合材料と、該複合材料上に担持された金属触媒とを備え、アノード(燃料極)としても、カソード(空気極、酸素極)としても使用できる。ここで、該固体高分子型燃料電池用電極は、導電性基板がガス拡散層として機能し、繊維状炭素材料及び金属触媒が触媒層として機能する。
<Electrode for polymer electrolyte fuel cell>
An electrode for a polymer electrolyte fuel cell of the present invention includes the above-described composite material and a metal catalyst supported on the composite material, and serves as an anode (fuel electrode) or a cathode (air electrode, oxygen electrode). Can also be used. Here, in the solid polymer fuel cell electrode, the conductive substrate functions as a gas diffusion layer, and the fibrous carbon material and the metal catalyst function as a catalyst layer.

上記複合材料(より具体的には、複合材料の繊維状炭素材料部分)に担持される金属触媒は、貴金属を含むことが好ましく、Ptを含むことが更に好ましい。なお、本発明においては、Ptを単独で用いてもよいし、Ru等の他の金属との合金として用いてもよい。金属触媒としてPtを選択し、本発明の電極を固体高分子型燃料電池に用いることで、100℃以下の低温でも水素を高効率で酸化することができる。また、PtとRu等の合金を用いることで、COによるPtの被毒を防止して、触媒の活性低下を防止することができる。なお、担持される金属触媒は、微粒子状、繊維状、ワイヤー状、薄膜状等のいずれでもよいが、微粒子状であることが好ましく、粒径が0.5〜100nmであることが好ましく、1〜50nmであることが更に好ましい。該金属触媒の担持率は、複合材料の繊維状炭素材料部分1gに対して0.05〜5gの範囲が好ましい。ここで、上記金属触媒の繊維状炭素材料部分上への担持法としては、特に限定されるものではなく、例えば、電気メッキ法(電解還元法)、無電解メッキ法、含浸法、スパッタ法等が挙げられる。   The metal catalyst supported on the composite material (more specifically, the fibrous carbon material portion of the composite material) preferably contains a noble metal, and more preferably contains Pt. In the present invention, Pt may be used alone or as an alloy with another metal such as Ru. By selecting Pt as the metal catalyst and using the electrode of the present invention for a polymer electrolyte fuel cell, hydrogen can be oxidized with high efficiency even at a low temperature of 100 ° C. or lower. In addition, by using an alloy such as Pt and Ru, it is possible to prevent poisoning of Pt by CO and prevent a decrease in the activity of the catalyst. The supported metal catalyst may be in the form of fine particles, fibers, wires, thin films, etc., but is preferably in the form of fine particles, preferably having a particle size of 0.5 to 100 nm, and 1 to 50 nm. More preferably. The loading ratio of the metal catalyst is preferably in the range of 0.05 to 5 g with respect to 1 g of the fibrous carbon material portion of the composite material. Here, the method for supporting the metal catalyst on the fibrous carbon material portion is not particularly limited. For example, electroplating (electrolytic reduction), electroless plating, impregnation, sputtering, etc. Is mentioned.

上記金属触媒が担持された繊維状炭素材料部分には、更に高分子電解質を含浸させてもよく、該高分子電解質としては、イオン伝導性のポリマーを使用することができ、該イオン伝導性のポリマーとしては、スルホン酸、カルボン酸、ホスホン酸、亜ホスホン酸等のイオン交換基を有するポリマーを挙げることができ、該ポリマーはフッ素を含んでも、含まなくてもよい。該イオン伝導性のポリマーとしては、ナフィオン(登録商標)等のパーフルオロカーボンスルホン酸系ポリマー等が挙げられる。該高分子電解質の含浸量は、繊維状炭素材料100質量部に対して高分子電解質10〜500質量部の範囲が好ましい。なお、繊維状炭素材料層の厚さは、特に限定されるものではないが、0.1〜100μmの範囲が好ましい。また、金属触媒の担持量は、前記担持率と繊維状炭素材料層の厚さにより定まり、好ましくは0.001〜0.8mg/cm2の範囲である。 The fibrous carbon material portion on which the metal catalyst is supported may be further impregnated with a polymer electrolyte. As the polymer electrolyte, an ion conductive polymer can be used. Examples of the polymer include polymers having an ion exchange group such as sulfonic acid, carboxylic acid, phosphonic acid, and phosphonous acid, and the polymer may or may not contain fluorine. Examples of the ion conductive polymer include perfluorocarbon sulfonic acid polymers such as Nafion (registered trademark). The amount of the polymer electrolyte impregnated is preferably in the range of 10 to 500 parts by mass of the polymer electrolyte with respect to 100 parts by mass of the fibrous carbon material. The thickness of the fibrous carbon material layer is not particularly limited, but is preferably in the range of 0.1 to 100 μm. The amount of metal catalyst supported is determined by the loading rate and the thickness of the fibrous carbon material layer, and is preferably in the range of 0.001 to 0.8 mg / cm 2 .

<固体高分子型燃料電池>
次に、図1を参照しながら、本発明の固体高分子型燃料電池を説明する。図示例の固体高分子型燃料電池は、膜電極接合体(MEA)1とその両側に位置するセパレータ2とを備える。膜電極接合体(MEA)1は、固体高分子電解質膜3とその両側に位置するアノード4A及びカソード4Bとからなる。アノード4Aでは、2H2→4H++4e-で表される反応が起こり、発生したH+は固体高分子電解質膜3を経てカソード4Bに至り、また、発生したe-は外部に取り出されて電流となる。一方、カソード4Bでは、O2+4H++4e-→2H2Oで表される反応が起こり、水が発生する。ここで、本発明の固体高分子型燃料電池には、上述の電極が使用されているため、保水性とガスの透過性のバランスが良好で、優れた発電性能を発揮する。
<Solid polymer fuel cell>
Next, the solid polymer fuel cell of the present invention will be described with reference to FIG. The illustrated polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) 1 and separators 2 located on both sides thereof. The membrane electrode assembly (MEA) 1 includes a solid polymer electrolyte membrane 3 and an anode 4A and a cathode 4B located on both sides thereof. In the anode 4A, a reaction represented by 2H 2 → 4H + + 4e occurs, and the generated H + reaches the cathode 4B through the solid polymer electrolyte membrane 3, and the generated e is taken out to the current. It becomes. On the other hand, in the cathode 4B, a reaction represented by O 2 + 4H + + 4e → 2H 2 O occurs, and water is generated. Here, since the above-mentioned electrode is used in the polymer electrolyte fuel cell of the present invention, the balance between water retention and gas permeability is good, and excellent power generation performance is exhibited.

上記アノード4A及びカソード4Bは、触媒層5及びガス拡散層6からなり、触媒層5が固体高分子電解質膜3に接触するように配置されている。ここで、触媒層5は、上記複合材料の繊維状炭素材料部分に金属触媒を担持してなる。また、ガス拡散層6は、上記複合材料の導電性基板部分である。更に、固体高分子電解質膜3としては、イオン伝導性のポリマーを使用することができ、該イオン伝導性のポリマーとしては、上記金属触媒が担持された繊維状炭素材料部分に含浸させることが可能な高分子電解質として例示したものを用いることができる。また、セパレータ2としては、表面に燃料、酸素又は空気、及び生成した水等の流路(図示せず)が形成された通常のセパレータを用いることができる。   The anode 4A and the cathode 4B include a catalyst layer 5 and a gas diffusion layer 6, and are arranged so that the catalyst layer 5 is in contact with the solid polymer electrolyte membrane 3. Here, the catalyst layer 5 is formed by supporting a metal catalyst on the fibrous carbon material portion of the composite material. The gas diffusion layer 6 is a conductive substrate portion of the composite material. Furthermore, an ion conductive polymer can be used as the solid polymer electrolyte membrane 3, and the ion conductive polymer can be impregnated into the fibrous carbon material portion on which the metal catalyst is supported. What was illustrated as a suitable polymer electrolyte can be used. Moreover, as the separator 2, the normal separator by which flow paths (not shown), such as a fuel, oxygen, or air and the produced | generated water, were formed in the surface can be used.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
アニリンモノマー 0.5mol/LとH2SO4 1.0mol/Lとを含む酸性水溶液中に、カーボンペーパー[東レ製]からなる作用極を設置し、対極として白金板を使用し、室温にて25mA/cm2の定電流を通電し、電気量が合計6C/cm2になるまで電解重合を行い、ポリアニリンをカーボンペーパー(作用極)上に電析させた。得られたポリアニリンをイオン交換水で洗浄し、24時間真空乾燥した後、カーボンペーパーごとAr雰囲気中8℃/分の昇温速度で950℃まで加熱し、その後950℃で1時間保持して焼成処理した。得られた焼成物のSEM写真を図2に示す。図2から、生成した繊維状炭素材料は、表面部分の繊維径が100nm前後であることが分かる。また、得られた焼成物に樹脂を含浸し、切断して、厚さ方向の断面を露出させ、SEMで観察した。断面のSEM写真における繊維状炭素材料部分を黒色とし、空隙部分を白色とした図を、図3に示す。また、図3における表面部分、中間部分、基板側部分の空隙と繊維状炭素材料の比率を表1に示す。
(Example 1)
A working electrode made of carbon paper [manufactured by Toray Industries, Inc.] is installed in an acidic aqueous solution containing aniline monomer 0.5 mol / L and H 2 SO 4 1.0 mol / L, and a platinum plate is used as the counter electrode, and 25 mA / energized a constant current of cm 2, subjected to electrolytic polymerization to an electric amount is the sum 6C / cm 2, was electrodeposited polyaniline onto carbon paper (working electrode). The obtained polyaniline was washed with ion-exchanged water, vacuum-dried for 24 hours, then heated together with carbon paper to 950 ° C at a heating rate of 8 ° C / min in an Ar atmosphere, and then held at 950 ° C for 1 hour for calcination Processed. An SEM photograph of the fired product obtained is shown in FIG. From FIG. 2, it can be seen that the produced fibrous carbon material has a fiber diameter of the surface portion of around 100 nm. The obtained fired product was impregnated with a resin and cut to expose a cross section in the thickness direction and observed with an SEM. The figure which made the fibrous carbon material part black in the cross-sectional SEM photograph and made the space | gap part white is shown in FIG. Further, Table 1 shows the ratios of the voids and the fibrous carbon material in the surface portion, the intermediate portion, and the substrate side portion in FIG.

なお、上記の酸性水溶液に対して、電位を0.6〜1.2Vの範囲で走査した時の電流密度の変位をプロットしたグラフを図4に示す。図4から、25mA/cm2の電流密度は、0.9Vの電位に対応し、0.9Vで電解重合した際にも同様の複合材料が得られることが分かる。 In addition, the graph which plotted the displacement of the current density when electric potential was scanned in the range of 0.6-1.2V with respect to said acidic aqueous solution is shown in FIG. FIG. 4 shows that a current density of 25 mA / cm 2 corresponds to a potential of 0.9 V, and a similar composite material can be obtained even when electrolytic polymerization is performed at 0.9 V.

(比較例1)
アニリンモノマー 0.5mol/LとH2SO4 1.0mol/Lとを含む酸性水溶液中に、カーボンペーパー[東レ製]からなる作用極を設置し、対極として白金板を使用し、室温にて0.65Vの定電圧を印加し、電気量が合計6C/cm2になるまで電解重合を行い、ポリアニリンをカーボンペーパー(作用極)上に電析させた。得られたポリアニリンをイオン交換水で洗浄し、24時間真空乾燥した後、カーボンペーパーごとAr雰囲気中8℃/分の昇温速度で950℃まで加熱し、その後950℃で1時間保持して焼成処理した。得られた焼成物のSEM写真を図5に示す。図5から、生成した繊維状炭素材料は、表面部分の繊維径が約200〜400nmであることが分かる。また、得られた焼成物に樹脂を含浸し、切断して、厚さ方向の断面を露出させ、SEMで観察した。SEM写真における繊維状炭素材料部分を黒色とし、空隙部分を白色とした図を、図6に示す。また、図6における表面部分、中間部分、基板側部分の空隙と繊維状炭素材料の比率を表2に示す。
(Comparative Example 1)
A working electrode made of carbon paper (manufactured by Toray Industries, Inc.) is installed in an acidic aqueous solution containing aniline monomer 0.5 mol / L and H 2 SO 4 1.0 mol / L, and a platinum plate is used as the counter electrode, and 0.65 V at room temperature. Was applied, and electropolymerization was performed until the amount of electricity reached 6 C / cm 2 in total, and polyaniline was electrodeposited on carbon paper (working electrode). The obtained polyaniline was washed with ion-exchanged water, vacuum-dried for 24 hours, then heated together with carbon paper to 950 ° C at a heating rate of 8 ° C / min in an Ar atmosphere, and then held at 950 ° C for 1 hour for calcination Processed. An SEM photograph of the fired product obtained is shown in FIG. From FIG. 5, it can be seen that the produced fibrous carbon material has a fiber diameter of the surface portion of about 200 to 400 nm. The obtained fired product was impregnated with a resin and cut to expose a cross section in the thickness direction and observed with an SEM. FIG. 6 shows a diagram in which the fibrous carbon material portion in the SEM photograph is black and the void portion is white. Further, Table 2 shows the ratio of the voids and the fibrous carbon material in the surface portion, the intermediate portion, and the substrate side portion in FIG.

表1から、実施例1で得られた複合材料の繊維状炭素材料部分は、表面部分の繊維状炭素材料の存在率が、基板側部分の繊維状炭素材料の存在率に対して147.9%であることが分かる。また、表2から、比較例1で得られた複合材料の繊維状炭素材料部分は、表面部分の繊維状炭素材料の存在率が、基板側部分の繊維状炭素材料の存在率に対して60.6%であることが分かる。更に、表1及び表2から、実施例1の複合材料の繊維状炭素材料部分は、表面部分の存在率が高く基板側部分の存在率が低いのに対し、比較例1の複合材料の繊維状炭素材料部分は、表面部分の存在率が低く基板側部分の存在率が高いことが分かる。   From Table 1, in the fibrous carbon material portion of the composite material obtained in Example 1, the abundance of the fibrous carbon material in the surface portion is 147.9% with respect to the abundance of the fibrous carbon material in the substrate side portion. I understand that there is. Further, from Table 2, the fibrous carbon material portion of the composite material obtained in Comparative Example 1 has an abundance of the fibrous carbon material in the surface portion of 60.6% of the abundance of the fibrous carbon material in the substrate side portion. %. Furthermore, from Table 1 and Table 2, the fibrous carbon material portion of the composite material of Example 1 has a high presence rate of the surface portion and a low presence rate of the substrate side portion, whereas the fiber of the composite material of Comparative Example 1 It can be seen that the carbonaceous material portion has a low surface portion abundance and a substrate side portion abundance.

<電池性能の評価>
上記のようにして得られた複合材料を作用極とし、白金メッシュを対極として、0.02mol/Lの塩化白金酸水溶液から、白金を繊維状炭素材料上に析出させた。重量変化から白金の担持量を求めたところ、白金量は0.2mg/cm2であった。
<Evaluation of battery performance>
Platinum was deposited on the fibrous carbon material from a 0.02 mol / L chloroplatinic acid aqueous solution using the composite material obtained as described above as a working electrode and a platinum mesh as a counter electrode. When the amount of platinum supported was determined from the change in weight, the amount of platinum was 0.2 mg / cm 2 .

上記のようにして作製した白金担持複合材料2枚を5×5cmのサイズにカットし、5wt%のナフィオン溶液を塗布し、100℃で30分乾燥した。重量変化からナフィオン量を求めたところ、0.8mg/cm2であった。次に、ナフィオンが塗布された複合材料(即ち、電極)2枚で、厚さ50μmのナフィオン膜を挟み込み、150℃のプレスで5分間加圧、接着して、膜電極接合体(MEA)を作製した。 Two platinum-supported composite materials produced as described above were cut to a size of 5 × 5 cm, 5 wt% Nafion solution was applied, and dried at 100 ° C. for 30 minutes. The amount of Nafion was determined from the change in weight and found to be 0.8 mg / cm 2 . Next, a 50 μm thick Nafion film is sandwiched between two composite materials (ie, electrodes) coated with Nafion, and pressed and bonded with a 150 ° C. press for 5 minutes to form a membrane electrode assembly (MEA). Produced.

得られた膜電極接合体をエレクトロケミカル社製の試験セル(EFC25−01SP)に組み込んで燃料電池を組み立て、電池性能を評価した。なお、セル温度は80℃とし、燃料ガスとしては水素を用い、水素流量0.3L/分、水素の加湿温度80℃とし、一方、酸化剤ガスとしては酸素又は空気を用い、酸素流量(又は空気流量)0.3L/分、酸素(又は空気)の加湿温度75℃とした。電池の電流密度−電圧曲線を図7に示す。なお、図7中、”実施例1(酸素)”は、実施例1で作製した複合材料を用いて作製した電池に対して酸化剤ガスとして酸素を用いた場合の電流密度−電圧曲線であり、”実施例1(空気)”は、実施例1で作製した複合材料を用いて作製した電池に対して酸化剤ガスとして空気を用いた場合の電流密度−電圧曲線であり、”比較例1(酸素)”は、比較例1で作製した複合材料を用いて作製した電池に対して酸化剤ガスとして酸素を用いた場合の電流密度−電圧曲線であり、”比較例1(空気)”は、比較例1で作製した複合材料を用いて作製した電池に対して酸化剤ガスとして空気を用いた場合の電流密度−電圧曲線である。   The obtained membrane electrode assembly was assembled in a test cell (EFC25-01SP) manufactured by Electrochemical Co., and a fuel cell was assembled to evaluate the battery performance. The cell temperature is 80 ° C., hydrogen is used as the fuel gas, the hydrogen flow rate is 0.3 L / min, and the humidification temperature of hydrogen is 80 ° C., while the oxidant gas is oxygen or air, and the oxygen flow rate (or air The flow rate was 0.3 L / min, and the humidification temperature of oxygen (or air) was 75 ° C. The current density-voltage curve of the battery is shown in FIG. In FIG. 7, “Example 1 (oxygen)” is a current density-voltage curve when oxygen is used as the oxidant gas for the battery manufactured using the composite material manufactured in Example 1. "Example 1 (air)" is a current density-voltage curve when air is used as the oxidant gas for the battery produced using the composite material produced in Example 1, "Comparative Example 1" (Oxygen) "is a current density-voltage curve when oxygen is used as the oxidant gas for the battery produced using the composite material produced in Comparative Example 1, and" Comparative Example 1 (Air) " It is a current density-voltage curve at the time of using air as oxidant gas with respect to the battery produced using the composite material produced in the comparative example 1.

図7から明らかなように、実施例1の複合材料を用いて作製した燃料電池は、比較例1の複合材料を用いて作製した燃料電池よりも、発電性能が優れていた。   As is apparent from FIG. 7, the fuel cell produced using the composite material of Example 1 was superior in power generation performance to the fuel cell produced using the composite material of Comparative Example 1.

本発明の固体高分子型燃料電池の一例の断面図である。It is sectional drawing of an example of the polymer electrolyte fuel cell of this invention. 実施例1で作製した複合材料のSEM写真である。2 is a SEM photograph of the composite material produced in Example 1. 実施例1で作製した複合材料の断面のSEM写真における繊維状炭素材料部分を黒色とし、空隙部分を白色とした図である。It is the figure which made the fibrous carbon material part in the SEM photograph of the cross section of the composite material produced in Example 1 black, and made the space | gap part white. 実施例1で用いた酸性水溶液に対して、電位を0.6〜1.2Vの範囲で走査した時の電流密度の変位をプロットしたグラフである。It is the graph which plotted the displacement of the current density when an electric potential was scanned in the range of 0.6-1.2V with respect to the acidic aqueous solution used in Example 1. FIG. 比較例1で作製した複合材料のSEM写真である。4 is a SEM photograph of the composite material produced in Comparative Example 1. 比較例1で作製した複合材料の断面のSEM写真における繊維状炭素材料部分を黒色とし、空隙部分を白色とした図である。It is the figure which made the fibrous carbon material part in the SEM photograph of the cross section of the composite material produced in the comparative example 1 black, and made the space | gap part white. 実施例1又は比較例1の複合材料を用いて作製した固体高分子型燃料電池の電流密度−電圧曲線を示すグラフである。It is a graph which shows the current density-voltage curve of the polymer electrolyte fuel cell produced using the composite material of Example 1 or Comparative Example 1.

符号の説明Explanation of symbols

1 膜電極接合体(MEA)
2 セパレータ
3 固体高分子電解質膜
4A アノード
4B カソード
5 触媒層(金属触媒担持繊維状炭素材料)
6 ガス拡散層(導電性基板)
1 Membrane electrode assembly (MEA)
2 Separator 3 Solid polymer electrolyte membrane 4A Anode 4B Cathode 5 Catalyst layer (metal catalyst-supporting fibrous carbon material)
6 Gas diffusion layer (conductive substrate)

Claims (5)

導電性基板と、該導電性基板上に配設された繊維状炭素材料とからなる複合材料において、
前記繊維状炭素材料が、芳香環を有する化合物を電解重合してフィブリル状ポリマーを生成させ、該フィブリル状ポリマーを焼成して生成させた3次元連続状炭素繊維であって、
前記繊維状炭素材料は、表面から15体積%の部分の存在率が前記導電性基板との界面から40体積%の部分の存在率に対して80〜200%であることを特徴とする複合材料。
In a composite material consisting of a conductive substrate and a fibrous carbon material disposed on the conductive substrate,
The fibrous carbon material is a three-dimensional continuous carbon fiber produced by electropolymerizing a compound having an aromatic ring to produce a fibril polymer, and firing the fibril polymer,
The fibrous carbon material is a composite material characterized in that an abundance ratio of a part of 15% by volume from the surface is 80 to 200% with respect to an abundance ratio of a part of 40% by volume from the interface with the conductive substrate. .
前記繊維状炭素材料は、表面から15体積%の部分の存在率が前記導電性基板との界面から40体積%の部分の存在率に対して100〜200%であることを特徴とする請求項1に記載の複合材料。   The fibrous carbon material is characterized in that an abundance ratio of a part of 15% by volume from the surface is 100 to 200% with respect to an abundance ratio of a part of 40% by volume from the interface with the conductive substrate. The composite material according to 1. 導電性基板上で芳香環を有する化合物を0.65〜1.2Vの電圧及び/又は5〜50mA/cm2の電流密度で電解重合してフィブリル状ポリマーを生成させ、該フィブリル状ポリマーを焼成することを特徴とする請求項1又は2に記載の複合材料の製造方法。 Electropolymerizing a compound having an aromatic ring on a conductive substrate at a voltage of 0.65 to 1.2 V and / or a current density of 5 to 50 mA / cm 2 to form a fibril polymer, and firing the fibril polymer. The method for producing a composite material according to claim 1 or 2, characterized in that 請求項1又は2に記載の複合材料と、該複合材料上に担持された金属触媒とを含む固体高分子型燃料電池用電極。   An electrode for a polymer electrolyte fuel cell, comprising the composite material according to claim 1 or 2 and a metal catalyst supported on the composite material. 請求項4に記載の電極を具えた固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the electrode according to claim 4.
JP2006337207A 2006-12-14 2006-12-14 Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell Withdrawn JP2008149485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337207A JP2008149485A (en) 2006-12-14 2006-12-14 Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337207A JP2008149485A (en) 2006-12-14 2006-12-14 Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell

Publications (1)

Publication Number Publication Date
JP2008149485A true JP2008149485A (en) 2008-07-03

Family

ID=39652221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337207A Withdrawn JP2008149485A (en) 2006-12-14 2006-12-14 Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell

Country Status (1)

Country Link
JP (1) JP2008149485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221090A (en) * 2009-03-19 2010-10-07 Toshiba Corp Method of producing catalyst layer-supporting substrate and fuel cell
WO2012029840A1 (en) * 2010-09-02 2012-03-08 住友化学株式会社 Modified material, and nitrogen-containing electrically conductive carbon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221090A (en) * 2009-03-19 2010-10-07 Toshiba Corp Method of producing catalyst layer-supporting substrate and fuel cell
WO2012029840A1 (en) * 2010-09-02 2012-03-08 住友化学株式会社 Modified material, and nitrogen-containing electrically conductive carbon
JP2012072052A (en) * 2010-09-02 2012-04-12 Sumitomo Chemical Co Ltd Denatured object and nitrogen containing conductive carbon

Similar Documents

Publication Publication Date Title
US20040110051A1 (en) Sulfonated conducting polymer-grafted carbon material for fuel cell applications
US20040110052A1 (en) Conducting polymer-grafted carbon material for fuel cell applications
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
US20040144961A1 (en) Metallized conducting polymer-grafted carbon material and method for making
US20080070095A1 (en) Composite body, catalyst structural body, electrode for solid polymer fuel cell and method producing the same and solid polymer fuel cell
JP2007099551A (en) Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell
WO2012160957A1 (en) Electrode catalyst and method for producing same
JP4393459B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2008149485A (en) Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell
JP2008177023A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it
JP2008189837A (en) Electroconductive polymer-metal complex and oxidation-reduction catalyst electrode using the same
JP5114657B2 (en) Process for producing conductive polymer metal complex and electrocatalyst using the same
JP2009001845A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP2009001846A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP5251009B2 (en) Electrocatalyst
JP2008198438A (en) Polymer electrolyte fuel cell
JP2008069494A (en) Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
WO2022097562A1 (en) Carbon carrier and carbon carrier preparation method
JP2007227088A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method and treating method, and polymer electrolyte fuel cell
JP2008177057A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it
JP2005044664A (en) Electrode catalyst and its manufacturing method
JP2007227064A (en) Electrode for solid polymer fuel cell, its manufacturing method and activation method, as well as solid polymer fuel cell
JP2008013889A (en) Carbon fiber and method for producing the same, and cathode for solid polymeric fuel cell using the same, and solid polymeric fuel cell
JP2008177056A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer cell equipped with it
JP2007157630A (en) Manufacturing method of membrane electrode conjugant, membrane electrode conjugant, and polymer electrolyte type fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302