JP2008300474A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2008300474A
JP2008300474A JP2007142875A JP2007142875A JP2008300474A JP 2008300474 A JP2008300474 A JP 2008300474A JP 2007142875 A JP2007142875 A JP 2007142875A JP 2007142875 A JP2007142875 A JP 2007142875A JP 2008300474 A JP2008300474 A JP 2008300474A
Authority
JP
Japan
Prior art keywords
region
semiconductor
semiconductor substrate
semiconductor device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007142875A
Other languages
English (en)
Inventor
Sachiko Tanaka
佐智子 田中
Jun Saito
順 斎藤
Mihiro Nakagawa
未浩 中川
Takeshi Nishiwaki
剛 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2007142875A priority Critical patent/JP2008300474A/ja
Publication of JP2008300474A publication Critical patent/JP2008300474A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】 従来の横型半導体装置と縦型半導体装置とは全く異なる新規で斬新な形態を有する半導体装置を提供すること。
【解決手段】 半導体装置10は、電圧電源の負側極性に電気的に接続されているエミッタ電極76と、電圧電源の正側極性に電気的に接続されているコレクタ電極80と、半導体基板20内に設けられているとともにエミッタ電極76に直接的に接しているエミッタ領域64と、半導体基板20内に設けられているとともにコレクタ電極32に直接的に接しているコレクタ領域34とを備えている。エミッタ領域64とコレクタ領域34を結ぶ方向は、半導体基板20の表面の垂直方向に対して傾斜している。
【選択図】 図1

Description

本発明は、半導体装置に関する。
従来の半導体装置は、横型半導体装置と縦型半導体装置に分類される。横型半導体装置は、一対の主電極の双方が半導体基板の表面に設けられていることを特徴としている。縦型半導体装置は、一対の主電極のうちの一方が半導体基板の表面に設けられ、他方が半導体基板の裏面に設けられていることを特徴としている。横型半導体装置の一例が特許文献1に開示されており、縦型半導体装置の一例が特許文献2に開示されている。
特開平11−054748号公報 特開平7−135309号公報
横型半導体装置では、電流が半導体基板の表面に集中して流れるので、電流集中による半導体装置の破壊が問題となる。縦型半導体装置では、耐圧が半導体基板の厚みによって制限されるので、例えば、異なる耐圧の縦型半導体装置を1つの半導体基板に混載することができないという問題がある。
従来の横型半導体装置と縦型半導体装置の各々が有する上記問題は、それらの形態的な特徴から生じるものである。このため、横型半導体装置と縦型半導体装置に従来の形態を採用する限り、上記問題を解決することは難しい。
本発明は、従来とは全く異なる新規で斬新な形態を有する半導体装置を提供することを目的としている。
本明細書で開示される半導体装置は、従来の横型半導体装置と縦型半導体装置の分類から評価すれば、斜型半導体装置と呼称することができるであろう。本明細書で開示される半導体装置では、一対の主電極の位置関係が、半導体基板の表面の垂直方向に対して傾斜した方向に配置されている。このため、半導体基板内の電界方向が斜め方向に形成される。本明細書で開示される半導体装置では、電流が半導体基板内を斜め方向に流れるとともに、加わる電圧を半導体基板の斜め方向で保持することができる。この結果、本明細書で開示される半導体装置によると、電流集中の緩和と高耐圧化の両立を図ることができる。
本明細書で開示される半導体装置は、電圧電源の一方の極性に電気的に接続されている第1電極と、電圧電源の他方の極性に電気的に接続されている第2電極と、半導体基板内に設けられているとともに第1電極に直接的に接している第1半導体領域と、半導体基板内に設けられているとともに第2電極に直接的に接している第2半導体領域とを備えている。本明細書で開示される半導体装置では、第1半導体領域と第2半導体領域を結ぶ方向が、半導体基板の表面の垂直方向に対して傾斜している。ここで、「傾斜する」とは、直交及び平行でない場合をいう。従来の横型半導体装置は、第1半導体領域と第2半導体領域に相当する領域間を結ぶ方向が、半導体基板の表面の垂直方向に直交である。従来の縦型半導体装置は、第1半導体領域と第2半導体領域に相当する領域間を結ぶ方向が、半導体基板の表面の垂直方向に平行である。したがって、本明細書で開示される半導体装置は、従来の形態とは全く異なる新規で斬新な形態を有している。
この形態の半導体装置では、半導体基板内に形成される電界方向が、第1半導体領域と第2半導体領域を結ぶ方向に一致するので、半導体基板内の電界方向が斜め方向に形成される。このため、電流が半導体基板内を斜め方向に流れるとともに、加わる電圧を半導体基板の斜め方向で保持することができる。電流が半導体基板内を斜め方向に流れるので、横型半導体装置のように半導体基板の表面を集中して流れることがない。また、加わる電圧を半導体基板の斜め方向で保持することができるので、半導体基板の厚みによって制限されることなく耐圧を向上させることができる。上記半導体装置によると、電流集中の緩和と高耐圧化の両立を図ることができる。
本明細書で開示される半導体装置は、半導体基板が、電流の導通状態と非導通状態を切替えるゲート構造体が設けられている中心領域と、その中心領域の周囲に設けられている終端領域とに少なくとも区画されているのが好ましい。さらに、第1半導体領域が中心領域内に配置されており、第2半導体領域が終端領域内に配置されていることが好ましい。ここで、「ゲート構造体」とは、ゲート電極を有する構造体を意味し、ゲート電極に印加される電圧に基づいて電流の導通状態と非導通状態を切替えることができる構造体のことをいう。
従来の横型半導体装置と縦型半導体装置はいずれも、第1半導体領域と第2半導体領域に相当する領域の双方が中心領域内に配置されている。本明細書で開示される半導体装置は、従来の形態とは全く異なる新規で斬新な形態を有している。
本明細書で開示される半導体装置は、第1半導体領域が半導体基板の表面部に設けられており、第2半導体領域が半導体基板の表面から離反して設けられていてもよい。ここで、「表面部」とは、半導体基板の表面を含む立体的な範囲をいう。
この形態の半導体装置によると、第1半導体領域は半導体基板の表面部に設けられており、第2半導体領域は半導体基板の表面部に設けられていない。即ち、第1半導体領域と第2半導体領域は、半導体基板内において斜め方向に沿って配置されている。本明細書で開示される半導体装置は、従来の形態とは全く異なる新規で斬新な形態を有している。
第2半導体領域が半導体基板の表面から離反して設けられている場合、第2半導体領域は、半導体基板の裏面からも離反して設けられていてもよい。
この形態の半導体装置では、第2半導体領域が半導体基板の内部に設けられており、従来の形態とは全く異なる新規で斬新な形態を有している。
第2半導体領域が半導体基板の内部に設けられている場合、第2電極は、半導体基板の側面で第2半導体領域に直接的に接していてもよい。
第2半導体領域が内部に設けられていたとしても、第2半導体領域と第2電極の電気的な接続を半導体基板の側面において実現することができる。
第2電極と第2半導体領域が半導体基板の側面で接する場合、半導体基板の側面に絶縁膜が設けられているのが好ましい。この場合、第2電極は、その絶縁膜を貫通して第2半導体領域に向けて伸びている貫通電極を有しているのが好ましい。その貫通電極は、半導体基板の側面で第2半導体領域に直接的に接していることを特徴としている。
この形態の半導体装置によると、第2電極は、貫通電極を利用して第2半導体領域と直接的に接することができる。一方、第2電極は、第2半導体領域以外の半導体基板の側面から絶縁膜によって絶縁分離されている。第2電極は、半導体基板の側面において、貫通電極を利用して第2半導体領域のみに選択的に接することができる。
第2半導体領域が半導体基板の内部に設けられている場合、第2電極は、半導体基板の表面から第2半導体領域に向けて伸びているトレンチ電極を有していてもよい。この場合、そのトレンチ電極は、第2半導体領域に直接的に接していることを特徴としている。さらに、トレンチ電極は、第2半導体領域に接する部分以外において、半導体基板から絶縁膜によって絶縁分離されていることを特徴としている。
上記形態によると、第2電極は、半導体基板の内部において、トレンチ電極を利用して第2半導体領域のみに選択的に接することができる。
本明細書で開示される半導体装置は、半導体基板内に設けられており、第1電極に直接的に接している第3半導体領域をさらに備えているのが好ましい。この場合、第3半導体領域と第2半導体領域を結ぶ方向は、半導体基板の表面の垂直方向に対して傾斜している。さらに、第3半導体領域は、半導体基板の裏面部に設けられている。ここで、「裏面部」とは、半導体基板の裏面を含む立体的な範囲をいう。
上記形態の半導体装置によると、電流の導通経路を半導体基板内に広く確保することができる。オン抵抗(又はオン電圧)の低い半導体装置を得ることができる。
本明細書で開示される半導体装置では、半導体基板内の電界方向が斜め方向に形成される。このため、電流が半導体基板内を斜め方向に流れるとともに、加わる電圧を半導体基板の斜め方向で保持することができる。この結果、本明細書で開示される半導体装置によると、電流集中の緩和と高耐圧化の両立を図ることができる。
本明細書で開示される技術の好ましい特徴を列記する。
(第1特徴)
半導体装置には、ダイオード、MOSFET、IGBT、UMOS、DMOS、トレンチIGBTなどが含まれる。
(第2特徴)
終端耐圧構造体には、ガードリング、リサーフ層などが含まれる。
以下、図面を参照して各実施例を説明する。以下の各実施例では、半導体材料にシリコンが用いられた例を説明するが、その例に代えて、炭化シリコン、ガリウムヒ素、窒化ガリウム等の半導体材料を用いてもよい。
(第1実施例)
図1に、半導体装置10の要部断面図を模式的に示す。半導体装置10は、ゲート構造体が設けられている中心領域と、その中心領域の周囲に設けられている終端領域とに区画されている。図1は、中心領域と終端領域の境界近傍を示しており、中心領域は終端領域側の一部のみが図示されている。中心領域に作り込まれているゲート構造体は、電流の導通状態と非導通状態を経時的に切替えるための構造である。中心領域は、半導体基板20の中心側に区画されている。終端領域は、中心領域を一巡して半導体基板20の周囲に区画されている。終端領域は、ゲート構造体がオフしたときに、半導体基板に加わる電圧を横方向で負担している。
半導体装置10は、直流電源電圧の負側極性に電気的に接続されているエミッタ電極76(第1電極の一例)と、直流電源電圧の正側極性に電気的に接続されているコレクタ電極80(第2電極の一例)とを備えている。エミッタ電極76は、典型的には接地して用いられる。コレクタ電極31には、数百ボルトの正電圧が印加されている。エミッタ電極76の材料には、アルミシリコン(Al−Si)が用いられている。コレクタ電極31の材料には、チタンとニッケルと金の積層電極(Ti−Ni−Au)が用いられている。
半導体装置10は、半導体基板20の裏面部に設けられているp型のコレクタ領域32(第2半導体領域の一例)と、コレクタ領域32の表面に接して設けられているn型のバッファ領域34とを備えている。コレクタ領域32は、コレクタ電極80に直接的に接している。コレクタ領域32とバッファ領域34は、終端領域内に配置されており、中心領域内には配置されていない。コレクタ領域32とバッファ領域34は、イオン注入技術を利用して形成することができる。コレクタ領域32にはリンが導入されており、バッファ領域34にはボロンが導入されている。
半導体装置10はさらに、n型のドリフト領域36を備えている。ドリフト領域36は、半導体基板20の全体に亘って設けられており、中心領域から終端領域まで連続している。ドリフト領域36は、イオン注入技術を利用して前述のコレクタ領域32とバッファ領域34、さらに後述する各種の半導体領域を半導体基板20内に形成したときの残部である。ドリフト領域36にはリンが導入されている。図1に示すように、ドリフト領域36は、コレクタ電極80に直接的に接していない。半導体基板20の裏面のうちドリフト領域36の範囲には絶縁膜が被覆され、ドリフト領域36とコレクタ電極80は、絶縁膜によって絶縁分離されている。
半導体装置10は、中心領域の半導体基板20の表面部に設けられているゲート構造体を備えている。ゲート構造体は、p型のボディ領域62と、そのボディ領域62内に選択的に設けられているn型のエミッタ領域64(第1半導体領域の一例)及びp型のコンタクト領域66と、ボディ領域62を貫通してドリフト領域36まで達するとともにゲート絶縁膜72で被覆されているトレンチゲート電極74とを備えている。エミッタ領域64とコンタクト領域66は、エミッタ電極76に直接的に接している。トレンチゲート電極74とエミッタ電極76は、絶縁膜によって絶縁分離されている。ボディ領域62とコンタクト領域66にはボロンが導入されており、エミッタ領域62にはリンが導入されている。トレンチゲート電極74の材料には、ポリシリコンが用いられている。ゲート絶縁膜72の材料には、酸化シリコンが用いられている。
半導体装置10は、終端領域の半導体基板20の表面部に終端耐圧構造体を備えている。終端耐圧構造体は、複数のp型のガードリング50(50a,50b,50c)と、n型のチャネルストッパ領域42を備えている。なお、半導体装置10では、ガードリング50の個数が3つの場合を例示しているが、ガードリング50の個数はこの例に限定されるものではない。
ガードリング50は、終端領域のドリフト領域36の表面部に分散して設けられている。ガードリング50は、半導体基板20の表面から深部に向けて伸びている。複数のガードリング50は、所定の間隔を隔てて、中心領域側から終端領域の周縁側に向けて並んでいる。ガードリング50は、平面視したときに、終端領域に沿って中心領域の周囲を一巡して形成されている。ガードリング50は、図示しないガードリング電極に電気的に接続されている。ガードリング電極は、フローティング状態である。ガードリング50は、中心領域のゲート構造体がオフしたときに、中心領域から終端領域の周縁に向けて空乏層を伸展させる。
チャネルストッパ領域42は、終端領域の周縁のドリフト領域36の表面部に形成されている。チャネルストッパ領域42は、平面視したときに、終端領域の周縁に沿って中心領域を一巡して形成されている。チャネルストッパ領域42は、図示しないチャネルストッパ電極に電気的に接続されている。チャネルストッパ電極は、コレクタ電極と同電位に固定されている。チャネルストッパ領域42は、終端領域のドリフト領域36の電位を安定させている。
次に、半導体装置10の特徴を説明する。
コレクタ電極80に数百ボルトの正電圧が印加され、エミッタ電極76が接地され、トレンチゲート電極74に数ボルトの正電圧が印加されると、トレンチゲート電極74に対向するボディ領域62内に反転層が形成され、半導体装置10がオン状態になる。半導体装置10がオンすると、エミッタ領域64から供給された電子は、ボディ領域62内の反転層、ドリフト領域36、バッファ領域34を経由してコレクタ領域32に向けて流れる。一方、コレクタ領域32から供給された正孔は、バッファ領域34、ドリフト領域36、ボディ領域62を経由してコンタクト領域66に向けて流れる。ドリフト領域36には多量の電子と正孔が高密度に存在する伝導度変調が発生し、半導体装置10は低いオン電圧で動作する。
半導体装置10では、エミッタ領域64とコレクタ領域32の位置関係が、半導体基板20の表面の垂直方向に対して傾斜した方向に配置されている。半導体基板20内に形成される電界方向は、エミッタ領域64とコレクタ領域32を結ぶ方向に一致するので、半導体基板20内の電界方向は、半導体基板20の表面の垂直方向に対して傾斜している。即ち、半導体基板20内の電界方向が斜め方向に形成される。このため、電流は、エミッタ領域64からコレクタ領域32まで半導体基板20内を斜め方向に流れる。電流が半導体基板20内を斜め方向に流れるので、従来の横型半導体装置のように半導体基板20の表面を集中して流れることがない。
さらに、半導体装置10がオフすると、エミッタ領域64とコレクタ領域32の間に加わる電圧が半導体基板20の斜め方向で保持される。加わる電圧を半導体基板20の斜め方向で保持することができるので、半導体基板20の厚みによって制限されることなく耐圧を向上させることができる。半導体装置10によると、電流集中の緩和と高耐圧化の両立を図ることができる。
また、半導体装置10では、エミッタ領域64とコレクタ領域32を最短距離で結ぶ方向が半導体基板20の表面の垂直方向に対して傾斜しているので、上記作用効果を良好に得ることができる。
(第2実施例)
図2に、半導体装置100の要部断面図を模式的に示す。なお、図1の半導体装置10と共通の構成要素に関しては同一符号を付し、その説明を省略する。
半導体装置100は、コレクタ領域132及びバッファ領域134が半導体基板20の裏面から離反していることを特徴としている。半導体装置100では、コレクタ領域132及びバッファ領域134が半導体基板20の内部に設けられている。バッファ領域134は、コレクタ領域132を被覆し、コレクタ領域132とドリフト領域36を隔てている。絶縁膜188の材料には酸化シリコンが用いられており、コレクタ電極180の材料にはアルミニウムが用いられている。
半導体装置100は、半導体基板20の側面に設けられている絶縁膜188を備えている。コレクタ電極180も、半導体基板10の側面に設けられている。コレクタ電極180は、絶縁膜188を介して半導体基板20の側面を被覆しているコレクタ側面電極184と、絶縁膜188を貫通してコレクタ領域132に向けて伸びている貫通電極182とを備えている。貫通電極182は、半導体基板20の側面でコレクタ領域132に直接的に接している。コレクタ電極180は、コレクタ領域132以外の半導体基板20の側面から絶縁膜188によって絶縁分離されている。コレクタ電極180は、半導体基板20の側面において、貫通電極182を利用してコレクタ領域132のみに選択的に接している。
半導体装置100の場合も、エミッタ領域64とコレクタ領域132の位置関係が、半導体基板20の表面の垂直方向に対して傾斜した方向に配置されており、半導体基板20内に形成される電界方向は、半導体基板20の表面の垂直方向に対して傾斜している。このため、電流は、エミッタ領域64からコレクタ領域132まで半導体基板20内を斜め方向に流れる。さらに、半導体装置100がオフすると、エミッタ領域64とコレクタ領域132の間に加わる電圧が半導体基板20の斜め方向で保持されるので、半導体基板20の厚みによって制限されることなく耐圧を向上させることができる。半導体装置100の場合も、電流集中の緩和と高耐圧化の両立を図ることができる。
図3を参照して、半導体装置100の形態を採用したときの有利な効果を説明する。図3は、半導体装置100と実質的に同質の形態を備えた半導体装置100a,100bが1つの半導体基板20に混載されている例である。半導体装置100a,100bは、絶縁分離層190によって区画された半導体基板20内の島状領域にそれぞれ設けられている。絶縁分離層190には、酸化シリコン、p型の拡散領域などが用いられる。なお、図の明瞭化のために、ガードリングの個数や一部の領域を省略して図示している。
半導体装置100aと半導体装置100bの差異は、半導体装置100aのコレクタ領域132aの半導体基板20内の深さと半導体装置100bのコレクタ領域132bの半導体基板20内の深さが異なっている点である。このため、半導体装置100aのエミッタ領域とコレクタ領域間の距離と半導体装置100bのエミッタ領域とコレクタ領域間の距離は異なっている。したがって、半導体装置100aの耐圧と半導体装置100bの耐圧は異なっている。
図3に示すように、半導体装置100の形態を採用すると、1つの半導体基板20内に異なる耐圧の半導体装置100a,100bを混載することができる。従来の縦型半導体装置では、耐圧が半導体基板の厚みによって制限されるので、異なる耐圧の縦型半導体装置を1つの半導体基板に混載することができなかった。一方、半導体装置100の形態を採用すると、1つの半導体基板に異なる耐圧の半導体装置を混載することができる。この結果、多様な機能を実現する半導体装置を作製することが可能になる。
(第3実施例)
図4に、半導体装置200の要部断面図を模式的に示す。半導体装置200は、図2の半導体装置100の変形例である。図2の半導体装置100と共通の構成要素に関しては同一符号を付し、その説明を省略する。
半導体装置200のコレクタ電極280は、半導体基板20の表面からコレクタ領域132に向けて伸びているトレンチ電極282と、半導体基板20の表面に設けられているコレクタ表面電極284とを備えていることを特徴としている。トレンチ電極282は、コレクタ領域132に直接的に接している。さらに、トレンチ電極282は、コレクタ領域132に接する部分以外において、半導体基板20から絶縁膜288によって絶縁分離されている。コレクタ電極280は、トレンチ電極282を利用してコレクタ領域132のみに選択的に接している。トレンチ電極282の材料にはポリシリコンが用いられており、絶縁膜288の材料には酸化シリコンが用いられている。
半導体装置200の場合も、エミッタ領域64とコレクタ領域132の位置関係が、半導体基板20の表面の垂直方向に対して傾斜した方向に配置されており、半導体基板20内に形成される電界方向は、半導体基板20の表面の垂直方向に対して傾斜している。このため、電流は、エミッタ領域64からコレクタ領域132まで半導体基板20内を斜め方向に流れる。さらに、半導体装置200がオフすると、エミッタ領域64とコレクタ領域132の間に加わる電圧が半導体基板20の斜め方向で保持されるので、半導体基板20の厚みによって制限されることなく耐圧を向上させることができる。半導体装置200の場合も、電流集中の緩和と高耐圧化の両立を図ることができる。
(第4実施例)
図5に、半導体装置300の要部断面図を模式的に示す。半導体装置300は、図2の半導体装置100の変形例である。図2の半導体装置100と共通の構成要素に関しては同一符号を付し、その説明を省略する。
半導体装置300は、半導体基板20の裏面部に第2のゲート構造体及び終端耐圧構造体が設けられていることを特徴としている。第2のゲート構造体及び終端耐圧構造体は、表面部のゲート構造体及び終端耐圧構造体が上下反転した形状を備えている。
裏面部に設けられているゲート構造体においても、エミッタ領域364とコレクタ領域132の位置関係が、半導体基板20の表面の垂直方向に対して傾斜した方向に配置されている。このため、半導体基板20内に形成される電界方向が半導体基板20の表面の垂直方向に対して傾斜しており、電流は、エミッタ領域364からコレクタ領域132まで半導体基板20内を斜め方向に流れる。さらに、半導体装置200がオフすると、エミッタ領域364とコレクタ領域132の間に加わる電圧が半導体基板20の斜め方向で保持されるので、半導体基板20の厚みによって制限されることなく耐圧を向上させることができる。半導体装置300の場合も、電流集中の緩和と高耐圧化の両立を図ることができる。
さらに、半導体装置300の場合は、電流の導通経路を半導体基板20内に広く確保することができる。半導体基板20の裏面部に第2のゲート構造体及び終端耐圧構造体が設けられていると、オン電圧の低い半導体装置300を得ることができる。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
第1実施例の半導体装置の要部断面図を模式的に示す。 第2実施例の半導体装置の要部断面図を模式的に示す。 第2実施例の半導体装置の有利な特徴を示す要部斜視図を模式的に示す。 第3実施例の半導体装置の要部断面図を模式的に示す。 第4実施例の半導体装置の要部断面図を模式的に示す。
符号の説明
20:半導体基板
32、132:コレクタ領域
34、134:バッファ領域
36:ドリフト領域
42:チャネルストッパ領域
50、350:ガードリング
62、362:ボディ領域
64、364:エミッタ領域
66、366:コンタクト領域
72、372:ゲート絶縁膜
74、374:トレンチゲート電極
76、376:エミッタ電極
80、180:コレクタ電極
182:貫通電極
282:トレンチ電極

Claims (8)

  1. 半導体装置であって、
    電圧電源の一方の極性に電気的に接続されている第1電極と、
    電圧電源の他方の極性に電気的に接続されている第2電極と、
    半導体基板内に設けられているとともに第1電極に直接的に接している第1半導体領域と、
    半導体基板内に設けられているとともに第2電極に直接的に接している第2半導体領域と、を備えており、
    第1半導体領域と第2半導体領域を結ぶ方向は、半導体基板の表面の垂直方向に対して傾斜している半導体装置。
  2. 半導体基板は、電流の導通状態と非導通状態を切替えるゲート構造体が設けられている中心領域と、その中心領域の周囲に設けられている終端領域とに少なくとも区画されており、
    第1半導体領域は、中心領域内に配置されており、
    第2半導体領域は、終端領域内に配置されていることを特徴とする請求項1の半導体装置。
  3. 第1半導体領域は、半導体基板の表面部に設けられており、
    第2半導体領域は、半導体基板の表面から離反して設けられていることを特徴とする請求項1又は2の半導体装置。
  4. 第2半導体領域は、半導体基板の裏面からも離反して設けられていることを特徴とする請求項3の半導体装置。
  5. 第2電極は、半導体基板の側面で第2半導体領域に直接的に接していることを特徴とする請求項4の半導体装置。
  6. 半導体基板の側面に設けられている絶縁膜をさらに備えており、
    第2電極は、その絶縁膜を貫通して第2半導体領域に向けて伸びている貫通電極を有し、
    その貫通電極は、半導体基板の側面で第2半導体領域に直接的に接していることを特徴とする請求項5の半導体装置。
  7. 第2電極は、半導体基板の表面から第2半導体領域に向けて伸びているトレンチ電極を有し、
    そのトレンチ電極は、第2半導体領域に直接的に接しており、
    トレンチ電極は、第2半導体領域に接する部分以外において、半導体基板から絶縁膜によって絶縁分離されていることを特徴とする請求項4の半導体装置。
  8. 半導体基板内に設けられており、第1電極に直接的に接している第3半導体領域をさらに備えており、
    第3半導体領域と第2半導体領域を結ぶ方向は、半導体基板の表面の垂直方向に対して傾斜しており、
    第3半導体領域は、半導体基板の裏面部に設けられていることを特徴とする請求項4の半導体装置。
JP2007142875A 2007-05-30 2007-05-30 半導体装置 Pending JP2008300474A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142875A JP2008300474A (ja) 2007-05-30 2007-05-30 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142875A JP2008300474A (ja) 2007-05-30 2007-05-30 半導体装置

Publications (1)

Publication Number Publication Date
JP2008300474A true JP2008300474A (ja) 2008-12-11

Family

ID=40173733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142875A Pending JP2008300474A (ja) 2007-05-30 2007-05-30 半導体装置

Country Status (1)

Country Link
JP (1) JP2008300474A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422953B1 (ko) * 2012-12-14 2014-08-13 삼성전기주식회사 전력 반도체 소자 및 그 제조 방법
WO2015045563A1 (ja) * 2013-09-25 2015-04-02 株式会社日立製作所 半導体装置およびこれを用いた電力変換装置
US10319844B2 (en) 2016-09-16 2019-06-11 Kabushiki Kaisha Toshiba Semiconductor device
US11984473B2 (en) 2021-03-17 2024-05-14 Kabushiki Kaisha Toshiba Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422953B1 (ko) * 2012-12-14 2014-08-13 삼성전기주식회사 전력 반도체 소자 및 그 제조 방법
WO2015045563A1 (ja) * 2013-09-25 2015-04-02 株式会社日立製作所 半導体装置およびこれを用いた電力変換装置
US10319844B2 (en) 2016-09-16 2019-06-11 Kabushiki Kaisha Toshiba Semiconductor device
US11984473B2 (en) 2021-03-17 2024-05-14 Kabushiki Kaisha Toshiba Semiconductor device

Similar Documents

Publication Publication Date Title
TWI633665B (zh) Semiconductor device
JP6135636B2 (ja) 半導体装置
JP4265684B1 (ja) 半導体装置
WO2013018760A1 (ja) 半導体装置およびその製造方法
JP6659516B2 (ja) 半導体装置
JPWO2017099096A1 (ja) 半導体装置
JP5991020B2 (ja) 炭化珪素単結晶を主材料とする半導体装置
JP7055056B2 (ja) 半導体装置および半導体装置の製造方法
JP2008227236A (ja) 半導体装置
CN106463542B (zh) 半导体装置
JP6461063B2 (ja) 半導体装置とその製造方法
JP5720582B2 (ja) スイッチング素子
JP2014135367A (ja) 半導体装置
JP2013080796A (ja) 半導体装置
JP2018064107A (ja) 半導体装置およびその製造方法
JP2018056298A (ja) 半導体装置
JP2008300474A (ja) 半導体装置
JP5605230B2 (ja) 半導体装置
JP5694285B2 (ja) 半導体装置
JP6918736B2 (ja) 半導体装置
JP2013182905A (ja) 半導体装置
JP2021044514A (ja) 半導体装置
JP5375270B2 (ja) 半導体装置
JP6179468B2 (ja) 半導体装置
JP7363429B2 (ja) 半導体装置の駆動方法