JP2008280184A - Composite of ultrafine particle of cerium-containing mesoporous silica and noble metal, production method of the composite, oxidative exclusion method of minute amount of carbon monoxide by using the complex as catalyst, and synthetic method of ketone by oxidative dehydrogenation of alcohol - Google Patents

Composite of ultrafine particle of cerium-containing mesoporous silica and noble metal, production method of the composite, oxidative exclusion method of minute amount of carbon monoxide by using the complex as catalyst, and synthetic method of ketone by oxidative dehydrogenation of alcohol Download PDF

Info

Publication number
JP2008280184A
JP2008280184A JP2007122917A JP2007122917A JP2008280184A JP 2008280184 A JP2008280184 A JP 2008280184A JP 2007122917 A JP2007122917 A JP 2007122917A JP 2007122917 A JP2007122917 A JP 2007122917A JP 2008280184 A JP2008280184 A JP 2008280184A
Authority
JP
Japan
Prior art keywords
mesoporous silica
catalyst
carbon monoxide
composite
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007122917A
Other languages
Japanese (ja)
Other versions
JP5071928B2 (en
Inventor
Naoki Mimura
直樹 三村
Tomoki Akita
知樹 秋田
Tadahiro Fujitani
忠博 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007122917A priority Critical patent/JP5071928B2/en
Publication of JP2008280184A publication Critical patent/JP2008280184A/en
Application granted granted Critical
Publication of JP5071928B2 publication Critical patent/JP5071928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-performance catalyst capable of efficiently eliminating a minute amount of carbon monoxide in air or in a hydrogen gas, or a high-performance catalyst capable of efficiently synthesizing a ketone by oxidative dehydrogenation of an alcohol, and a production method thereof. <P>SOLUTION: An inorganic composite prepared by causing a cerium-containing mesoporous silica to carry superfine gold particles, especially superfine particles of which the diameters of almost all particles are 0.5-5 nm, is used as the catalyst. A method for causing a gold complex to be adsorbed by dispersing cerium-containing mesoporous silica in a solution of chlorauric acid adjusted to a pH value higher than 7.0 and lower than 10.0 or by contacting the solution with the cerium-containing mesoporous silica, is employed as the supporting method of gold in the composite. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属、特に好ましくは貴金属の超微粒子と無機酸化物担体からなる複合構造体の製造技術と、その複合構造体の触媒反応への応用技術に関するものである。特に、貴金属として、金を用いた場合の、生活空間の快適化、無害化技術、或いは水素を用いる燃料電池の高性能技術である、微量一酸化炭素の酸化除去に関し、特に、そのための、金の超微粒子を用いた高性能触媒に関するものである。さらに、有機反応で重要な反応のひとつと位置づけられる2級アルコール類のケトン類への酸化反応に関するものである。   The present invention relates to a technique for producing a composite structure composed of ultrafine particles of a metal, particularly preferably a noble metal, and an inorganic oxide support, and a technique for applying the composite structure to a catalytic reaction. In particular, when gold is used as a precious metal, it is related to the oxidative removal of trace amounts of carbon monoxide, which is a technology for making living space comfortable and detoxifying, or a high-performance technology for a fuel cell using hydrogen. The present invention relates to a high-performance catalyst using ultrafine particles. Further, the present invention relates to an oxidation reaction of secondary alcohols to ketones, which is one of the important reactions in organic reactions.

金属、特に貴金属の超微粒子は近年注目を集めており、種々の調製法が提案、開発されている。金属は微粒子化すればするほど総金属量に対して表面に露出する原子数が増加し、同じ金属量でありながら、活性サイトが増大する効果や、電子状態がバルクの状態から変化し新たな機能を示す効果が得られたりする(非特許文献1)。したがって、貴金属の超微粒子を効率的に製造する技術は重要性が高い。
また、貴金属の超微粒子は単独では不安定なため、凝集による粒子サイズの増大などにより超微粒子としての機能を失う場合がある。それを防ぐために高比表面積の担体の表面に固定化する手法により安定した性能を得ることが出来るが、均一な超微粒子の調製法は比較的困難であり、重要技術課題となっている。以下、これまでに一般的に知られている数例を述べる。
In recent years, ultrafine particles of metals, particularly noble metals, have attracted attention, and various preparation methods have been proposed and developed. As the metal becomes finer, the number of atoms exposed on the surface increases with respect to the total amount of metal, and while the same amount of metal, the effect of increasing active sites and the electronic state changes from the bulk state to a new one. The effect which shows a function is acquired (nonpatent literature 1). Therefore, a technique for efficiently producing ultrafine particles of noble metal is highly important.
In addition, since noble metal ultrafine particles are unstable alone, the function as ultrafine particles may be lost due to an increase in particle size due to aggregation. In order to prevent this, a stable performance can be obtained by a method of immobilizing on the surface of a carrier having a high specific surface area. However, it is relatively difficult to prepare uniform ultrafine particles, which is an important technical problem. Hereinafter, several examples generally known so far will be described.

白金やパラジウムの超微粒子を酸化チタン粉末やチタン含有メソポーラスシリカと複合化させる際に紫外線を照射することでチタンを活性化させ、活性化されたチタンサイト上に選択的に白金やパラジウムの超微粒子が生成する手法が報告されている。この複合体は、透過電子顕微鏡測定において、ほぼ均一な粒子の生成を確認して、また、一酸化炭素の酸化反応や過酸化水素の製造においても顕著な活性向上を果たしている(非特許文献2など)。
また、金を酸化チタン粉末又はチタン含有メソポーラスシリカ上に担持する際に金の前駆体である塩化金酸の溶液をアルカリ溶液で中和しpHを調節し、酸化チタンの表面電位と整合性を取り、電気的親和力で表面に析出させる手法が発表されており、一酸化炭素の酸化除去やプロピレンオキサイドの合成に効果的な触媒となっている(非特許文献3など)。
さらに、ハイドロキシアパタイト上に均一に担持されたルテニウムやパラジウムの超微粒子は、前駆体を表面イオンと交換するイオン交換法に近い形で担持されていて、還元される事により得られる。この複合体は、アルコールの酸化反応に顕著な活性を示すことが報告されている(非特許文献4など)。
When the ultrafine platinum or palladium particles are combined with titanium oxide powder or titanium-containing mesoporous silica, the titanium is activated by irradiating with ultraviolet rays, and the ultrafine platinum or palladium particles are selectively deposited on the activated titanium sites. The method of generating is reported. This composite confirmed the generation of substantially uniform particles in the transmission electron microscope measurement, and also achieved a remarkable improvement in activity in the oxidation reaction of carbon monoxide and the production of hydrogen peroxide (Non-patent Document 2). Such).
In addition, when supporting gold on titanium oxide powder or titanium-containing mesoporous silica, the solution of gold chloroauric acid, which is a precursor of gold, is neutralized with an alkaline solution to adjust the pH, thereby matching the surface potential of titanium oxide. And a method of depositing on the surface with an electrical affinity has been announced, and has become an effective catalyst for the oxidation removal of carbon monoxide and the synthesis of propylene oxide (Non-patent Document 3, etc.).
Furthermore, the ultrafine particles of ruthenium and palladium uniformly supported on hydroxyapatite are supported in a form close to an ion exchange method in which the precursor is exchanged with surface ions, and are obtained by reduction. It has been reported that this complex exhibits remarkable activity in the oxidation reaction of alcohol (Non-patent Document 4 and the like).

一方、一酸化炭素は有害なガスで、人体に対する毒性は1000ppmで頭痛、頭重、吐き気、めまいなどがあらわれ、継続した曝露により自力脱出が困難になり、死亡に至るものであって(非特許文献5)、米国産業衛生専門官会議が定めている時間加重平均曝露限界閾値(TLV-TWA)は25ppmであり、また、米国国立安全衛生研究所が定めている、30分間曝露で生命・健康危険レベル(IDLH)は1200ppmである(非特許文献5)。
生活空間では、石油やガス、木炭、練炭などの燃焼を利用した暖房器具、調理器具が広く普及し、燃料の不完全燃焼により前記の安全基準に達しない程度の微量な一酸化炭素が発生している。一酸化炭素は、微量であっても、血液中のヘモグロビンと結合し、心肺機能の低下、高血圧、動脈硬化、不整脈など健康を害する可能性が高まる。また、健康増進法の施行により公共機関や企業等で喫煙室を設置し、分煙を図ることが義務化されているが、狭い空間内で喫煙をすることにより、局所的に一酸化炭素濃度が高まり、健康に悪影響を及ぼす可能性が生じる。
上記の事情により、一酸化炭素除去触媒が塗布された空気浄化フィルターなどを用いて一酸化炭素を空気中の酸素と反応させて二酸化炭素に変換し除去することが切望されているが、要求を満たす高性能な触媒は開発途上である。
On the other hand, carbon monoxide is a harmful gas, and its toxicity to the human body is 1000 ppm. It causes headache, headache, nausea, dizziness, etc., and continuous exposure makes it difficult to escape and causes death (Non-patent Document) 5) The time-weighted average exposure limit threshold (TLV-TWA) set by the National Council of Occupational Health and Safety is 25 ppm, and the life and health risk of 30-minute exposure set by the National Institute of Health and Safety The level (IDLH) is 1200 ppm (Non-patent Document 5).
In living spaces, heating appliances and cooking utensils that use combustion of oil, gas, charcoal, briquettes, etc. have become widespread, and incomplete combustion of the fuel generates a trace amount of carbon monoxide that does not meet the above safety standards. ing. Even in a trace amount, carbon monoxide binds to hemoglobin in the blood and increases the possibility of harming health such as decreased cardiopulmonary function, hypertension, arteriosclerosis, and arrhythmia. In addition, the enforcement of the Health Promotion Act has made it mandatory to set up smoking rooms in public institutions and companies and to separate smoke, but by smoking in a narrow space, the concentration of carbon monoxide is locally increased. Increased, with potential for adverse health effects.
Due to the above circumstances, there is a strong desire to convert carbon monoxide to carbon dioxide by reacting it with oxygen in the air using an air purification filter coated with a carbon monoxide removal catalyst. A high-performance catalyst to satisfy is under development.

また、近年において燃料電池が次世代のエネルギー発生システムとして注目されており、水素が燃料として用いられることが多いが、水素は炭化水素ガスの改質などで製造され、反応途中に副生する一酸化炭素が水素中に微量残留する。その残留一酸化炭素は、電極材と反応し電極を不活性化し、電極の寿命を大幅に短くする。そのため、水素ガス中の微量の一酸化炭素だけを酸素と反応させて二酸化炭素に転換させることにより、水素の酸化を少量に防ぎつつ一酸化炭素だけを除去しうる触媒の開発が切望されているが、該要求を満たす高性能な触媒は開発途上であって、まだ得られていない。   In recent years, fuel cells have attracted attention as a next-generation energy generation system, and hydrogen is often used as a fuel. Hydrogen is produced by reforming hydrocarbon gas or the like, and is produced as a by-product during the reaction. A small amount of carbon oxide remains in the hydrogen. The residual carbon monoxide reacts with the electrode material to inactivate the electrode and significantly shorten the life of the electrode. Therefore, the development of a catalyst that can remove only carbon monoxide while reacting only a small amount of carbon monoxide in hydrogen gas with oxygen to convert it to carbon dioxide while preventing the oxidation of hydrogen to a small amount is eagerly desired. However, a high-performance catalyst that satisfies this requirement is still under development and has not yet been obtained.

従来、一酸化炭素の酸化除去には貴金属触媒が使われることが多い。貴金属は、一般的には、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウムの8種を称するが、その中でも、粒子サイズを精密にコントロールされ、適切な担体と複合化した金(Au)触媒が、低温、室温での一酸化炭素の酸化除去触媒に好ましく用いられている(非特許文献6〜8、特許文献1〜3)。また、白金(Pt)も単独または他の金属類と複合化されて水素ガス中の微量一酸化炭素の酸化除去に好ましく用いられることが多い(非特許文献9、10、特許文献4、5)。   Conventionally, a precious metal catalyst is often used for oxidative removal of carbon monoxide. Precious metals generally refer to eight types of gold, silver, platinum, palladium, rhodium, iridium, ruthenium, and osmium. Among them, the particle size is precisely controlled, and gold ( Au) catalyst is preferably used as an oxidation removal catalyst for carbon monoxide at low temperature and room temperature (Non-patent Documents 6 to 8, Patent Documents 1 to 3). In addition, platinum (Pt) is often used alone or in combination with other metals and is preferably used for the oxidation removal of a small amount of carbon monoxide in hydrogen gas (Non-patent Documents 9 and 10, Patent Documents 4 and 5). .

しかしながら、これらの金触媒又は白金触媒は、通常、金属酸化物からなる担体に担持されるか(特許文献1、特許文献2、特許文献4)、或いは、活性炭、シリカゲル、アルミナ等の多孔質体に担持されて(特許文献3、特許文献5)用いられるが、いまだに、前記のごとき空気又は水素ガス中の微量な一酸化炭素だけを効率的に除去しうる高性能な触媒を得るには至っていないのが現状である。   However, these gold catalysts or platinum catalysts are usually supported on a carrier made of a metal oxide (Patent Document 1, Patent Document 2, Patent Document 4), or a porous body such as activated carbon, silica gel, and alumina. (Patent Document 3 and Patent Document 5) are used, but still have a high-performance catalyst that can efficiently remove only a small amount of carbon monoxide in air or hydrogen gas as described above. There is no current situation.

さらに、アルコール類の酸化は重要な反応であり、2級アルコールは酸化することによりケトンに変換される。
この反応は空気や酸素、過酸化水素を酸化剤として行うことが理想的とされており、種々の触媒の報告例がある。
たとえば、ルテニウムをアルミナに担持した触媒(非特許文献11)、ルテニウムをハイドロキシアパタイトに担持した触媒(非特許文献12)、NaWO系錯体触媒(非特許文献13)などが報告されており、それぞれ、適切な反応条件を選択することにより、目的の酸化反応を実施することが出来る。
しかしながら、いまだに、目的とする酸化反応を効率的に行うことができる高性能な触媒を得るには至っていないのが現状である。
Furthermore, the oxidation of alcohols is an important reaction, and secondary alcohols are converted to ketones by oxidation.
This reaction is ideally performed using air, oxygen, or hydrogen peroxide as an oxidizing agent, and there are reports of various catalysts.
For example, a catalyst in which ruthenium is supported on alumina (Non-patent document 11), a catalyst in which ruthenium is supported on hydroxyapatite (Non-patent document 12), a Na 2 WO 4 complex catalyst (Non-patent document 13), and the like have been reported. The target oxidation reaction can be carried out by selecting appropriate reaction conditions.
However, the present situation is that a high-performance catalyst capable of efficiently performing the target oxidation reaction has not yet been obtained.

特許公開平8−295502号公報Japanese Patent Publication No. 8-295502 特許公開2004−188243号公報Japanese Patent Publication No. 2004-188243 特許公開平11−235169号公報Japanese Patent Publication No. 11-235169 特許公開2003−48702号公報Japanese Patent Publication No. 2003-48702 特許公開2005−246116号公報Japanese Patent Publication No. 2005-246116 キャタリシススクールテキスト (2006) P27Catalysis School Text (2006) P27 森、他、触媒Vol.49、No.2、(2007) P165−167Mori, et al., Catalyst Vol.49, No.2, (2007) P165-167 春田、他、触媒Vol.49、No.2、(2007) P120−122Haruta, et al., Catalyst Vol.49, No.2, (2007) P120-122 金田、他、触媒Vol.46、No.1、(2004) P19−24Kanada, et al., Catalyst Vol.46, No.1, (2004) P19-24 高圧ガス保安技術 第二次改訂版 高圧ガス保安協会編High Pressure Gas Safety Technology Second Revised Edition High Pressure Gas Safety Association Masatake Haruta, CatalysisToday 36 (1997) P153−166Masatake Haruta, CatalysisToday 36 (1997) P153−166 Masakazu Date,他、CatalysisToday 72 (2002) P89−94Masakazu Date, et al., CatalysisToday 72 (2002) P89-94 Masakazu Date, 他, AngewandteChemie International Edition Volume 43, Issue 16, Date: April 13, 2004, P2129−2132Masakazu Date, et al., AngewandteChemie International Edition Volume 43, Issue 16, Date: April 13, 2004, P2129-2132 Attila Wootsch,他Journal ofCatalysis 225 (2004) P259−66Attila Wootsch, et al. Journal of Catalysis 225 (2004) P259−66 I. H. Son, 他 Journal ofCatalysis 210, P460−465 (2002)I. H. Son, et al. Journal of Catalysis 210, P460-465 (2002) Kazuya Yamaguchi, NoritakaMizuno, Angewandte Chemie International Edition, Volume 41, Issue 23, Date:December 2, 2002, P4538−4542Kazuya Yamaguchi, NoritakaMizuno, Angewandte Chemie International Edition, Volume 41, Issue 23, Date: December 2, 2002, P4538-4542 Yamaguchi, K.; Mori, K.;Mizugaki, T.; Ebitani, K.; Kaneda, K.J. Am. Chem. Soc.; (Communication); 2000;122(29); P7144−7145)Yamaguchi, K .; Mori, K .; Mizugaki, T .; Ebitani, K .; Kaneda, K.J. Am. Chem. Soc .; (Communication); 2000; 122 (29); P7144-7145) 佐藤、他、触媒Vol.46、No.5、(2004) P328−333Sato et al., Catalyst Vol.46, No.5, (2004) P328-333

本発明は、以上のような事情に鑑みてなされたものであって、その目的は、空気中又は水素ガス中の微量な一酸化炭素を効率的に除去しうる高性能な触媒を提供することにある。
また、本発明のもう1つの目的は、アルコール類の酸化的脱水素反応によるケトン類の合成を効率的に行うことができる高性能な触媒を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a high-performance catalyst capable of efficiently removing a small amount of carbon monoxide in air or hydrogen gas. It is in.
Another object of the present invention is to provide a high-performance catalyst that can efficiently synthesize ketones by oxidative dehydrogenation of alcohols.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、金の超微粒子を、特定の担体に担持させた新規な無機複合物は、ナノサイズの金の超微粒子を均一に担持しうるという知見を得た。また、金の超微粒子を担持する方法として、特定の方法を採用することにより、金担持後の比表面積が500〜1000m/gに達するような高比表面積を有する無機複合体が得られることが判明した。さらに、該無機複合体が一酸化炭素を効率的に除去する触媒機能及びアルコールの酸化反応を効率的に行うことができる触媒機能を有することを見出し、本発明の完成に至ったものである。 As a result of intensive studies to solve the above problems, the present inventors have found that a novel inorganic composite in which gold ultrafine particles are supported on a specific carrier uniformly supports nano-sized gold ultrafine particles. The knowledge that it is possible was obtained. In addition, by adopting a specific method as a method for supporting gold ultrafine particles, an inorganic composite having a high specific surface area such that the specific surface area after supporting gold reaches 500 to 1000 m 2 / g can be obtained. There was found. Furthermore, the present inventors have found that the inorganic composite has a catalytic function for efficiently removing carbon monoxide and a catalytic function capable of efficiently performing an oxidation reaction of alcohol, and has completed the present invention.

すなわち、本発明によれば、以下の発明が提供される。
(1)金の超微粒子を、セリウムを含有するメソポーラスシリカに担持させたことを特徴とする無機複合体。
(2)前記超微粒子の直径が、0.5〜5ナノメートルの範囲に全粒子数の殆どが含まれることを特徴とする前記(1)の無機複合体。
(3)前記セリウムを含有するメソポーラスシリカに前記金の超微粒子を担持する方法として、塩化金酸の水溶液にアルカリ溶液を添加してpH値を7.0以上10.0未満の範囲に調整して塩化金酸を水酸化物イオンが配位した状態に変化させ、その溶液中にセリウムを含有するメソポーラスシリカを分散させるか又はその溶液とセリウムを含有メするソポーラスシリカとを接触させることにより、メソポーラスシリカ表面に電気的親和力で前記金の超微粒子の前駆体である水酸化物イオンが配位した金錯体を吸着させる方法を用いることを特徴とする前記(1)又は(2)の無機複合体の製造方法。
(4)前記(1)又は(2)の無機複合体からなることを特徴とする、ガス中に含まれる一酸化炭素の酸化除去用触媒。
(5)前記(1)又は(2)の無機複合体を触媒に用い、ガス中に含まれる微量の一酸化炭素を、同ガス中に含まれている酸素又は必要量添加した酸素と反応させて、該一酸化炭素を酸化除去して二酸化炭素に変換することを特徴とする微量一酸化炭素の酸化除去方法。
(6)前記ガスの主成分が水素又は空気である前記(5)の微量一酸化炭素の酸化除去方法。
(7)前記(1)又は(2)の無機複合体からなることを特徴とする、アルコール類の酸化的脱水素反応によるケトン類の合成用触媒。
(8)前記(1)又は(2)の無機複合体を触媒に用い、アルコール類を酸素で酸化し、酸化的脱水素反応によりケトン類を製造することを特徴とするケトン類の製造方法。
That is, according to the present invention, the following inventions are provided.
(1) An inorganic composite comprising ultrafine gold particles supported on mesoporous silica containing cerium.
(2) The inorganic composite according to (1) above, wherein the ultrafine particles have a diameter of 0.5 to 5 nanometers and most of the total number of particles is included.
(3) As a method of supporting the ultrafine gold particles on the mesoporous silica containing cerium, an alkaline solution is added to an aqueous solution of chloroauric acid to adjust the pH value to a range of 7.0 or more and less than 10.0. By changing the chloroauric acid to a state in which hydroxide ions are coordinated, and dispersing the mesoporous silica containing cerium in the solution or bringing the solution into contact with the mesoporous silica containing cerium. And (1) or (2), wherein the gold complex coordinated with hydroxide ions, which are precursors of the ultrafine gold particles, is adsorbed onto the mesoporous silica surface with an electrical affinity. A method for producing a composite.
(4) A catalyst for oxidizing and removing carbon monoxide contained in a gas, comprising the inorganic composite according to (1) or (2).
(5) Using the inorganic composite according to (1) or (2) as a catalyst, a trace amount of carbon monoxide contained in the gas is reacted with oxygen contained in the gas or oxygen added in a necessary amount. And oxidizing and removing the carbon monoxide to convert it into carbon dioxide.
(6) The method for oxidizing and removing trace carbon monoxide according to (5), wherein the main component of the gas is hydrogen or air.
(7) A catalyst for synthesizing ketones by oxidative dehydrogenation of alcohols, which comprises the inorganic composite according to (1) or (2).
(8) A method for producing a ketone, characterized in that the inorganic complex of (1) or (2) is used as a catalyst, an alcohol is oxidized with oxygen, and a ketone is produced by an oxidative dehydrogenation reaction.

本発明によれば、直径が0.5〜5ナノメートルの範囲に全粒子数の殆どが含まれる金の超微粒子を、均一に担持した無機複合体を得ることができる。また、本発明の製造方法は、セリウム含有メソポーラスシリカ担体に、金の超微粒子を担持させる方法として優れた方法を提供するものであって、本発明の製造方法によれば、金担持後の前記複合材料の比表面積が500〜1000m/gに達する高比表面積を有する無機複合材料、すなわち金の超微粒子が効率よく担持され、反応ガスとの接触効率が高い無機複合材料を得ることができる。さらに、本発明の無機複合体は、ガス中の微量の一酸化炭素を効率的に除去しうる高性能な触媒作用を提供するものであり、特に、(1)空気中の微量の一酸化炭素を酸化して二酸化炭素に転換して無害化しうる触媒作用、(2)水素ガス中の微量の一酸化炭素だけを酸素と反応させて二酸化炭素に転換させることにより、水素の酸化を少量に防ぎつつ一酸化炭素だけを除去しうる触媒作用を提供するものである。また、本発明の無機複合体は、アルコール類を酸素で酸化し、酸化的脱水素反応によりケトン類を製造するアルコールの酸化反応方法において、高性能な触媒作用を提供するものである。 According to the present invention, it is possible to obtain an inorganic composite that uniformly supports ultrafine gold particles having a total particle number in the range of 0.5 to 5 nanometers in diameter. The manufacturing method of the present invention provides an excellent method as a method for supporting ultrafine gold particles on a cerium-containing mesoporous silica support, and according to the manufacturing method of the present invention, An inorganic composite material having a high specific surface area in which the specific surface area of the composite material reaches 500 to 1000 m 2 / g, that is, an inorganic composite material in which ultrafine gold particles are efficiently supported and contact efficiency with the reaction gas can be obtained. . Furthermore, the inorganic composite of the present invention provides a high-performance catalytic action that can efficiently remove a trace amount of carbon monoxide in a gas. In particular, (1) a trace amount of carbon monoxide in air. Catalytic action that can oxidize and convert to carbon dioxide to make it harmless, (2) Only a small amount of carbon monoxide in hydrogen gas reacts with oxygen to convert to carbon dioxide, thereby preventing hydrogen oxidation to a small amount However, it provides a catalytic action capable of removing only carbon monoxide. The inorganic composite of the present invention provides a high-performance catalytic action in an alcohol oxidation reaction method in which alcohols are oxidized with oxygen and ketones are produced by oxidative dehydrogenation.

以下、本発明のセリウム含有メソポーラスシリカである担体と、金の超微粒子とを複合化した無機複合材料について、詳細に説明する。
メソポーラスシリカは、大きな比表面積と特有の細孔構造をもつ材料として既に公知であって、界面活性剤等が溶液中で自己集合する性質を利用して、シリカ源との反応により、直径1〜10nm(ナノメートル)の均一な円筒状メソ孔を有するメソポーラスシリカを合成することができるものであり、具体的には、一般的な呼称としてMCM−41、FSM−16等と称されている物質がある。
Hereinafter, an inorganic composite material in which a carrier which is the cerium-containing mesoporous silica of the present invention and gold ultrafine particles are combined will be described in detail.
Mesoporous silica is already known as a material having a large specific surface area and a unique pore structure. By utilizing the property that a surfactant or the like is self-assembled in a solution, a diameter of 1 to Mesoporous silica having uniform cylindrical mesopores of 10 nm (nanometers) can be synthesized. Specifically, substances generally called MCM-41, FSM-16, etc. There is.

本発明において担体として用いるセリウム含有メソポーラスシリカは、前述のメソポーラスシリカのテンプレート剤(界面活性剤)を含有したままの状態である前駆物質を適切な粒子径に粉砕し、イオン交換水に分散しスラリー状にしたところに、セリウム原料であるセリウム塩を溶解し、充分に撹拌後、加熱処理及び濾過洗浄を行い、乾燥させることで得ることができる。セリウムの含有率は0.1重量%以上20重量%以下の範囲が好ましく、1重量%以上10重量%以下の範囲がさらに好ましい。また、前記の洗浄、乾燥などの処理をした後に、テンプレート剤として含有されている有機物を空気または酸素中の焼成処理により除去することが好ましい。この際の加熱温度は200℃以上1000℃以下が好ましく、より好ましくは300℃以上700℃以下である。加熱時間は1分以上24時間未満が好ましく、さらに好ましくは1時間以上6時間以下である。   The cerium-containing mesoporous silica used as a carrier in the present invention is a slurry obtained by pulverizing a precursor having the above-mentioned mesoporous silica template agent (surfactant) into an appropriate particle size and dispersing it in ion-exchanged water. The cerium salt which is a cerium raw material is melt | dissolved in the place, and it can obtain by drying after performing heat processing and filtration washing | cleaning after fully stirring. The content of cerium is preferably in the range of 0.1% by weight to 20% by weight, and more preferably in the range of 1% by weight to 10% by weight. Moreover, it is preferable to remove the organic substance contained as the template agent by a baking treatment in air or oxygen after the treatment such as washing and drying. The heating temperature at this time is preferably 200 ° C. or higher and 1000 ° C. or lower, more preferably 300 ° C. or higher and 700 ° C. or lower. The heating time is preferably 1 minute or more and less than 24 hours, more preferably 1 hour or more and 6 hours or less.

次に、一酸化炭素除去に効果的な金の複合化方法について詳述する。
金の超微粒子の担持方法としては、前述の担体の表面に均一に超微粒子を担持することができる析出沈殿法が最も好ましい。
以下、析出沈殿法の概要を述べる。なお、この析沈殿法は、酸化チタン担体やチタン含有メソポーラスシリカ担体に金を担持する手法としてすでに公知であるが、セリウム含有メソポーラスシリカ担体に適用して成功した例はまだ知られていない。
Next, a gold compounding method effective for removing carbon monoxide will be described in detail.
As a method for supporting the ultrafine gold particles, the precipitation method that can uniformly support the ultrafine particles on the surface of the carrier is most preferable.
The outline of the precipitation method is described below. This precipitation method is already known as a technique for supporting gold on a titanium oxide carrier or a titanium-containing mesoporous silica carrier, but an example of successful application to a cerium-containing mesoporous silica carrier is not yet known.

水溶性の塩化金酸(テトラクロロ金酸)をイオン交換水などに溶解し酸性の水溶液を調製する。その溶液にアルカリを添加して中和しpHの値が中性〜アルカリ性である7.0以上10.0未満に調整する。この場合、pHの値が7.0未満である酸性側では、後述する金の塩素配位子が水酸化物配位子に置換される反応が十分に起きずに、あまり好ましくはない。また、10.0以上では得られた無機複合体を触媒に用いた際に、高温でないとCOの除去率を100%にすることができなくなり、一酸化炭素除去触媒としては好ましくない。
ここで用いることができるアルカリは特に限定されるものではないが、水酸化ナトリウムがもっとも好ましく、それ以外にはアンモニア水、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウム、炭酸ナトリウム、炭酸水素ナトリウムなども好ましく用いられる。この際、金原子に配位している塩素配位子(Cl)が水酸化物配位子(OH)に交換される。金に水酸化物イオンが配位している状態になると、セリウム含有メソポーラスシリカの表面との電気的親和力が働き、金錯体はセリウム含有メソポーラスシリカ表面に高分散状態で吸着する。pHの調整後のスラリー液を30〜80℃に保ち、好ましくは1分〜24時間、さらに好ましくは1時間〜5時間撹拌し、吸着状態を安定化させるのが好ましい。金錯体が十分吸着した後に、蒸留水、イオン交換水などで十分に洗浄し、残留している塩素や、吸着しきれなかった金錯体を洗浄除去して、真空乾燥などの方法で乾燥処理を行う。その後、金属の担持後は金属を活性状態にするために適切な温度での加熱が好ましい。活性化のための加熱温度は200℃〜700℃が好ましく、中でも250℃〜450℃が特に好ましい。加熱時間は、1分〜24時間の範囲が好ましく、さらに好ましくは1時間〜5時間である。加熱処理後の金の含有率は0.1重量%以上20重量%以下が好ましく、さらに好ましくは1重量%以上10重量%以下である。
A water-soluble chloroauric acid (tetrachloroauric acid) is dissolved in ion-exchanged water to prepare an acidic aqueous solution. The solution is neutralized by adding an alkali, and the pH value is adjusted to 7.0 to less than 10.0, which is neutral to alkaline. In this case, on the acidic side where the pH value is less than 7.0, the reaction of replacing the gold chlorine ligand described later with the hydroxide ligand does not occur sufficiently, which is not preferable. In addition, when the obtained inorganic composite is used as a catalyst at 10.0 or more, the CO removal rate cannot be made 100% unless the temperature is high, which is not preferable as a carbon monoxide removal catalyst.
The alkali that can be used here is not particularly limited, but sodium hydroxide is most preferable, and other than that, ammonia water, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, sodium carbonate, Sodium bicarbonate and the like are also preferably used. At this time, the chlorine ligand (Cl) coordinated to the gold atom is exchanged for the hydroxide ligand (OH). When the hydroxide ions are coordinated to gold, the electric affinity with the surface of the cerium-containing mesoporous silica works, and the gold complex is adsorbed on the cerium-containing mesoporous silica surface in a highly dispersed state. The slurry after the pH adjustment is maintained at 30 to 80 ° C., and preferably stirred for 1 minute to 24 hours, more preferably 1 hour to 5 hours to stabilize the adsorption state. After the gold complex has been sufficiently adsorbed, it is thoroughly washed with distilled water, ion exchange water, etc., and residual chlorine and gold complex that cannot be adsorbed are washed away and dried by vacuum drying or other methods. Do. Thereafter, after loading the metal, heating at an appropriate temperature is preferable to bring the metal into an active state. The heating temperature for activation is preferably 200 ° C to 700 ° C, and particularly preferably 250 ° C to 450 ° C. The heating time is preferably in the range of 1 minute to 24 hours, more preferably 1 hour to 5 hours. The gold content after the heat treatment is preferably 0.1 wt% or more and 20 wt% or less, more preferably 1 wt% or more and 10 wt% or less.

この方法を用いると、含浸法など他の公知の手法を用いたときと異なり、アセリウム含有メソポーラスシリカ表面に担持された金の粒子は、大きな粒子に凝集することがなく、その直径が0.5〜5ナノメートルの範囲に全粒子数の殆ど、好ましくは0.5〜3nmの範囲に全粒子数の98%が含まれる、ほぼ均一な超微粒子状で担持することができる。   When this method is used, unlike other known methods such as the impregnation method, the gold particles supported on the surface of the acelium-containing mesoporous silica are not aggregated into large particles, and the diameter is 0.5. It can be supported in the form of almost uniform ultrafine particles in which most of the total number of particles is in the range of ˜5 nanometers, preferably 98% of the total number of particles is in the range of 0.5 to 3 nm.

一酸化炭素が微量含まれているガス中から一酸化炭素を酸素と反応させて除去する反応は、大きく2種類の用途がある。一つは、空気中からの除去、もう一つは水素中からの除去である。ここでは、空気中の除去を中心に述べるが、水素からの除去にも本触媒は適用可能である。   The reaction for removing carbon monoxide by reacting it with oxygen from a gas containing a small amount of carbon monoxide has two major uses. One is removal from the air, and the other is removal from hydrogen. Here, the description will focus on the removal in the air, but the present catalyst can also be applied to the removal from hydrogen.

空気は十分に乾燥剤などを用いて十分に乾燥した状態から、日常生活空間での相対湿度の最も高い状態に相当する相対湿度100%までの範囲で好ましく用いることが出来る。触媒の使用法は、燃料の不完全燃焼や喫煙の副流煙など、何らかの理由で微量の一酸化炭素を含有する空気をポンプやファンなどを用いて触媒を充填した層を通過させるか、触媒や触媒を塗布した支持体に吹き付けるなどの方法で、効率的に接触させ、一酸化炭素を二酸化炭素に変換しほぼ無害化する。二酸化炭素も、2%以上で呼吸困難のような毒性を有するが、1%以下の低濃度では、一酸化炭素と比較すれば人体に対する影響は極めて少ない。   Air can be preferably used in a range from a sufficiently dried state using a desiccant or the like to a relative humidity of 100% corresponding to the highest relative humidity in the daily living space. The catalyst can be used by passing air containing a minute amount of carbon monoxide for some reason, such as incomplete combustion of fuel or smoking sidestream smoke, through a layer filled with catalyst using a pump or fan, etc. The carbon monoxide is converted into carbon dioxide and made almost harmless by contacting it efficiently, for example, by spraying on a support coated with a catalyst. Carbon dioxide also has toxicity such as dyspnea at 2% or more, but at a low concentration of 1% or less, there is very little influence on the human body compared to carbon monoxide.

また、本発明の無機複合体を触媒として用いるアルコール類の酸化は、例えば、2級アルコールの場合、下記の反応式に示すとおり、ケトンに変換される。
Moreover, the oxidation of alcohols using the inorganic composite of the present invention as a catalyst is converted into a ketone as shown in the following reaction formula, for example, in the case of a secondary alcohol.

反応の基質として用いることの出来るアルコールは2級アルコールが好ましい。ベンジルアルコールを除く末端アルコールは反応性が低く、また、3級アルコールは酸化反応生成物が生成できない場合が多い。原料として適したアルコールの例を挙げれば、上記(化1)において、R及びRとして、メチル基、エチル基、n-プロピル基、iso-プロピル基、フェニル基、その他の直鎖状、分岐を持つ炭化水素基が用いられる。また、炭素-炭素間に二重結合などを有していても良い。 The alcohol that can be used as a substrate for the reaction is preferably a secondary alcohol. Terminal alcohols other than benzyl alcohol have low reactivity, and tertiary alcohols often cannot produce oxidation reaction products. Examples of alcohols suitable as a raw material include, in the above (Chemical Formula 1), as R 1 and R 2 , methyl group, ethyl group, n-propyl group, iso-propyl group, phenyl group, other straight chain, A branched hydrocarbon group is used. Further, a double bond or the like may be present between carbon and carbon.

また、反応の基質として、下記の式で代表例が例示される環を形成する炭素数が3以上の環状アルコールも用いることができる。
Further, as the reaction substrate, a cyclic alcohol having 3 or more carbon atoms forming a ring exemplified by the following formula can also be used.

次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
(1)メソポーラスシリカの合成
メソポーラスシリカは一次元の筒状構造が特徴的である、通常MCM−41と称される構造のものを合成した。合成法は公知の文献を基にした(非特許文献:第17回キャタリシススクールテキスト223頁参照)。テンプレート(界面活性剤)であるセチルトリメチルアンモニウムブロマイド(以後CTABrと省略する)40.4gをテフロン製容器中で50℃の174.5gの温水に溶解し、30分ほど撹拌し均一な溶液を得た。これを溶液Aとする。イオン交換水40.0gで希釈したケイ酸ナトリウム(水ガラス3号)35.5gを溶液Aにゆっくりと滴下し、CTABrとケイ酸ナトリウムが均一に分散した混合溶液を得た。この溶液に50%硫酸を52gの水で希釈した溶液をゆっくり滴下して混合し、ケイ酸ナトリウムのアルカリ分を中和した。その後、容器を密封し110℃の条件で72時間静置しメソポーラスシリカ前駆体を得た。前駆体をろ過洗浄し、110℃で乾燥を行い、テンプレート(界面活性剤)含有MCM−41を得た。
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.
Example 1
(1) Synthesis of mesoporous silica Mesoporous silica was synthesized with a structure generally called MCM-41, which is characterized by a one-dimensional cylindrical structure. The synthesis method was based on known literature (see non-patent literature: page 223 of the 17th Catalysis School Text). 40.4 g of cetyltrimethylammonium bromide (hereinafter abbreviated as CTABr) as a template (surfactant) is dissolved in 174.5 g of hot water at 50 ° C. in a Teflon container, and stirred for about 30 minutes to obtain a uniform solution. It was. This is designated as Solution A. 35.5 g of sodium silicate (water glass No. 3) diluted with 40.0 g of ion-exchanged water was slowly added dropwise to the solution A to obtain a mixed solution in which CTABr and sodium silicate were uniformly dispersed. To this solution, a solution obtained by diluting 50% sulfuric acid with 52 g of water was slowly added dropwise and mixed to neutralize the alkali content of sodium silicate. Thereafter, the container was sealed and allowed to stand for 72 hours at 110 ° C. to obtain a mesoporous silica precursor. The precursor was filtered and washed, and dried at 110 ° C. to obtain a template (surfactant) -containing MCM-41.

(2)セリウムとメソポーラスシリカの複合化
テンプレートイオン交換法を用いた。(1)で合成したテンプレート含有MCM−41を粉砕して微粉末状にしてイオン交換水に分散した。ここに、セリウム原料である硝酸セリウムを溶解し十分に撹拌を行った。撹拌終了後、混合液をテフロン容器内に密封し110℃18時間の加熱処理を行った。加熱処理後、ろ過洗浄を行い110℃で乾燥させた。その後540℃において4時間加熱焼成しセリウム含有MCM−41を得た。
(2) Compounding of cerium and mesoporous silica A template ion exchange method was used. The template-containing MCM-41 synthesized in (1) was pulverized into a fine powder and dispersed in ion-exchanged water. Here, cerium nitrate as a cerium raw material was dissolved and sufficiently stirred. After completion of the stirring, the mixed solution was sealed in a Teflon container and subjected to a heat treatment at 110 ° C. for 18 hours. After the heat treatment, it was washed by filtration and dried at 110 ° C. Thereafter, it was heated and fired at 540 ° C. for 4 hours to obtain cerium-containing MCM-41.

(3)金の複合化
析出沈殿法を用いて行った。塩化金酸(HAuCl・HO)をイオン交換水に溶解し、水酸化ナトリウムを加え溶液のpHを7.0に調節した。その後、(2)で合成されたセリウム含有メソポーラスシリカを添加し、70℃で2時間撹拌した。ろ過洗浄を行い、得られた粉末を400℃、3時間の加熱焼成を行い目的の複合体(A)を得た。
(3) Compounding of gold It was carried out using a precipitation method. Chloroauric acid (HAuCl 4 · H 2 O) was dissolved in ion-exchanged water, and sodium hydroxide was added to adjust the pH of the solution to 7.0. Thereafter, the cerium-containing mesoporous silica synthesized in (2) was added and stirred at 70 ° C. for 2 hours. Filtration washing was performed, and the obtained powder was heated and fired at 400 ° C. for 3 hours to obtain the intended composite (A).

(4)無機複合体の評価
上記(3)で得られた複合体の比表面積をBET法による窒素吸着測定により算出した。その結果は548m/gであった。
また、(3)で得られた複合体のX線回折測定を行った。その結果を図1に示す。縦軸は回折線の強度を示し、横軸は角度を示す。良好な規則性の高いハニカム状構造を示す標準的なMCM−41(図中の(a))と比較すると、得られた複合体(図中の(b))も、3.7〜4.3度付近の2つのピークが、ピーク強度は小さいが、はっきりと確認でき、かつその二つが明確に分離されている。これはハニカム状の規則的な細孔構造が整っている証拠の一つである。
さらに(3)で得られた複合体のICP発光分析を行い各成分の含有率を求めた。その結果、金の含有率が2.2重量%、セリウムの含有率が6.4重量%であった。
(4) Evaluation of inorganic composite The specific surface area of the composite obtained in (3) above was calculated by nitrogen adsorption measurement by the BET method. The result was 548 m 2 / g.
Moreover, the X-ray-diffraction measurement of the composite_body | complex obtained by (3) was performed. The result is shown in FIG. The vertical axis represents the intensity of the diffraction line, and the horizontal axis represents the angle. Compared with standard MCM-41 ((a) in the figure) showing a honeycomb structure with good regularity, the obtained composite ((b) in the figure) is also 3.7-4. Two peaks near 3 degrees have a small peak intensity but are clearly identifiable, and the two are clearly separated. This is one of the evidence that the honeycomb-like regular pore structure is in order.
Further, the composite obtained in (3) was subjected to ICP emission analysis to determine the content of each component. As a result, the gold content was 2.2% by weight and the cerium content was 6.4% by weight.

また、(3)で得られた複合体の走査透過電子顕微鏡法(STEM)撮影を行った。図2と図3に示した写真はSTEMの暗視野像である。図2において薄い灰色の蜂の巣状(ハニカム状)の構造はセリウム含有MCM−41の担体の構造に帰属され、規則的細孔構造が非常に整っていることを示す像である。また、白く見える微粒子は担持されている金の粒子に帰属され、粒子径がほぼ均一にそろった超微粒子が、担体上に均一に分散していることを示す像である。図3は角度を変えて撮影した像であるが、担体のセリウム含有メソポーラスシリカの直線的な細孔の良好な規則的が示される像であり、白い点状の像は超微粒子状になっている金に帰属される。   Further, scanning transmission electron microscopy (STEM) imaging of the composite obtained in (3) was performed. The photographs shown in FIGS. 2 and 3 are dark field images of STEM. In FIG. 2, the light gray honeycomb-like (honeycomb-like) structure is attributed to the structure of the cerium-containing MCM-41 carrier and is an image showing that the regular pore structure is very well-organized. In addition, the fine particles that appear white are attributed to the supported gold particles, and the image shows that ultra-fine particles having a substantially uniform particle size are uniformly dispersed on the carrier. FIG. 3 is an image taken at a different angle. This image shows a good regularity of the linear pores of the cerium-containing mesoporous silica as a support, and the white dot-like image is in the form of ultrafine particles. Is attributed to the gold.

(実施例2:粒径の測定)
走査透過電子顕微鏡の暗視野像をもとに、実施例1で用いた触媒中の金粒子の粒径の測定を行った。その結果、0〜0.5nmの範囲には全粒子数の1%、0.5〜1nmの範囲には全粒子数の16%、1〜1.5nmの範囲には全粒子数の51%、1.5〜2.0nmの範囲には全粒子数の21%、2.0〜2.5nmの範囲には全粒子数の9%、2.5〜3.0nmの範囲には全粒子数の2%であった。特に0.5〜2.0の範囲内に全粒子数の88%が含まれ、さらに1.0〜1.5nmの範囲内に全粒子数の51%が含まれており、単に微粒子であるだけではなく、粒子の直径も均一に制御されていることが確認された。
(Example 2: Measurement of particle size)
Based on the dark field image of the scanning transmission electron microscope, the particle size of the gold particles in the catalyst used in Example 1 was measured. As a result, the range of 0 to 0.5 nm is 1% of the total number of particles, the range of 0.5 to 1 nm is 16% of the total number of particles, and the range of 1 to 1.5 nm is 51% of the total number of particles. In the range of 1.5 to 2.0 nm, 21% of the total number of particles, in the range of 2.0 to 2.5 nm, 9% of the total number of particles, and in the range of 2.5 to 3.0 nm, all the particles 2% of the number. In particular, 88% of the total number of particles is included in the range of 0.5 to 2.0, and 51% of the total number of particles is included in the range of 1.0 to 1.5 nm, which is simply a fine particle. In addition, it was confirmed that the diameter of the particles was uniformly controlled.

(実施例3:COの酸化的除去反応(1))
上記で得られた複合体(A)を100mg量り取り、内径8mm外径10mmの石英製触媒反応管に充填した。乾燥空気で250℃30分の乾燥処理を行った後に、1.0%の一酸化炭素ガスを含有する空気を流通させ、CO除去反応を行った。COの除去率は事前に測定しておいたバイパスラインの測定値を元に次の計算式により行った。測定値はガスクロマトグラフ(島津製作所GC−8A)によって行い、ガスクロマトグラフからの出力をインテグレーター(島津製作所CR−8A)を用いて面積値に変換した。
CO除去率(5)={1−(残存COの面積値)/(バイパスラインの面積値)}×100
複合体(A)を用いたところ−8.0℃という低温状態にあってもCOの除去率が100%であった。また、−27.0℃においてCOの除去率が50%であった。触媒調製の再現性を確認するために、複合体(A)と同じ手法で複合体(A−2)を調製し同様の測定を行ったところ、−8.0℃においてCOの除去率が100%、−35.7℃においてCOの除去率が50%となり、安定した再現性を示した。
(Example 3: CO oxidative removal reaction (1))
100 mg of the composite (A) obtained above was weighed and filled into a quartz catalyst reaction tube having an inner diameter of 8 mm and an outer diameter of 10 mm. After a drying treatment at 250 ° C. for 30 minutes with dry air, air containing 1.0% carbon monoxide gas was circulated to perform a CO removal reaction. The CO removal rate was determined by the following calculation formula based on the measured value of the bypass line measured in advance. The measured value was measured by a gas chromatograph (Shimadzu Corporation GC-8A), and the output from the gas chromatograph was converted into an area value using an integrator (Shimadzu Corporation CR-8A).
CO removal rate (5) = {1- (area value of residual CO) / (area value of bypass line)} × 100
When the composite (A) was used, the CO removal rate was 100% even at a low temperature of -8.0 ° C. Further, the CO removal rate at −27.0 ° C. was 50%. In order to confirm the reproducibility of the catalyst preparation, the composite (A-2) was prepared in the same manner as the composite (A), and the same measurement was performed. As a result, the CO removal rate at −8.0 ° C. was 100. %, The CO removal rate was 50% at −35.7 ° C., indicating stable reproducibility.

(実施例4:COの酸化的除去反応(2))
金を担持する際にpHを8.5に調節するところ以外はすべて同じ手法で複合体を調製した。得られた複合体の比表面積は519m/g、ICP分析の結果は金含有率が1.6重量%、セリウム含有率が7.5重量%であった。
得られた複合体を、COの除去反応に供した。その結果、−11.5℃においてもCO除去率100%を示し、−29.2℃においてCO除去率50%であった。
(Example 4: CO oxidative removal reaction (2))
A composite was prepared in the same manner except that the pH was adjusted to 8.5 when supporting gold. The obtained composite had a specific surface area of 519 m 2 / g, and the results of ICP analysis showed that the gold content was 1.6% by weight and the cerium content was 7.5% by weight.
The resulting composite was subjected to CO removal reaction. As a result, the CO removal rate was 100% even at -11.5 ° C, and the CO removal rate was 50% at -29.2 ° C.

(実施例5:COの酸化的除去反応(3))
金の担持量を増やすために、金の前駆体である塩化金酸を金原子換算で担体に対して5重量%になるように溶解して前記実施例とまったく同様に、調製、反応試験を行った。その結果、−16.6℃までCO除去率100%を維持し、−36.1℃において、除去率が50%であった。
(Example 5: CO oxidative removal reaction (3))
In order to increase the amount of gold supported, chloroauric acid, which is a gold precursor, was dissolved so as to be 5% by weight with respect to the support in terms of gold atoms, and the preparation and reaction test were performed in exactly the same manner as in the previous examples. went. As a result, the CO removal rate of 100% was maintained up to -16.6 ° C, and at -36.1 ° C, the removal rate was 50%.

(実施例6:アルコールの酸化(1))
2−オクタノール0.7g、実施例(1)で調製した複合体(A)20mgを容量10mLのステンレス製オートクレーブへ入れ、酸素ガスで内部を置換し、酸素圧8気圧を加えて封入した。その後、120℃に保ったオイルバスを用いてオートクレーブを加熱し、4時間反応させた。その後、オートクレーブを冷却し反応後の液体を取り出し、エタノールで希釈してFID検出器を有するガスクロマトグラフにて分析を行った。その結果、希釈液のエタノール、生成物の2−オクタノン、原料の2−オクタノールに帰属されるピークが確認された。ピークの面積値から原料の転化率は33%、他に明確な副生成物が観測されないことから、ほぼ100%の非常に高選択性であることが明らかになった。
(Example 6: Oxidation of alcohol (1))
0.7 g of 2-octanol and 20 mg of the composite (A) prepared in Example (1) were put into a stainless steel autoclave having a capacity of 10 mL, the inside was replaced with oxygen gas, and the mixture was sealed by applying an oxygen pressure of 8 atm. Thereafter, the autoclave was heated using an oil bath maintained at 120 ° C. and reacted for 4 hours. Thereafter, the autoclave was cooled, the liquid after the reaction was taken out, diluted with ethanol, and analyzed by a gas chromatograph having an FID detector. As a result, peaks attributed to ethanol as a diluent, 2-octanone as a product, and 2-octanol as a raw material were confirmed. From the peak area value, the conversion rate of the raw material was 33%, and no other clear by-product was observed, which revealed that the selectivity was very high of almost 100%.

(実施例7:アルコールの酸化(2))
2−オクタノール0.25g、トルエン0.75g、実施例(1)で調製した複合体30mgを容量10mLのステンレス製オートクレーブへ入れ、酸素ガスで内部を置換し、酸素圧7.5気圧を加えて封入した。その後、120℃に保ったオイルバスを用いてオートクレーブを加熱し、15時間反応させた。その後、オートクレーブを冷却し反応後の液体を取り出し、エタノールで希釈してFID検出器を有するガスクロマトグラフにて分析を行った。その結果、希釈液のエタノール、溶媒のトルエン、生成物の2−オクタノン、原料の2−オクタノールに帰属されるピークが確認された。ピークの面積値から原料の転化率は65%、他に明確な副生成物が観測されないことから、ほぼ100%の非常に高選択性であることが明らかになった。
(Example 7: Oxidation of alcohol (2))
2-octanol 0.25 g, toluene 0.75 g, 30 mg of the composite prepared in Example (1) was put into a 10 mL stainless steel autoclave, the inside was replaced with oxygen gas, and an oxygen pressure of 7.5 atm was added. Enclosed. Thereafter, the autoclave was heated using an oil bath maintained at 120 ° C. and reacted for 15 hours. Thereafter, the autoclave was cooled, the liquid after the reaction was taken out, diluted with ethanol, and analyzed by a gas chromatograph having an FID detector. As a result, the peaks attributed to the diluted ethanol, the solvent toluene, the product 2-octanone, and the raw material 2-octanol were confirmed. From the peak area value, the conversion rate of the raw material was 65%, and no other clear by-product was observed, which revealed that the selectivity was very high of almost 100%.

(比較例1)
金を担持する際にpHを10.0に調節するところ以外はすべて同じ手法で複合体を調製しCOの酸化的除去反応に供した。その結果、CO除去率100%を示す温度が148℃に上昇し、CO除去率50%を示す温度が92.0℃まで上昇した。これは、金を複合化させる際にはpHの調節が非常に重要な条件で、10.0未満に調節することが特に重要であることを示すものである。
(Comparative Example 1)
A composite was prepared in the same manner except that the pH was adjusted to 10.0 when supporting gold, and subjected to CO oxidative removal reaction. As a result, the temperature at which the CO removal rate was 100% rose to 148 ° C., and the temperature at which the CO removal rate was 50% rose to 92.0 ° C. This shows that it is particularly important to adjust the pH to less than 10.0 under the condition that the pH is very important when complexing gold.

(比較例2)
金を担持する過程を行わず、セリウム含有メソポーラスシリカのみでCOの酸化除去反応を行った。その結果100〜150℃という高温においてもCOの除去率が0%となり、金を複合化させる有効性が示されている。
(Comparative Example 2)
Without the process of supporting gold, the oxidation removal reaction of CO was performed only with cerium-containing mesoporous silica. As a result, even at a high temperature of 100 to 150 ° C., the CO removal rate becomes 0%, which shows the effectiveness of compounding gold.

(比較例3)
金を担持しないセリウム含有メソポーラスシリカを用いて実施例と同条件でアルコールの酸化反応を行ったが、反応はほとんど進行しなかった。
(Comparative Example 3)
Alcohol oxidation reaction was carried out under the same conditions as in Examples using cerium-containing mesoporous silica not supporting gold, but the reaction hardly proceeded.

X線回折測定の結果X-ray diffraction measurement results 実施例1で得られた無機複合体のSTEMの暗視野像STEM dark-field image of the inorganic composite obtained in Example 1 撮影する角度を変えて観察した図2と同一試料のSTEMの暗視野像Dark field image of STEM of the same sample as Fig. 2 observed from different angles

Claims (8)

金の超微粒子を、セリウムを含有するメソポーラスシリカに担持させたことを特徴とする無機複合体。   An inorganic composite comprising ultrafine gold particles supported on mesoporous silica containing cerium. 前記超微粒子の直径が、0.5〜5ナノメートルの範囲に全粒子数の殆どが含まれることを特徴とする請求項1に記載の無機複合体。   2. The inorganic composite according to claim 1, wherein most of the total number of particles is contained in a range of 0.5 to 5 nanometers in diameter of the ultrafine particles. 前記セリウムを含有するメソポーラスシリカに前記金の超微粒子を担持する方法として、塩化金酸の水溶液にアルカリ溶液を添加してpH値を7.0以上10.0未満の範囲に調整して塩化金酸を水酸化物イオンが配位した状態に変化させ、その溶液中にセリウムを含有するメソポーラスシリカを分散させるか又はその溶液とセリウムを含有メするソポーラスシリカとを接触させることにより、メソポーラスシリカ表面に電気的親和力で前記金の超微粒子の前駆体である水酸化物イオンが配位した金錯体を吸着させる方法を用いることを特徴とする請求項1又は2に記載の無機複合体の製造方法。   As a method of supporting the ultrafine gold particles on the mesoporous silica containing cerium, an alkaline solution is added to an aqueous solution of chloroauric acid to adjust the pH value to a range of 7.0 or more and less than 10.0, thereby producing gold chloride. The mesoporous silica is obtained by changing the acid to a state in which the hydroxide ions are coordinated and dispersing the mesoporous silica containing cerium in the solution or bringing the solution into contact with the mesoporous silica containing cerium. The method for producing an inorganic composite according to claim 1 or 2, wherein a method of adsorbing a gold complex coordinated with a hydroxide ion, which is a precursor of the ultrafine gold particles, is adsorbed on the surface. Method. 請求項1又は2に記載された無機複合体からなることを特徴とする、ガス中に含まれる一酸化炭素の酸化除去用触媒。   A catalyst for removing oxidation of carbon monoxide contained in a gas, comprising the inorganic composite according to claim 1. 請求項1又は2に記載の無機複合体を触媒に用い、ガス中に含まれる微量の一酸化炭素を、同ガス中に含まれている酸素又は必要量添加した酸素と反応させて、該一酸化炭素を酸化除去して二酸化炭素に変換することを特徴とする微量一酸化炭素の酸化除去方法。   The inorganic composite according to claim 1 or 2 is used as a catalyst, and a small amount of carbon monoxide contained in the gas is reacted with oxygen contained in the gas or with a necessary amount of oxygen added thereto. A method for oxidizing and removing trace amounts of carbon monoxide, which comprises oxidizing carbon dioxide to convert it into carbon dioxide. 前記ガスの主成分が水素又は空気である請求項5に記載の微量一酸化炭素の酸化除去方法。   The method for oxidizing and removing trace carbon monoxide according to claim 5, wherein a main component of the gas is hydrogen or air. 請求項1又は2に記載された無機複合体からなることを特徴とする、アルコール類の酸化的脱水素反応によるケトン類の合成用触媒。   A catalyst for synthesizing ketones by oxidative dehydrogenation of alcohols, comprising the inorganic composite according to claim 1. 請求項1又は2に記載の無機複合体を触媒に用い、アルコール類を酸素で酸化し、酸化的脱水素反応によりケトン類を製造することを特徴とするケトン類の製造方法。   A method for producing ketones, comprising using the inorganic composite according to claim 1 or 2 as a catalyst, oxidizing alcohols with oxygen, and producing ketones by oxidative dehydrogenation.
JP2007122917A 2007-05-08 2007-05-08 Complex of cerium-containing mesoporous silica and noble metal ultrafine particles, method of producing the complex, oxidative removal of trace amounts of carbon monoxide using the complex as a catalyst, and oxidative dehydrogenation of alcohols Methods for synthesizing ketones Expired - Fee Related JP5071928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122917A JP5071928B2 (en) 2007-05-08 2007-05-08 Complex of cerium-containing mesoporous silica and noble metal ultrafine particles, method of producing the complex, oxidative removal of trace amounts of carbon monoxide using the complex as a catalyst, and oxidative dehydrogenation of alcohols Methods for synthesizing ketones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007122917A JP5071928B2 (en) 2007-05-08 2007-05-08 Complex of cerium-containing mesoporous silica and noble metal ultrafine particles, method of producing the complex, oxidative removal of trace amounts of carbon monoxide using the complex as a catalyst, and oxidative dehydrogenation of alcohols Methods for synthesizing ketones

Publications (2)

Publication Number Publication Date
JP2008280184A true JP2008280184A (en) 2008-11-20
JP5071928B2 JP5071928B2 (en) 2012-11-14

Family

ID=40141315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122917A Expired - Fee Related JP5071928B2 (en) 2007-05-08 2007-05-08 Complex of cerium-containing mesoporous silica and noble metal ultrafine particles, method of producing the complex, oxidative removal of trace amounts of carbon monoxide using the complex as a catalyst, and oxidative dehydrogenation of alcohols Methods for synthesizing ketones

Country Status (1)

Country Link
JP (1) JP5071928B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061372A (en) * 2007-09-05 2009-03-26 Taiyo Kagaku Co Ltd Catalyst for selective oxidation of carbon monoxide and method of removing carbon monoxide in hydrogen by using it
WO2010110447A1 (en) * 2009-03-26 2010-09-30 国立大学法人北海道大学 Mesoporous silica-supported gold cluster, catalyst comprising same, and process for producing same
JP2010221119A (en) * 2009-03-23 2010-10-07 Nippon Steel Corp Catalyst for purifying exhaust gas and honeycomb catalytic structure for exhaust gas purification
WO2012144532A1 (en) * 2011-04-19 2012-10-26 独立行政法人産業技術総合研究所 Solution of gold/hydroxoanion complex and process for producing substance loaded with gold nanoparticles
KR20170000960A (en) * 2015-06-25 2017-01-04 주식회사 엘지화학 Manufacturing method of Heterogeneous Catalyst for Production of Acrylic acid and Heterogeneous Catalyst for Production of Acrylic acid using them
CN111286216A (en) * 2020-03-28 2020-06-16 哈尔滨工程大学 Improve Ce3+In hollow mesoporous SiO2Method for loading in microspheres

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016898A1 (en) * 1998-09-22 2000-03-30 Osaka Gas Co., Ltd. Catalyst for decomposing chlorinated organic compound
WO2005120686A1 (en) * 2004-06-08 2005-12-22 National Institute Of Advanced Industrial Science And Technology Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016898A1 (en) * 1998-09-22 2000-03-30 Osaka Gas Co., Ltd. Catalyst for decomposing chlorinated organic compound
WO2005120686A1 (en) * 2004-06-08 2005-12-22 National Institute Of Advanced Industrial Science And Technology Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061372A (en) * 2007-09-05 2009-03-26 Taiyo Kagaku Co Ltd Catalyst for selective oxidation of carbon monoxide and method of removing carbon monoxide in hydrogen by using it
JP2010221119A (en) * 2009-03-23 2010-10-07 Nippon Steel Corp Catalyst for purifying exhaust gas and honeycomb catalytic structure for exhaust gas purification
WO2010110447A1 (en) * 2009-03-26 2010-09-30 国立大学法人北海道大学 Mesoporous silica-supported gold cluster, catalyst comprising same, and process for producing same
WO2012144532A1 (en) * 2011-04-19 2012-10-26 独立行政法人産業技術総合研究所 Solution of gold/hydroxoanion complex and process for producing substance loaded with gold nanoparticles
JP5740658B2 (en) * 2011-04-19 2015-06-24 国立研究開発法人産業技術総合研究所 Gold hydroxo anion complex solution and method for producing gold nanoparticle carrier
KR20170000960A (en) * 2015-06-25 2017-01-04 주식회사 엘지화학 Manufacturing method of Heterogeneous Catalyst for Production of Acrylic acid and Heterogeneous Catalyst for Production of Acrylic acid using them
KR102015625B1 (en) 2015-06-25 2019-08-28 주식회사 엘지화학 Manufacturing method of Heterogeneous Catalyst for Production of Acrylic acid and Heterogeneous Catalyst for Production of Acrylic acid using them
CN111286216A (en) * 2020-03-28 2020-06-16 哈尔滨工程大学 Improve Ce3+In hollow mesoporous SiO2Method for loading in microspheres
CN111286216B (en) * 2020-03-28 2021-09-10 哈尔滨工程大学 Improve Ce3+In hollow mesoporous SiO2Method for loading in microspheres

Also Published As

Publication number Publication date
JP5071928B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
CN108514878B (en) Monoatomic noble metal catalyst, preparation method thereof and application thereof in low-temperature catalytic oxidation of formaldehyde
JP6521317B2 (en) Metal complexed carbon nitride for deodorization and manufacturing method thereof
Huang et al. Effect of reduction treatment on structural properties of TiO 2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation
JP6284197B2 (en) Method for producing metal nanoparticle composite and metal nanoparticle composite produced by the method
JP5071928B2 (en) Complex of cerium-containing mesoporous silica and noble metal ultrafine particles, method of producing the complex, oxidative removal of trace amounts of carbon monoxide using the complex as a catalyst, and oxidative dehydrogenation of alcohols Methods for synthesizing ketones
JP2005199204A (en) Superfine metal particle-containing photocatalyst and manufacturing method therefor
JP4787968B2 (en) High-efficiency manufacturing method of activated carbon supported with nanometal or metal oxide
CN109126859B (en) Cluster-supported catalyst and method for producing same
US8222173B2 (en) Catalyst and method of manufacturing the same
JP2021023840A (en) Metal oxide-containing composite, and method for producing the same, and method for reducing carbon dioxide using the same
JP2012081458A (en) Catalyst composition for catalytic combustion reaction of ethylene and method for decomposing ethylene by using the same
JP4865250B2 (en) Method for producing exhaust gas treatment catalyst
JP5612050B2 (en) Method for producing metal particle supported catalyst
JP2010089031A (en) Metal-particle supporting catalyst, and method of producing the same
JP4963036B2 (en) INORGANIC COMPOSITE MATERIAL COMPRISING GOLD ULTRAFINE PARTICLES AND Apatite, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR OXIDATION AND REMOVAL OF MICROCOAL MONOXIDE USING THE SAME
Zeng et al. Precious metal nanoparticles supported on KOH pretreated activated carbon under microwave radiation as a catalyst for selective hydrogenation of cinnamaldehyde
JP2004188390A (en) Metal nano cluster, production method therefor, and catalyst using the same for eliminating air- contaminating material
JP2013236998A (en) Carbon monoxide removal catalyst, carbon monoxide removing filter, and method of manufacturing carbon monoxide removal catalyst
JP4570637B2 (en) Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same
JP2021104486A (en) Photocatalysis and method for manufacturing the same
JP7396236B2 (en) Visible light responsive photocatalyst
KR20200116243A (en) Platinum-titanium dioxide catalyst, its production method, and its production apparatus
JP4165653B2 (en) Alcohol oxidation solid catalyst and synthesis method thereof
JP2010036140A (en) Catalyst and method for manufacturing the same
JP2013123698A (en) Porous silica oligomer coated particle, supported catalyst, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees