WO2000016898A1 - Catalyst for decomposing chlorinated organic compound - Google Patents

Catalyst for decomposing chlorinated organic compound Download PDF

Info

Publication number
WO2000016898A1
WO2000016898A1 PCT/JP1999/005099 JP9905099W WO0016898A1 WO 2000016898 A1 WO2000016898 A1 WO 2000016898A1 JP 9905099 W JP9905099 W JP 9905099W WO 0016898 A1 WO0016898 A1 WO 0016898A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carrier
chlorinated organic
catalyst component
gold
Prior art date
Application number
PCT/JP1999/005099
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Kajikawa
Shosei Oh
Noboru Kawase
Takeshi Maeda
Tominori Sato
Original Assignee
Osaka Gas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co., Ltd. filed Critical Osaka Gas Co., Ltd.
Publication of WO2000016898A1 publication Critical patent/WO2000016898A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8659Removing halogens or halogen compounds
    • B01D53/8662Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals

Definitions

  • the present invention relates to a catalyst for cracking, particularly to a catalyst for cracking chlorinated organic compounds.
  • PCB polychlorobiphenyl
  • dioxins are a general term for polychlorinated dibenzo-para-dioxins (PCDs) and polychlorinated dibenzofurans (PCDFs).
  • PCDs polychlorinated dibenzo-para-dioxins
  • PCDFs polychlorinated dibenzofurans
  • dioxins are extremely toxic environmental pollutants.
  • tetrachloride Jibenzodai Okishin T 4 CDD s
  • T 4 CDD s tetrachloride Jibenzodai Okishin
  • chlorinated organic compounds such as polychlorobiphenyl, black phenol and black benzene are less toxic than dioxins, but under certain conditions, for example, various elements in fly ash in incinerators Has been found to be easily converted to dioxins in the exhaust gas temperature range using the catalyst as a catalyst, and is therefore recognized as an environmental pollutant, like dioxins. For this reason, from the viewpoint of environmental protection, the need to remove various chlorinated organic compounds from exhaust gas as described above is rapidly increasing.
  • a denitration catalyst composed of vanadium pentoxide, tantalum oxide, and titania, or a catalyst in which platinum is supported on the denitration catalyst
  • silica 'boria' alumina composite oxide and zeolite having a molar ratio of silica to alumina of 30 or more are used.
  • a catalyst in which 0.1 to 10 g of at least one element selected from the group consisting of platinum, palladium and iridium or an oxide thereof is supported per liter of at least one of them Japanese Patent Laid-Open No.
  • a mixed oxide catalyst comprising a vanadate product and an oxide of at least one element selected from the group consisting of yttrium, boron and lead is known.
  • the catalysts can decompose chlorinated organic compounds to some extent, their ability is small and it is often difficult to say that they are truly effective decomposition catalysts for chlorinated organic compounds.
  • the exhaust gas contains particulate and gaseous chlorinated organic compounds, which are difficult to be decomposed by the above-mentioned catalyst.
  • An object of the present invention is to realize a catalyst having high decomposition activity for chlorinated organic compounds. Disclosure of the invention
  • the catalyst for decomposing chlorinated organic compounds according to the present invention comprises a carrier, a first catalyst component comprising a gold element supported on the carrier, and magnesium, aluminum, silicon, Consists of at least one element selected from the group consisting of titanium, manganese, iron, cobanolate, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, indium, tin, lanthanum, and cerium.
  • the second catalyst component is included.
  • the carrier used here is, for example, one having oxidation resistance.
  • This carrier is, for example, at least one selected from the group consisting of silica, alumina, zeolite and activated clay.
  • the support has, for example, a specific surface area of at least 100 m 2 Zg and an average pore diameter of at least 10 ⁇ .
  • the carrier is, for example, in at least one form of a fiber state and a particle state.
  • the first catalyst component is 0.05 to 5 g per 100 g of carrier
  • the second catalyst component is per 100 g of carrier:! To 25 g, respectively, and the molar ratio of the first catalyst component to the second catalyst component is set to 0.05 to 0.2.
  • the method for producing a catalyst for decomposing chlorinated organic compounds according to the present invention comprises the steps of: providing a carrier with a gold compound that can be converted to a gold element; magnesium, aluminum, silicon, titanium, manganese, iron, covanolate, nickel, and copper.
  • the gold compound and the precursor are, for example, gold hydroxide and a hydroxide of at least one element selected from the first element group, respectively.
  • the step of converting the gold compound and the precursor to the gold element and the oxide may include, for example, the step of supporting the carrier supporting the gold compound and the precursor at 250 to 700 ° C. a step of heat treatment in one atmosphere selected from among inert gas atmosphere and in air temperature range, the heat-treated carrier 2 0 0 ⁇ 6 0 0 D temperature range of the reducing gas atmosphere of C And further performing a heat treatment.
  • the carrier is subjected to, for example, a pretreatment step in which the carrier is boiled in a 3% to saturated aqueous solution of an inorganic acid in a temperature range from room temperature to a boiling temperature, then washed with water and dried, and per 100 g thereof.
  • a pretreatment step in which the carrier is boiled in a 3% to saturated aqueous solution of an inorganic acid in a temperature range from room temperature to a boiling temperature, then washed with water and dried, and per 100 g thereof.
  • the pretreatment is performed in advance by at least one of the pretreatment steps of the catalyst etching treatment in a reducing gas atmosphere of C.
  • the inorganic acid used at this time is, for example, at least one selected from the group consisting of nitric acid, hydrochloric acid, hydrofluoric acid, sulfuric acid, and phosphoric acid.
  • a gold element and an oxide of a predetermined element are supported on a carrier, so that it has high resolving power and decomposition activity for various chlorinated organic compounds including particles.
  • a chlorinated organic compound decomposition catalyst that can be exhibited can be produced.
  • the catalyst for decomposing chlorinated organic compounds of the present invention is for decomposing various chlorinated organic compounds, and includes a carrier, and a first catalyst component and a second catalyst component supported on the carrier. I have.
  • each of the first catalyst component and the second catalyst component is usually carried on a carrier in a state of being randomly dispersed.
  • the carrier used in the present invention is a known various carrier generally used for supporting various catalyst components, and the shape and form are not particularly limited. For example, even if the carrier is in a fiber state, Or in the form of particles. Further, a mixture of a fiber state and a particle state may be used. Further, it may be in a fibrous state, a particle state or a mixture thereof, into a desired shape (for example, a honeycomb shape). It is preferable that the fibrous carrier is molded into a desired shape and used, since the pressure loss of the gas to be treated is large. However, the carrier in the particulate state is molded because the pressure loss of the gas to be treated is small. It can be used without any modification.
  • the catalyst for decomposing chlorinated organic compounds of the present invention uses a particulate carrier, for example, it is possible to secure prompt circulation of exhaust gas simply by directly filling it into an exhaust gas decomposition treatment tower of an incineration facility. At the same time, it is possible to effectively decompose various chlorinated organic compounds in the form of gas and particles contained in exhaust gas.
  • examples of the fibrous carrier include carbon fibers and activated carbon fibers.
  • the carbon fibers usable here are obtained by spinning various known carbon precursors and infusing or carbonizing them.
  • Activated carbon fibers are obtained by spinning various known carbon precursors, making them infusible or carbonized, and activating them.
  • preferred as carbon fibers and activated carbon fibers are: It is at least one member selected from the group consisting of polyacrylonitrile, rayon, pitch, and lignin-poval, that is, one member selected from the group or a mixture of two or more members.
  • an activated carbon fiber When such an activated carbon fiber is used, its specific surface area and average pore diameter are likely to be set in the preferable ranges described later, and both chlorinated organic compounds in gaseous form and in particulate form can be effectively removed. Can be disassembled.
  • examples of the carrier in the form of particles include silica, alumina, granular charcoal, granular activated carbon, zeolite, and activated clay. Two or more kinds of such particulate carriers may be used as a mixture.
  • granular activated carbon particularly granular activated carbon obtained by chemical activation, has a large specific surface area and is characterized in that the catalyst component is easily dispersed on the surface.
  • the granular activated carbon mentioned here is a concept including powdered activated carbon having a small particle diameter.
  • the average particle size of the carrier in a particulate state is not particularly limited, but is usually preferably 0.1 to 20 mm, more preferably 3 to 1 Omm, in consideration of the pressure loss of the gas to be treated.
  • silica in a particle state used as a carrier in the present invention examples include “Silica Gel A”, “Silica Gel B”, and “Silica Gel RD” (trade names) of Fuji Davison Corporation.
  • the particulate alumina examples include, for example, “Neobead C”, “Neobead D” and “Ne obead SA” (trade names) of Mizusawa Chemical Co., Ltd.
  • Examples of the granular activated carbon include, for example, trade names “C arb T ech—A”, “C arb T ech—B”, “WH 2 C—20 / 48”, and “WH2C—8 32 ",” WH2C-28Z7 OSS ",” G2X-4 / 6_1 "and” G2C-4 / 8 ".
  • powdered activated carbon for example, trade names “M-24”, “M-30” and “M_3” of Osaka Gas Co., Ltd. 8 "and the trade names of Nimura Chemical Co., Ltd.” chemical activated carbon "and” steam activated carbon ".
  • Preferred as the carrier used in the catalyst of the present invention are those having oxidation resistance, for example, silica, alumina, zeolite, activated clay or a mixture of any combination thereof.
  • a carbon-based carrier such as activated carbon fiber coated with polysilane or siloxane and heat-treated can also exhibit oxidation resistance.
  • such carriers themselves are not easily oxidized and are stable, so that it is possible to realize a long-life catalyst for decomposing chlorinated organic compounds exhibiting stable decomposition activity over a long period of time. it can.
  • such a carrier having oxidation resistance usually has a phase transition point in a temperature range of 150 ° C. or more when subjected to thermal analysis (TG analysis), or 250 ° C. Even if left for one month in an oxidizing atmosphere, the weight loss rate is 0.3% or less.
  • a preferable carrier used in the catalyst of the present invention has a specific surface area of at least 100 m 2 / g (ie, at least 100 n ⁇ Z g) and an average pore diameter of at least 10 ⁇ . (That is, 10 ⁇ or more). If the specific surface area of the carrier is less than 100 m 2 / g and the average pore diameter is less than 100 ⁇ , the amount of gas that can be processed per unit weight of the carrier will be small, and the chlorinated organic compound will be included. It may be difficult to efficiently and effectively treat the gas to be treated such as exhaust gas. In addition, the particulate chlorinated organic compound may not be easily adsorbed, and it may be difficult to effectively decompose such a chlorinated organic compound.
  • a specific surface area of the carrier is at least 3 0 O m 2 / g, the at least 5 0 0 m 2 / g and more preferably les.
  • the average pore diameter is more preferably at least 14 angstroms, and even more preferably at least 18 angstroms.
  • the specific surface area mentioned above is The BET specific surface area determined according to the deposition method.
  • the average pore diameter is a value calculated from the BET specific surface area measured by the nitrogen adsorption method and the value of the pore volume.
  • a porous carrier as described above When a porous carrier as described above is used, its pore volume can be determined by the specific surface area and the average pore diameter described above, but is usually at least 0.15 cc / g (ie, 0.15 cc / g). cc / g or more), and more preferably at least 0.50 cc / g.
  • the pore volume referred to here is the total pore volume that can be determined according to the nitrogen adsorption method.
  • the above-mentioned carrier used in the present invention may be appropriately surface-treated for the purpose of increasing the carrying amount of the first catalyst component and the second catalyst component. Examples of the surface treatment include a boiling treatment with an aqueous solution of an acid and a catalyst etching treatment as described below.
  • the first catalyst component supported on the carrier as described above is made of fine particles of gold, particularly gold.
  • the amount of the first catalyst component supported on the carrier is usually set to 0.05 to 5 g, preferably 0.1 to 3 g, more preferably 0.5 to 2 g per 100 g of the carrier. If the supported amount is less than 0.05 g, the catalyst of the present invention may hardly exhibit catalytic activity, that is, almost no activity for decomposing chlorinated organic compounds. Conversely, if it exceeds 5 g, the size of the gold particles increases, and the catalytic activity of the catalyst of the present invention may be extremely reduced.
  • the first catalyst component is usually supported on a carrier in the form of fine particles having an average particle diameter of 20 nm or less.
  • the second catalyst component supported on the carrier is magnesium, aluminum, silicon, titanium, manganese, iron, covanolate, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, indium, tin, lanthanum, and cerium.
  • Group of elements consisting of Pt (1st group of elements) Power An oxide of the selected element.
  • the second catalyst component may be a mixture of two or more oxides of an element selected from the element group.
  • Acid I dry matter described above is not particularly limited to a variety of oxides of elements included in the element group described above, for example, magnesium oxide (MgO), aluminum oxide Niumu (A 1 2 0 3) oxide Kei element (S i 0, S i 0 2), titanium oxide (T i 0, T i 2 ⁇ 3, T i O 2), manganese oxide (MnO, Mn 3 0 4, Mn 2 0 3, Mn 0 2, Mn0 3, Mn 2 0 7), Sani ⁇ (F E_ ⁇ , F e 3 ⁇ 4, F e 2 0 3) , Sani ⁇ Kono Noreto (CoO, Co 2 0 3, Co 3 ⁇ 4, CO0 2), nickel oxide (N i ⁇ , N i 3 0 4, N I_ ⁇ 2), copper oxide (Cu0 2, CuO), zinc oxide (ZnO), Sani ⁇ yttrium (Y 2 ⁇ 3) acid I arsenide zirconium (Z R_ ⁇ 2), niobium oxide (NbO,
  • the amount of the second catalyst component supported on the carrier is usually set to 1 to 25 g, preferably 5 to 25 g, more preferably 12 to 20 g per 100 g of the carrier. If the supported amount is less than 1 g, the catalyst of the present invention may hardly show any catalytic activity. Conversely, if it exceeds 25 g, the second catalyst component may be separated from the carrier.
  • the ratio between the first catalyst component and the second catalyst component supported on the carrier is usually
  • the molar ratio of the first catalyst component to the two catalyst components is set to be 0.005 to 0.2, preferably 0.01 to 0.2, and more preferably 0.03 to 0.15. If this molar ratio is less than 0.005, the catalyst of the present invention may hardly exhibit catalytic activity. Conversely, if it exceeds 0.2, the size of the fine gold particles as the first catalyst component becomes large, and the catalytic activity of the catalyst of the present invention may be extremely reduced.
  • the catalyst for decomposing chlorinated organic compounds of the present invention can be basically produced by supporting a first catalyst component and a second catalyst component on a carrier. For this purpose, it is preferable to previously modify the surface chemical state.
  • the catalyst etching treatment is a treatment in which a predetermined catalyst is dispersed in a carrier, and the existing pores of the carrier are enlarged or new pores are formed in the carrier by the action of the catalyst.
  • the carrier subjected to such a surface modification treatment has improved adhesion of the first catalyst component and the second catalyst component, and can increase the amount of these catalyst components carried.
  • the specific surface area, pore volume, and average pore diameter of the carrier can be increased, so that the adsorptivity of the particulate chlorinated organic compound is increased, and the decomposition characteristics are improved. Can be enhanced.
  • gold as first catalyst component, also a mixture of iron oxide as a second catalyst component (Fe 2 0 3) and lanthanum oxide (La 2 ⁇ 3), it
  • the total amount of the supported catalyst is pitch-based. It is only 2.5% by weight per 100 g of activated carbon fiber.
  • the carrier was used as the carrier.
  • gold is used as the first catalyst component
  • magnesium oxide (MgO) is supported as the second catalyst component by the coprecipitation method using an aqueous sodium carbonate solution as a precipitant
  • pitch-based activated carbon is used. If the fiber is not subjected to a catalyst etching treatment, the total amount of the supported catalyst is only 3.1% by weight per 100 g of the pitch-based activated carbon fiber.
  • the aqueous acid solution used when the carrier is boiled in an aqueous acid solution to modify its surface chemical state is an aqueous inorganic acid solution.
  • the inorganic acid that can be used here include nitric acid, hydrochloric acid, hydrofluoric acid, sulfuric acid, and phosphoric acid.
  • Such an aqueous solution of an inorganic acid may be prepared by mixing two or more inorganic acids.
  • the concentration of the inorganic acid is usually preferably set to 3% to a saturated concentration, but a higher acid concentration usually gives a better surface modification effect.
  • the boiling temperature of the carrier with the aqueous solution of an acid described above can be set in a range from room temperature to the boiling temperature of the aqueous solution of the acid, and the boiling time is usually 1 minute or more. Is set. The higher the boiling temperature and the longer the boiling time, the better the surface modification effect.
  • the treated carrier is washed with water.
  • the decomposition activity of the catalyst for decomposing chlorinated organic compounds of the present invention may be reduced.
  • the etching catalyst is dispersed in the carrier.
  • the etching catalyst used herein is, for example, at least one metal element selected from the group consisting of iron, nickel, ruthenium, rhodium, palladium, and platinum (second element group).
  • the dispersion amount of such an etching catalyst is usually 0.01 to 5 g, preferably 0.05 to 2.0 g, more preferably 0.1 to 1.0 g per 100 g of the carrier. Set to 0 g. If the amount of dispersion is less than 0.01 g, the surface of the carrier may not be sufficiently modified. Conversely, if it exceeds 5 g, the entire surface of the carrier may be catalytically etched, and fine surface irregularities may not be formed.
  • the above-mentioned etching catalyst may be dispersed in a carrier as a compound of the above-mentioned metal element.
  • the above dispersion amount is a value in terms of a metal element.
  • the compound of the metal element for example, acetate, nitrate, sulfate and the like can be used.
  • a method of dispersing the etching catalyst in the carrier various known methods, for example, a known metal dispersion method such as an impregnation method, a precipitation method, a coprecipitation method, and a vapor deposition method can be adopted. These dispersion methods can be appropriately selected according to the type of the above-mentioned metal element or its compound.
  • the support is heat-treated in a temperature range of 300 to 700 ° C (preferably 350 to 550 ° C).
  • a sufficient etching effect may not be provided to the carrier.
  • the temperature exceeds 700 ° C., fine particles of the etching catalyst dispersed in the carrier grow and sinter, so that a sufficient etching effect may not be obtained.
  • the treatment time is preferably set to 5 minutes or more, but the longer the treatment time, the higher the surface treatment effect.
  • the oxygen-containing functional group on the surface of the carrier and the carbon-carbon bond having a weak binding force are formed under the action of the above-mentioned etching catalyst exhibiting hydrogenation activity.
  • the carrier subjected to the catalytic etching treatment has an increased specific surface area, pore volume, and average pore diameter.
  • the surface of the support after the catalyst etching treatment changes in the surface chemical state, such as the distribution of functional groups and the concentration of the functional groups, as compared with before the treatment, and the metal or metal compound, that is, the first catalyst component and the second catalyst The adhesion of the components increases.
  • the above-mentioned boiling treatment and catalyst etching treatment for the carrier may be performed either or both, or both.
  • the order of the treatment is not particularly limited, and the boiling treatment may be performed before the catalyst etching treatment, or the boiling treatment may be performed after the catalyst etching treatment.
  • a porous carrier having a specific surface area and an average pore diameter set as described above is used as the carrier, the specific surface area and the average pore diameter of the carrier are determined before the boiling treatment and the catalyst etching treatment as described above.
  • the above range may be set before the processing, or the above range may be set by the above preprocessing. In other words, this type of support should have its specific surface area and average pore diameter set within the above ranges before the catalyst component supporting step described below.
  • the first catalyst component and the second catalyst component are supported on the carrier treated as described above.
  • various known methods for example, a chemical method such as an impregnation method, a precipitation and precipitation supporting method, a coprecipitation method, and a precipitation method with magnesium citrate, and A known method of dispersing and supporting a metal or a metal compound, such as a physical method such as an evaporation method or a kneading method, can be employed.
  • a gold compound that can be converted into a first catalyst component that is, gold
  • a second catalyst component that is, an oxide of an element as described above
  • a gold hydroxide can be used as the gold compound, and a hydroxide of the above-mentioned element constituting the second catalyst component can be used as the precursor.
  • a hydroxide of the above-mentioned element constituting the second catalyst component can be used as the precursor.
  • Such various hydroxides can be provided to a carrier by employing, for example, the above-mentioned coprecipitation method.
  • the gold hydroxide and the hydroxides of the above elements applied to the carrier are usually heat-treated in an inert gas atmosphere, and then, if necessary, in a reducing gas atmosphere. By performing the above, it is possible to convert them into the desired gold and oxides of the above-described elements, respectively.
  • the carrier is silica or aluminum, which has oxidation resistance.
  • the heat treatment step in an inert gas atmosphere may be performed in air.
  • the heat treatment in an inert gas atmosphere converts the hydroxide of the above-mentioned element supported on the carrier into a target oxide to form the second catalyst component. It is a process of.
  • the heat treatment temperature here is usually from 250 to 700 ° C., preferably from 300 to 45 ° C. (Set to TC. If this treatment temperature is lower than 250 ° C., If the temperature exceeds 700 ° C., the produced metal oxide is sintered, and the activity of the catalyst of the present invention is reduced.
  • the heat treatment time is usually preferably set to 5 minutes or more, and when the heat treatment time is less than 5 minutes, the hydroxide of the above-mentioned element is converted into the target oxide. Unfortunately, there are cases.
  • the gold oxide generated simultaneously by the heat treatment in the above-mentioned inert gas atmosphere (or in the air) is reduced and converted into a gold element itself.
  • This is a step for forming a first catalyst component.
  • the heat treatment temperature here is usually set at 200 to 600 ° C, preferably at 250 to 400 ° C. If the treatment temperature is lower than 200 ° C., it may be difficult to convert the gold oxide into the gold element. Conversely, when the treatment temperature exceeds 600 ° C., other oxides (ie, the second catalyst component) generated by the heat treatment in the above-described inert gas atmosphere (or in the air) may contain metallic elements.
  • the heat treatment time is usually preferably set to 5 minutes or more in order to easily convert the gold oxide to a gold element.
  • the above-mentioned inert gas atmosphere Alternatively, other oxides formed by the heat treatment in the air
  • the treatment temperature and treatment time need to be adjusted appropriately so that only the gold oxide is reduced and converted to elemental gold. Since the catalyst for decomposing chlorinated organic compounds of the present invention has the first catalyst component and the second catalyst component supported on the above-described carrier, it can be converted into dioxins and dioxins.
  • PCB polychlorobiphenyl
  • trichloroethylene trichloroethane
  • dichloromethane chlorophenol
  • chlorobenzene and other halogenated hydrocarbon compounds. It can be broken down and converted to non-toxic low molecular weight compounds.
  • the catalyst for decomposing chlorinated organic compounds of the present invention can, of course, effectively oxidatively decompose gaseous chlorinated organic compounds, but has a very high decomposition activity, so that it can be treated with conventional catalysts.
  • the difficult chlorinated organic compound in particulate form can be effectively oxidatively decomposed at the same time.
  • the particulate chlorinated organic compound may be used in the present invention because of the unique porous structure of the carrier.
  • the catalyst is easily trapped (adsorbed) by the catalyst, and can be effectively oxidatively decomposed in the trapped state.
  • chlorinated organic compounds such as dioxins contained in the exhaust gas are used. 95% or more of the compounds are oxidatively decomposed at a space velocity of 5,000 hr- 1 or more within a temperature range of 150-300 ° C for more than 50,000 hr, and are easily converted to non-toxic low-molecular compounds. As a result, it is easy to reduce the concentration of dioxins and the like in the exhaust gas released into the atmosphere to several ng ZNm 3 or less in terms of international equivalent toxicity.
  • the catalyst of the present invention uses the above-mentioned catalyst having oxidation resistance as a carrier, the activity of the catalyst is hardly reduced even when used continuously in a high-temperature atmosphere.
  • stable decomposition activity for chlorinated organic compounds can be maintained for a long period of time.
  • the activated carbon fibers supporting the above-mentioned hydroxyl compound are filled in a ceramic tubular electric furnace, fired in a nitrogen atmosphere at 450 ° C for 2 hours, and then fired in a hydrogen atmosphere at 350 ° C. Further reduction treatment was performed for one hour.
  • the gold as a first catalyst component, iron oxide (Fe 2 ⁇ 3) and lanthanum oxide (La 2 0 3) and chlorinated organic compound decomposing supported on activated carbon fiber as the second catalyst component Catalyst was obtained.
  • This catalyst has a weight ratio of the first catalyst component to the second catalyst component (first catalyst component / second catalyst component) of 7.5 / 100, and iron oxide and lanthanum oxide constituting the second catalyst component.
  • the weight ratio with tan (lanthanum oxide / iron oxide) was 30Z70, and the weight ratio between the total of all catalyst components and the activated carbon fiber (total catalyst component / activated carbon fiber) was 13.0 / 10.
  • the catalyst for decomposing the chlorinated organic compound obtained in this manner is The activity of degrading phenol by phenol was evaluated.
  • the obtained catalyst for decomposing chlorinated organic compounds was filled in a flow reactor using a stainless steel reaction tube (inner diameter 19 mm x length 40 Omm) with an internal volume of 113 ml. OO Oh r- ', temperature 220.
  • air containing 3,500 ppm of o-chlorophenol was flowed as a sample.
  • the o-chlorophenol concentration in the sample before and after passing through the reactor was analyzed using a gas chromatograph equipped with an FID detector, and the analysis value was used to determine the o-chlorophenol content according to the following formula.
  • the solution rate was determined. The result was 95.6%.
  • Example 1 100 g of the same coal tar pitch-based activated carbon fiber as used in Example 1 was boiled under the same conditions as in Example 1.
  • An aqueous solution in which 95.44 g was dissolved and 1,000 g were placed in a beaker equipped with a digital pH meter. Then, while stirring the solution in the beaker, a 5% by weight aqueous solution of sodium carbonate was slowly dropped, and the pH of the solution was set to 10.2. Thereafter, the activated carbon fiber was taken out of the beaker, washed with water, and dried at 120 ° C. for 8 hours. As a result, active raw carbon fibers supporting the respective hydroxides of gold and magnesium were obtained.
  • the obtained activated carbon fiber was heat-treated in a nitrogen atmosphere and a hydrogen atmosphere under the same conditions as in Example 1 to obtain gold as the first catalyst component and magnesium oxide as the second catalyst component.
  • MgO magnesium oxide
  • This catalyst is composed of the first catalyst component and the second catalyst component.
  • Weight ratio (1st catalyst component / 2nd catalyst component) was 6.3X100, and the weight ratio of the total of all catalyst components to the activated carbon fiber (all catalyst components Z activated carbon fiber) was 13.5 / 100.
  • the resulting chlorinated organic compound decomposition catalyst was evaluated for its acid-decomposition activity against o-chlorophenol in the same manner as in Example 1, and the result was 84.3%.
  • Example 1 100 g of the same coal tar pitch-based activated carbon fiber as used in Example 1 was boiled under the same conditions as in Example 1.
  • the obtained activated carbon fiber was heat-treated in a nitrogen atmosphere and a hydrogen atmosphere under the same conditions as in Example 1 to obtain gold as the first catalyst component and iron oxide as the second catalyst component.
  • (Fe 2 ⁇ 3) and Sani ⁇ cerium (CeO 2) was obtained chlorinated organic I ⁇ decomposition catalyst supported on activated carbon fibers.
  • the weight ratio of the first catalyst component to the second catalyst component was 6.5 / 100, and cerium oxide and iron oxide constituting the second catalyst component were used.
  • the weight ratio (cerium oxide / iron oxide) was 30 Z70, and the weight ratio (total catalyst component / activated carbon fiber) of the sum of all catalyst components and activated carbon fiber was 13.7Z100.
  • the chlorinated organic compound decomposition catalyst obtained was evaluated for its oxidative decomposition activity against o-chlorophenol in the same manner as in Example 1, and the result was 93.3%.
  • the activated carbon fibers in which nickel acetate was dispersed were filled into a ceramic tubular electric furnace, and were subjected to an etching treatment in a 100% hydrogen atmosphere set at 500 ° C. for 4 hours. And the total amount of the thus etched treated active carbon fiber, salt gold tetrahydrate (HAuC 1 4 ⁇ 4H 2 0 ) 3. 24 g, iron nitrate (F e (N0 3) 3 '6H 2 0) 53. 13 g and lanthanum nitrate (L a (N0 3) 3 ⁇ 6H 2 0) 11. solution 1 obtained by dissolving 96 g, was placed in a 000 g in a beaker fitted with a digital pH meter.
  • the obtained activated carbon fiber was placed in a nitrogen atmosphere under the same conditions as in Example 1. And heat-treated in a hydrogen atmosphere, and gold as the first catalyst component, iron oxide as a second catalyst component (F e 2 0 3) and lanthanum oxide (La 2 0 3) and active carbon fiber ⁇ Thus, a catalyst for decomposing chlorinated organic compounds supported on was obtained.
  • the weight ratio of the first catalyst component to the second catalyst component was 8.0 / 100, and lanthanum oxide and iron oxide constituting the second catalyst component were used.
  • the weight ratio (San-i-lantern Z iron oxide) was 30/70, and the weight ratio of the total of all the catalyst components to the activated carbon fibers (all the activated carbon fibers) was 14.2Z100.
  • the chlorinated organic compound decomposition catalyst obtained was evaluated for acid decomposition activity against o-chlorophenol in the same manner as in Example 1, and the result was 97.
  • Example 4 The same operation as in Example 4 was carried out except that activated carbon fibers which were boiled in the same manner as in Example 1 were used, and gold as the first catalyst component and iron oxide as the second catalyst component were used. (F e 2 O 3) and to obtain a lanthanum oxide (La 2 0 3) and is supported on the active carbon fiber chlorinated organic I arsenide compound cracking catalyst.
  • the weight ratio of the first catalyst component to the second catalyst component was 9.8 / 100, and lanthanum oxide and iron oxide constituting the second catalyst component were used.
  • the weight ratio (lanthanum oxide / iron oxide) was 30,770, and the weight ratio (total catalyst component / activated carbon fiber) of the total of all catalyst components to activated carbon fiber was 14.9Z100.
  • the obtained chlorinated organic compound decomposition catalyst was evaluated for o-chlorophenol enzymatic decomposition activity in the same manner as in Example 1, and the result was 99.5%.
  • solution 1 obtained by dissolving 96 g, and 000 g in a beaker fitted with a digital p H meter . Then, while stirring the solution in the beaker, a 5% by weight aqueous solution of sodium carbonate was slowly dropped, and the pH of the solution was set to 8.0. Thereafter, the silica gel was taken out of the beaker, washed with water, and dried at 120 ° C. for 8 hours. As a result, a silica gel carrying the respective hydroxy compounds of gold, iron and lanthanum was obtained.
  • the silica gel used here had a phase transition point in the temperature range of 150 ° C. or higher when subjected to thermal analysis, and had oxidation resistance.
  • the above-mentioned hydroxide-supported silica gel was charged into a ceramic tubular electric furnace, fired in an air atmosphere at 450 ° C for 2 hours, and then further heated in a hydrogen atmosphere at 350 ° C for 1 hour. Reduction treatment was performed.
  • the gold as a first catalyst component
  • the second iron oxide as a catalyst component (F e 2 0 3) and lanthanum oxide (La 2 ⁇ 3) and chlorinated organic Ihigo supported on silica gel
  • This catalyst had a weight ratio of the first catalyst component to the second catalyst component (the first catalyst component Z and the second hornworm medium component) of 7.5 / 100.
  • the weight ratio with lanthanum (lanthanum oxide / iron oxide) was 30/70, and the weight ratio with the total of all catalyst components and silica gel as the support (all catalyst components Z silica gel) was 8.5 / 100.
  • the above-mentioned alumina gel supporting the hydroxyl compound was filled in a ceramic tubular electric furnace, fired in an air atmosphere of 450 ° C for 2 hours, and further heated in a hydrogen atmosphere of 350 ° C. Reduction treatment was performed for 1 hour.
  • the gold as a first catalyst component for iron oxide (Fe 2 0 3) and lanthanum oxide (La 2 ⁇ 3) and chlorinated organic compounds supported on alumina gel degradation as the second catalyst component A catalyst was obtained.
  • This catalyst has a weight ratio of the first catalyst component to the second catalyst component (first catalyst component Z second catalyst component) of 7.5 / 100, and iron oxide and lanthanum oxide constituting the second catalyst component.
  • the weight ratio with tan (lanthanum oxide / iron oxide) was 30/70, and the weight ratio between the total of all catalyst components and the alumina gel as the carrier (all catalyst components Z alumina gel) was 9.9 / 100.
  • the resulting chlorinated organic compound decomposition catalyst was evaluated for its acid-decomposition activity against o-chloromouth phenol in the same manner as in Example 1, and the result was 76.
  • solution 1 obtained by dissolving 96 g, and 000 g in a beaker fitted with a digital p H meter. Then, while stirring the solution in the beaker, a 5% by weight aqueous solution of sodium carbonate was slowly dropped, and the pH of the solution was set to 8.0. Thereafter, the granular activated carbon was taken out of the beaker, washed with water, and dried at 120 ° C for 8 hours. As a result, a granular activated carbon carrying the respective hydroxides of gold, iron and lanthanum was obtained.
  • the above-mentioned granular activated carbon supporting the hydroxide is filled in a ceramic tubular electric furnace, and calcined in a nitrogen atmosphere at 450 ° C for 2 hours, and then further heated in a hydrogen atmosphere at 350 ° C. Time reduction treatment was performed.
  • the gold as a first catalyst component iron oxide (F e 2 0 3) and lanthanum oxide (La 2 0 3) and chlorinated organic compound decomposing supported on granular activated carbon as the second catalyst component Catalyst was obtained.
  • the weight ratio of the first catalyst component to the second catalyst component was 7.5 / 100, and iron oxide and lanthanum oxide constituting the second catalyst component were used.
  • Weight ratio (lanthanum oxide Z iron oxide) was 30770, and the weight ratio of the total of all the catalyst components to the granular activated carbon as the carrier (all the catalytic components were granular activated carbon) was 11.2Z100.
  • the powdered activated carbon supporting the above-mentioned hydroxide was filled in a ceramic tubular electric furnace, fired in a nitrogen atmosphere at 450 ° C for 2 hours, and then fired in a hydrogen atmosphere at 350 ° C. For another 1 hour.
  • the gold as a first catalyst component iron oxide (F e 2 ⁇ 3) and lanthanum oxide (L a 2 0 3) and is supported on a powdered activated carbon chlorinated organic as the second catalyst component
  • a catalyst for compound decomposition was obtained.
  • This catalyst had a weight ratio of the first catalyst component to the second catalyst component (first catalyst component Z, second catalyst component) of 7.5Z100, and iron oxide and lanthanum oxide constituting the second catalyst component.
  • the weight ratio (lanthanum oxide / iron oxide) is 30/70, and the weight ratio of the total of all catalyst components to the powdered activated carbon as a carrier (all catalyst components powdered activated carbon) is 16.5 / 100 Met.
  • the resulting chlorinated organic compound decomposition catalyst was evaluated for its oxidative decomposition activity against o-chlorophenol in the same manner as in Example 1, and the result was 10
  • the activated clay used here had a phase transition point in a temperature range of 150 ° C. or higher when subjected to thermal analysis, and had oxidation resistance.
  • the activated clay supporting the above-mentioned hydroxide was filled in a ceramic tubular electric furnace, and calcined in an air atmosphere at 450 ° C for 2 hours, and then reduced for 35 hours in a hydrogen atmosphere of TC (1 hour). treated.
  • the gold as a first catalyst component, a chlorinated organic to the iron oxide as a second catalyst component (Fe 2 0 3) and lanthanum oxide (La 2 0 3) is supported on the activated clay
  • a catalyst for decomposing a compound was obtained having a weight ratio of the first catalyst component to the second catalyst component (first catalyst component Z second catalyst component) of 7.5 / 100.
  • the weight ratio of iron oxide and lanthanum oxide (lanthanum oxide / iron oxide) constituting the second catalyst component is 30770, and the weight ratio of the sum of all catalyst components and activated clay as a carrier (total catalyst component / activated clay) was 9.3Z100.
  • the obtained catalyst for decomposing chlorinated organic compounds was evaluated for oxidative decomposition activity against o-chloromouth phenol in the same manner as in Example 1, and the result was 92.
  • a garbage incinerator equipped with an exhaust gas decomposition tower as shown in Fig. 1 was constructed.
  • the refuse incinerator 1 mainly includes an incinerator 2, an exhaust gas decomposition treatment tower 3, and an exhaust gas flow path 4 for connecting the incinerator 2 and the exhaust gas decomposition treatment tower 3.
  • the incinerator 2 includes a primary incinerator 5 and a secondary incinerator 6 disposed above the primary incinerator 5.
  • the primary incinerator 5 has a combustion chamber 7 for incinerating garbage 20, and an exhaust passage 8 is connected to the combustion chamber 7 toward the secondary incinerator 6.
  • the secondary incinerator 6 is configured in a tower shape with one end connected to an exhaust passage 8, and in order from the exhaust passage 8 side, a reburn burner 9, a ceramic checker 10, a secondary combustion chamber 11, and an ejector 1 blower 1 It has two.
  • the exhaust gas decomposition treatment tower 3 includes a catalyst chamber 13 for charging a catalyst, and an exhaust gas inflow path 14 and an exhaust gas inflow path 15 are connected to the catalyst chamber 13. Further, the inlet 14 and the outlet 15 are provided with sampling ports 16 and 17 for sampling exhaust gas, respectively.
  • the exhaust gas passage 4 has one end connected to the secondary incinerator 6 of the incinerator 2 and the other end connected to the inflow path 14 of the exhaust gas decomposition tower 3, and the water spray cooling tower 18. Yes.
  • the exhaust gas generated when the refuse 20 is incinerated in the combustion chamber 7 is guided through the exhaust path 8 into the secondary incinerator 6, where the reburner 9 Then, it flows into the exhaust gas passage 4 after being further burned.
  • the exhaust gas introduced into the exhaust gas passage 4 is cooled by the water spray cooling tower 18 and then guided into the exhaust gas decomposition treatment tower 3, where the exhaust gas is decomposed in the catalyst chamber 13 and the exhaust gas 1 Released from 5 to the outside.
  • the catalyst obtained in the fifth embodiment is provided in the catalyst chamber 13 of the above-described refuse incinerator 1.
  • the garbage was actually incinerated by charging the chlorinated organic compound decomposition catalyst, and the state of oxidative decomposition of dioxins in exhaust gas under the conditions shown in Table 1 was examined.
  • the exhaust gas serving as a sample was collected from the sampling port 16 before the treatment in the catalyst chamber 13 and from the sampling port 17 after the treatment.
  • the method of sample collection and analysis were in accordance with the “Guideline for Standard Measurement and Analysis of Dioxins in Waste Disposal” specified by the Ministry of Health and Welfare of Japan described in the Sanitation No. 38, February 26, 1997.
  • the measurement of the oxygen concentration in the exhaust gas, the exhaust gas temperature, and the exhaust gas flow rate are based on the zirconure method and the JISZ method of the “Oxygen in the exhaust gas method” specified in Japanese Industrial Standards JIS KO 301-1989, respectively. 880 8-1995 K-type thermocouple method in "Measurement method of dust concentration in exhaust gas", and "Measurement method of dust concentration in exhaust gas” specified in JISZ 8808-1995 Pitot tube method.
  • Table 2 (Table 2-1 and Table 2) show the measurement results of the concentration of gaseous and particulate dioxins contained in the exhaust gas collected at the inlet and outlet sides of the catalyst chamber 13, respectively. — See 2).
  • Exhaust gas density (kg / m 3 ) 0.74 2 0.854 Static exhaust gas pressure (kPa) 0.14 0.000 Exhaust gas flow rate (mZ s) 5.0 4.3
  • T 4 CDD dibenzodioxin tetrachloride
  • T 4 CDD s dibenzodioxins tetrachloride
  • PCDD s Polychlorinated dibenzo 'para-dioxins
  • PCDF s Polychlorinated dibenzofurans
  • OCDD s octachloride dibenzodioxins
  • Example 6 Using the catalyst for decomposing chlorinated organic compounds obtained in Example 6 in place of the catalyst for decomposing chlorinated organic compounds obtained in Example 5, and using the exhaust gas in the same manner as in Example 11 The state of oxidative degradation of dioxins was investigated. The results are shown in Table 3 (Tables 3-1 and 3-2). In Table 3, abbreviations and "TEF" indicating chlorinated organic compounds are the same as those in Table 2.
  • PCDD s 3400 1 2 0 8 1 6 1 05 76.0 1 2.4
  • Example 8 Using the catalyst for decomposing chlorinated organic compounds obtained in Example 8 in place of the catalyst for decomposing chlorinated organic compounds obtained in Example 5, dioxin in the exhaust gas in the same manner as in Example 11 The state of oxidative decomposition of the species was investigated. The results are shown in Table 5 (Table 5-1 and Table 5-2). In Table 5, abbreviations and "TEF" indicating chlorinated organic compounds are the same as those in Table 2.
  • Example 9 Using the catalyst for decomposing chlorinated organic compound obtained in Example 9 instead of the catalyst for decomposing chlorinated organic compound obtained in Example 5, in the same manner as in Example 11 The state of oxidative decomposition of dioxins in exhaust gas was investigated. The results are shown in Table 6 (Table 6-1 and Table 6-2). In Table 6, the abbreviations and "TEF" indicating the chlorinated organic compound are the same as those in Table 2.
  • Example 10 The catalyst for decomposing chlorinated organic compounds obtained in Example 10 was used in place of the catalyst for decomposing chlorinated organic compounds obtained in Example 5, and the same method as in Example 11 was carried out. The state of oxidative degradation of dioxins was examined. The results are shown in Table 7 (Table 7-1 and Table 7-2). In Table 7, the abbreviations and "TEF" indicating the chlorinated organic compound are the same as those in Table 2.

Abstract

A catalyst for decomposing chlorinated organic compound, which comprises a carrier and, both carried on the carrier, a first catalyst component comprising gold element and a second catalyst component comprising an oxide of at least one element selected from the group consisting of magnesium, aluminum, silicon, titanium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, indium, tin, lanthanum and cerium. The above carrier has a specific surface area of at least 100 m2/g and an average pore diameter of at least 10 angstroms, and is preferably resistant to heat. This catalyst has a high decomposition activity for various chlorinated organic compounds including those in a particulate form and in gaseous state.

Description

明 細 書 塩素化有機化合物分解用触媒 技術分野  Description Catalyst for decomposing chlorinated organic compounds Technical field
本発明は、 分解用触媒、 特に、 塩素化有機化合物分解用触媒に関する。 背景技術  The present invention relates to a catalyst for cracking, particularly to a catalyst for cracking chlorinated organic compounds. Background art
産業廃棄物や一般家庭ごみなどを処理するための焼却施設、 石炭発電施設、 製鋼施設、 金属精鍊施設などから発生する排気ガス中には、 ダイォキシン類、 ポリクロロビフエ二ノレ (PCB) 、 クロ口フエノーノレ、 クロ口ベンゼンなどの 塩素化有機化合物が含まれている。  Exhaust gas generated from incineration facilities for treating industrial waste and general household waste, coal power generation facilities, steelmaking facilities, metal refining facilities, etc., contains dioxins, polychlorobiphenyl (PCB), Contains chlorinated organic compounds such as benzene.
ここで、 ダイォキシン類は、 ポリ塩化ジベンゾ.パラ .ダイォキシン類 (P CDD s) やポリ塩化ジベンゾフラン類 (PCDF s) の総称であり、 周知の 如く極めて毒性の強い環境汚染物質であるが、 その中でも四塩化ジベンゾダイ ォキシン (T4CDD s) は特に最強の毒性物質として知られている。 一方、 ポリクロロビフエニル、 クロ口フエノール、 クロ口ベンゼンなどの塩素化有機 化合物は、 ダイォキシン類に比べて毒性は弱いが、 一定の条件下、 例えば、 焼 却炉内でフライァッシュ中の種々の元素を触媒として排気ガスの温度範囲でダ ィォキシン類に変換されやすレ、ことが判明しているため、 ダイォキシン類と同 様に環境汚染物質として認識されている。 このため、 環境保全の観点から-、 上 述のような各種の塩素化有機化合物を排気ガス中から除去する必要性が急速に 高まりつつある。 Here, dioxins are a general term for polychlorinated dibenzo-para-dioxins (PCDs) and polychlorinated dibenzofurans (PCDFs). As is well known, dioxins are extremely toxic environmental pollutants. tetrachloride Jibenzodai Okishin (T 4 CDD s) is particularly known as the strongest toxic substances. On the other hand, chlorinated organic compounds such as polychlorobiphenyl, black phenol and black benzene are less toxic than dioxins, but under certain conditions, for example, various elements in fly ash in incinerators Has been found to be easily converted to dioxins in the exhaust gas temperature range using the catalyst as a catalyst, and is therefore recognized as an environmental pollutant, like dioxins. For this reason, from the viewpoint of environmental protection, the need to remove various chlorinated organic compounds from exhaust gas as described above is rapidly increasing.
ところで、 排気ガス中から塩素化有機化合物を除去する手法として、 主に 2 通りの手法が提案されている。 一つは、 活性炭などの吸着材に塩素化有機化合 物を吸着させる手法であり、 他方は触媒を用いて塩素化有機化合物を分解する 手法である。 し力 し、 吸着材を用いる手法は、 大量の吸着材を用いなければ排 気ガス中に含まれる微量の塩素化有機化合物を効果的に吸着除去することがで きないので、 実施コストが高くなり、 また、 使用済みの吸着材の廃棄処分方法 や再生処理方法などが確立しない限り実用性に疑問がある。 By the way, two main methods have been proposed to remove chlorinated organic compounds from exhaust gas. One is to add chlorinated organic compounds to adsorbents such as activated carbon. The other is a method of decomposing chlorinated organic compounds using a catalyst. However, the method using an adsorbent requires a large amount of adsorbent to effectively adsorb and remove a small amount of chlorinated organic compounds contained in exhaust gas without using a large amount of adsorbent. In addition, there is a question of practicality unless a method of disposing of used adsorbents and a method of reprocessing are established.
このため、 触媒を用いて塩素化有機化合物を分解する手法が注目されており、 そのための触媒が多数提案されている。 例えば、 五酸化バナジウム、 酸化タン ダステン、 チタニアからなる脱硝触媒やその脱硝触媒に白金を担持させた触媒 For this reason, attention has been paid to techniques for decomposing chlorinated organic compounds using catalysts, and many catalysts have been proposed. For example, a denitration catalyst composed of vanadium pentoxide, tantalum oxide, and titania, or a catalyst in which platinum is supported on the denitration catalyst
(特開平 7— 7 5 7 2 0号公報、 特開平 2— 3 5 9 1 4号公報参照) 、 シリカ 'ボリア 'アルミナ複合酸化物およびアルミナに対するシリカのモル比が 3 0 以上のゼォライ トのうちの少なくとも 1種に対してその 1リットル当たり白金、 パラジウムおよびィリジゥムからなる群から選ばれた少なくとも 1種類の元素 またはその酸化物を 0 . 1〜1 0 g担持させた触媒 (特開平 7— 1 6 3 8 7 7 号公報参照) 、 バナジウム酸ィヒ物と、 イットリウム、 ホウ素および鉛からなる 群から選ばれた少なくとも 1種の元素の酸化物とを含む混合酸化物触媒 (特開 平 9一 2 9 0 6 6号公報参照) などが知られている。 (See Japanese Unexamined Patent Publications Nos. 7-57520 and 2-35914). The silica 'boria' alumina composite oxide and zeolite having a molar ratio of silica to alumina of 30 or more are used. A catalyst in which 0.1 to 10 g of at least one element selected from the group consisting of platinum, palladium and iridium or an oxide thereof is supported per liter of at least one of them (Japanese Patent Laid-Open No. A mixed oxide catalyst comprising a vanadate product and an oxide of at least one element selected from the group consisting of yttrium, boron and lead (see Japanese Patent Application Laid-Open No. Japanese Patent Application Laid-Open No. 290666) is known.
しかしながら、 これらの触媒は、 塩素化有機化合物をある程度は分解するこ とができるものの、 その能力は小さく、 塩素化有機化合物に対して真に有効な 分解触媒とは言い難い場合が多い。 特に、 排気ガス中には、 粒子態およびガス 態の塩素化有機化合物が含まれているが、 粒子態の塩素化有機化合物は、 上述 の触媒で分解されにくレ、。  However, although these catalysts can decompose chlorinated organic compounds to some extent, their ability is small and it is often difficult to say that they are truly effective decomposition catalysts for chlorinated organic compounds. In particular, the exhaust gas contains particulate and gaseous chlorinated organic compounds, which are difficult to be decomposed by the above-mentioned catalyst.
本発明の目的は、 塩素化有機化合物に対する分解活性が高レヽ触媒を実現する ことにある。 発明の開示 本発明に係る塩素化有機化合物分解用触媒は、 担体と、 当該担体に担持され た金元素からなる第 1触媒成分と、 当該担体に担持された、 マグネシウム、 ァ ルミ二ゥム、 ケィ素、 チタン、 マンガン、 鉄、 コバノレト、 ニッケル、 銅、 亜鉛、 イットリウム、 ジルコニウム、 ニオブ、 モリブデン、 インジウム、 スズ、 ラン タンおよびセリゥムからなる元素群から選ばれた少なくとも 1種の元素の酸ィ匕 物からなる第 2触媒成分とを含んでレ、る。 An object of the present invention is to realize a catalyst having high decomposition activity for chlorinated organic compounds. Disclosure of the invention The catalyst for decomposing chlorinated organic compounds according to the present invention comprises a carrier, a first catalyst component comprising a gold element supported on the carrier, and magnesium, aluminum, silicon, Consists of at least one element selected from the group consisting of titanium, manganese, iron, cobanolate, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, indium, tin, lanthanum, and cerium. The second catalyst component is included.
ここで用いられる担体は、 例えば、 耐酸化性を有するものである。 この担体 は、 例えば、 シリカ、 アルミナ、 ゼォライ トおょぴ活性白土からなる群から選 ばれた少なくとも 1種である。 また、 担体は、 例えば、 比表面積が少なくとも 1 0 0 m 2Z gでありかつ平均細孔径が少なくとも 1 0オングストロームのも のである。 The carrier used here is, for example, one having oxidation resistance. This carrier is, for example, at least one selected from the group consisting of silica, alumina, zeolite and activated clay. The support has, for example, a specific surface area of at least 100 m 2 Zg and an average pore diameter of at least 10 Å.
なお、 担体は、 例えば、 繊維状態および粒子状態のうちの少なくとも一つの 形態である。  The carrier is, for example, in at least one form of a fiber state and a particle state.
この塩素化有機ィヒ合物分解用触媒では、 例えば、 第 1触媒成分が担体 1 0 0 g当たりに 0 . 0 5〜5 g、 第 2触媒成分が担体 1 0 0 g当たりに:!〜 2 5 g それぞれ担持されており、 かつ第 2触媒成分に対する第 1触媒成分のモル比が 0 . 0 0 5〜0 . 2に設定されている。  In the catalyst for decomposing chlorinated organic compounds, for example, the first catalyst component is 0.05 to 5 g per 100 g of carrier, and the second catalyst component is per 100 g of carrier:! To 25 g, respectively, and the molar ratio of the first catalyst component to the second catalyst component is set to 0.05 to 0.2.
このような本発明の塩素化有機化合物分解用触媒は、 担体上に上述のような 第 1触媒成分と第 2触媒成分とを組み合わせて担持させているので、 粒子態の ものを含む各種の塩素化有機化合物に対して高い分解活性を発揮し得る。  In such a catalyst for decomposing chlorinated organic compounds of the present invention, since the above-described first catalyst component and second catalyst component are supported in combination on a carrier, various types of chlorine including those in particulate form can be used. Can exhibit a high decomposition activity with respect to the fluorinated organic compound.
本発明に係る塩素化有機化合物分解用触媒の製造方法は、 担体に対し、 金元 素に転化可能な金化合物と、 マグネシウム、 アルミニウム、 ケィ素、 チタン、 マンガン、 鉄、 コバノレ ト、 ニッケル、 銅、 亜鉛、 イットリウム、 ジルコニウム、 ニオブ、 モリブデン、 インジウム、 スズ、 ランタンおよびセリウムからなる第 1元素群から選ばれた少なくとも 1種の元素の酸化物に転化可能な前駆体とを 担持させるための工程と、 金化合物および前記前駆体をそれぞれ前記金元素お よび前記酸化物に転化する工程とを含んでいる。 The method for producing a catalyst for decomposing chlorinated organic compounds according to the present invention comprises the steps of: providing a carrier with a gold compound that can be converted to a gold element; magnesium, aluminum, silicon, titanium, manganese, iron, covanolate, nickel, and copper. A precursor that can be converted to an oxide of at least one element selected from the group consisting of zinc, yttrium, zirconium, niobium, molybdenum, indium, tin, lanthanum and cerium. A supporting step; and a step of converting the gold compound and the precursor to the gold element and the oxide, respectively.
ここで、 前記金化合物および前記前駆体は、 例えば、 それぞれ金水酸化物お よび第 1元素群から選ばれた少なくとも 1種の元素の水酸化物である。  Here, the gold compound and the precursor are, for example, gold hydroxide and a hydroxide of at least one element selected from the first element group, respectively.
また、 前記金化合物および前記前駆体をそれぞれ前記金元素および前記酸ィ匕 物に転化する工程は、 例えば、 前記金化合物および前記前駆体を担持した担体 を 2 5 0〜7 0 0°Cの温度範囲の不活性ガス雰囲気中および空気中のうちから 選択された 1つの雰囲気中で熱処理する工程と、 熱処理された担体を 2 0 0〜 6 0 0 DCの温度範囲の還元性ガス雰囲気中でさらに熱処理する工程とを含んで いる。 Further, the step of converting the gold compound and the precursor to the gold element and the oxide, respectively, may include, for example, the step of supporting the carrier supporting the gold compound and the precursor at 250 to 700 ° C. a step of heat treatment in one atmosphere selected from among inert gas atmosphere and in air temperature range, the heat-treated carrier 2 0 0~ 6 0 0 D temperature range of the reducing gas atmosphere of C And further performing a heat treatment.
なお、 担体は、 例えば、 無機酸の 3 %〜飽和濃度水溶液中で室温から沸騰温 度までの温度範囲で煮沸処理した後に水洗浄して乾燥する前処理工程、 および その 1 0 0 g当たりに対して鉄、 ニッケル、 ルテニウム、 ロジウム、 パラジゥ ムおよび白金からなる第 2元素群から選ばれた少なくとも 1種の元素を 0 . 0 :!〜 5 g分散させた後に 3 0 0〜7 0 0 °Cの還元性ガス雰囲気中で触媒エッチ ング処理する前処理工程のうちの少なくとも一つの前処理工程により予め前処 理されている。 この際に用いられる無機酸は、 例えば、 硝酸、 塩酸、 フッ化水 素酸、 硫酸およびリン酸からなる群から選ばれた少なくとも 1種である。 このような製造方法は、 担体に対して金元素と所定の元素の酸化物とを担持 させているので、 粒子態のものを含む各種の塩素化有機化合物に対して高レ、分 解活性を発揮し得る塩素化有機化合物分解用触媒を製造することができる。 本発明の他の目的および効果は、 以下の詳細な説明から明らかになるであろ ラ。 図面の簡単な説明 図 1は、 実施例 1 1〜 1 6で用いたゴミ焼却装置の概略図である。 発明の詳細な説明 The carrier is subjected to, for example, a pretreatment step in which the carrier is boiled in a 3% to saturated aqueous solution of an inorganic acid in a temperature range from room temperature to a boiling temperature, then washed with water and dried, and per 100 g thereof. On the other hand, after dispersing at least one element selected from the second element group consisting of iron, nickel, ruthenium, rhodium, palladium, and platinum at 0.0:! The pretreatment is performed in advance by at least one of the pretreatment steps of the catalyst etching treatment in a reducing gas atmosphere of C. The inorganic acid used at this time is, for example, at least one selected from the group consisting of nitric acid, hydrochloric acid, hydrofluoric acid, sulfuric acid, and phosphoric acid. In such a production method, a gold element and an oxide of a predetermined element are supported on a carrier, so that it has high resolving power and decomposition activity for various chlorinated organic compounds including particles. A chlorinated organic compound decomposition catalyst that can be exhibited can be produced. Other objects and advantages of the present invention will become apparent from the following detailed description. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a schematic diagram of a garbage incinerator used in Examples 11 to 16. Detailed description of the invention
本発明の塩素化有機化合物分解用触媒は、 各種の塩素化有機化合物を分解す るためのものであり、 担体と、 当該担体に担持された第 1触媒成分および第 2 触媒成分とを含んでいる。 ここで、 第 1触媒成分および第 2触媒成分のそれぞ れは、 通常、 ランダムに分散した状態で担体上に担持されている。  The catalyst for decomposing chlorinated organic compounds of the present invention is for decomposing various chlorinated organic compounds, and includes a carrier, and a first catalyst component and a second catalyst component supported on the carrier. I have. Here, each of the first catalyst component and the second catalyst component is usually carried on a carrier in a state of being randomly dispersed.
本発明で用いられる担体は、 各種の触媒成分を担持させるために通常用いら れる公知の各種のものであり、 形状 ·形態が特に限定されるものではなく、 例 えば、 繊維状態であってもよいし、 粒子状態であってもよい。 また、 繊維状態 のものと粒子状態のものとの混合物であってもよい。 さらに、 繊維状態、 粒子 状態またはこれらの混合物を用いて所望の形状 (例えばハニカム形状) に成形 された成形体状であってもよい。 なお、 繊維状態の担体は、 被処理気体の圧損 が大きくなるため、 適宜所望の形状に成形して用いるのが好ましいが、 粒子状 態の担体は、 被処理気体の圧損が小さいので、 成形せずにそのままの状態で利 用することができる。 したがって、 本発明の塩素化有機化合物分解用触媒は、 粒子状態の担体を用いている場合、 例えば焼却施設の排気ガス分解処理塔中に そのまま充填するだけで、 排気ガスの速やかな流通を確保しつつ、 排気ガス中 に含まれるガス態や粒子態の各種の塩素化有機化合物を効果的に分解すること ができる。  The carrier used in the present invention is a known various carrier generally used for supporting various catalyst components, and the shape and form are not particularly limited. For example, even if the carrier is in a fiber state, Or in the form of particles. Further, a mixture of a fiber state and a particle state may be used. Further, it may be in a fibrous state, a particle state or a mixture thereof, into a desired shape (for example, a honeycomb shape). It is preferable that the fibrous carrier is molded into a desired shape and used, since the pressure loss of the gas to be treated is large. However, the carrier in the particulate state is molded because the pressure loss of the gas to be treated is small. It can be used without any modification. Therefore, when the catalyst for decomposing chlorinated organic compounds of the present invention uses a particulate carrier, for example, it is possible to secure prompt circulation of exhaust gas simply by directly filling it into an exhaust gas decomposition treatment tower of an incineration facility. At the same time, it is possible to effectively decompose various chlorinated organic compounds in the form of gas and particles contained in exhaust gas.
ここで、 繊維状態の担体としては、 例えば炭素繊維や活性炭素繊維を挙げる ことができる。 ここで利用可能な炭素繊維は、 公知の各種の炭素前駆体を紡糸 し、 これを不融ィヒまたは炭素化したものである。 また、 活性炭素繊維は、 公知 の各種の炭素前駆体を紡糸し、 これを不融化または炭素化するとともに貝武活し たものである。 因みに、 炭素繊維および活性炭素繊維として好ましいものは、 ポリアクリロニトリル系、 レーヨン系、 ピッチ系、 リグニンーポバール系から なる群から選ばれた少なくとも 1種のもの、 すなわち、 当該群から選ばれた 1 種のものまたは 2種以上の混合物である。 活性炭素繊維としてこのようなもの を用いた場合は、 その比表面積および平均細孔径が後述するような好ましい範 囲に設定され易く、 ガス態および粒子態の両方の塩素化有機化合物を効果的に 分解することができる。 Here, examples of the fibrous carrier include carbon fibers and activated carbon fibers. The carbon fibers usable here are obtained by spinning various known carbon precursors and infusing or carbonizing them. Activated carbon fibers are obtained by spinning various known carbon precursors, making them infusible or carbonized, and activating them. Incidentally, preferred as carbon fibers and activated carbon fibers are: It is at least one member selected from the group consisting of polyacrylonitrile, rayon, pitch, and lignin-poval, that is, one member selected from the group or a mixture of two or more members. When such an activated carbon fiber is used, its specific surface area and average pore diameter are likely to be set in the preferable ranges described later, and both chlorinated organic compounds in gaseous form and in particulate form can be effectively removed. Can be disassembled.
一方、 粒子状態の担体としては、 例えば、 シリカ、 アルミナ、 粒状炭、 粒状 活性炭、 ゼォライ ト、 活性白土などを挙げることができる。 このような粒子状 態の担体は、 2種以上のものが混合して用いられてもよい。 これらの粒子状態 の担体のうち、 粒状活性炭、 特に薬品賦活により得られる粒状活性炭は、 比表 面積が大きく、 触媒成分を表面に分散し易いという特徴を有している。 なお、 ここで言う粒状活性炭は、 粒子径が小さな粉末状活性炭を含む概念である。 因みに、 粒子状態の担体の平均粒径は、 特に限定されるものではないが、 被 処理気体の圧損を考慮した場合、 通常、 0. l〜20mmが好ましく、 3〜1 Ommがより好ましい。  On the other hand, examples of the carrier in the form of particles include silica, alumina, granular charcoal, granular activated carbon, zeolite, and activated clay. Two or more kinds of such particulate carriers may be used as a mixture. Among these particulate carriers, granular activated carbon, particularly granular activated carbon obtained by chemical activation, has a large specific surface area and is characterized in that the catalyst component is easily dispersed on the surface. The granular activated carbon mentioned here is a concept including powdered activated carbon having a small particle diameter. Incidentally, the average particle size of the carrier in a particulate state is not particularly limited, but is usually preferably 0.1 to 20 mm, more preferably 3 to 1 Omm, in consideration of the pressure loss of the gas to be treated.
本発明で担体として用いられる粒子状態のシリカとしては、 例えば、 富士デ ィビソン株式会社の商品名 "シリカゲル A" 、 "シリカゲル B " および "シリ 力ゲル RD" を挙げることができる。 また、 粒子状態のアルミナとしては、 例 えば、 水澤化学株式会社の商品名 "N e o b e a d C" 、 "N e o b e a d D" および "Ne o b e a d SA" を挙げることができる。 さらに粒状活性 炭としては、 例えば、 武田薬品工業株式会社の商品名 "C a r b T e c h— A " 、 "C a r b T e c h— B" 、 "WH 2 C— 20 / 48 " 、 "WH2C— 8 ノ32" 、 "WH2C—28Z7 OSS" 、 "G 2 X— 4/ 6 _ 1 " および " G2C-4/8" を挙げることができる。 さらに、 粉末状活性炭としては、 例 えば、 大阪瓦斯株式会社の商品名 "M— 24" 、 "M— 30" および "M_ 3 8 " 並びに二村化学工業株式会社の商品名 "薬品賦活活性炭" および "水蒸気 賦活活性炭" を挙げることができる。 Examples of the silica in a particle state used as a carrier in the present invention include "Silica Gel A", "Silica Gel B", and "Silica Gel RD" (trade names) of Fuji Davison Corporation. Examples of the particulate alumina include, for example, "Neobead C", "Neobead D" and "Ne obead SA" (trade names) of Mizusawa Chemical Co., Ltd. Examples of the granular activated carbon include, for example, trade names “C arb T ech—A”, “C arb T ech—B”, “WH 2 C—20 / 48”, and “WH2C—8 32 "," WH2C-28Z7 OSS "," G2X-4 / 6_1 "and" G2C-4 / 8 ". Further, as powdered activated carbon, for example, trade names “M-24”, “M-30” and “M_3” of Osaka Gas Co., Ltd. 8 "and the trade names of Nimura Chemical Co., Ltd." chemical activated carbon "and" steam activated carbon ".
本発明の触媒で用いられる担体として好ましいものは、 耐酸化性を有するも の、 例えば、 シリカ、 アルミナ、 ゼォライト、 活性白土またはこれらの任意の 組み合わせによる混合物である。 また、 活性炭素繊維等の炭素系の担体に対し てポリシランやシロキサンをコーティングして熱処理したものも耐酸化性を発 揮し得る。 このような担体を用いた場合は、 それら自体が酸化されにくく安定 であるので、 長期間に渡って安定な分解活性を示す寿命の長い塩素化有機ィ匕合 物分解用触媒を実現することができる。 因みに、 このような耐酸化性を有する 担体は、 通常、 熱分析 (T G分析) を実施した場合において、 1 5 0 °C以上の 温度範囲に相転移点を有するもの、 または 2 5 0 °Cの酸化性雰囲気中で 1ヶ月 放置した場合でも重量減少率が 0 . 3 %以下のものである。  Preferred as the carrier used in the catalyst of the present invention are those having oxidation resistance, for example, silica, alumina, zeolite, activated clay or a mixture of any combination thereof. A carbon-based carrier such as activated carbon fiber coated with polysilane or siloxane and heat-treated can also exhibit oxidation resistance. When such carriers are used, they themselves are not easily oxidized and are stable, so that it is possible to realize a long-life catalyst for decomposing chlorinated organic compounds exhibiting stable decomposition activity over a long period of time. it can. Incidentally, such a carrier having oxidation resistance usually has a phase transition point in a temperature range of 150 ° C. or more when subjected to thermal analysis (TG analysis), or 250 ° C. Even if left for one month in an oxidizing atmosphere, the weight loss rate is 0.3% or less.
また、 本発明の触媒で用いられる担体として好ましいものは、 比表面積が少 なくとも 1 0 0 m2/ g (すなわち、 l O O n^Z g以上) でありかつ平均細 孔径が少なくとも 1 0オングストローム (すなわち、 1 0オングスト口一ム以 上) の多孔質状のものである。 担体の比表面積が 1 0 0 m2/ g未満でありか つ平均細孔径が 1 0オングストローム未満の場合は、 担体の単位重量当たりの ガス処理可能量が少なくなるため、 塩素化有機化合物を含む排気ガスなどの被 処理気体を効率的にかつ効果的に処理しにくくなるおそれがある。 また、 粒子 態の塩素化有機化合物が吸着されにくくなるおそれがあり、 そのような塩素化 有機化合物を効果的に分解処理するのが困難になるおそれがある。 Further, a preferable carrier used in the catalyst of the present invention has a specific surface area of at least 100 m 2 / g (ie, at least 100 n ^ Z g) and an average pore diameter of at least 10 Å. (That is, 10 Å or more). If the specific surface area of the carrier is less than 100 m 2 / g and the average pore diameter is less than 100 Å, the amount of gas that can be processed per unit weight of the carrier will be small, and the chlorinated organic compound will be included. It may be difficult to efficiently and effectively treat the gas to be treated such as exhaust gas. In addition, the particulate chlorinated organic compound may not be easily adsorbed, and it may be difficult to effectively decompose such a chlorinated organic compound.
なお、 担体の比表面積は少なくとも 3 0 O m2/ gであるのがより好ましく、 少なくとも 5 0 0 m 2 / gであるのがさらに好ましレ、。 また、 平均細孔径は少 なくとも 1 4オングストロームであるのがより好ましく、 少なくとも 1 8オン ダストロームであるのがさらに好ましい。 因みに、 上述の比表面積は、 窒素吸 着法に従って求めた BET比表面積である。 一方、 平均細孔径は、 窒素吸着法 により測定した B E T比表面積と細孔容積の値とから算出した値である。 上述 の各種の担体が混合物として用いられる場合、 上述の比表面積や平均細孔径は、 混合物全体の値として設定されていればよい。 Incidentally, more preferably a specific surface area of the carrier is at least 3 0 O m 2 / g, the at least 5 0 0 m 2 / g and more preferably les. Further, the average pore diameter is more preferably at least 14 angstroms, and even more preferably at least 18 angstroms. By the way, the specific surface area mentioned above is The BET specific surface area determined according to the deposition method. On the other hand, the average pore diameter is a value calculated from the BET specific surface area measured by the nitrogen adsorption method and the value of the pore volume. When the above-described various carriers are used as a mixture, the specific surface area and the average pore diameter described above may be set as values for the entire mixture.
また、 上述のような多孔質状の担体を用いる場合、 その細孔容積は、 上述の 比表面積および平均細孔径により決定され得るが、 通常、 少なくとも 0. 15 c c/g (すなわち、 0. 15 c c/g以上) に設定されているのが好ましく、 少なくとも 0. 50 c c/gに設定されているのがより好ましい。 なお、 ここ で言う細孔容積は、 窒素吸着法に従って求めることができる全細孔容積である。 本発明で用いられる上述の担体は、 第 1触媒成分および第 2触媒成分の担持 量を増大させることを目的として、 適宜表面処理されていてもよい。 表面処理 としては、 例えば、 後述するような酸の水溶液による煮沸処理や触媒エツチン グ処理を挙げることができる。  When a porous carrier as described above is used, its pore volume can be determined by the specific surface area and the average pore diameter described above, but is usually at least 0.15 cc / g (ie, 0.15 cc / g). cc / g or more), and more preferably at least 0.50 cc / g. The pore volume referred to here is the total pore volume that can be determined according to the nitrogen adsorption method. The above-mentioned carrier used in the present invention may be appropriately surface-treated for the purpose of increasing the carrying amount of the first catalyst component and the second catalyst component. Examples of the surface treatment include a boiling treatment with an aqueous solution of an acid and a catalyst etching treatment as described below.
上述のような担体に担持される第 1触媒成分は、 金元素、 特に金の微粒子か らなる。 担体に担持される第 1触媒成分の量は、 通常、 担体 100 g当たり 0. 05〜5 g、 好ましくは 0. l〜3 g、 より好ましくは 0. 5〜2 gに設定さ れる。 この担持量が 0. 05 g未満の場合は、 本発明の触媒が触媒活性、 すな わち塩素化有機ィヒ合物の分解活性を殆ど示さなくなるおそれがある。 逆に、 5 gを超えると、 金の粒子のサイズが大きくなり、 本発明の触媒の触媒活性が極 端に低下するおそれがある。  The first catalyst component supported on the carrier as described above is made of fine particles of gold, particularly gold. The amount of the first catalyst component supported on the carrier is usually set to 0.05 to 5 g, preferably 0.1 to 3 g, more preferably 0.5 to 2 g per 100 g of the carrier. If the supported amount is less than 0.05 g, the catalyst of the present invention may hardly exhibit catalytic activity, that is, almost no activity for decomposing chlorinated organic compounds. Conversely, if it exceeds 5 g, the size of the gold particles increases, and the catalytic activity of the catalyst of the present invention may be extremely reduced.
なお、 第 1触媒成分は、 通常、 平均粒径が 20 nm以下の微粒子状で担体に 担持されているのが好ましい。  It is preferable that the first catalyst component is usually supported on a carrier in the form of fine particles having an average particle diameter of 20 nm or less.
一方、 担体に担持される第 2触媒成分は、 マグネシウム、 アルミニウム、 ケ ィ素、 チタン、 マンガン、 鉄、 コバノレト、 ニッケル、 銅、 亜鉛、 イットリウム、 ジルコニウム、 ニオブ、 モリブデン、 インジウム、 スズ、 ランタンおよびセリ ゥムからなる元素群 (第 1元素群) 力 選ばれた元素の酸ィ匕物である。 この第 2触媒成分は、 当該元素群から選ばれた元素の酸化物が 2種以上混合されたも のであってもよい。 On the other hand, the second catalyst component supported on the carrier is magnesium, aluminum, silicon, titanium, manganese, iron, covanolate, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, indium, tin, lanthanum, and cerium. Group of elements consisting of Pt (1st group of elements) Power An oxide of the selected element. The second catalyst component may be a mixture of two or more oxides of an element selected from the element group.
上述の酸ィヒ物は、 上述の元素群に含まれる元素の各種の酸化物であって特に 限定されるものではなく、 例えば、 酸化マグネシウム (MgO) 、 酸化アルミ ニゥム (A 1203) 、 酸化ケィ素 (S i 0、 S i 02) 、 酸化チタン (T i 0、 T i 23、 T i O2) 、 酸化マンガン (MnO、 Mn 304、 Mn 203、 Mn 02、 Mn03、 Mn 207) 、 酸ィ匕鉄 (F e〇、 F e34、 F e 203) 、 酸ィ匕 コノ ノレト (CoO、 Co 203、 Co34、 Co02) 、 酸化ニッケル (N i◦、 N i 304、 N i〇2) 、 酸化銅 (Cu02、 CuO) 、 酸化亜鉛 (ZnO) 、 酸ィ匕イットリウム (Y23) 、 酸ィヒジルコニウム (Z r〇2) 、 酸化ニオブ ( NbO、 Nb 203、 Nb02、 Nb 205) 、 酸化モリブデン (MoO、 MoO 2、 Mo 205、 Mo03) 、 酸化インジウム (I n 203) 、 酸化スズ (SnO、 S n02) 、 酸化ランタン (La 203) 、 酸ィ匕セリウム (Ce〇2、 C e 203 ) を挙げることができる。 このうち、 第 1触媒成分である金の微粒子の分散性 を高め、 また、 本発明の触媒の低温酸化分解活性を高めることができることか ら、 MgO、 A1203、 S i〇2、 T i〇2、 Mn〇、 F e203、 Co34、 N i 0、 CuO、 ZnO、 Y203、 Z r〇2、 Nb25、 Mo03、 l n 203、 S n02、 La 2O3および C e 02を用いるのが好ましレヽ。 Acid I dry matter described above is not particularly limited to a variety of oxides of elements included in the element group described above, for example, magnesium oxide (MgO), aluminum oxide Niumu (A 1 2 0 3) oxide Kei element (S i 0, S i 0 2), titanium oxide (T i 0, T i 23, T i O 2), manganese oxide (MnO, Mn 3 0 4, Mn 2 0 3, Mn 0 2, Mn0 3, Mn 2 0 7), Sani匕鉄(F E_〇, F e 3 4, F e 2 0 3) , Sani匕Kono Noreto (CoO, Co 2 0 3, Co 3 〇 4, CO0 2), nickel oxide (N i◦, N i 3 0 4, N I_〇 2), copper oxide (Cu0 2, CuO), zinc oxide (ZnO), Sani匕yttrium (Y 23) acid I arsenide zirconium (Z R_〇 2), niobium oxide (NbO, Nb 2 0 3, Nb0 2, Nb 2 0 5), molybdenum oxide (MoO, MoO 2, Mo 2 0 5, Mo0 3), indium oxide (I n 2 0 3), tin oxide (SnO, S n0 2), oxide Lanta Emissions (La 2 0 3), may be mentioned Sani匕cerium (Ce_〇 2, C e 2 0 3) . Among them, enhance the dispersibility of the fine particles of gold, which is the first catalyst component, and it either et al can increase the low-temperature oxidative decomposition activity of the catalyst of the present invention, MgO, A1 2 0 3, S I_〇 2, T I_〇 2, Mn_〇, F e 2 0 3, Co 3 〇 4, N i 0, CuO, ZnO, Y 2 0 3, Z R_〇 2, Nb 2 5, Mo0 3, ln 2 0 3, S n0 2, La 2 O 3 and C e 0 2 Shi preferred to use Rere.
担体に担持される第 2触媒成分の量は、 通常、 担体 100 g当たり 1〜25 g、 好ましくは 5〜25 g、 より好ましくは 12〜 20 gに設定される。 この 担持量が 1 g未満の場合は、 本発明の触媒が触媒活性を殆ど示さなくなるおそ れがある。 逆に、 25 gを超えると、 担体から第 2触媒成分が分離してしまう おそれがある。  The amount of the second catalyst component supported on the carrier is usually set to 1 to 25 g, preferably 5 to 25 g, more preferably 12 to 20 g per 100 g of the carrier. If the supported amount is less than 1 g, the catalyst of the present invention may hardly show any catalytic activity. Conversely, if it exceeds 25 g, the second catalyst component may be separated from the carrier.
担体に担持される上述の第 1触媒成分と第 2触媒成分との比率は、 通常、 第 2触媒成分に対する第 1触媒成分のモル比が 0. 005〜 0. 2、 好ましくは 0. 01〜0. 2、 より好ましくは 0. 03〜0. 15になるよう設定する。 このモル比が 0. 005未満の場合は、 本発明の触媒が触媒活性を殆ど示さな くなるおそれがある。 逆に、 0. 2を超える場合は、 第 1触媒成分である金の 微粒子のサイズが大きくなり、 本発明の触媒の触媒活性が極端に低下するおそ れカある。 The ratio between the first catalyst component and the second catalyst component supported on the carrier is usually The molar ratio of the first catalyst component to the two catalyst components is set to be 0.005 to 0.2, preferably 0.01 to 0.2, and more preferably 0.03 to 0.15. If this molar ratio is less than 0.005, the catalyst of the present invention may hardly exhibit catalytic activity. Conversely, if it exceeds 0.2, the size of the fine gold particles as the first catalyst component becomes large, and the catalytic activity of the catalyst of the present invention may be extremely reduced.
次に、 本発明に係る上述の塩素化有機化合物分解用触媒の製造方法について 説明する。 本発明の塩素化有機化合物分解用触媒は、 基本的に担体に対して第 1触媒成分および第 2触媒成分を担持させることにより製造することができる 力 担体は、 触媒成分が担持されやすいようにするために予め表面化学状態を 改質しておくのが好ましい。  Next, a method for producing the chlorinated organic compound decomposition catalyst according to the present invention will be described. The catalyst for decomposing chlorinated organic compounds of the present invention can be basically produced by supporting a first catalyst component and a second catalyst component on a carrier. For this purpose, it is preferable to previously modify the surface chemical state.
ここで、 担体の表面化学状態を改質するための方法としては、 例えば酸の水 溶液中で担体を煮沸処理する方法や担体に対して所謂触媒ェツチング処理を施 す方法などを採用することができる。 因みに、 触媒エッチング処理とは、 担体 に所定の触媒を分散させ、 その触媒の作用により担体の既存の細孔を拡大した り担体に新たな細孔を形成する処理をいう。  Here, as a method for modifying the surface chemical state of the support, for example, a method of boiling the support in an aqueous solution of an acid or a method of subjecting the support to a so-called catalytic etching treatment may be employed. it can. Incidentally, the catalyst etching treatment is a treatment in which a predetermined catalyst is dispersed in a carrier, and the existing pores of the carrier are enlarged or new pores are formed in the carrier by the action of the catalyst.
このような表面改質処理が施された担体は、 第 1触媒成分および第 2触媒成 分の付着性が改善され、 これらの触媒成分の担持量を高めることができる。 ま た、 触媒エッチングを施した場合は、 担体の比表面積、 細孔容積および平均細 孔径を増大させることもできるので、 粒子態の塩素化有機化合物の吸着性を高 め、 その分解特性をより高めることができる。  The carrier subjected to such a surface modification treatment has improved adhesion of the first catalyst component and the second catalyst component, and can increase the amount of these catalyst components carried. In addition, when catalytic etching is performed, the specific surface area, pore volume, and average pore diameter of the carrier can be increased, so that the adsorptivity of the particulate chlorinated organic compound is increased, and the decomposition characteristics are improved. Can be enhanced.
例えば、 担体としてピッチ系活性炭素繊維 (平均繊維径 =14. Ομΐη、 B ET比表面積 =1, 92 Om2Zg、 平均細孔径 = 19. 01オングストロー ム) を用い、 当該担体に対し、 第 1触媒成分として金を、 また、 第 2触媒成分 として酸化鉄 (Fe 203) と酸化ランタン (La23) との混合物を、 それ ぞれ炭酸ナトリゥム水溶液を沈殿剤とする共沈殿法により担持させる場合、 ピ ツチ系活性炭素繊維に対して酸の水溶液を用いた煮沸処理を実施しなければ、 担持される触媒の総量はピッチ系活性炭素繊維 1 0 0 g当たり僅か 2 . 5重量 %である。 これに対し、 ピッチ系活性炭素繊維を 3◦%硝酸水溶液の沸騰液中 で 2時間煮沸した場合は、 担持される触媒の総量がピッチ系活性炭素繊維 1 0 0 g当たり 1 3重量%になる。 For example, pitch-based activated carbon fiber (average fiber diameter = 14..μΐη, BET specific surface area = 1, 92 Om 2 Zg, average pore diameter = 19.01 angstrom) is used as a carrier. gold as first catalyst component, also a mixture of iron oxide as a second catalyst component (Fe 2 0 3) and lanthanum oxide (La 23), it In the case of supporting by a coprecipitation method using an aqueous solution of sodium carbonate as a precipitant, unless the boiling treatment using an aqueous solution of an acid is performed on the activated carbon fibers, the total amount of the supported catalyst is pitch-based. It is only 2.5% by weight per 100 g of activated carbon fiber. On the other hand, when pitch-based activated carbon fiber is boiled for 2 hours in a boiling solution of 3 °% nitric acid aqueous solution, the total amount of supported catalyst becomes 13% by weight per 100 g of pitch-based activated carbon fiber. .
一方、 担体としてピッチ系活性炭素繊維 (平均繊維径 = 1 4 . 0 i m, B E T表面積 = 1, 9 2 O n^Z g、 平均細孔径 = 1 9 . 0 1オングストローム) を用い、 当該担体に対し、 第 1触媒成分として金を、 また、 第 2触媒成分とし て酸ィ匕マグネシウム (M g O) を、 それぞれ炭酸ナトリウム水溶液を沈殿剤と する共沈殿法により担持させる場合、 ピッチ系活性炭素繊維に対して触媒エツ チング処理を施さなければ、 担持される触媒の総量はピッチ系活性炭素繊維 1 0 0 g当たり僅か 3 . 1重量%である。 これに対し、 ピッチ系活性炭素繊維に 対して触媒としてのニッケルを 0 . 5重量%分散してから 5 0 0 °Cの水素雰囲 気中で 1時間エッチング処理を施した場合は、 担持される触媒の総量がピッチ 系活性炭素繊維 1 0 0 g当たり 1 4 . 1重量%になる。  On the other hand, pitch-based activated carbon fiber (average fiber diameter = 14.0 im, BET surface area = 1,92 On ^ g, average pore diameter = 19.0 Å) was used as a carrier, and the carrier was used as the carrier. On the other hand, when gold is used as the first catalyst component, and magnesium oxide (MgO) is supported as the second catalyst component by the coprecipitation method using an aqueous sodium carbonate solution as a precipitant, pitch-based activated carbon is used. If the fiber is not subjected to a catalyst etching treatment, the total amount of the supported catalyst is only 3.1% by weight per 100 g of the pitch-based activated carbon fiber. On the other hand, when 0.5% by weight of nickel as a catalyst was dispersed in the pitch-based activated carbon fiber and then etched in a hydrogen atmosphere at 500 ° C. for 1 hour, the supported carbon was supported. The total amount of the catalyst becomes 14.1% by weight per 100 g of the pitch-based activated carbon fiber.
担体を酸の水溶液中で煮沸してその表面化学状態を改質する場合に用いられ る酸の水溶液は、 無機酸の水溶液である。 ここで利用可能な無機酸としては、 例えば硝酸、 塩酸、 フッ化水素酸、 硫酸およびリン酸を挙げることができる。 このような無機酸の水溶液は、 2種以上の無機酸を混合して調製されたもので あってもよい。 また、 無機酸の濃度は、 通常、 3 %〜飽和濃度に設定するのが 好ましいが、 酸濃度を高く設定した方が通常はより良好な表面改質効果が得ら れる。  The aqueous acid solution used when the carrier is boiled in an aqueous acid solution to modify its surface chemical state is an aqueous inorganic acid solution. Examples of the inorganic acid that can be used here include nitric acid, hydrochloric acid, hydrofluoric acid, sulfuric acid, and phosphoric acid. Such an aqueous solution of an inorganic acid may be prepared by mixing two or more inorganic acids. The concentration of the inorganic acid is usually preferably set to 3% to a saturated concentration, but a higher acid concentration usually gives a better surface modification effect.
上述の酸の水溶液による担体の煮沸処理温度は、 室温から酸の水溶液の沸騰 温度の範囲に設定することができ、 また、 煮沸処理時間は、 通常、 1分以上に 設定される。 なお、 煮沸処理温度は高い程、 また、 煮沸処理時間は長い程、 よ り良好な表面改質効果が得られる。 The boiling temperature of the carrier with the aqueous solution of an acid described above can be set in a range from room temperature to the boiling temperature of the aqueous solution of the acid, and the boiling time is usually 1 minute or more. Is set. The higher the boiling temperature and the longer the boiling time, the better the surface modification effect.
上述のような煮沸処理工程の終了後、 処理された担体を水洗浄する。 ここで は、 担体に付着している酸および酸処理による生成物をイオン交換水を用いて 可能な限り洗い流すのが好ましい。 担体に酸や酸処理による生成物が残存して いる場合は、 本発明の塩素化有機化合物分解用触媒の分解活性が低下するおそ れがある。  After the above-mentioned boiling treatment process is completed, the treated carrier is washed with water. Here, it is preferable to wash off the acid adhering to the carrier and the product of the acid treatment as much as possible using ion-exchanged water. When an acid or a product produced by the acid treatment remains on the carrier, the decomposition activity of the catalyst for decomposing chlorinated organic compounds of the present invention may be reduced.
一方、 担体に対して触媒エッチング処理を施す場合は、 先ず、 担体に対して エッチング触媒を分散させる。 ここで用いられるエッチング触媒は、 例えば、 鉄、 ニッケル、 ルテニウム、 ロジウム、 パラジウムおよび白金からなる元素群 (第 2元素群) 力、ら選ばれた少なくとも 1種の金属元素である。 このようなェ ッチング触媒の分散量は、 通常、 担体 1 0 0 g当たりに対し 0 . 0 1〜 5 g、 好ましくは 0 . 0 5〜 2 . 0 g、 より好ましくは 0 . 1〜1 . 0 gに設定する。 この分散量が 0 . 0 1 g未満の場合は、 担体の表面を十分に改質できないおそ れがある。 逆に、 5 gを超える場合は、 担体の表面全体が触媒エッチングされ る場合があり、 微細な表面凹凸が形成できないおそれがある。  On the other hand, when the catalyst is subjected to the catalyst etching treatment, first, the etching catalyst is dispersed in the carrier. The etching catalyst used herein is, for example, at least one metal element selected from the group consisting of iron, nickel, ruthenium, rhodium, palladium, and platinum (second element group). The dispersion amount of such an etching catalyst is usually 0.01 to 5 g, preferably 0.05 to 2.0 g, more preferably 0.1 to 1.0 g per 100 g of the carrier. Set to 0 g. If the amount of dispersion is less than 0.01 g, the surface of the carrier may not be sufficiently modified. Conversely, if it exceeds 5 g, the entire surface of the carrier may be catalytically etched, and fine surface irregularities may not be formed.
なお、 上述のエッチング触媒は、 上述の金属元素の化合物として担体に分散 されてもよい。 この場合、 上述の分散量は、 金属元素換算の値である。 なお、 金属元素の化合物としては、 例えば、 酢酸塩、 硝酸塩、 硫酸塩などを用いるこ とができる。  The above-mentioned etching catalyst may be dispersed in a carrier as a compound of the above-mentioned metal element. In this case, the above dispersion amount is a value in terms of a metal element. In addition, as the compound of the metal element, for example, acetate, nitrate, sulfate and the like can be used.
担体に対してエッチング触媒を分散させる方法としては、 公知の各種の方法、 例えば、 含浸法、 沈殿析出法、 共沈殿法および蒸着法などの公知の金属分散方 法を採用することができる。 これらの分散方法は、 上述の金属元素またはその 化合物の種類に応じて適宜選択することができる。  As a method of dispersing the etching catalyst in the carrier, various known methods, for example, a known metal dispersion method such as an impregnation method, a precipitation method, a coprecipitation method, and a vapor deposition method can be adopted. These dispersion methods can be appropriately selected according to the type of the above-mentioned metal element or its compound.
上述のようにしてエッチング触媒が分散された担体をエッチングする際には、 水素ガス、 水素と不活性ガスとの混合ガスなどの還元性ガス雰囲気中において、When etching the carrier in which the etching catalyst is dispersed as described above, In a reducing gas atmosphere such as hydrogen gas or a mixed gas of hydrogen and an inert gas,
3 0 0〜7 0 0 °C (好ましくは 3 5 0〜 5 5 0 °C) の温度範囲で担体を熱処理 する。 ここでの処理温度が 3 0 0 °C未満の場合は、 担体に対して十分なエッチ ング効果を付与することができない場合がある。 逆に、 7 0 0 °Cを超える場合 は、 担体に分散させたエッチング触媒の微粒子が成長して焼結されてしまい、 十分なエッチング効果が得られないおそれがある。 ここでの処理時間は、 通常、 5分以上に設定するのが好ましいが、 処理時間を長く設定する方が表面処理効 果は高くなる。 The support is heat-treated in a temperature range of 300 to 700 ° C (preferably 350 to 550 ° C). When the treatment temperature is less than 300 ° C., a sufficient etching effect may not be provided to the carrier. On the other hand, when the temperature exceeds 700 ° C., fine particles of the etching catalyst dispersed in the carrier grow and sinter, so that a sufficient etching effect may not be obtained. Usually, the treatment time is preferably set to 5 minutes or more, but the longer the treatment time, the higher the surface treatment effect.
担体に対して上述のような触媒エッチング処理を施した場合は、 水添化活性 を示す上述のェツチング触媒の作用の下で、 担体の表面の酸素含有官能基や結 合力の弱い炭素一炭素結合が水素等の還元性ガスと反応して一酸化炭素、 二酸 化炭素および水に転化され、 生成したこれらの一酸化炭素、 二酸化炭素および 水が担体の表面から脱落する。 これにより、 担体の既存の細孔が拡大され、 ま た、 担体に新しい細孔が形成される。 この結果、 触媒エッチング処理された担 体は、 比表面積、 細孔容積および平均細孔径が増大することになる。 また、 触 媒ェツチング処理後の担体の表面は、 官能基分布および官能基濃度などの表面 化学状態が処理前に比べて変化し、 金属や金属化合物、 すなわち、 第 1触媒成 分および第 2触媒成分の付着性が高まる。  When the above-mentioned catalytic etching treatment is applied to the carrier, the oxygen-containing functional group on the surface of the carrier and the carbon-carbon bond having a weak binding force are formed under the action of the above-mentioned etching catalyst exhibiting hydrogenation activity. Reacts with reducing gas such as hydrogen to be converted into carbon monoxide, carbon dioxide and water, and the produced carbon monoxide, carbon dioxide and water fall off the surface of the carrier. This enlarges the existing pores of the carrier and creates new pores in the carrier. As a result, the carrier subjected to the catalytic etching treatment has an increased specific surface area, pore volume, and average pore diameter. In addition, the surface of the support after the catalyst etching treatment changes in the surface chemical state, such as the distribution of functional groups and the concentration of the functional groups, as compared with before the treatment, and the metal or metal compound, that is, the first catalyst component and the second catalyst The adhesion of the components increases.
担体に対する上述の煮沸処理および触媒ェッチング処理は、 レ、ずれか一方の みが実施されてもよいし、 両方が実施されてもよい。 後者の場合、 処理の順序 は特に限定されるものではなく、 煮沸処理をしてから触媒エッチング処理を施 してもよいし、 触媒エッチング処理の後に煮沸処理を施してもよい。 但し、 煮 沸処理と触媒ェツチング処理の両方の処理による表面改質効果をより効果的に 引き出すためには、 煮沸処理を施した後に触媒ェツチング処理を施すのが好ま しい。 なお、 担体として比表面積および平均細孔径が上述のように設定された多孔 質状のものを用いる場合、 担体の比表面積および平均細孔径は、 上述のような 煮沸処理や触媒エッチング処理などの前処理前から上述のような範囲に設定さ れていてもよいし、 上述のような前処理により上述のような範囲に設定されて もよい。 すなわち、 この種の担体は、 次に説明する触媒成分の担持工程の前に 比表面積および平均細孔径が上述の範囲に設定されてレヽればよレ、。 The above-mentioned boiling treatment and catalyst etching treatment for the carrier may be performed either or both, or both. In the latter case, the order of the treatment is not particularly limited, and the boiling treatment may be performed before the catalyst etching treatment, or the boiling treatment may be performed after the catalyst etching treatment. However, in order to more effectively bring out the surface modification effect by both the boiling treatment and the catalyst etching treatment, it is preferable to perform the catalyst etching treatment after the boiling treatment. When a porous carrier having a specific surface area and an average pore diameter set as described above is used as the carrier, the specific surface area and the average pore diameter of the carrier are determined before the boiling treatment and the catalyst etching treatment as described above. The above range may be set before the processing, or the above range may be set by the above preprocessing. In other words, this type of support should have its specific surface area and average pore diameter set within the above ranges before the catalyst component supporting step described below.
次に、 上述のようにして処理された担体に対し、 第 1触媒成分および第 2触 媒成分を担持させる。 これらの触媒成分を担体に対して担持させる方法として は、 公知の各種の方法、 例えば、 含浸法、 析出沈殿担持法、 共沈殿法およびク ェン酸マグネシウム添加沈殿法等の化学的手法、 並びに蒸着法、 練込法等の物 理的手法などの公知の金属または金属化合物の分散 ·担持方法を採用すること ができる。  Next, the first catalyst component and the second catalyst component are supported on the carrier treated as described above. As a method of supporting these catalyst components on a carrier, various known methods, for example, a chemical method such as an impregnation method, a precipitation and precipitation supporting method, a coprecipitation method, and a precipitation method with magnesium citrate, and A known method of dispersing and supporting a metal or a metal compound, such as a physical method such as an evaporation method or a kneading method, can be employed.
また、 担体に対して触媒成分を担持させる方法としては、 第 1触媒成分 (即 ち、 金) に転化し得る金化合物および第 2触媒成分 (即ち、 上述のような元素 の酸化物) に転化可能な前駆体を担体に対して担持させた後、 当該金化合物お よび前駆体をそれぞれ第 1触媒成分および第 2触媒成分に転化する方法を採用 することもできる。  In addition, as a method of supporting a catalyst component on a carrier, a gold compound that can be converted into a first catalyst component (that is, gold) and a second catalyst component (that is, an oxide of an element as described above) are converted. It is also possible to adopt a method in which after a possible precursor is supported on a carrier, the gold compound and the precursor are converted into a first catalyst component and a second catalyst component, respectively.
このような方法を採用する場合、 例えば、 金化合物としては金の水酸化物を 用いることができ、 前駆体としては第 2触媒成分を構成する上述の元素の水酸 化物を用いることができる。 このような各種の水酸化物は、 例えば上述の共沈 殿法を採用すると、 担体に対して付与することができる。  When such a method is employed, for example, a gold hydroxide can be used as the gold compound, and a hydroxide of the above-mentioned element constituting the second catalyst component can be used as the precursor. Such various hydroxides can be provided to a carrier by employing, for example, the above-mentioned coprecipitation method.
担体に対して付与された金の水酸ィヒ物および上述の元素の水酸化物は、 通常、 担体を不活性ガス雰囲気中で熱処理した後に必要に応じてさらに還元性ガス雰 囲気中で熱処理を施すことにより、 それぞれ目的とする金および上述の元素の 酸化物に転化することができる。 なお、 担体が耐酸化性を有するシリカ、 アル ミナ、 ゼォライト、 活性白土またはこれらの混合物からなる場合、 不活性ガス 雰囲気中での熱処理工程は、 空気中で実施されてもよい。 The gold hydroxide and the hydroxides of the above elements applied to the carrier are usually heat-treated in an inert gas atmosphere, and then, if necessary, in a reducing gas atmosphere. By performing the above, it is possible to convert them into the desired gold and oxides of the above-described elements, respectively. Note that the carrier is silica or aluminum, which has oxidation resistance. When it is made of mina, zeolite, activated clay or a mixture thereof, the heat treatment step in an inert gas atmosphere may be performed in air.
ここで、 不活性ガス雰囲気中 (または空気中) での熱処理は、 担体に担持さ れた上述の元素の水酸化物を目的とする酸化物に転化させ、 第 2触媒成分を形 成するための工程である。 ここでの熱処理温度は、 通常、 2 5 0〜7 0 0 °C、 好ましくは 3 0 0〜4 5 (TCに設定する。 この処理温度が 2 5 0 °C未満の場合 は、 上述の元素の水酸化物が目的とする酸化物に転化されにくくなるおそれが ある。 逆に、 7 0 0°Cを超える場合は、 生成した金属酸化物が焼結され、 本発 明の触媒の活性が低下するおそれがある。 また、 熱処理時間は、 通常、 5分以 上に設定するのが好ましい。 熱処理時間が 5分未満の場合は、 上述の元素の水 酸化物が目的とする酸化物に転化されにくレ、場合がある。  Here, the heat treatment in an inert gas atmosphere (or in the air) converts the hydroxide of the above-mentioned element supported on the carrier into a target oxide to form the second catalyst component. It is a process of. The heat treatment temperature here is usually from 250 to 700 ° C., preferably from 300 to 45 ° C. (Set to TC. If this treatment temperature is lower than 250 ° C., If the temperature exceeds 700 ° C., the produced metal oxide is sintered, and the activity of the catalyst of the present invention is reduced. The heat treatment time is usually preferably set to 5 minutes or more, and when the heat treatment time is less than 5 minutes, the hydroxide of the above-mentioned element is converted into the target oxide. Unfortunately, there are cases.
一方、 還元性ガス雰囲気中での熱処理は、 上述の不活性ガス雰囲気中 (また は空気中) での熱処理により同時に生成する金の酸ィヒ物を還元して金元素その ものに転化させ、 第 1触媒成分を形成するための工程である。 ここでの熱処理 温度は、 通常、 2 0 0〜6 0 0 °C、 好ましくは 2 5 0〜4 0 0 °Cに設定する。 この処理温度が 2 0 0 °C未満の場合は、 金の酸化物が金元素に転化されにくレ、 場合がある。 逆に、 処理温度が 6 0 0 °Cを超える場合は、 上述の不活性ガス雰 囲気中 (または空気中) での熱処理により生成した他の酸化物 (すなわち、 第 2触媒成分) が金属元素に還元されてしまうおそれがある。 また、 熱処理時間 は、 金の酸化物を金元素に転化させやすくするために、 通常 5分以上に設定す るのが好ましいが、 処理時間が長くなり過ぎると、 上述の不活性ガス雰囲気中 (または空気中) での熱処理により生成した他の酸ィ匕物も対応する金属元素に 同時に還元されてしまうおそれがある。 従って、処理温度と処理時間は、 金の 酸化物のみが還元されて金元素に転化されるように、 適切に調整する必要があ る。 本発明の塩素化有機化合物分解用触媒は、 上述のような担体に第 1触媒成分 と第 2触媒成分とを担持させたものであるため、 ダイォキシン類、 並びにダイ ォキシン類に転ィヒし得るポリクロロビフエ-ル (P C B ) 、 トリクロロェチレ ン、 トリクロロェタン、 ジクロロメタン、 クロ口フエノーノレ類、 クロ口べンゼ ンおよびその他のハロゲン化炭化水素化合物などの塩素化有機ィヒ合物を効果的 に酸化分解して無毒性の低分子化合物に転化することができる。 On the other hand, in the heat treatment in a reducing gas atmosphere, the gold oxide generated simultaneously by the heat treatment in the above-mentioned inert gas atmosphere (or in the air) is reduced and converted into a gold element itself. This is a step for forming a first catalyst component. The heat treatment temperature here is usually set at 200 to 600 ° C, preferably at 250 to 400 ° C. If the treatment temperature is lower than 200 ° C., it may be difficult to convert the gold oxide into the gold element. Conversely, when the treatment temperature exceeds 600 ° C., other oxides (ie, the second catalyst component) generated by the heat treatment in the above-described inert gas atmosphere (or in the air) may contain metallic elements. May be reduced to In addition, the heat treatment time is usually preferably set to 5 minutes or more in order to easily convert the gold oxide to a gold element. However, if the treatment time is too long, the above-mentioned inert gas atmosphere ( Alternatively, other oxides formed by the heat treatment in the air) may be simultaneously reduced to the corresponding metal elements. Therefore, the treatment temperature and treatment time need to be adjusted appropriately so that only the gold oxide is reduced and converted to elemental gold. Since the catalyst for decomposing chlorinated organic compounds of the present invention has the first catalyst component and the second catalyst component supported on the above-described carrier, it can be converted into dioxins and dioxins. Effectively oxidizes chlorinated organic compounds such as polychlorobiphenyl (PCB), trichloroethylene, trichloroethane, dichloromethane, chlorophenol, chlorobenzene and other halogenated hydrocarbon compounds. It can be broken down and converted to non-toxic low molecular weight compounds.
特に、 本発明の塩素化有機化合物分解用触媒は、 ガス態の塩素化有機化合物 を効果的に酸化分解できるのは勿論であるが、 分解活性が非常に高いために従 来の触媒では処理が困難であった粒子態の塩素化有機化合物をも同時に効果的 に酸化分解することができる。 特に、 比表面積および平均細孔径が上述のよう に設定された多孔質状の担体を用いてレヽる場合、 粒子態の塩素化有機化合物は、 当該担体の特有の多孔質構造のために本発明の触媒に捕捉 (吸着) され易くな り、 捕捉された状態で効果的に酸化分解され得る。  In particular, the catalyst for decomposing chlorinated organic compounds of the present invention can, of course, effectively oxidatively decompose gaseous chlorinated organic compounds, but has a very high decomposition activity, so that it can be treated with conventional catalysts. The difficult chlorinated organic compound in particulate form can be effectively oxidatively decomposed at the same time. In particular, when a porous carrier having a specific surface area and an average pore diameter set as described above is used, the particulate chlorinated organic compound may be used in the present invention because of the unique porous structure of the carrier. The catalyst is easily trapped (adsorbed) by the catalyst, and can be effectively oxidatively decomposed in the trapped state.
このため、 本発明の塩素化有機化合物分解用触媒をごみ焼却炉や各種の燃焼 装置などから発生する排気ガスの処理用触媒として用いると、 排気ガス中に含 まれるダイォキシン類などの塩素化有機化合物の 9 5 %以上を 1 5 0〜3 0 0 °Cの温度範囲内において 5, 0 0 0 h r—1以上の空間速度で酸化分解して無毒 性の低分子化合物に転化させ易くなり、 結果的に大気中に放出される排気ガス 中のダイォキシン類等の濃度を国際毒性等価換算濃度で数 n g ZNm3以下に 低減させ易くなる。 For this reason, when the catalyst for decomposing chlorinated organic compounds of the present invention is used as a catalyst for treating exhaust gas generated from a refuse incinerator or various types of combustion equipment, chlorinated organic compounds such as dioxins contained in the exhaust gas are used. 95% or more of the compounds are oxidatively decomposed at a space velocity of 5,000 hr- 1 or more within a temperature range of 150-300 ° C for more than 50,000 hr, and are easily converted to non-toxic low-molecular compounds. As a result, it is easy to reduce the concentration of dioxins and the like in the exhaust gas released into the atmosphere to several ng ZNm 3 or less in terms of international equivalent toxicity.
なお、 本発明の触媒が担体として既述のような耐酸化性を有するものを用い ている場合、 この触媒は、 高温雰囲気下で連続的に使用された場合であっても 活性が低下しにくく、 長期間に渡って塩素化有機化合物に対する安定な分解活 性を維持し得る。  When the catalyst of the present invention uses the above-mentioned catalyst having oxidation resistance as a carrier, the activity of the catalyst is hardly reduced even when used continuously in a high-temperature atmosphere. However, stable decomposition activity for chlorinated organic compounds can be maintained for a long period of time.
以下、 本発明を実施例に基づいてより詳細に説明する。 実施例 1 Hereinafter, the present invention will be described in more detail based on examples. Example 1
コールタールピッチ系活性炭素繊維 (平均繊維径 =14. 0/zm、 BET比 表面積 =1, 920m2/g、 平均細孔径 = 19. 01オングストローム) 1 00 gと、 30 %硝酸水溶液 500 gとを還流管付きのフラスコに仕込み、 硝 酸水溶液の沸騰温度で 2時間煮沸した。 その後、 硝酸水溶液から活性炭素繊維 を取り出してイオン交換水を用いて十分に洗浄し、 120°Cで乾燥した。 Coal tar pitch-based activated carbon fiber (average fiber diameter = 14.0 / zm, BET specific surface area = 1,920m 2 / g, average pore diameter = 19.01 angstrom) 100 g and 500 g of 30% nitric acid aqueous solution Was charged into a flask equipped with a reflux tube, and the mixture was boiled at the boiling temperature of the nitric acid aqueous solution for 2 hours. Thereafter, the activated carbon fibers were taken out from the aqueous nitric acid solution, sufficiently washed with ion-exchanged water, and dried at 120 ° C.
次に、 煮沸処理した活性炭素繊維の全量と、 塩化金酸四水和物 (HAuC l 4 · 4H2〇) 3. 24 g、 硝酸鉄 (F e (N03) 3♦ 6H20) 53. 13 g および硝酸ランタン (La (ΝΟ3) 3 · ηΗ2〇) 11. 96 gを溶解した水 溶液 1, 000 gとをデジタル p H計を取付けたビーカー内に入れた。 そして、 ビーカー内の溶液を攪拌しながら 5重量%の炭酸ナトリゥム水溶液を緩やかに 滴下し、 当該溶液の pHを 8. 0に設定した。 その後、 ビーカーから活性炭素 繊維を取り出して水で洗浄し、 120でで 8時間乾燥した。 これにより、 金、 鉄およびランタンのそれぞれの水酸化物を担持した活性炭素繊維を得た。 Next, the whole amount of activated carbon fibers boiled, chloroauric acid tetrahydrate (HAuC l 4 · 4H 2 〇) 3. 24 g, iron nitrate (F e (N0 3) 3 ♦ 6H 2 0) 53 13 g and lanthanum nitrate (La (ΝΟ 3 ) 3 · ηΗ 2 11.) 11.000 g of an aqueous solution of 1,000 g were placed in a beaker equipped with a digital pH meter. Then, while stirring the solution in the beaker, a 5% by weight aqueous solution of sodium carbonate was slowly dropped, and the pH of the solution was set to 8.0. Thereafter, the activated carbon fiber was taken out of the beaker, washed with water, and dried at 120 for 8 hours. As a result, activated carbon fibers supporting the respective hydroxides of gold, iron and lanthanum were obtained.
次に、 上述の水酸ィヒ物を担持した活性炭素繊維をセラミック製の管状電気炉 内に充填し、 450°Cの窒素雰囲気中で 2時間焼成した後に 350°Cの水素雰 囲気中でさらに 1時間還元処理した。 これにより、 第 1触媒成分としての金と、 第 2触媒成分としての酸化鉄 (Fe23) および酸化ランタン (La 203) とが活性炭素繊維上に担持された塩素化有機化合物分解用触媒が得られた。 な お、 この触媒は、 第 1触媒成分と第 2触媒成分との重量比率 (第 1触媒成分/ 第 2触媒成分) が 7. 5/100、 第 2触媒成分を構成する酸化鉄と酸化ラン タンとの重量比率 (酸化ランタン /酸化鉄) が 30Z70、 全触媒成分の合計 と活性炭素繊維との重量比率 (全触媒成分/活性炭素繊維) が 13. 0/10 0であった。 Next, the activated carbon fibers supporting the above-mentioned hydroxyl compound are filled in a ceramic tubular electric furnace, fired in a nitrogen atmosphere at 450 ° C for 2 hours, and then fired in a hydrogen atmosphere at 350 ° C. Further reduction treatment was performed for one hour. Thus, the gold as a first catalyst component, iron oxide (Fe 23) and lanthanum oxide (La 2 0 3) and chlorinated organic compound decomposing supported on activated carbon fiber as the second catalyst component Catalyst was obtained. This catalyst has a weight ratio of the first catalyst component to the second catalyst component (first catalyst component / second catalyst component) of 7.5 / 100, and iron oxide and lanthanum oxide constituting the second catalyst component. The weight ratio with tan (lanthanum oxide / iron oxide) was 30Z70, and the weight ratio between the total of all catalyst components and the activated carbon fiber (total catalyst component / activated carbon fiber) was 13.0 / 10.
このようにして得られた塩素化有機ィヒ合物分解用触媒について、 ο—クロ口 フエノールに対する酸ィ匕分解活性を評価した。 ここでは、 内容積が 113ml のステンレス製反応管 (内径 19mmX長さ 40 Omm) を用いた流通反応器 内に得られた塩素化有機化合物分解用触媒を充填し、 この反応器に空間速度 4, O O Oh r―'、 温度 220。Cの条件下で 3, 500 p p mの o—クロロフエノ ールを含有する空気を試料として流した。 この際、 反応器を通過する前後の試 料中の o—クロ口フエノール濃度を F I D検出器付のガスクロマトグラフを用 いて分析し、 その分析値から下記の計算式に従って o—クロロフエノ一ルの分 解率を求めた。 結果は 95. 6%であった。 The catalyst for decomposing the chlorinated organic compound obtained in this manner is The activity of degrading phenol by phenol was evaluated. Here, the obtained catalyst for decomposing chlorinated organic compounds was filled in a flow reactor using a stainless steel reaction tube (inner diameter 19 mm x length 40 Omm) with an internal volume of 113 ml. OO Oh r- ', temperature 220. Under the conditions of C, air containing 3,500 ppm of o-chlorophenol was flowed as a sample. At this time, the o-chlorophenol concentration in the sample before and after passing through the reactor was analyzed using a gas chromatograph equipped with an FID detector, and the analysis value was used to determine the o-chlorophenol content according to the following formula. The solution rate was determined. The result was 95.6%.
O—クロロフヱノールの分解率 (o/0) = O—chlorophenol decomposition rate (o / 0 ) =
反応器出口の 0—クロ口フエノール濃度 、 ν ι η η 0-chloro phenol concentration at reactor outlet, ν ι η η
丄 U ϋ 反応器入口の 0—クロ口フヱノール濃度  丄 U 濃度 0-black phenol concentration at reactor inlet
実施例 2 Example 2
実施例 1で用いたものと同様のコールタールピッチ系活性炭素繊維 100 g を実施例 1の場合と同様の条件で煮沸処理した。 このようにして処理された活 性炭素繊維の全量と、 塩化金酸四水和物 (HAuC 14 · 4H20) 3. 24 gおよび硝酸マグネシウム (Mg (N03) a * 6H20) 95. 44 gを溶解 した水溶液 1, 000 gとをデジタル p H計を取付けたビーカー内に入れた。 そして、 ビーカー内の溶液を攪拌しながら 5重量%の炭酸ナトリゥム水溶液を 緩やかに滴下し、 当該溶液の pHを 10. 2に設定した。 その後、 ビーカーか ら活性炭素繊維を取り出して水で洗浄し、 120°Cで 8時間乾燥した。 これに より、 金およびマグネシゥムのそれぞれの水酸化物を担持した活す生炭素繊維を 得た。 100 g of the same coal tar pitch-based activated carbon fiber as used in Example 1 was boiled under the same conditions as in Example 1. Such a total amount of the active carbon fibers treated with the chloroauric acid tetrahydrate (HAuC 1 4 · 4H 2 0 ) 3. 24 g and magnesium nitrate (Mg (N0 3) a * 6H 2 0) An aqueous solution in which 95.44 g was dissolved and 1,000 g were placed in a beaker equipped with a digital pH meter. Then, while stirring the solution in the beaker, a 5% by weight aqueous solution of sodium carbonate was slowly dropped, and the pH of the solution was set to 10.2. Thereafter, the activated carbon fiber was taken out of the beaker, washed with water, and dried at 120 ° C. for 8 hours. As a result, active raw carbon fibers supporting the respective hydroxides of gold and magnesium were obtained.
次に、 得られた活性炭素繊維を実施例 1の場合と同様の条件で窒素雰囲気中 および水素雰囲気中で熱処理し、 第 1触媒成分としての金と、 第 2触媒成分と しての酸化マグネシウム (MgO) とが活性炭素繊維上に担持された塩素化有 機化合物分解用触媒を得た。 なお、 この触媒は、 第 1触媒成分と第 2触媒成分 との重量比率 (第 1触媒成分/第 2触媒成分) が 6. 3X100, 全触媒成分 の合計と活性炭素繊維との重量比率 (全触媒成分 Z活性炭素繊維) が 13. 5 /100であった。 Next, the obtained activated carbon fiber was heat-treated in a nitrogen atmosphere and a hydrogen atmosphere under the same conditions as in Example 1 to obtain gold as the first catalyst component and magnesium oxide as the second catalyst component. (MgO) was obtained on an activated carbon fiber to obtain a catalyst for decomposing chlorinated organic compounds. This catalyst is composed of the first catalyst component and the second catalyst component. Weight ratio (1st catalyst component / 2nd catalyst component) was 6.3X100, and the weight ratio of the total of all catalyst components to the activated carbon fiber (all catalyst components Z activated carbon fiber) was 13.5 / 100. Was.
得られた塩素化有機ィヒ合物分解用触媒について、 実施例 1の場合と同様にし て o—クロロフエノールに対する酸ィヒ分解活性を評価したところ、 結果は 84. 3%であった。  The resulting chlorinated organic compound decomposition catalyst was evaluated for its acid-decomposition activity against o-chlorophenol in the same manner as in Example 1, and the result was 84.3%.
実施例 3 Example 3
実施例 1で用いたものと同様のコールタールピッチ系活性炭素繊維 100 g を実施例 1の場合と同様の条件で煮沸処理した。 このようにして処理された活 性炭素繊維の全量と、 塩化金酸四水和物 (HAuC 14 · 4H20) 3. 24 g、 硝酸鉄 (F e (NO 3) 3 · 9H2〇) 53. 13 gおよび硝酸セリウム ( C e (Ν03) 3 · 6Η2〇) 11. 91 gを溶解した水溶液 1, 000 gとを デジタル pH計を取付けたビーカー内に入れた。 そして、 ビーカー内の溶液を 攪拌しながら 5重量%の炭酸ナトリゥム水溶液を緩やかに滴下し、 当該溶液の pHを 8. 2に設定した。 その後、 ビーカーから活性炭素繊維を取り出して水 で洗浄し、 120°Cで 8時間乾燥した。 これにより、 金、 鉄およびセリウムの それぞれの水酸ィ匕物を担持した活性炭素繊維を得た。 100 g of the same coal tar pitch-based activated carbon fiber as used in Example 1 was boiled under the same conditions as in Example 1. Such a total amount of the active carbon fibers treated with the chloroauric acid tetrahydrate (HAuC 1 4 · 4H 2 0 ) 3. 24 g, iron nitrate (F e (NO 3) 3 · 9H 2 〇 ) 53. 13 g and cerium nitrate (C e (Ν0 3) 3 · 6Η 2 〇) 11. solution 1 obtained by dissolving 91 g, was placed in a 000 g in a beaker fitted with a digital pH meter. Then, while stirring the solution in the beaker, a 5% by weight aqueous solution of sodium carbonate was slowly dropped, and the pH of the solution was set to 8.2. Thereafter, the activated carbon fiber was taken out of the beaker, washed with water, and dried at 120 ° C. for 8 hours. As a result, activated carbon fibers carrying the respective hydroxides of gold, iron and cerium were obtained.
次に、 得られた活性炭素繊維を実施例 1の場合と同様の条件で窒素雰囲気中 および水素雰囲気中で熱処理し、 第 1触媒成分としての金と、 第 2触媒成分と しての酸化鉄 (Fe23) および酸ィ匕セリウム (Ce02) とが活性炭素繊維 上に担持された塩素化有機ィ匕合物分解用触媒を得た。 なお、 この触媒は、 第 1 触媒成分と第 2触媒成分との重量比率 (第 1触媒成分/第 2触媒成分) が 6. 5/100、 第 2触媒成分を構成する酸化セリウムと酸化鉄の重量比率 (酸化 セリウム/酸化鉄) が 30 Z 70、 全触媒成分の合計と活性炭素繊維との重量 比率 (全触媒成分/活性炭素繊維) が 13. 7Z 100であった。 得られた塩素化有機化合物分解用触媒について、 実施例 1の場合と同様にし て o—クロロフヱノールに対する酸化分解活性を評価したところ、 結果は 93. 3%であった。 Next, the obtained activated carbon fiber was heat-treated in a nitrogen atmosphere and a hydrogen atmosphere under the same conditions as in Example 1 to obtain gold as the first catalyst component and iron oxide as the second catalyst component. (Fe 23) and Sani匕cerium (CeO 2) and was obtained chlorinated organic I匕合decomposition catalyst supported on activated carbon fibers. In this catalyst, the weight ratio of the first catalyst component to the second catalyst component (first catalyst component / second catalyst component) was 6.5 / 100, and cerium oxide and iron oxide constituting the second catalyst component were used. The weight ratio (cerium oxide / iron oxide) was 30 Z70, and the weight ratio (total catalyst component / activated carbon fiber) of the sum of all catalyst components and activated carbon fiber was 13.7Z100. The chlorinated organic compound decomposition catalyst obtained was evaluated for its oxidative decomposition activity against o-chlorophenol in the same manner as in Example 1, and the result was 93.3%.
実施例 4 Example 4
実施例 1で用いたものと同様のコールタールピッチ系活性炭素繊維 100 g を用意した。 また、 このコールタールピッチ系活性炭素繊維 100 gの飽和吸 水量と同量の水に 0. 5 gのニッケルに相当する酢酸ニッケル ( (CH3CO O) 2N i - 4H2O) を溶解して 450 gの酢酸ニッケル水溶液を調製した。 そして、 この酢酸二ッケル水溶液にコールタールピッチ系活性炭素繊維を浸漬 して攪拌し、 当該水溶液の全量をコールタールピッチ系活性炭素繊維に吸収さ せた。 その後、 活性炭素繊維を 120°Cの乾燥器内で 8時間乾燥し、 活性炭素 繊維から水分を除去した。 これにより、 酢酸ニッケルが分散された活性炭素繊 維を得た。 100 g of coal tar pitch-based activated carbon fiber similar to that used in Example 1 was prepared. Also, nickel acetate ((CH 3 CO O) 2 Ni-4H 2 O) equivalent to 0.5 g of nickel is dissolved in the same amount of water as the saturated water absorption of 100 g of this coal tar pitch-based activated carbon fiber. Thus, 450 g of an aqueous nickel acetate solution was prepared. Then, the coal tar pitch-based activated carbon fiber was immersed in this aqueous nickel acetate solution and stirred, and the entire amount of the aqueous solution was absorbed by the coal tar pitch-based activated carbon fiber. Thereafter, the activated carbon fibers were dried in a dryer at 120 ° C. for 8 hours to remove water from the activated carbon fibers. As a result, an activated carbon fiber in which nickel acetate was dispersed was obtained.
次に、 酢酸ニッケルが分散された活性炭素繊維をセラミック製の管状電気炉 内に充填し、 500°Cに設定された 100%の水素雰囲気中で 4時間エツチン グ処理した。 このようにしてエッチング処理された活性炭素繊維の全量と、 塩 化金酸四水和物 (HAuC 14 · 4H20) 3. 24 g、 硝酸鉄 (F e (N03 ) 3 ' 6H20) 53. 13 gおよび硝酸ランタン (L a (N03) 3 · 6H20 ) 11. 96 gを溶解した水溶液 1, 000 gとをデジタル pH計を取付けた ビーカー内に入れた。 そして、 ビーカー内の溶液を攪拌しながら 5重量%の炭 酸ナトリウム水溶液を緩やかに滴下し、 当該溶液の pHを 8. 0に設定した。 その後、 ビーカーから活性炭素繊維を取り出して水で洗浄し、 120°Cで 8時 間乾燥した。 これにより、 金、 鉄およびランタンのそれぞれの水酸化物を担持 した活性炭素繊維を得た。 Next, the activated carbon fibers in which nickel acetate was dispersed were filled into a ceramic tubular electric furnace, and were subjected to an etching treatment in a 100% hydrogen atmosphere set at 500 ° C. for 4 hours. And the total amount of the thus etched treated active carbon fiber, salt gold tetrahydrate (HAuC 1 4 · 4H 2 0 ) 3. 24 g, iron nitrate (F e (N0 3) 3 '6H 2 0) 53. 13 g and lanthanum nitrate (L a (N0 3) 3 · 6H 2 0) 11. solution 1 obtained by dissolving 96 g, was placed in a 000 g in a beaker fitted with a digital pH meter. Then, while stirring the solution in the beaker, a 5% by weight aqueous solution of sodium carbonate was slowly dropped, and the pH of the solution was set to 8.0. Thereafter, the activated carbon fiber was taken out of the beaker, washed with water, and dried at 120 ° C. for 8 hours. As a result, activated carbon fibers carrying respective hydroxides of gold, iron and lanthanum were obtained.
次に、 得られた活性炭素繊維を実施例 1の場合と同様の条件で窒素雰囲気中 および水素雰囲気中で熱処理し、 第 1触媒成分としての金と、 第 2触媒成分と しての酸化鉄 (F e 203) および酸化ランタン (La 203) とが活性炭素繊 維上に担持された塩素化有機化合物分解用触媒を得た。 なお、 この触媒は、 第 1触媒成分と第 2触媒成分との重量比率 (第 1触媒成分/第 2触媒成分) が 8. 0/100, 第 2触媒成分を構成する酸化ランタンと酸化鉄の重量比率 (酸ィ匕 ランタン Z酸化鉄) が 30 / 70、 全触媒成分の合計と活性炭素繊維との重量 比率 (全触媒成分ノ活性炭素繊維) が 14. 2Z 100であった。 Next, the obtained activated carbon fiber was placed in a nitrogen atmosphere under the same conditions as in Example 1. And heat-treated in a hydrogen atmosphere, and gold as the first catalyst component, iron oxide as a second catalyst component (F e 2 0 3) and lanthanum oxide (La 2 0 3) and active carbon fiber維上Thus, a catalyst for decomposing chlorinated organic compounds supported on was obtained. In this catalyst, the weight ratio of the first catalyst component to the second catalyst component (first catalyst component / second catalyst component) was 8.0 / 100, and lanthanum oxide and iron oxide constituting the second catalyst component were used. The weight ratio (San-i-lantern Z iron oxide) was 30/70, and the weight ratio of the total of all the catalyst components to the activated carbon fibers (all the activated carbon fibers) was 14.2Z100.
得られた塩素化有機化合物分解用触媒について、 実施例 1の場合と同様にし て o—クロロフヱノールに対する酸ィヒ分解活性を評価したところ、 結果は 97. The chlorinated organic compound decomposition catalyst obtained was evaluated for acid decomposition activity against o-chlorophenol in the same manner as in Example 1, and the result was 97.
7%であった。 7%.
実施例 5 Example 5
活性炭素繊維として実施例 1の場合と同様に煮沸処理されたものを用いた点 を除いて実施例 4と同様に操作し、 第 1触媒成分としての金と、 第 2触媒成分 としての酸化鉄 (F e2O3) および酸化ランタン (La 203) とが活性炭素 繊維上に担持された塩素化有機ィヒ合物分解用触媒を得た。 なお、 この触媒は、 第 1触媒成分と第 2触媒成分との重量比率 (第 1触媒成分 Z第 2触媒成分) が 9. 8/100, 第 2触媒成分を構成する酸化ランタンと酸化鉄の重量比率 ( 酸化ランタン/酸化鉄) が 30770、 全触媒成分の合計と活性炭素繊維との 重量比率 (全触媒成分/活性炭素繊維) が 14. 9Z100であった。 The same operation as in Example 4 was carried out except that activated carbon fibers which were boiled in the same manner as in Example 1 were used, and gold as the first catalyst component and iron oxide as the second catalyst component were used. (F e 2 O 3) and to obtain a lanthanum oxide (La 2 0 3) and is supported on the active carbon fiber chlorinated organic I arsenide compound cracking catalyst. In this catalyst, the weight ratio of the first catalyst component to the second catalyst component (first catalyst component Z second catalyst component) was 9.8 / 100, and lanthanum oxide and iron oxide constituting the second catalyst component were used. The weight ratio (lanthanum oxide / iron oxide) was 30,770, and the weight ratio (total catalyst component / activated carbon fiber) of the total of all catalyst components to activated carbon fiber was 14.9Z100.
得られた塩素化有機化合物分解用触媒について、 実施例 1の場合と同様にし て ο—クロロフエノールに対する酸ィ匕分解活性を評価したところ、 結果は 99. 5%であった。  The obtained chlorinated organic compound decomposition catalyst was evaluated for o-chlorophenol enzymatic decomposition activity in the same manner as in Example 1, and the result was 99.5%.
実施例 6 Example 6
シリカゲル (富士ディビソン株式会社の商品名 "シリカゲル Β" :粒径 =5 〜: L 0メッシュ、 BET比表面積 =450m2/g、 平均細孔径 =70オング ストローム、 細孔容積 =0. 8 c c/g) 100 gと、 塩化金酸四水和物 (H AuC 14 · 4H20) 3. 24 g、 硝酸鉄 (F e (N03) 3 · 6H20) 53. 13 gおよび硝酸ランタン (L a (NO 3) 3 · 6H20) 11. 96 gを溶解 した水溶液 1, 000 gとをデジタル p H計を取付けたビーカー内に入れた。 そして、 ビーカー内の溶液を攪拌しながら 5重量%の炭酸ナトリゥム水溶液を 緩やかに滴下し、 当該溶液の pHを 8. 0に設定した。 その後、 ビーカーから シリカゲルを取り出して水で洗浄し、 120°Cで 8時間乾燥した。 これにより、 金、 鉄およびランタンのそれぞれの水酸ィヒ物を担持したシリカゲルを得た。 な お、 ここで用いたシリカゲルは、 熱分析を実施した場合に 150°C以上の温度 範囲において相転移点を有するものであり、 耐酸化性を有するものであった。 次に、 上述の水酸化物を担持したシリカゲルをセラミック製の管状電気炉内 に充填し、 450°Cの空気雰囲気中で 2時間焼成した後に 350°Cの水素雰囲 気中でさらに 1時間還元処理した。 これにより、 第 1触媒成分としての金と、 第 2触媒成分としての酸化鉄 (F e 203) および酸化ランタン (La 23) とがシリカゲル上に担持された塩素化有機ィヒ合物分解用触媒が得られた。 なお、 この触媒は、 第 1触媒成分と第 2触媒成分との重量比率 (第 1触媒成分 Z第 2 角虫媒成分) が 7. 5/100、 第 2触媒成分を構成する酸化鉄と酸化ランタン との重量比率 (酸化ランタン/酸化鉄) が 30/70、 全触媒成分の合計と担 体であるシリカゲルとの重量比率 (全触媒成分 Zシリカゲル) が 8. 5/10 0であった。 Silica gel (trade name "Silica gel Β" of Fuji Divison Co., Ltd.): Particle size = 5 to: L0 mesh, BET specific surface area = 450 m 2 / g, average pore size = 70 angstroms Strom, and pore volume = 0. 8 cc / g) 100 g, chloroauric acid tetrahydrate (H AuC 1 4 · 4H 2 0) 3. 24 g, iron nitrate (F e (N0 3) 3 · 6H 2 0) 53. 13 g and lanthanum nitrate (L a (NO 3) 3 · 6H 2 0) were placed 11. solution 1 obtained by dissolving 96 g, and 000 g in a beaker fitted with a digital p H meter . Then, while stirring the solution in the beaker, a 5% by weight aqueous solution of sodium carbonate was slowly dropped, and the pH of the solution was set to 8.0. Thereafter, the silica gel was taken out of the beaker, washed with water, and dried at 120 ° C. for 8 hours. As a result, a silica gel carrying the respective hydroxy compounds of gold, iron and lanthanum was obtained. The silica gel used here had a phase transition point in the temperature range of 150 ° C. or higher when subjected to thermal analysis, and had oxidation resistance. Next, the above-mentioned hydroxide-supported silica gel was charged into a ceramic tubular electric furnace, fired in an air atmosphere at 450 ° C for 2 hours, and then further heated in a hydrogen atmosphere at 350 ° C for 1 hour. Reduction treatment was performed. Thus, the gold as a first catalyst component, the second iron oxide as a catalyst component (F e 2 0 3) and lanthanum oxide (La 23) and chlorinated organic Ihigo supported on silica gel A catalyst for material decomposition was obtained. This catalyst had a weight ratio of the first catalyst component to the second catalyst component (the first catalyst component Z and the second hornworm medium component) of 7.5 / 100. The weight ratio with lanthanum (lanthanum oxide / iron oxide) was 30/70, and the weight ratio with the total of all catalyst components and silica gel as the support (all catalyst components Z silica gel) was 8.5 / 100.
得られた塩素化有機ィ匕合物分解用触媒について、 実施例 1の場合と同様にし て o—クロロフエノ一ルに対する酸化分解活性を評価したところ、 結果は 68. 7%であった。  When the obtained catalyst for decomposing chlorinated organic compounds was evaluated for oxidative decomposition activity against o-chlorophenol in the same manner as in Example 1, the result was 68.7%.
実施例 7 Example 7
アルミナゲル (水澤化学株式会社の商品名 "Ne 0 b e a dD" :粒径 =4 〜6メッシュ、 8£丁比表面積=32011127§、 平均細孔径 =100オング ストローム、 細孔容積 = 0. 80 c c/g) 100 gと、 塩ィヒ金酸四水和物 ( HAuC 14 - 4H2O) 3. 24 g、 硝酸鉄 (F e (N03) 3 · 6H20) 5 3. 13 gおよび硝酸ランタン (L a (NO 3) 3 · 6Η2〇) 11. 96 gを 溶解した水溶液 1, 000 gとをデジタル p H計を取付けたビーカ一内に入れ た。 そして、 ビーカ一内の溶液を攪拌しながら 5重量。 /。の炭酸ナトリウム水溶 液を緩やかに滴下し、 当該溶液の pHを 8. 0に設定した。 その後、 ビーカー からアルミナゲルを取り出して水で洗浄し、 120°Cで 8時間乾燥した。 これ により、 金、 鉄およびランタンのそれぞれの水酸ィヒ物を担持したアルミナゲル を得た。 なお、 ここで用いたアルミナゲルは、 熱分析を実施した場合に 150 °C以上の温度範囲において相転移点を有するものであり、 耐酸化性を有するも のであった。 Alumina gel (trade name "Ne 0 bea dD" of Mizusawa Chemical Co., Ltd .: Particle size = 4 ~ 6 mesh, 8 £ specific surface area = 320111 2 7 §, average pore diameter = 100 angstroms, pore volume = 0.80 cc / g) 100 g, chloroauric acid tetrahydrate (HAuC 1 4 - 4H 2 O) 3. 24 g, iron nitrate (F e (N0 3) 3 · 6H 2 0) 5 3. 13 g and lanthanum nitrate (L a (NO 3) 3 · 6Η 2 〇) 11.96 1,000 g of the aqueous solution in which g was dissolved was placed in a beaker equipped with a digital pH meter. Then, the solution in the beaker was stirred for 5 weight. /. Sodium carbonate aqueous solution was slowly added dropwise, and the pH of the solution was set to 8.0. Thereafter, the alumina gel was taken out of the beaker, washed with water, and dried at 120 ° C. for 8 hours. As a result, an alumina gel supporting the respective hydroxy compounds of gold, iron and lanthanum was obtained. The alumina gel used here had a phase transition point in a temperature range of 150 ° C. or higher when subjected to thermal analysis, and had oxidation resistance.
次に、 上述の水酸ィヒ物を担持したアルミナゲルをセラミック製の管状電気炉 内に充填し、 450°Cの空気雰囲気中で 2時間焼成した後に 350°Cの水素雰 囲気中でさらに 1時間還元処理した。 これにより、 第 1触媒成分としての金と、 第 2触媒成分としての酸化鉄 (Fe 203) および酸化ランタン (La 23) とがアルミナゲル上に担持された塩素化有機化合物分解用触媒が得られた。 な お、 この触媒は、 第 1触媒成分と第 2触媒成分との重量比率 (第 1触媒成分 Z 第 2触媒成分) が 7. 5/100、 第 2触媒成分を構成する酸化鉄と酸化ラン タンとの重量比率 (酸化ランタン/酸化鉄) が 30/70、 全触媒成分の合計 と担体であるアルミナゲルとの重量比率 (全触媒成分 Zアルミナゲル) が 9. 9/100であった。 Next, the above-mentioned alumina gel supporting the hydroxyl compound was filled in a ceramic tubular electric furnace, fired in an air atmosphere of 450 ° C for 2 hours, and further heated in a hydrogen atmosphere of 350 ° C. Reduction treatment was performed for 1 hour. Thus, the gold as a first catalyst component, for iron oxide (Fe 2 0 3) and lanthanum oxide (La 23) and chlorinated organic compounds supported on alumina gel degradation as the second catalyst component A catalyst was obtained. This catalyst has a weight ratio of the first catalyst component to the second catalyst component (first catalyst component Z second catalyst component) of 7.5 / 100, and iron oxide and lanthanum oxide constituting the second catalyst component. The weight ratio with tan (lanthanum oxide / iron oxide) was 30/70, and the weight ratio between the total of all catalyst components and the alumina gel as the carrier (all catalyst components Z alumina gel) was 9.9 / 100.
得られた塩素化有機化合物分解用触媒について、 実施例 1の場合と同様にし て o—クロ口フエノールに対する酸ィヒ分解活性を評価したところ、 結果は 76. The resulting chlorinated organic compound decomposition catalyst was evaluated for its acid-decomposition activity against o-chloromouth phenol in the same manner as in Example 1, and the result was 76.
5%であった。 実施例 8 5%. Example 8
粒状活性炭 (武田薬品工業株式会社の商品名 "WH 2C— 20/48" :粒 径 =20〜48メッシュ、 BET比表面積 =1, 476m2Zg、 平均細孔径 = 15. 6オングストローム、 細孔容積 =0. 64 c c/g) 100 gと、 塩 化金酸四水和物 (HAuC 14 · 4H20) 3. 24 g、 硝酸鉄 (F e (N03 ) 3 * 6H20) 53. 13 gおよび硝酸ランタン (La (N03) 3 · 6H20 ) 11. 96 gを溶解した水溶液 1, 000 gとをデジタル p H計を取付けた ビーカー内に入れた。 そして、 ビーカー内の溶液を携拌しながら 5重量%の炭 酸ナトリゥム水溶液を緩やかに滴下し、 当該溶液の p Hを 8. 0に設定した。 その後、 ビーカーから粒状活性炭を取り出して水で洗浄し、 120°Cで 8時間 乾燥した。 これにより、 金、 鉄およびランタンのそれぞれの水酸化物を担持し た粒状活性炭を得た。 Trade name of the granular activated carbon (Takeda Chemical Industries, Ltd. "WH 2C- 20/48": particle size = 20 to 48 mesh, BET specific surface area = 1, 476m 2 Zg, average pore diameter = 15.6 Å, pore volume = 0. 64 cc / g) 100 g and, salt gold tetrahydrate (HAuC 1 4 · 4H 2 0 ) 3. 24 g, iron nitrate (F e (N0 3) 3 * 6H 2 0) 53 . 13 g and lanthanum nitrate (La (N0 3) 3 · 6H 2 0) were placed 11. solution 1 obtained by dissolving 96 g, and 000 g in a beaker fitted with a digital p H meter. Then, while stirring the solution in the beaker, a 5% by weight aqueous solution of sodium carbonate was slowly dropped, and the pH of the solution was set to 8.0. Thereafter, the granular activated carbon was taken out of the beaker, washed with water, and dried at 120 ° C for 8 hours. As a result, a granular activated carbon carrying the respective hydroxides of gold, iron and lanthanum was obtained.
次に、 上述の水酸化物を担持した粒状活性炭をセラミック製の管状電気炉内 に充填し、 450°Cの窒素雰囲気中で 2時間焼成した後に 350°Cの水素雰囲 気中でさらに 1時間還元処理した。 これにより、 第 1触媒成分としての金と、 第 2触媒成分としての酸化鉄 (F e 203) および酸化ランタン (La 203) とが粒状活性炭上に担持された塩素化有機化合物分解用触媒が得られた。 なお、 この触媒は、 第 1触媒成分と第 2触媒成分との重量比率 (第 1触媒成分 Z第 2 触媒成分) が 7. 5/100、 第 2触媒成分を構成する酸化鉄と酸化ランタン との重量比率 (酸化ランタン Z酸化鉄) が 30770、 全触媒成分の合計と担 体である粒状活性炭との重量比率 (全触媒成分ノ粒状活性炭) が 1 1. 2Z1 00であった。 Next, the above-mentioned granular activated carbon supporting the hydroxide is filled in a ceramic tubular electric furnace, and calcined in a nitrogen atmosphere at 450 ° C for 2 hours, and then further heated in a hydrogen atmosphere at 350 ° C. Time reduction treatment was performed. Thus, the gold as a first catalyst component, iron oxide (F e 2 0 3) and lanthanum oxide (La 2 0 3) and chlorinated organic compound decomposing supported on granular activated carbon as the second catalyst component Catalyst was obtained. In this catalyst, the weight ratio of the first catalyst component to the second catalyst component (first catalyst component Z second catalyst component) was 7.5 / 100, and iron oxide and lanthanum oxide constituting the second catalyst component were used. Weight ratio (lanthanum oxide Z iron oxide) was 30770, and the weight ratio of the total of all the catalyst components to the granular activated carbon as the carrier (all the catalytic components were granular activated carbon) was 11.2Z100.
得られた塩素化有機ィヒ合物分解用触媒について、 実施例 1の場合と同様にし て ο—クロロフエノールに対する酸化分解活性を評価したところ、 結果は 89. 0%であった。 実施例 9 When the obtained catalyst for decomposing chlorinated organic compounds was evaluated for oxidative decomposition activity against o-chlorophenol in the same manner as in Example 1, the result was 89.0%. Example 9
粉末状活性炭 (大阪瓦斯株式会社の商品名 "M— 3 0" :平均粒径 = 1 0 μ m、 B ET比表面積 = 3, 400m2/g、 平均細孔径 = 1 0. 5オングスト ローム、 細孔容積 = 1. 7 9 c c/g) 1 00 gと、 塩ィヒ金酸四水和物 (HA u C 1 4 · 4H2O) 3. 24 g、 硝酸鉄 (F e (N03) 3 · 6 H20) 5 3. 1 3 gおよび硝酸ランタン (L a (NO 3) 3 · 6H20) 1 1. 9 6 gを溶解 した水溶液 1, 000 gとをデジタル p H計を取付けたビーカー内に入れた。 そして、 ビーカー内の溶液を攪拌しながら 5重量%の炭酸ナトリゥム水溶液を 緩やかに滴下し、 当該溶液の pHを 8. 0に設定した。 その後、 ビーカーから 粉末状活性炭を取り出して水で洗浄し、 1 20 °Cで 8時間乾燥した。 これによ り、 金、 鉄およびランタンのそれぞれの水酸化物を担持した粉末状活性炭を得 た。 Powdered activated carbon (trade name “M-30” of Osaka Gas Co., Ltd .: average particle size = 10 μm, BET specific surface area = 3,400 m 2 / g, average pore size = 10.5 angstrom, pore volume = 1. 7 9 cc / g) 1 00 g and, salt I arsenate aurate tetrahydrate (HA u C 1 4 · 4H 2 O) 3. 24 g, iron nitrate (F e (N0 3 ) 3 · 6H 2 0) 5 3.13 g and lanthanum nitrate (L a (NO 3 ) 3 · 6H 2 0) 1 1.96 g dissolved in water 1,000 g Was placed in a beaker fitted. Then, while stirring the solution in the beaker, a 5% by weight aqueous solution of sodium carbonate was slowly dropped, and the pH of the solution was set to 8.0. Thereafter, the powdered activated carbon was taken out of the beaker, washed with water, and dried at 120 ° C for 8 hours. As a result, powdered activated carbon carrying the respective hydroxides of gold, iron and lanthanum was obtained.
次に、 上述の水酸化物を担持した粉末状活性炭をセラミック製の管状電気炉 内に充填し、 4 50°Cの窒素雰囲気中で 2時間焼成した後に 3 5 0°Cの水素雰 囲気中でさらに 1時間還元処理した。 これにより、 第 1触媒成分としての金と、 第 2触媒成分としての酸化鉄 (F e 23) および酸化ランタン (L a 203) とが粉末状活性炭上に担持された塩素化有機化合物分解用触媒が得られた。 な お、 この触媒は、 第 1触媒成分と第 2触媒成分との重量比率 (第 1触媒成分 Z 第 2触媒成分) が 7. 5Z1 00、 第 2触媒成分を構成する酸化鉄と酸化ラン タンとの重量比率 (酸化ランタン /酸化鉄) が 3 0 / 70、 全触媒成分の合計 と担体である粉末状活性炭との重量比率 (全触媒成分ノ粉末状活性炭) が 1 6. 5/1 00であった。 Next, the powdered activated carbon supporting the above-mentioned hydroxide was filled in a ceramic tubular electric furnace, fired in a nitrogen atmosphere at 450 ° C for 2 hours, and then fired in a hydrogen atmosphere at 350 ° C. For another 1 hour. Thus, the gold as a first catalyst component, iron oxide (F e 23) and lanthanum oxide (L a 2 0 3) and is supported on a powdered activated carbon chlorinated organic as the second catalyst component A catalyst for compound decomposition was obtained. This catalyst had a weight ratio of the first catalyst component to the second catalyst component (first catalyst component Z, second catalyst component) of 7.5Z100, and iron oxide and lanthanum oxide constituting the second catalyst component. The weight ratio (lanthanum oxide / iron oxide) is 30/70, and the weight ratio of the total of all catalyst components to the powdered activated carbon as a carrier (all catalyst components powdered activated carbon) is 16.5 / 100 Met.
得られた塩素化有機化合物分解用触媒について、 実施例 1の場合と同様にし て o—クロ口フエノールに対する酸化分解活性を評価したところ、 結果は 1 0 The resulting chlorinated organic compound decomposition catalyst was evaluated for its oxidative decomposition activity against o-chlorophenol in the same manner as in Example 1, and the result was 10
0%であった。 実施例 10 0%. Example 10
活性白土 (平均粒径二 3 mm, B E T比表面積二 20 OmVg, 細孔分布 =20〜75, 000オングストローム) 100 gと、 塩ィヒ金酸四水和物 (H AuC 14 · 4H20) 3. 24 g、 硝酸鉄 (F e (N03) 3 · 6H20) 53. 13 gおよび硝酸ランタン (L a (N03) a * 6H20) 11. 96 gを溶解 した水溶液 1, 000 gとをデジタル p H計を取付けたビーカー内に入れた。 そして、 ビーカー内の溶液を攪拌しながら 5重量%の炭酸ナトリゥム水溶液を 緩やかに滴下し、 当該溶液の pHを 8. 0に設定した。 その後、 ビーカーから 活性白土を取り出して水で洗浄し、 120°Cで 8時間乾燥した。 これにより、 金、 鉄およびランタンのそれぞれの水酸化物を担持した活性白土を得た。 なお、 ここで用いた活性白土は、 熱分析を実施した場合に 150°C以上の温度範囲に おいて相転移点を有するものであり、 耐酸化性を有するものであった。 Activated clay (average particle size two 3 mm, BET specific surface area two 20 OmVg, pore distribution = 20 to 75, 000 Å) 100 g and salt I arsenate aurate tetrahydrate (H AuC 1 4 · 4H 2 0 ) 3. 24 g, iron nitrate (F e (N0 3) 3 · 6H 2 0) 53. 13 g and lanthanum nitrate (L a (N0 3) a * 6H 2 0) 11. solution 1 obtained by dissolving 96 g , 000 g were placed in a beaker fitted with a digital pH meter. Then, while stirring the solution in the beaker, a 5% by weight aqueous solution of sodium carbonate was slowly dropped, and the pH of the solution was set to 8.0. Thereafter, the activated clay was taken out of the beaker, washed with water, and dried at 120 ° C for 8 hours. As a result, an activated clay supporting the respective hydroxides of gold, iron and lanthanum was obtained. The activated clay used here had a phase transition point in a temperature range of 150 ° C. or higher when subjected to thermal analysis, and had oxidation resistance.
次に、 上述の水酸化物を担持した活性白土をセラミック製の管状電気炉内に 充填し、 450°Cの空気雰囲気中で 2時間焼成した後に 35 (TCの水素雰囲気 中でさらに 1時間還元処理した。 これにより、 第 1触媒成分としての金と、 第 2触媒成分としての酸化鉄 (Fe 203) および酸化ランタン (La 203) と が活性白土上に担持された塩素化有機ィヒ合物分解用触媒が得られた。 なお、 こ の触媒は、 第 1触媒成分と第 2触媒成分との重量比率 (第 1触媒成分 Z第 2触 媒成分) が 7. 5/100, 第 2触媒成分を構成する酸化鉄と酸化ランタンと の重量比率 (酸化ランタン/酸化鉄) が 30770、 全触媒成分の合計と担体 である活性白土との重量比率 (全触媒成分/活性白土) が 9. 3Z100であ つた。 Next, the activated clay supporting the above-mentioned hydroxide was filled in a ceramic tubular electric furnace, and calcined in an air atmosphere at 450 ° C for 2 hours, and then reduced for 35 hours in a hydrogen atmosphere of TC (1 hour). treated. Thus, the gold as a first catalyst component, a chlorinated organic to the iron oxide as a second catalyst component (Fe 2 0 3) and lanthanum oxide (La 2 0 3) is supported on the activated clay A catalyst for decomposing a compound was obtained having a weight ratio of the first catalyst component to the second catalyst component (first catalyst component Z second catalyst component) of 7.5 / 100. The weight ratio of iron oxide and lanthanum oxide (lanthanum oxide / iron oxide) constituting the second catalyst component is 30770, and the weight ratio of the sum of all catalyst components and activated clay as a carrier (total catalyst component / activated clay) Was 9.3Z100.
得られた塩素化有機ィヒ合物分解用触媒について、 実施例 1の場合と同様にし て ο—クロ口フエノールに対する酸化分解活性を評価したところ、 結果は 92. The obtained catalyst for decomposing chlorinated organic compounds was evaluated for oxidative decomposition activity against o-chloromouth phenol in the same manner as in Example 1, and the result was 92.
0%であった。 実施例 1 0%. Example 1
図 1に示すような、 排気ガス分解処理塔を備えたゴミ焼却装置を建設した。 図において、 ゴミ焼却装置 1は、 焼却炉 2、 排気ガス分解処理塔 3、 および焼 却炉 2と排気ガス分解処理塔 3とを連結するための排気ガス流路 4を主に備え ている。  A garbage incinerator equipped with an exhaust gas decomposition tower as shown in Fig. 1 was constructed. In the figure, the refuse incinerator 1 mainly includes an incinerator 2, an exhaust gas decomposition treatment tower 3, and an exhaust gas flow path 4 for connecting the incinerator 2 and the exhaust gas decomposition treatment tower 3.
焼却炉 2は、 1次焼却炉 5と、 その上部に配置された 2次焼却炉 6とを備え ている。 1次焼却炉 5は、 ゴミ 2 0を焼却するための燃焼室 7を有しており、 燃焼室 7には 2次焼却炉 6に向けて排気路 8が連結している。 2次焼却炉 6は、 一端が排気路 8に連結された塔状に構成されており、 排気路 8側から順に再燃 バーナー 9、 セラミックチェッカー 1 0、 2次燃焼室 1 1およびェジェクタ一 送風機 1 2を備えている。  The incinerator 2 includes a primary incinerator 5 and a secondary incinerator 6 disposed above the primary incinerator 5. The primary incinerator 5 has a combustion chamber 7 for incinerating garbage 20, and an exhaust passage 8 is connected to the combustion chamber 7 toward the secondary incinerator 6. The secondary incinerator 6 is configured in a tower shape with one end connected to an exhaust passage 8, and in order from the exhaust passage 8 side, a reburn burner 9, a ceramic checker 10, a secondary combustion chamber 11, and an ejector 1 blower 1 It has two.
排気ガス分解処理塔 3は、 触媒を充填するための触媒室 1 3を備えており、 そこには排気ガスの流入路 1 4と流出路 1 5とが接続されている。 また、 流入 路 1 4および流出路 1 5には、 それぞれ排気ガスを採取するための採取口 1 6、 1 7が設けられている。  The exhaust gas decomposition treatment tower 3 includes a catalyst chamber 13 for charging a catalyst, and an exhaust gas inflow path 14 and an exhaust gas inflow path 15 are connected to the catalyst chamber 13. Further, the inlet 14 and the outlet 15 are provided with sampling ports 16 and 17 for sampling exhaust gas, respectively.
排気ガス流路 4は、 一端が焼却炉 2の 2次焼却炉 6に連結されかつ他端が排 気ガス分解処理塔 3の流入路 1 4に連結されており、 水噴霧冷却塔 1 8を有し ている。  The exhaust gas passage 4 has one end connected to the secondary incinerator 6 of the incinerator 2 and the other end connected to the inflow path 14 of the exhaust gas decomposition tower 3, and the water spray cooling tower 18. Yes.
このようなゴミ焼却装置 1において、 燃焼室 7でゴミ 2 0を焼却する際に発 生する排気ガスは、 排気路 8を通って 2次焼却炉 6内に導かれ、 そこの再燃バ ーナー 9により更に燃焼されてから排気ガス流路 4内に流入する。 排気ガス流 路 4内に導入された排気ガスは、 水噴霧冷却塔 1 8により冷却された後に排気 ガス分解処理塔 3内に導かれ、 その触媒室 1 3で分解処理された後に流出路 1 5から外部に放出される。  In such a refuse incinerator 1, the exhaust gas generated when the refuse 20 is incinerated in the combustion chamber 7 is guided through the exhaust path 8 into the secondary incinerator 6, where the reburner 9 Then, it flows into the exhaust gas passage 4 after being further burned. The exhaust gas introduced into the exhaust gas passage 4 is cooled by the water spray cooling tower 18 and then guided into the exhaust gas decomposition treatment tower 3, where the exhaust gas is decomposed in the catalyst chamber 13 and the exhaust gas 1 Released from 5 to the outside.
この実施例では、 上述のゴミ焼却装置 1の触媒室 1 3内に実施例 5で得られ た塩素化有機化合物分解用触媒を充填して実際に都巿ゴミを焼却し、 表 1に示 す条件下における排気ガス中のダイォキシン類の酸化分解状況を調べた。 この 際、 試料となる排気ガスは、 触媒室 13での処理前のものは採取口 16から採 取し、 処理後のものは採取口 17から採取した。 また、 試料の採取方法および 分析方法は、 平成 9年 2月 26日衛生第 38号に記載されている日本国厚生省 が規定した 「廃棄物処理におけるダイォキシン類標準測定分析指針マニュアル 」 に従った。 さらに、 排気ガス中の酸素濃度、 排気ガス温度および排気ガス流 量の測定は、 それぞれ日本工業規格 J I S KO 301-1989に規定され た 「排気ガス中の酸素測定方法」 のうちのジルコユア方式、 J I S Z 880 8- 1995に規定された 「排気ガス中のダスト濃度の測定方法」 のうちの K タイプ熱電対方式、 および J I S Z 8808-1995に規定された 「排気 ガス中のダスト濃度の測定方法」 のうちのピトー管方式に従った。 In this embodiment, the catalyst obtained in the fifth embodiment is provided in the catalyst chamber 13 of the above-described refuse incinerator 1. The garbage was actually incinerated by charging the chlorinated organic compound decomposition catalyst, and the state of oxidative decomposition of dioxins in exhaust gas under the conditions shown in Table 1 was examined. At this time, the exhaust gas serving as a sample was collected from the sampling port 16 before the treatment in the catalyst chamber 13 and from the sampling port 17 after the treatment. In addition, the method of sample collection and analysis were in accordance with the “Guideline for Standard Measurement and Analysis of Dioxins in Waste Disposal” specified by the Ministry of Health and Welfare of Japan described in the Sanitation No. 38, February 26, 1997. Furthermore, the measurement of the oxygen concentration in the exhaust gas, the exhaust gas temperature, and the exhaust gas flow rate are based on the zirconure method and the JISZ method of the “Oxygen in the exhaust gas method” specified in Japanese Industrial Standards JIS KO 301-1989, respectively. 880 8-1995 K-type thermocouple method in "Measurement method of dust concentration in exhaust gas", and "Measurement method of dust concentration in exhaust gas" specified in JISZ 8808-1995 Pitot tube method.
触媒室 13の入口側と出口側でそれぞれ採取した排気ガス中に含まれるガス 態および粒子態のダイォキシン類の濃度の測定結果、 およびダイォキシン類の 除去率を表 2 (表 2— 1および表 2— 2) に示す。  Table 2 (Table 2-1 and Table 2) show the measurement results of the concentration of gaseous and particulate dioxins contained in the exhaust gas collected at the inlet and outlet sides of the catalyst chamber 13, respectively. — See 2).
触媒室入口側 触媒室出口側 Catalyst chamber inlet side Catalyst chamber outlet side
排気ガス温度 1 98 1 36  Exhaust gas temperature 1 98 1 36
排気ガス水分量 (%) 7. 0 7. 0  Exhaust gas moisture content (%) 7.0 7.0
CO (%) 0. 0 0. 0  CO (%) 0.0 0.0 0.0
排気ガス組成 co2 (%) 5. 4 5. 4 Exhaust gas composition co 2 (%) 5.4 5.4
o2 (%) 14. 6 14. 6 o 2 (%) 14.6 14.6
N2 (%) 80. 0 80. 0 N 2 (%) 80.0 80.0
排気ガス密度 (k g/m3) 0. 74 2 0. 854 排気ガス静圧 ( k P a ) 0. 1 4 0. 00 排気ガス流速 (mZ s ) 5. 0 4. 3 Exhaust gas density (kg / m 3 ) 0.74 2 0.854 Static exhaust gas pressure (kPa) 0.14 0.000 Exhaust gas flow rate (mZ s) 5.0 4.3
湿りガス流量 (m3 N/h) 98 98 Wet gas flow rate (m 3 N / h) 98 98
触媒充填量 (k g) 1 , 200  Catalyst loading (kg) 1, 200
空間速度 (h r一') 5 , 860 表 2_ 塩素化有機化合物 TEF 入口濃度 (n g/m3 N) 出口濃度 (n g/m ) 除去率 (%) ガス能 ネ能 ガス能 ns *fr 能 ガス能 能Space velocity (hr-1 ') 5, 860 Table 2_ Chlorinated organic compounds TEF Inlet concentration (ng / m 3 N ) Outlet concentration (ng / m) Removal rate (%) Gas capacity Gas capacity Gas capacity ns * fr capacity Gas capacity
2, 3, 7 8-T4CDD 1 5. 9 1. 7 0. 093 0. 053 98. 4 96. 92, 3, 7 8-T 4 CDD 1 5.9 1.7 0.093 0.053 98.4 96.9
T4CDD s 1 0 88 6. 9 2. 0 98. 3 97. 7T 4 CDD s 1 0 88 6.9 2.0 98.3 97.7
1, 2, 3, 7, 8-P5CDD 0. 5 14 15 0. 20 0. 35 98. 6 97. 6 タ PsCDD s 1 90 1 80 2. 9 3. 3 98. 5 98. 2 ィ 1, 2, 3, 4, 7, 8 -HeCDD 0. 1 5. 7 22 0. 04 0. 51 99. 2 97. 71, 2, 3, 7, 8-P5CDD 0.5.14 15 0.20 0.35 98.6 97.6 Data PsCDD s 1 90 1 80 2.93.3 98.5 98.2 2, 3, 4, 7, 8 -H e CDD 0.1 5.7 22 0.04 0.51 99.2 97.7
1, 2, 3 6, 7, 8— HsCDD 0. 1 7. 5 30 0. 05 0. 74 99. 3 97 5 キ 1, 2, 3, 7 8, 9— HeCDD 0. 1 5. 2 30 0. 03 0. 81 99. 4 97. 3 シ H6CDD s 84 3 30 0. 79 7. 3 99. 1 97. 7 ン 1, 2, 3 4 6 7 8 -HrCDD 0. 01 12 160 0. 06 4. 9 99. 5 97. 01, 2, 3 6, 7 , 8- HsCDD 0. 1 7. 5 30 0. 05 0. 74 99. 3 97 5 keys 1, 2, 3, 7 8 , 9- H e CDD 0. 1 5. 2 30 0.03 0.81 99.4 97.3 She H 6 CDD s 84 3 30 0.79 7.3 99.1 97.77 1, 2, 3 4 6 7 8 -HrCDD 0.01 12 160 0.06 4.9 99.5 97.0
HrCDD s 24 300 0. 1 3 8. 6 99. 5 9 7. 1HrCDD s 24 300 0.1 3 8. 6 99.5 9 7.1
OeCDD 0. 001 3. 9 1 10 0. 06 4. 3 98. 5 96. 1OeCDD 0.001 3.91 1 10 0.06 4.3 98.5 96.1
PCDD s 710 1000 1 1 26 98. 5 97. 5 PCDD s 710 1000 1 1 26 98.5 97.5
表 2— 2 Table 2—2
Figure imgf000032_0001
Figure imgf000032_0001
なお、 表 2中、 塩素化有機ィヒ合物を示す各略号は下記の化合物を示している。 また、 表 2中の" TEF" は、 毒性等価係数である。 In Table 2, abbreviations indicating chlorinated organic compounds indicate the following compounds. "TEF" in Table 2 is the toxicity equivalent coefficient.
T4CDD:四塩化ジベンゾダイォキシン T 4 CDD: dibenzodioxin tetrachloride
T4CDD s :四塩化ジベンゾダイォキシン類 T 4 CDD s: dibenzodioxins tetrachloride
P5CDD:五塩化ジベンゾダイォキシン P 5 CDD: dibenzodioxin pentachloride
P5CDD s :五塩化ジベンゾダイォキシン類 P 5 CDD s: dibenzodioxins pentachloride
H6CDD:六塩化ジベンゾダイォキシン H 6 CDD: dibenzodioxin hexachloride
H6CDD s :六塩化ジベンゾダイォキシン類 H 6 CDD s: dibenzodioxins hexachloride
H7CDD:七塩化ジベンゾダイォキシン H 7 CDD: Dibenzodioxin heptachloride
H7CDD s :七塩化ジベンゾダイォキシン類 H 7 CDD s: Dibenzodioxins heptachloride
OgCDD:八塩化ジベンゾダイォキシン O g CDD: octachloride dibenzodioxin
PCDD s :ポリ塩化ジベンゾ 'パラ ·ダイォキシン類 PCDD s: Polychlorinated dibenzo 'para-dioxins
T4CDF :四塩^ (匕ジベンゾフラン T 4 CDF: Teshio ^
T4CDF s :四塩化ジベンゾフラン類 T 4 CDF s: Tetrachlorinated dibenzofurans
P5CDF :五塩化ジベンゾフラン P 5 CDF: dibenzofuran pentachloride
P5CDF s :五塩化ジベンゾフラン類 P 5 CDF s: dibenzofuran pentachloride
H6CDF :六塩化ジベンゾフラン H 6 CDF: dibenzofuran hexachloride
H6CDF s :六塩化ジベンゾフラン類 H 6 CDF s: Dibenzofuran hexachloride
H7CDF :七塩^ (匕ジベンゾフラン H 7 CDF: Seven salt ^ (Dani dibenzofuran
H7CDF s :七塩化ジベンゾフラン類 H 7 CDF s: Dibenzofuran heptachloride
08CDF :八塩化ジベンゾフラン 0 8 CDF: dibenzofuran octachloride
PCDF s :ポリ塩ィ匕ジベンゾフラン類 PCDF s: Polychlorinated dibenzofurans
OCDD s :八塩化ジベンゾダイォキシン類 OCDD s: octachloride dibenzodioxins
表 2から明らかなように、 実施例 5の塩素化有機ィヒ合物分解用触媒を用いる と、 排気ガス中に含まれるガス態のダイォキシン類の概ね 98%を除去でき、 また、 当該排気ガス中に含まれる粒子態のダイォキシン類も概ね 9 6 %が除去 できたことがわかる。 As is evident from Table 2, the use of the catalyst for decomposing chlorinated organic aldehyde compounds of Example 5 enabled removal of approximately 98% of gaseous dioxins contained in exhaust gas. It can also be seen that approximately 96% of particulate dioxins contained in the exhaust gas were removed.
実施例 1 2 Example 1 2
実施例 5で得られた塩素化有機ィヒ合物分解用触媒に代えて実施例 6で得られ た塩素化有機化合物分解用触媒を用い、 実施例 1 1の場合と同様にして排気ガ ス中のダイォキシン類の酸化分解状況を調べた。 結果を表 3 (表 3— 1および 表 3— 2 ) に示す。 なお、 表 3において、 塩素化有機化合物を示す各略号およ び "T E F " は、 表 2の場合と同じである。 Using the catalyst for decomposing chlorinated organic compounds obtained in Example 6 in place of the catalyst for decomposing chlorinated organic compounds obtained in Example 5, and using the exhaust gas in the same manner as in Example 11 The state of oxidative degradation of dioxins was investigated. The results are shown in Table 3 (Tables 3-1 and 3-2). In Table 3, abbreviations and "TEF" indicating chlorinated organic compounds are the same as those in Table 2.
表 3 塩素化有機化合物 TE F 入口濃度 (n g/m ) 出口濃度 (n g/ ) 除去率 (%) ガス態 粒早髌 ガス、能 子能 ガス能 ¾r 能Table 3 Chlorinated organic compounds TEF Inlet concentration (ng / m) Outlet concentration (ng /) Removal rate (%) Gas state Particle fastening gas, functional ability Gas ability ¾r ability
2, 3, 7, 8— T4CDD 1 15 0. 42 1. 12 0. 38 92. 5 8. 62, 3, 7, 8—T 4 CDD 1 15 0.42 1.12 0.38 92.5.8.6
T4CDD s 1 100 1 9 1 1 3. 3 1 6 8 9. 7 14. 4T 4 CDD s 1 100 1 9 1 1 3.3 1 6 8 9. 7 14.4
1, 2, 3, 7, 8— P5CDD 0. 5 65 2. 4 6. 4 2. 2 90. 1 7. 5 タ PsCDD s 1 000 2 7 1 30 24 . 8 7. 0 9. 0 5 1, 2, 3, 7, 8—P 5 CDD 0.5 65 2.4 6.2.4 2.90.17.5 PsCDD s 1 000 2 7 1 30 24 .8 7.0 9.0 Five
CO ィ 1, 2, 3, 4, 7, 8— HeCDD 0. 1 43 2. 1 8. 4 1. 9 80. 5 10. 5 才 1, 2, 3, 6, 7, 8-HeCDD 0. 1 66 3. 3 14. 5 2. 9 78. 0 10. 9 キ 1, 2, 3, 7, 8, 9-H6CDD 0. 1 54 3. 2 11. 8 2. 8 78. 1 11. 1 ン H6CDD s 830 3 7 1 96 32 76. 4 1 3. 3 ン 1, 2, 3, 4, 6, 7, 8-H7CDD 0. 01 180 14 67 12 62. 9 11. 8CO I 1, 2, 3, 4, 7, 8- H e CDD 0. 1 43 2. 1 8. 4 1. 9 80. 5 10. 5 years 1, 2, 3, 6, 7, 8-HeCDD 0.1 66 3.3 14.5 2.9 78.0 10.9 keys 1, 2, 3, 7, 8, 9-H 6 CDD 0. 1 54 3. 2 11. 8 2. 8 78. 1 11.1 H H 6 CDD s 830 3 7 1 96 32 76. 4 1 3.3 1, 1, 2, 3, 4, 6, 7, 8-H7CDD 0.01 180 14 67 12 62. 9 11. 8
H7CDD s 350 2 5 1 36 2 2 6 1. 2 1 1. 7H7CDD s 350 2 5 1 36 2 2 6 1.2 1 1.7
OeCDD 0. 001 100 13 38 10 62. 2 20. 2OeCDD 0.001 100 13 38 10 62.2 20.2
PCDD s 3400 1 2 0 8 1 6 1 05 76. 0 1 2. 4 PCDD s 3400 1 2 0 8 1 6 1 05 76.0 1 2.4
表 3— 2 塩素化有機化合物 TE F 入口濃度 (n g/ ) 出口濃度 (n gZm^) 除去率 (%) ガス態 粒子態 ガス態 粒子態 ガス態 粒子態Table 3-2 Chlorinated organic compounds TEF Inlet concentration (ng /) Outlet concentration (ngZm ^) Removal rate (%) Gas state Particle state Gas state Particle state Gas state Particle state
2, 3, 7, 8 -T4CDF 0. 1 7 6 1. 6 6. 8 1. 5 9 1. 0 7. 12, 3, 7, 8 -T 4 CDF 0.1 7 6 1. 6 6. 8 1. 5 9 1. 0 7.1
T.CDF s 一 24 0 0 3 3 2 5 7 3 1 8 9. 3 5. 6T.CDF s 24 0 0 3 3 2 5 7 3 1 8 9.3 5.6
1, 2, 3, 7, 8 -PsCDF 0. 05 130 2. 8 16 2. 6 87. 8 6. 1 ン 2, 3, 4, 7, 8 -P5CDF 0. 5 1 3 0 3. 6 1 7 3. 1 8 7. 0 1 2. 7 ベ PsCDF s ― 1400 31 189 30 86. 5 3. 7 ン 1 , 2, 3, 4, 7, 8 -H6CD F 0. 1 1 2 0 4. 2 2 6 3. 9. 7 7. 9 6. 21, 2, 3, 7, 8 -PsCDF 0.05 130 2.8 16 2.6 87.8 6.1 1 2, 3, 4, 7, 8 -P 5 CDF 0.5 1 3 0 3. 6 1 7 3. 1 8 7. 0 1 2.7 PsCDF s ― 1400 31 189 30 86.5 5 3.7 1, 2, 3, 4, 7, 8 -H 6 CD F 0.1 1 2 0 4.2 2 6 3. 9. 7 7. 9 6.2
CO ン' 1, 2, 3, 6, 7, 8— H6CD F 0. 1 9 0 3. 4 2 1 3. 2 7 6. 2 6. 2 フ 1 , 2, 3, 7, 8, 9 -H6CD F 0. 1 1 9 1. 1 5 6 0. 9 7 0. 6 1 4. 6 ラ 2, 3, 4, 6, 7, 8— H6CD F 0. 1 8 4 3. 3 2 5 2. 8 6 9. 8 1 5. 9 ン H6CD F s 9 0 0 3 2 2 2 1 2 9 7 5. 4 1 0. 3CO2 '1, 2, 3, 6, 7, 8-H 6 CD F 0.19 0 3.4 2 1 3. 2 7 6.2 6.2 F 1, 2, 3, 7, 8, 9 -H 6 CD F 0.1 1 9 1. 1 5 6 0. 9 7 0.6 0.6 1 4.6 La 2, 3, 4, 6, 7, 8—H 6 CD F 0.1 8 4 3 3 2 5 2. 8 6 9. 8 1 5.9 H 6 CD F s 9 0 0 3 2 2 2 1 2 9 7 5.4 1 0.3
1, 2, 3, 4, 6, 7, 8-HrCDF 0. 01 140 8. 1 54 6. 8 61. 2 15. 41, 2, 3, 4, 6, 7, 8-HrCDF 0.01 140 8.1 54 6.8 61.2 15.4
1, 2, 3, 4, 7, 8, 9-H7CDF 0. 0 1 32 2. 3 1 3 1 9 60. 1 1 5. 51, 2, 3, 4, 7, 8, 9-H7CDF 0.0 1 32 2.3 1 3 1 9 60.1 1 5.5
H7CD F s 2 6 0 1 5 1 0 6 1 3 5 9. 2 1 4. 3H 7 CD F s 2 6 0 1 5 1 0 6 1 3 5 9.2 1 4.3
08CDF 0. 0 0 1 4 4 1 0 8. 7 7. 9 8 0. 3 2 0. 80 8 CDF 0.0. 0 0 1 4 4 1 0 8. 7 7. 9 8 0. 3 2 0.8
P CD F s 5 0 0 0 1 2 0 9 8 0 1 1 2 8 0. 4 6. 5PC D F s 5 0 0 0 1 2 0 9 8 0 1 1 2 8 0 .4 6.5
OCDD s + PCD F s 84 0 0 24 0 1 8 3 1 2 1 8 7 8. 2 8. 9 OCDD s + PCD F s 84 0 0 24 0 1 8 3 1 2 1 8 7 8.2 8.9
実施例 1 3 Example 13
実施例 5で得られた塩素化有機化合物分解用触媒に代えて実施例 7で得られ た塩素化有機化合物分解用触媒を用い、 実施例 1 1の場合と同様にして排気ガ ス中のダイォキシン類の酸化分解状況を調べた。 結果を表 4 (表 4一 1および 表 4一 2 ) に示す。 なお、 表 4において、 塩素化有機化合物を示す各略号およ び "T E F " は、 表 2の場合と同じである。 Using the catalyst for decomposing chlorinated organic compounds obtained in Example 7 in place of the catalyst for decomposing chlorinated organic compounds obtained in Example 5, dioxin in the exhaust gas in the same manner as in Example 11 The state of oxidative decomposition of the species was investigated. The results are shown in Table 4 (Tables 4-1 and 4-2). In Table 4, abbreviations and "TEF" indicating chlorinated organic compounds are the same as those in Table 2.
表 4 塩素化有機化合物 TE F 入口濃度 (n g/m ) 出口濃度 (n g/ ) 除去率 (%) ガス態 粒子態 ガス態 粒子態 ガス態 粒子態Table 4 Chlorinated organic compounds TEF Inlet concentration (ng / m) Outlet concentration (ng /) Removal rate (%) Gas state Particle state Gas state Particle state Gas state Particle state
2, 3, 7, 8 -T4CDD 1 28 1. 7 1. 2 1, 1 95. 6 9. 02, 3, 7, 8 -T 4 CDD 1 28 1.7 1.21, 1 95.69.0
T4CDD s 1 7 0 0 8 8 1 0 7 74 9 3. 7 1 6. 0T 4 CDD s 1 7 0 0 8 8 1 0 7 74 9 3.7 16.0
1, 2, 3, 7, 8-PsCDD 0. 5 120 15 9. 4 14 92, 2 8. 5 タ PsCDD s 1 6 0 0 1 8 0 1 3 8 1 6 0 9 1. 4 1 1. 0 ィ 1, 2, 3, 4, 7, 8-H6CDD 0. 1 62 22 5. 7 19 90. 8 13. 5 才 1, 2, 3, 6, 7, 8-HeCDD 0. 1 84 30 15 26 81. 8 14. 0 キ 1, 2, 3, 7, 8, 9-H6CDD 0. 1 60 30 12 25 80. 0 15. 0 ン H6CDD s 9 3 0 3 3 0 2 4 0 2 7 5 74. 1 1 6. 7 ン 1, 2, 3, 4, 6, 7, 8 -HrCDD 0. 01 130 160 35 139 73. 3 13. 21, 2, 3, 7, 8-PsCDD 0.5 120 15 9.4 14 92, 28.5 P PsCDD s 1 6 0 0 1 8 0 1 3 8 1 6 0 9 1. 4 1 1. 0 I 1, 2, 3, 4, 7, 8-H 6 CDD 0. 1 62 22 5. 7 19 90. 8 13. 5 years 1, 2, 3, 6, 7, 8-HeCDD 0. 1 84 30 15 26 81.8 14.0 key 1, 2, 3, 7, 8, 9-H 6 CDD 0.1 60 30 12 25 80.0 15.0 n H 6 CDD s 9 3 0 3 3 0 2 4 0 2 7 5 74.1 1 6.7 1,2,3,4,6,7,8 -HrCDD 0.01 01 160 160 35 139 73.3 13.2
HrCDD s 2 5 0 3 0 0 5 2 2 2 5 7 9. 2 2 5. 0HrCDD s 2 5 0 3 0 0 5 2 2 2 5 7 9.2 25.0
08CDD 0. 001 35 110 12 93 64. 3 15. 40 8 CDD 0.001 35 110 12 93 64.3 15.4
P CDD s 4 6 0 0 1 0 0 0 1 7 0 0 8 6 5 6 3. 1 1 3. 5 PCD s 4 6 0 0 1 0 0 0 1 7 0 0 8 6 5 6 3.1 13.5
表 4— 2 塩素化有機化合物 TEF 入口濃度 (n g/m3 N) 出口濃度 (n g/m3 N) 除去率 (%) ガス態 粒子態 ガス態 粒子態 ガス態 粒子態Table 4-2 Chlorinated organic compounds TEF Inlet concentration (ng / m 3 N ) Outlet concentration (ng / m 3 N ) Removal rate (%) Gas state Particle state Gas state Particle state Gas state Particle state
2, 3, 7, 8— T4CDF 0. 1 1 20 5. 6 5. 3 4. 8 95. 6 9. 02, 3, 7, 8— T 4 CDF 0.1 1 20 5. 6 5. 3 4. 8 95. 6 9.0
T4CDF s 一 3200 1 1 0 1 98 1 02 93. 8 7. 5T4CDF s 3200 1 1 0 1 98 1 02 93.8 7.5
1, 2, 3, 7, 8 -PsCDF 0. 05 1 6 0 1 5 1 2 14 92. 2 8. 2 ジ 2, 3, 4, 7, 8-P5CDF 0. 5 1 30 1 7 1 1 14 9 1. 3 1 5. 01, 2, 3, 7, 8 -PsCDF 0. 05 1 6 0 1 5 1 2 14 92.28.2 Di 2, 3, 4, 7, 8-P5CDF 0.5 1 30 1 7 1 1 14 9 1.3 1 5.0
PsCDF s ― 1 600 1 60 147 1 52 90. 8 5. 0 ン 1, 2, 3, 4, 7, 8— H CDF 0. 1 9 9 2 3 1 8 2 1 8 1. 8 6. 5 ゾ 1, 2, 3, 6, 7, 8-HeCDF 0. 1 80 20 1 6 1 9 80. 0 6. 7 フ 1, 2, 3, 7, 8, 9-HeCDF 0. 1 1 2 5. 2 3. 1 4. 3 74. 1 1 8. 0 ラ 2, 3, 4, 6, 7, 8-HeCDF 0. 1 5 5 24 1 5 1 9 73. 3 2 0. 6 ン H6CDF s 7 1 0 1 80 148 1 58 79. 2 1 2. 5PsCDF s ― 1 600 1 60 147 1 52 90.8 5.0 Pin 1, 2, 3, 4, 7, 8 ― H CDF 0.11 9 9 2 3 1 8 2 1 8 1.8 6.5 Zone 1, 2, 3, 6, 7, 8-HeCDF 0.180 20 1 6 1 9 80.0 6.7 f 1,2,3,7,8,9-HeCDF 0.1 1 25.2 3.1 4.3 74.1 1 8.0 La 2, 3, 4, 6, 7, 8-HeCDF 0. 1 5 5 24 1 5 1 9 73. 3 2 0. 6 emissions H 6 CDF s 7 1 0 1 80 148 1 58 79.2 1 2.5
1, 2, 3, 4, 6, 7, 8— H7CDF 0. 0 1 7 2 54 26 44 64. 3 1 8. 21, 2, 3, 4, 6, 7, 8— H 7 CDF 0. 0 1 7 2 54 26 44 64. 3 1 8.2
1 , 2, 3, 4, 7, 8, 9 -HTCDF 0. 0 1 1 3 1 2 4. 8 9. 8 6 3. 1 1 8. 01, 2, 3, 4, 7, 8, 9 -HTCDF 0. 0 1 1 3 1 2 4.8 9. 8 6 3. 1 1 8.0
HrCDF s 1 20 94 45 76 62. 2 1 9. 2HrCDF s 1 20 94 45 76 62.2 19.2
OeCDF 0. 00 1 1 1 2 5 1. 7 20 84. 3 2 1. 5OeCDF 0.001 1 1 1 2 5 1.7 20 84.3 21.5
PCDF s 5600 580 8 70 540 84. 4 7. 1PCDF s 5600 580 8 70 540 84.4 7.1
OCDD s +PCDF s 1 0000 1 600 1 800 14 30 82. 1 1 0. 5 OCDD s + PCDF s 1 0000 1 600 1 800 14 30 82.1 1 0.5
実施例 1 4 Example 14
実施例 5で得られた塩素化有機化合物分解用触媒に代えて実施例 8で得られ た塩素化有機化合物分解用触媒を用い、 実施例 1 1の場合と同様にして排気ガ ス中のダイォキシン類の酸化分解状況を調べた。 結果を表 5 (表 5— 1および 表 5— 2 ) に示す。 なお、 表 5において、 塩素化有機化合物を示す各略号およ び "T E F " は、 表 2の場合と同じである。 Using the catalyst for decomposing chlorinated organic compounds obtained in Example 8 in place of the catalyst for decomposing chlorinated organic compounds obtained in Example 5, dioxin in the exhaust gas in the same manner as in Example 11 The state of oxidative decomposition of the species was investigated. The results are shown in Table 5 (Table 5-1 and Table 5-2). In Table 5, abbreviations and "TEF" indicating chlorinated organic compounds are the same as those in Table 2.
表 5 塩素化有機ィヒ合物 TEF 入口濃度 (n g/m ) 出口濃度 (n g/m ) 除去率 (%) ガス態 粒子態 ガス態 粒子態 ガス態 粒子態Table 5 Chlorinated organic compound TEF Inlet concentration (ng / m) Outlet concentration (ng / m) Removal rate (%) Gas state Particle state Gas state Particle state Gas state Particle state
2, 3, 7, 8一 T4CDD 1 4. 5 1. 1 0. 1 0. 3 9 7. 5 7 6. 02, 3, 7, 8 -1 T 4 CDD 1 4.5 1. 1 0. 1 0. 3 9 7. 5 7 6.0
T.CDD s 810 35 1 1 8. 8 98. 6 75. 0T.CDD s 810 35 1 1 8.8 98.6 75.0
1, 2, 3, 7, 8-PsCDD 0. 5 - 20 5 0. 8 1. 3 96. 0 74. 0 タ PsCDD s 620 90 23 25 96. 2 72. 0 ィ 1 , 2, 3, 4, 7, 8— H6CDD 0. 1 8. 0 4. 3 0. 2 1. 2 9 7. 3 7 3. 2 才 1, 2, 3, 6, 7, 8 -HeCDD 0. 1 23 12 0. 5 0. 3 98. 0 73. 8 キ 1 , 2, 3, 7, 8, 9 -HACDD 0. 1 1 2 6 0. 2 1. 6 9 8. 2 7 3. 8 シ H6CDD s 280 94 5. 3 25 98. 1 73. 5 ン 1 , 2, 3, 4, 6, 7, 8 -HTCDD 0. 0 1 3 8 5 6 1. 5 1 4 9 6. 0 74. 01, 2, 3, 7, 8-PsCDD 0.5-20 5 0.8 1 .3 96.0 74.0 Data PsCDD s 620 90 23 25 96.2 72.0 1, 2, 3, 4 , 7, 8—H 6 CDD 0.1. 8. 4.3. 0.2 1. 2. 9 7. 3 7 3.2 years 1, 2, 3, 6, 7, 8 -HeCDD 0.1 23 12 0.5 0.3 98.0 73.8 key 1, 2, 3, 7, 8, 9-H A CDD 0.1 1 2 6 0. 2. 1. 6 9 8. 2 73.8 H 6 CDD s 280 94 5.3 25 98.1 73.5 1 1, 2, 3, 4, 6, 7, 8 -HTCDD 0.0 1 3 8 5 6 1.5 1 4 9 6. 0 74. 0
HTCDD S 74 9 0 3. 1 24 9 5. 8 7 3. 4HTCDD S 74 9 0 3.1 24 9 5. 8 7 3. 4
OBCDD 0. 0 0 1 1 3 2 5 0. 5 6. 5 9 6. 2 74. 1OBCDD 0.0 0 1 1 3 2 5 0.5 6.5 9 6.2 74.1
PCDD s 1800 500 86 125 95. 2 75. 0 PCDD s 1800 500 86 125 95.2 75.0
表 5— 2 塩素化有機化合物 TE F 入口濃度 (n g/m ) 出口濃度 (n g/m ) 除去率 (%) ガス態 粒子態 ガス態 粒子態 ガス態 粒子態Table 5-2 Chlorinated organic compounds TEF Inlet concentration (ng / m) Outlet concentration (ng / m) Removal rate (%) Gas state Particle state Gas state Particle state Gas state Particle state
00 00
2, 3, 7, 8 -T4CDF 0. 1 2 1 2. 0 0. 6 0. 5 9 7. 3 74. 22, 3, 7, 8 -T 4 CDF 0.12 1 2. 0 0.6 0.5 9 7.3 74.2
T.CD F s ― 6 9 0 2 3 24 6. 0 9 6. 5 7 3. 3T.CD F s ― 69 0 2 3 24 6.0 0 9.6.5 7 3.3
1, 2, 3, 7, 8-PsCDF 0. 05 31 3. 0 1. 2 0. 8 96. 2 73. 8 ン 2, 3, 4, 7, 8-P5CDF Q 0. 5 2 7 3. 5 0. 9 0. 9 9 6. 8 74. 4 ベ PsCDF s ― 330 33 13 8. 5 96. 0 74. 1 ン 1 , 2, 3, 4, 7, 8 -H6CDF 0. 1 2 4 6. 0 0. 7 1. 5 9 7, 1 7 5. 0 ο ゾ 1, 2, 3, 6, 7, 8-HeCDF 0. 1 16 4. 0 0. 6 1. 0 96. 2 74. 8 フ 0. 1 3. 5 1. 5 0. 0 7 0. 4 9 8. 0 74. 5 ラ 2, 3, 4, 6, 7, 8-HeCDF 0. 1 10 4. 4 0. 3 1. 1 97. 3 74. 6 ン H6CDF s 1 6 0 4 0 2. 4 1 0 9 8. 5 74. 31, 2, 3, 7, 8-PsCDF 0.05 31 3.0 1.2 0.8 96.2 73.8 in 2, 3, 4, 7, 8-P5CDF Q 0.5 2 3 3. 5 0.9 0. 9 9 6.8 74.4 PsCDF s ― 330 33 13 8.5 96.0 74.1 1, 2, 3, 4, 7, 8 -H 6 CDF 0.12 46.0.0.7 1.59.97, 175.0 ο zo 1,2,3,6,7,8-HeCDF 0.116 4.0.0 0.6.1.0 96.274 . 8 F 0.1.3.5 1.50 0 .0 7 0 .4 9 8. 0 74.5 La 2,3,4,6,7,8-HeCDF 0.1 10 4.4 0.3 1.1 97.3 74.6 H H 6 CDF s 1 6 0 4 0 2.4 1 0 9 8.5 74.3
1, 2, 3, 4, 6, 7, 8-HrCDF 0. 01 19 14 0. 4 3. 7 98. 1 73. 81, 2, 3, 4, 6, 7, 7, 8-HrCDF 0.01 19 14 0.4.3.7 98.1 733.8
1, 2, 3, 4, 7, 8, 9-HrCDF 0. 01 4. 3 4. 0 0. 1 1. 0 97. 4 73. 91, 2, 3, 4, 7, 8, 9-HrCDF 0.01 4.3 4.0 0.1 1.0 97.4 73.9
H7CD F S 3 4 2 6 1. 2 6. 5 9 6. 3 7 5. 0H 7 CD FS 3 4 2 6 1.2 6.5 9 6.3 75.0
OeCDF 0. 001 5. 0 11 0. 2 2. 7 95. 8 75. 5OeCDF 0.001 5.0 11 0.2 2.7 95.8 75.5
PCD F s 1 2 0 0 1 2 4 4 8 3 0 9 6. 0 7 5. 8PCD F s 1 2 0 0 1 2 4 4 8 3 0 9 6.0.0 75.8
OCDD s + PCD F s 3 0 0 0 4 8 0 9 0 1 1 6 9 7. 0 7 5. 8 OCDD s + PCD F s 3 0 0 0 4 8 0 9 0 1 1 6 9 7.0 75.8
実施例 1 5 Example 15
実施例 5で得られた塩素化有機ィヒ合物分解用触媒に代えて実施例 9で得られ た塩素化有機ィ匕合物分解用触媒を用い、 実施例 1 1の場合と同様にして排気ガ ス中のダイォキシン類の酸化分解状況を調べた。 結果を表 6 (表 6— 1および 表 6— 2 ) に示す。 なお、 表 6において、 塩素化有機化合物を示す各略号およ び "T E F " は、 表 2の場合と同じである。 Using the catalyst for decomposing chlorinated organic compound obtained in Example 9 instead of the catalyst for decomposing chlorinated organic compound obtained in Example 5, in the same manner as in Example 11 The state of oxidative decomposition of dioxins in exhaust gas was investigated. The results are shown in Table 6 (Table 6-1 and Table 6-2). In Table 6, the abbreviations and "TEF" indicating the chlorinated organic compound are the same as those in Table 2.
表 6 塩素化有機化合物 TEF 入口濃度 (n g/m3 N) 出口濃度 (n gZm^) 除去率 (%) ガス態 粒子態 ガス態 粒子態 ガス態 粒子態Table 6 Chlorinated organic compounds TEF Inlet concentration (ng / m 3 N ) Outlet concentration (ng gm ^) Removal rate (%) Gas state Particle state Gas state Particle state Gas state Particle state
2, 3, 7, 8-T.CDD 1 25 1. 5 0. 5 0. 03 99. 8 99. 82, 3, 7, 8-T.CDD 1 25 1.5 10.5 0.03 99.8 99.8
T4CDD s 1530 79 15 1. 6 99. 9 99. 8T 4 CDD s 1530 79 15 1.6 99.9 99.8
1, 2, 3, 7, 8-P5CDD 0. 5 108 14 2. 2 0. 1 99. 8 99 9 タ PsCDD s 1440 160 14 9. 6 99. 9 99. 4 ィ 1, 2, 3, 4, 7, 8 -H6CDD 0. 1 56 20 0. 5 0. 8 99. 9 99. 6 bo 1, 2, 3, 7, 8-P5CDD 0.5 0.5 108 14 2.20.1 99.8 99 9 data PsCDD s 1440 160 14 9.6 99.99 99.4 a 1, 2, 3, 4 , 7, 8 -H 6 CDD 0.1 56 20 0.5 0.8 99.9 99.6 bo
ォ 1, 2, 3, 6, 7, 8 -H6CDD 0. 1 75 27 2. 2 0. 3 99. 7 99. 9 キ 1, 2, 3, 7, 8, 9-HeCDD 0. 1 54 27 0. 5 0. 3 99. 9 99. 9O 1, 2, 3, 6, 7, 8 -H 6 CDD 0. 1 75 27 2. 2 0.3 99. 7 99.9 key 1, 2, 3, 7, 8, 9-H e CDD 0 . 1 54 27 0. 5 0. 3 99. 9 99. 9
H6CDD s 837 290 17 2. 9 99. 8 99. 9 ン 1, 2, 3, 4, 6, 7, 8-H7CDD 0. 01 1 17 140 2. 3 2. 8 99. 8 99. 8H 6 CDD s 837 290 17 2.9 99.8 99.9 1, 2, 3, 4, 6, 7, 8-H7CDD 0.01 1 17 140 2.3 2.8 99.8 99.8
H7CDD s 225 270 13 5. 4 99. 4 99. 8H7CDD s 225 270 13 5.4 99.4 99.8
OeCDD 0. 001 31 100 0. 3 1. 0 99. 9 99. 9OeCDD 0.001 31 100 0.3.1 99.9 99.9
PCDD s 4140 900 83 9. 0 99. 8 99. 9 PCDD s 4140 900 83 9.0 99.8 99.9
表 6— 2 ^ Table 6—2 ^
COCO
Figure imgf000045_0001
Figure imgf000045_0001
実施例 1 6 Example 16
実施例 5で得られた塩素化有機化合物分解用触媒に代えて実施例 1 0で得ら れた塩素化有機化合物分解用触媒を用い、 実施例 1 1の場合と同様にして排気 ガス中のダイォキシン類の酸化分解状況を調べた。 結果を表 7 (表 7— 1およ び表 7— 2 ) に示す。 なお、 表 7において、 塩素化有機化合物を示す各略号お よび "T E F " は、 表 2の場合と同じである。 The catalyst for decomposing chlorinated organic compounds obtained in Example 10 was used in place of the catalyst for decomposing chlorinated organic compounds obtained in Example 5, and the same method as in Example 11 was carried out. The state of oxidative degradation of dioxins was examined. The results are shown in Table 7 (Table 7-1 and Table 7-2). In Table 7, the abbreviations and "TEF" indicating the chlorinated organic compound are the same as those in Table 2.
表 7— 塩素化有機化合物 TEF 入口濃度 (n g/m ) 出口濃度 (n g/m3«) 除去率 (%) ガス態 粒子態 ガス態 粒子態 ガス態 粒子態Table 7—Chlorinated organic compounds TEF Inlet concentration (ng / m) Outlet concentration (ng / m 3 «) Removal rate (%) Gas state Particle state Gas state Particle state Gas state Particle state
2, 3, 7, 8-T4CDD 1 22 1. 4 1. 0 1. 0 95. 6 25. 92, 3, 7, 8-T 4 CDD 1 22 1.4 1.0 1.0 95.6 25.9
T4CDD s 1400 70 45 4 9 96. 8 30. 4T 4 CDD s 1400 70 45 4 9 96.8 30.4
1, 2, 3, 7, 8-P5CDD 0. 5 95 12 2. 3 10 97. 6 16. 2 タ PsCDD s 1300 144 32 113 97. 5 21. 5 ィ 1, 2, 3, 4, 7, 8 -H6CDD 0. 1 50 18 1. 8 13 96. 4 30. 0 ォ 1, 2, 3, 6, 7, 8— HsCDD 0. 1 67 24 2. 1 16 96. 8 31. 5 キ 1, 2, 3, 7, 8, 9 -H6CDD 0. 1 48 24 1. 4 19 97. 0 22. 2 シ H6CDD s 740 260 26 1 90 96. 5 26. 6 ン 1, 2, 3, 4, 6, 7, 8-H7CDD 0. 01 100 130 3. 3 99 96. 7 23. 61, 2, 3, 7, 8-P5CDD 0.5 5 95 12 2.3 10 97.6 16.2 Data PsCDD s 1300 144 32 113 97.5 21.5 5 1,2,3,4,7 8 -H 6 CDD 0.150 18 1.8 13 96.4 30.0 o 1,2,3,6,7,8- HsCDD 0.1 67 24 2.1 16 96.8 31.5 key 1, 2, 3, 7, 8, 9 -H 6 CDD 0.1 48 24 1.4 19 97.0 22.2 H 6 CDD s 740 260 26 1 90 96.5 26.6 , 3, 4, 6, 7, 8-H7CDD 0.01 100 130 3.3 99 96.7 23.6
H7CDD s 200 240 5. 0 1 8 3 97. 5 2 3. 7H7CDD s 200 240 5.0 0 1 8 3 97.5 2 3.7
OsCDD 0. 001 28 88 0. 6 54 98. 0 39. 0O s CDD 0.001 28 88 0.6 54 98.0 39.0
PCDD s 3700 800 96 608 97. 4 24. 0 PCDD s 3700 800 96 608 97.4 24.0
表 7— 2 塩素化有機化合物 TEF 入口濃度 (n g/m ) 出口濃度 (n g/m ) 除去率 (%) ガス能 粒子能 ガス據 ぉ子據 ガス能 Table 7-2 Chlorinated organic compounds TEF Inlet concentration (ng / m) Outlet concentration (ng / m) Removal rate (%) Gas capacity Particle capacity
2, 3 7 8 ~T4CDF 0. 1 96 4. 5 4. 6 3. 9 95. 2 1 5. 02, 3 7 8 ~ T 4 CDF 0.196 4.5 4.6.3.9 95.2 15.0
T. CD F s 2500 8 8 92 78 96. 3 1 i . 2T. CD F s 2500 8 8 92 78 96. 3 1 i. 2
1, 2 3 7, 8— PsCDF 0. 05 1 30 1 2 4. 8 1 0 Q 5 3 1 2 5 ン 2, 3, 4, 7, 8-PsCDF 0. 5 1 05 1 4 5 · 1 11 95 1 20. 81, 2 3 7, 8— PsCDF 0.05 1 30 1 2 4.8 1 0 Q 5 3 1 2 5 2, 3, 4, 7, 8-PsCDF 0.5 1 05 1 4 5 95 1 20. 8
P5CDF s 1 280 1 30 40 1 1 7 96 8 9. 9 ン 1, 2, 3, 4, 7 8— H6CDF 0. 1 7 9 1 8 3. 6 1 5 95. 4 1 8. 2 ゾ 1 2, 3, 6, 7 8— H6CDF 0. 1 64 1 6 1. 7 14 97. 4 1 2. 3 フ 1, 2 3 7 8 9-HeCDF 0. 1 1 0 4. 2 0. 9 2. 9 96. 9 30. 2 ラ 2, 3, 4, 6, 7, 8 -HsCDF 0. 1 44 1 9 1. 6 1 3 96. 4 32. 6 ン H6CDF 56 0 140 20 1 00 96. 5 28. 5P 5 CDF s 1 280 1 30 40 1 1 7 96 8 9.9 1, 2, 3, 4, 7 8—H 6 CDF 0.1 1 7 9 1 8 3. 6 1 5 95. 4 1 8. 2 ZO 1 2, 3, 6, 7 8—H 6 CDF 0.1 64 1 6 1. 7 14 97. 4 1 2.3 F 1, 2 3 7 8 9-HeCDF 0.1 1 1 0 4.2 0.9 2.9 96.9 30.2 La 2, 3, 4, 6, 7, 8 -HsCDF 0. 1 44 1 9 1. 6 1 3 96. 4 32. 6 emissions H 6 CDF 56 0 140 20 1 00 96.5 28.5
1, 2, 3, 4, 6, 7, 8-HrCDF 0. 0 1 58 4 3 1. 5 27 97. 5 36. 51, 2, 3, 4, 6, 7, 8-HrCDF 0.0 1 58 4 3 1.5 27 97.5 36.5
1, 2, 3, 4, 7, 8, 9-HrCDF 0. 0 1 1 0 9. 6 0. 5 6. 1 95. 2 36. 31, 2, 3, 4, 7, 8, 9-HrCDF 0. 0 1 1 0 9.6 0. 5 6.1 1 95. 2 36. 3
H7CDF s 96 75 3. 8 50 96. 0 32. 5H 7 CDF s 96 75 3.8 50 96.0 32.5
OBCDF 0. 0 0 1 9 2 0 0. 3 1 2 9 5. 8 4 0. 0OBCDF 0.0 0 1 9 2 0 0.3 1 2 9 5.8 4 0.0
PCDF s 4500 46 0 1 84 368 95. 9 20. 1PCDF s 4500 46 0 1 84 368 95.9 20.1
OCDD s +PCDF s 8000 1 280 320 1 050 96. 0 1 8. 0 OCDD s + PCDF s 8000 1 280 320 1 050 96.0 18.0
本発明は、 その精神または主要な特徴から逸脱することなく、 他のいろいろ な形で実施することができる。 そのため、 上述の実施例はあらゆる点で単なる 例示に過ぎず、 限定的に解釈してはならない。 本発明の範囲は、 請求の範囲に よって示すものであって、 明細書本文にはなんら拘束されない。 さらに、 請求 の範囲の均等範囲に属する変形や変更は、 すべて本発明の範囲内のものである。 The present invention may be embodied in various other forms without departing from its spirit or essential characteristics. Therefore, the above-described embodiment is merely an example in every aspect, and should not be construed as limiting. The scope of the present invention is defined by the appended claims, and is not restricted by the description. Furthermore, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

Claims

請 求 の 範 囲 The scope of the claims
1 . 担体と、 1. a carrier;
前記担体に担持された金元素からなる第 1触媒成分と、  A first catalyst component comprising a gold element supported on the carrier,
前記担体に担持された、 マグネシウム、 アルミニウム、 ケィ素、 チタン、 マ ンガン、 鉄、 コバルト、 ニッケル、 銅、 亜鉛、 イットリウム、 ジルコニウム、 ニオブ、 モリブデン、 インジウム、 スズ、 ランタンおよびセリウムからなる元 素群から選ばれた少なくとも 1種の元素の酸ィ匕物からなる第 2触媒成分と、 を含む塩素化有機化合物分解用触媒。  From the element group consisting of magnesium, aluminum, silicon, titanium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, indium, tin, lanthanum, and cerium supported on the carrier. A second catalyst component comprising an oxidized product of at least one selected element, and a chlorinated organic compound decomposition catalyst comprising:
2 . 前記担体が耐酸化性を有するものである、 請求項 1に記載の塩素化有機化 合物分解用触媒。  2. The catalyst for decomposing chlorinated organic compounds according to claim 1, wherein the carrier has oxidation resistance.
3 . 前記担体がシリカ、 アルミナ、 ゼォライ トおよび活性白土からなる群から 選ばれた少なくとも 1種である、 請求項 2に記載の塩素化有機ィ匕合物分解用触 媒。  3. The catalyst for decomposing a chlorinated organic compound according to claim 2, wherein the carrier is at least one selected from the group consisting of silica, alumina, zeolite and activated clay.
4 . 前記担体は、 比表面積が少なくとも 1 0 0 m 2Z gでありかつ平均細孔径 が少なくとも 1 0オングストロームのものである、 請求項 1に記載の塩素化有 機化合物分解用触媒。 4. The carrier, specific surface area of at least 1 0 0 m 2 Z g and an average pore diameter is of at least 1 angstrom, chlorine Kayu machine compound-decomposing catalyst according to claim 1.
5 . 前記担体が繊維状態および粒子状態のうちの少なくとも一つの形態である、 請求項 4に記載の塩素化有機化合物分解用触媒。  5. The catalyst for decomposing chlorinated organic compounds according to claim 4, wherein the carrier is in at least one form of a fiber state and a particle state.
6 . 前記第 1触媒成分が前記担体 1 0 0 g当たりに 0 . 0 5〜5 g、 前記第 2 触媒成分が前記担体 1 0 0 g当たりに l〜2 5 gそれぞれ担持されており、 力、 つ前記第 2触媒成分に対する前記第 1触媒成分のモル比が 0 . 0 0 5〜 0 . 2 に設定されている、 請求項 1に記載の塩素化有機化合物分解用触媒。  6. The first catalyst component is loaded with 0.05 to 5 g per 100 g of the carrier, and the second catalyst component is loaded with l to 25 g per 100 g of the carrier. The chlorinated organic compound decomposition catalyst according to claim 1, wherein the molar ratio of the first catalyst component to the second catalyst component is set to 0.05 to 0.2.
7 . 担体に対し、 金元素に転化可能な金化合物と、 マグネシウム、 アルミニゥ ム、 ケィ素、 チタン、 マンガン、 鉄、 コバルト、 ニッケル、 銅、 亜鉛、 イット リウム、 ジノレコニゥム、 ニオブ、 モリブデン、 インジウム、 スズ、 ランタンお よびセリゥムからなる第 1元素群から選ばれた少なくとも 1種の元素の酸化物 に転化可能な前駆体とを担持させるための工程と、 7. A gold compound that can be converted to elemental gold, magnesium, aluminum, silicon, titanium, manganese, iron, cobalt, nickel, copper, zinc, it A step of supporting a precursor which can be converted to an oxide of at least one element selected from the first element group consisting of lithium, dinoconium, niobium, molybdenum, indium, tin, lanthanum and cerium;
前記金化合物および前記前駆体をそれぞれ前記金元素および前記酸化物に転 化する工程と、  Converting the gold compound and the precursor to the gold element and the oxide, respectively;
を含む塩素化有機化合物分解用触媒の製造方法。 A method for producing a catalyst for decomposing chlorinated organic compounds, comprising:
8 . 前記金化合物および前記前駆体がそれぞれ金水酸化物および前記第 1元素 群から選ばれた少なくとも 1種の元素の水酸化物である、 請求項 7に記載の塩 素化有機化合物分解用触媒の製造方法。  8. The catalyst for decomposing a chlorinated organic compound according to claim 7, wherein the gold compound and the precursor are a gold hydroxide and a hydroxide of at least one element selected from the first element group, respectively. Manufacturing method.
9 . 前記金化合物および前記前駆体をそれぞれ前記金元素および前記酸化物に 転化する工程が、  9. The step of converting the gold compound and the precursor to the gold element and the oxide, respectively,
前記金化合物および前記前駆体を担持した前記担体を 2 5 0〜 7 0 0 °Cの温 度範囲の不活性ガス雰囲気中および空気中のうちから選択された 1つの雰囲気 中で熱処理する工程と、  Heat-treating the carrier supporting the gold compound and the precursor in an atmosphere selected from an inert gas atmosphere and air in a temperature range of 250 to 700 ° C. ,
熱処理された前記担体を 2 0 0〜6 0 0 °Cの温度範囲の還元性ガス雰囲気中 でさらに熱処理する工程と、  Further heat-treating the heat-treated support in a reducing gas atmosphere in a temperature range of 200 to 600 ° C;
を含む請求項 8に記載の塩素化有機化合物分解用触媒の製造方法。 9. The method for producing a catalyst for decomposing chlorinated organic compounds according to claim 8, comprising:
1 0 . 前記担体は、 無機酸の 3 %〜飽和濃度水溶液中で室温から沸騰温度まで の温度範囲で煮沸処理した後に水洗浄して乾燥する前処理工程、 およびその 1 10. The carrier is a pretreatment step of boiling in an aqueous solution of an inorganic acid at a concentration of 3% to a saturated concentration in a temperature range from room temperature to a boiling temperature, followed by washing with water and drying;
O O g当たりに対して鉄、 ニッケル、 ルテニウム、 ロジウム、 パラジウムおよ ぴ白金からなる第 2元素群から選ばれた少なくとも 1種の元素を 0 . 0 1〜5 g分散させた後に 3 0 0〜7 0 0 °Cの還元性ガス雰囲気中で触媒エッチング処 理する前処理工程のうちの少なくとも一つの前処理工程により予め前処理され ている、 請求項 7に記載の塩素化有機化合物分解用触媒の製造方法。 After dispersing 0.01 to 5 g of at least one element selected from the second element group consisting of iron, nickel, ruthenium, rhodium, palladium and platinum per OO g, The catalyst for decomposing chlorinated organic compounds according to claim 7, wherein the catalyst has been pretreated in advance by at least one of pretreatment steps of a catalyst etching treatment in a reducing gas atmosphere at 700 ° C. Manufacturing method.
1 1 . 前記無機酸が硝酸、 塩酸、 フッ化水素酸、 硫酸およびリン酸からなる群 から選ばれた少なくとも 1種である、 請求項 1 0に記載の塩素化有機ィヒ合物分 解用触媒の製造方法。 1 1. The inorganic acid is a group consisting of nitric acid, hydrochloric acid, hydrofluoric acid, sulfuric acid and phosphoric acid The method for producing a catalyst for decomposing chlorinated organic compounds according to claim 10, which is at least one member selected from the group consisting of:
PCT/JP1999/005099 1998-09-22 1999-09-17 Catalyst for decomposing chlorinated organic compound WO2000016898A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/268390 1998-09-22
JP26839098 1998-09-22
JP17572899 1999-06-22
JP11/175728 1999-06-22

Publications (1)

Publication Number Publication Date
WO2000016898A1 true WO2000016898A1 (en) 2000-03-30

Family

ID=26496903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005099 WO2000016898A1 (en) 1998-09-22 1999-09-17 Catalyst for decomposing chlorinated organic compound

Country Status (1)

Country Link
WO (1) WO2000016898A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280184A (en) * 2007-05-08 2008-11-20 National Institute Of Advanced Industrial & Technology Composite of ultrafine particle of cerium-containing mesoporous silica and noble metal, production method of the composite, oxidative exclusion method of minute amount of carbon monoxide by using the complex as catalyst, and synthetic method of ketone by oxidative dehydrogenation of alcohol
JP2013504683A (en) * 2009-09-15 2013-02-07 エイビーエス マテリアルズ インコーポレイテッド Swellable material and method of use
RU2488441C1 (en) * 2012-07-18 2013-07-27 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Catalyst for oxidative decomposition of organochlorine compounds in gases and method for production thereof
US9144784B2 (en) 2005-09-30 2015-09-29 Abs Materials Sorbent material and method for using the same
CN112427032A (en) * 2019-08-26 2021-03-02 万华化学集团股份有限公司 Catalyst for catalyzing and burning vinyl chloride to polymerize wet-containing tail gas and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163877A (en) * 1993-09-24 1995-06-27 N E Chemcat Corp Catalyst for treating exhaust gas containing dioxines, production thereof and treatment method
JPH08309149A (en) * 1995-05-18 1996-11-26 Mitsubishi Chem Corp Decomposition method for chlorinated organic compound
JPH0975668A (en) * 1995-09-07 1997-03-25 Nippon Shokubai Co Ltd Exhaust gas treatment apparatus
JPH09103646A (en) * 1995-08-08 1997-04-22 Ebara Corp Method and apparatus for treating combustion exhaust gas
JPH1099646A (en) * 1996-09-27 1998-04-21 Mitsubishi Chem Corp Decomposition of chlorinated organic compound
JPH11253799A (en) * 1998-03-10 1999-09-21 Osaka Gas Co Ltd Chlorinated organic compound decomposition catalyst and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163877A (en) * 1993-09-24 1995-06-27 N E Chemcat Corp Catalyst for treating exhaust gas containing dioxines, production thereof and treatment method
JPH08309149A (en) * 1995-05-18 1996-11-26 Mitsubishi Chem Corp Decomposition method for chlorinated organic compound
JPH09103646A (en) * 1995-08-08 1997-04-22 Ebara Corp Method and apparatus for treating combustion exhaust gas
JPH0975668A (en) * 1995-09-07 1997-03-25 Nippon Shokubai Co Ltd Exhaust gas treatment apparatus
JPH1099646A (en) * 1996-09-27 1998-04-21 Mitsubishi Chem Corp Decomposition of chlorinated organic compound
JPH11253799A (en) * 1998-03-10 1999-09-21 Osaka Gas Co Ltd Chlorinated organic compound decomposition catalyst and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9144784B2 (en) 2005-09-30 2015-09-29 Abs Materials Sorbent material and method for using the same
JP2008280184A (en) * 2007-05-08 2008-11-20 National Institute Of Advanced Industrial & Technology Composite of ultrafine particle of cerium-containing mesoporous silica and noble metal, production method of the composite, oxidative exclusion method of minute amount of carbon monoxide by using the complex as catalyst, and synthetic method of ketone by oxidative dehydrogenation of alcohol
JP2013504683A (en) * 2009-09-15 2013-02-07 エイビーエス マテリアルズ インコーポレイテッド Swellable material and method of use
RU2488441C1 (en) * 2012-07-18 2013-07-27 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Catalyst for oxidative decomposition of organochlorine compounds in gases and method for production thereof
CN112427032A (en) * 2019-08-26 2021-03-02 万华化学集团股份有限公司 Catalyst for catalyzing and burning vinyl chloride to polymerize wet-containing tail gas and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3626754B2 (en) Catalytic incineration of organic compounds
Zhang et al. Insight into the enhanced performance of toluene removal from simulated flue gas over Mn-Cu oxides modified activated coke
Wang et al. Catalytic oxidation of gaseous PCDD/Fs with ozone over iron oxide catalysts
EP0800420A1 (en) Catalytic oxidation catalyst and method for controlling voc, co and halogenated organic emissions
Delaigle et al. Revisiting the behaviour of vanadia-based catalysts in the abatement of (chloro)-aromatic pollutants: towards an integrated understanding
CN106622211A (en) Catalytic ozonation material as well as preparation method and application thereof
CN101069848A (en) Catalyst for low-temperature catalytic combustion removal of easy-to-volatile chloroarene
JPH1149503A (en) Spherical carbon material and its production
JP2915393B1 (en) Catalyst for decomposing chlorinated organic compounds and method for producing the same
Chaghaganooj et al. Ce and Mn/bio-waste-based activated carbon composite: Characterization, phenol adsorption and regeneration
WO2000016898A1 (en) Catalyst for decomposing chlorinated organic compound
Chin et al. Catalytic conversion of 1, 2-dichlorobenzene using V2O5/TiO2 catalysts by a thermal decomposition process
Li et al. High-yield synthesis of Ce modified Fe–Mn composite oxides benefitting from catalytic destruction of chlorobenzene
JPH11300160A (en) Waste incinerating device and waste incinerating method
KR100611263B1 (en) Method and catalyst for the oxidation of gaseous halogenated and non-halogenatedorganic compounds
JP4570783B2 (en) Catalyst body and method for reducing halogenated hydrocarbons
KR20040094522A (en) Catalyst for Removing Aromatic Halogenated Compounds Comprising Dioxin, Carbon Monoxide, and Nitrogen Oxide and Use Thereof
KR100402430B1 (en) Catalyst for decomposition of toxic pollutants and producing process thereof
JP3734645B2 (en) Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound
JP4596944B2 (en) Combustion exhaust gas treatment method
JP2000000471A (en) Waste gas treating catalyst, waste gas treatment and treating device
KR100382050B1 (en) Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
KR100850060B1 (en) Method for decomposing chlorine-containing organic compound in exhaust gas and catalyst for use in the method
Qiu et al. Functional MCFe@ PTFE Filters for the Catalytic Oxidation of PCDD/Fs at Low Temperatures
JP2002355299A (en) Air cleaning filter using photocatalyst

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP