JP2008268147A - 重量計 - Google Patents

重量計 Download PDF

Info

Publication number
JP2008268147A
JP2008268147A JP2007115123A JP2007115123A JP2008268147A JP 2008268147 A JP2008268147 A JP 2008268147A JP 2007115123 A JP2007115123 A JP 2007115123A JP 2007115123 A JP2007115123 A JP 2007115123A JP 2008268147 A JP2008268147 A JP 2008268147A
Authority
JP
Japan
Prior art keywords
weight data
weight
correction coefficient
measurement surface
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007115123A
Other languages
English (en)
Inventor
Masayuki Kenmochi
雅之 堅持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanita Corp
Original Assignee
Tanita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanita Corp filed Critical Tanita Corp
Priority to JP2007115123A priority Critical patent/JP2008268147A/ja
Priority to EP08005813A priority patent/EP1985977A1/en
Priority to CNA2008100953401A priority patent/CN101294842A/zh
Priority to US12/149,099 priority patent/US20080264141A1/en
Publication of JP2008268147A publication Critical patent/JP2008268147A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/14Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
    • G01G3/1414Arrangements for correcting or for compensating for unwanted effects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Electric Ovens (AREA)

Abstract

【課題】ユーザによる設定の手間を必要とせず、傾斜誤差を自動的に補正可能な自動補正機能付き重量計を提供する
【解決手段】重量計10Aは、CPU110と、加速度センサ120と、重量センサ130と、表示部140と、メモリ150とを有する。加速度センサ120は、互いに直交するX軸およびY軸の各加速度を検知する。メモリ150には、傾斜誤差を補正するための補正係数を記憶した補正テーブルTBL1が記憶されている。CPU110は、加速度センサ120が出力した加速度に対応する補正係数に基づいて重量センサ130からの重量データを補正し、出力重量データとして出力し、表示部140に表示する。
【選択図】図2

Description

本発明は、測定面に載せられた物体の重量を測定する重量計に関する。
重量計の測定面を水平に保つための技術がある。例えば、特許文献1には、秤装置(重量計)の内部に水平器が内蔵されており、ユーザはこの水平器を見ながら脚部の高さを調整することにより重量計を水平状態に設定する技術が記載されている。
特開2005−49271号公報
しかしながら、この設定作業はユーザにとって手間であった。また、重量計の設置場所が変わるたびに設定を再度行う必要があり面倒であった。本発明は、上述した事情に鑑みてなされたものであり、ユーザによる設定の手間を必要とせず、測定面が傾斜していることにより生じる重量の誤差(傾斜誤差)を簡単に補正することが可能な重量計を提供することを解決課題とする。
上述した課題を解決するため、本発明に係る重量計は、測定面に載せられた物体の重量を測定して重量データを出力する重量測定手段と、互いに直交する少なくとも2軸における各加速度を検出する加速度センサと、前記測定面が水平状態にあるときの前記重量データと前記測定面が傾斜状態にあるときの前記重量データとの比を第1補正係数として、前記測定面が傾斜状態にあるときに前記加速度センサによって検出された前記各加速度と対応付けて記憶するメモリと、前記メモリを参照することにより、前記加速度センサが測定した前記加速度に対応する第1補正係数を取得し、前記重量データを当該第1補正係数により補正して第1出力重量データとして出力する第1補正手段と、を有する。
本発明の重量計には加速度センサが設けられ、メモリには測定面が水平状態にあるときの重量データと傾斜状態にあるときの重量データとの比を示す第1補正係数が記憶されている。そして、測定時には、加速度センサが測定した各加速度に対応する第1補正係数で重量データを補正する。よって、本発明の重量計によれば、ユーザが水平器を見ながら測定面を水平状態に設定するという作業を行わずとも、測定面が傾斜していることによる重量データの誤差が自動的に補正されて出力される。したがって、重量計の設置場所が変わるたびに、機器を水平状態に設定しなおす手間を省くことが可能になり、利便性が向上する。
本発明に係る別の重量計は、測定面に載せられた物体の重量を測定して重量データを出力する重量測定手段と、互いに直交する少なくとも2軸における各加速度を検出する加速度センサと、前記測定面が水平状態にあるときの前記重量データと前記測定面が傾斜状態にあるときの前記重量データとの比を第1補正係数として、前記測定面の傾斜角度と対応付けて記憶するメモリと、前記加速度センサが測定した前記各加速度に基づいて前記測定面の傾斜角度を算出し、前記メモリを参照することにより、算出した傾斜角度に対応する第1補正係数を取得し、前記重量データを当該第1補正係数により補正して第1出力重量データとして出力する第1補正手段とを有する。
本発明の重量計においては、加速度センサが測定した各加速度に基づいて測定面の傾斜角度を算出し、算出された傾斜角度に対応する第1補正係数で重量データを補正する。よって、本発明の重量計によれば、ユーザが水平器を見ながら測定面を水平状態に設定するという作業を行わずとも、測定面が傾斜していることによる重量データの誤差(傾斜誤差)が自動的に補正されて出力される。したがって、重量計の設置場所が変わるたびに、機器を水平状態に設定しなおす手間を省くことが可能になり、利便性が向上する。
本発明の好適な態様において、前記第1補正係数を生成する第1補正係数生成手段をさらに有し、前記重量測定手段(例えば、重量センサ)は、前記測定面が水平状態にあるときの前記重量データと、前記測定面が傾斜状態にあるときの前記重量データを前記第1補正係数生成手段に供給し、前記第1補正係数生成手段は、前記測定面が水平状態にあるときの前記重量データと、前記測定面が傾斜状態にあるときの前記重量データとに基づいて前記第1補正係数を生成する。本態様によれば、各重量計において自機における重量データの補正に用いる第1補正係数が生成されるので、加速度センサや重量センサなどの製造誤差による重量データの誤差(器差)をも補正することが可能となる。
本発明の別の好適な態様において、前記メモリには基準地点における基準重力が記憶されており、前記加速度センサは、互いに直交する3軸における各加速度を検出し、前記加速度センサが測定した各加速度の二乗和平方根を求めることにより前記測定面にかかる重力を算出する重力算出手段と、前重力算出手段によって算出された前記測定面にかかる前記重力と前記基準重力との比を第2補正係数として求め、当該第2補正係数により、前記第1補正手段によって出力された前記第1出力重量データを補正して第2出力重量データとして出力する第2補正手段とをさらに有する。
測定面にかかる重力は測定が行われる地点の場所によって変化するため、重量計の出力値に誤差(重力誤差)が生じる場合がある。このため、一般的に、重量計が使用される使用地域をユーザに手動設定させることにより、重力誤差を補正するといったことが行われてきた。しかしながら、本態様においては、基準地点における基準重力をメモリに記憶しておき、測定時には、加速度センサが測定した各加速度に基づいて測定地点の重力を算出し、この重力と基準重力との比(第2補正係数)により重量データを補正するので、使用地域の設定を行わずとも、重力誤差の補正を自動的に行うことが可能である。
以下、添付の図面を参照しながら本発明に係る実施の形態を説明する。
<A:第1実施形態>
図1の(A)は、本発明の第1実施形態に係る重量計10Aの外観を示す平面図であり、図1の(B)はその正面図である。図2は、重量計10Aの構成を示す機能ブロック図である。
図1および図2に示されるように、重量計10Aは、ケース1と、測定対象となる物体を載せるための台である載せ台(測定面)2と、当該重量計10Aの電源をオン状態またはオフ状態とするための電源スイッチ3と、当該重量計10Aが設置される床などの設置面と接してケース1を支持する脚部11とを有する。ケース1の手前側表面には、表示部140が設けられる。この表示部140は、例えば、LCD(Liquid Crystal Display)などの表示装置であり、重量計10Aの出力データである第1出力重量データMout1を表示する。
重量計10Aは、さらに、ケース1の内部に、加速度センサ120と、重量センサ130と、メモリ150と、これら各部を制御するCPU110とを備える。
図3は、本実施形態の加速度センサ120の原理を説明するための概念図である。加速度センサ120は、図3に示すように、互いに直交する3軸であるX軸、Y軸、Z軸方向の各加速度Xa,Ya,Zaを測定して出力するセンサである。CPU110は、加速度センサ120から出力される加速度Xa,Ya,Zaに基づいて、当該加速度センサの測定対象物(本実施形態では、載せ台2)の傾斜を演算により求めることができる。
詳細には、加速度センサ120は、X軸が鉛直軸(水平面Aに対して鉛直上向きの軸)から角度θx傾いている場合には、鉛直軸にかかる重力gのcosθx倍の加速度を出力し、Y軸が鉛直軸から角度θy傾いている場合には、重力gのcosθy倍の加速度を出力し、Z軸が鉛直軸から角度θz傾いている場合には、重力gのcosθz倍の加速度を出力する。よって、CPU110は、このことを利用して、各角度θx、θy、θzを以下の式により求める。
θx=cos−1Xa/g
θy=cos−1Ya/g
θz=cos−1Za/g
ただし、gは定数。
すなわち、鉛直軸からの各軸の角度が求められ、これにより、載せ台2の傾斜角度が求められる。
加速度センサ120としては、例えば、半導体プロセスで製造されるピエゾ抵抗型、静電容量型、熱検知型等の3軸加速度センサを用いることができる。この3軸加速度センサによれば重力を計測することが可能であるが、重力gは定数であるから、本実施形態においては、少なくともX軸およびY軸の各加速度を測定可能であれば角度θxおよびθyを演算により求めることできればよい。よって、上述した3軸の加速度センサに限られず、2軸の加速度センサであってもよい。
重量センサ130は、載せ台2の上に測定対象の物体が載せられると、その物体の質量mと重力gに応じた重量mgを重量データMpとして出力する。ところが、重量計10A(すなわち、載せ台2)が傾斜していると、重量センサ130には、傾斜角度(θx,θy)に応じた力cos(θx,θy)が加わり、水平状態で加わる力mgに対し誤差(以下、傾斜誤差という)が生じる。そこで、本実施形態では、加速度センサ120により重量計10Aの傾斜角度を自動的に検出し、検出した傾斜角度に応じて重量センサ130から出力される重量データMpを補正し、傾斜誤差が除去された第1出力重量データMout1として出力する。その詳細については後段に記載するが、本実施形態の重量計10Aによれば、従来のように、ユーザが水平器を見ながら重量計の脚部の高さを調整せずとも、重量センサ130の出力値Mpを自動的に補正するので、ユーザの利便性が格段に向上する。
メモリ150は、例えば、ROM(Read Only Memory)であり、後述の補正テーブルTBL1(図4)が記憶される。加えて、載せ台2の傾斜角度を求めるための上記演算式を含む各種演算プログラム、後述の校正プログラム(図5)、後述の測定プログラム(図6)などの各種プログラムが予め記憶される。
図4は、本実施形態のメモリ150に記憶された補正テーブルTBL1の記憶内容の一例を示す図である。図4に示されるように、補正テーブルTBL1には、θxおよびθyについて既知の角度に対応する加速度センサ120の出力値Xa,Yaと補正係数k0〜k4とが予め記憶されている。本実施形態における補正係数k0〜k4は、基準となる重量(基準重量)Mref(例えば、1kg)と既知の角度における重量センサ130からの出力重量データMpとの比である。なお、補正係数として基準重量Mrefと重量データMpとの比を用いる代わりに、重量計10Aの載せ台2が水平状態にあるとき(すなわち、(θx,θy)=(0,0)のとき)の重量データMp0と載せ台2が所定角度だけ傾斜した場合に得られる重量データMpとの比を用いてもよい。
図5は、補正テーブルTBL1を生成するための校正処理の流れを示すフローチャートである。図5に示す校正処理は、工場出荷前に、メモリ150に記憶された校正プログラムに従い各重量計10Aごとに行われる。この校正処理においては、まず、基準重量Mrefの物体が、重量計10Aの載せ台2に載せられる。そして、その状態で重量計10Aを(θx,θy)=(0,0)だけ傾ける(ステップSA1)。重量計10AのCPU110は、加速度センサ120の出力値Xa[0],Ya[0]および重量センサ130の出力値Mp0を取得し、基準重量Mrefと出力値Mp0との比を補正係数k0として、(θx,θy)=(0,0)に対応付けて補正テーブルTBL1に記憶する。このとき、加速度センサ120の出力値Xa[0]をθx=0に対応付けて記憶し、Yb[0]をθy=0に対応付けて記憶する(ステップSA3)。続いて、重量計10Aを(θx,θy)=(+1.5,0)だけ傾ける(ステップSA5)。CPU110は、加速度センサ120の出力値Xa[+1.5],Ya[0]および重量センサ130の出力値Mp1を取得し、基準重量Mrefと出力値Mp1との比を補正係数k1として、(θx,θy)=(+1.5,0)に対応付けて補正テーブルTBL1に記憶する。このとき、加速度センサ120の出力値Xa[+1.5]をθx=+1.5に対応付けて記憶する。出力値Yb[0]については、ステップSA3においてθy=0と対応付けられて既に記憶されているので、その記憶値をステップSA5で取得された値で上書きする(ステップSA7)。以降、同様にして、(θx,θy)=(0,+1.5)に対応する補正係数k2を記憶し、(θx,θy)=(−1.5,0)に対応する補正係数k3を記憶し、(θx,θy)=(0,−1.5)に対応する補正係数k4を記憶するとともに、各角度に対応する加速度センサの出力値Xa,Yaを記憶する(ステップSA9〜ステップSA19)。このようにして図4に示す内容が記憶された補正テーブルTBL1が生成されてメモリ150に記憶された後に、重量計10Aが工場から出荷される。
図6は、重量計10Aを用いて測定対象の物体を測定する場合の測定処理の流れを示すフローチャートである。CPU110は、メモリ150に記憶されている測定プログラムに従い、この測定処理を実行する。まず、ユーザは、重量計10Aの電源を投入し、測定対象の物体を載せ台2の上面に置く。すると、CPU110は、重量センサ130から出力される重量データMpを取得するとともに、加速度センサ120の出力値Xa,Yaを取得する(ステップSB1)。次いで、CPU110は、補正テーブルTBL1の記憶内容を読み出す(ステップSB3)。次に、CPU110は、ステップSB1で取得された加速度センサ120の出力値Xa,Yaに対応する補正係数kを取得する。このとき、CPU110は、補正テーブルTBL1に記憶された出力値Xa[0],Xa[+1.5],Xa[−1.5],Ya[0],Ya[+1.5],Ya[−1.5]と補正係数k0〜k4とに基づいて、補間により曲線を演算し、ステップSB1で取得された加速度センサ120の出力値Xa,Yaに対応する補正係数kを演算した曲線に基づいて取得する(ステップSB5)。そして、取得した補正係数kを、ステップSB1で取得された重量データMpに乗じることにより、重量データMpを補正し、第1出力重量データMout1として表示部140に表示する(ステップSB7)。
例えば、X軸の加速度がX1(Xa[0]<X1<Xa[+1.5])、Y軸の加速度がY1=Ya[0]であるとすると、補間により得られる補正係数kは以下の式により与えられる。
k={k0(Xa[+1.5]−X1)+k1(X1−Xa[0])}/(Xa[+1.5]−Xa[0])
重量計10Aでは、重量センサ130等の製造上の誤差により重量データMpに誤差(器差)生じる場合がある。すなわち、同じ機種であっても、重量センサ130が出力する重量データMpが別の重量計10Aの重量センサ130の出力値と同一値になるとは限らない。よって、重力センサ130の出力値Mpは、傾斜誤差のみならず器差をも含む値である。換言すると、補正係数k0〜k4を用いると、傾斜誤差に加えて器差を補正することが可能である。
また、重量センサ130のみならず、加速度センサ120にも製造上の誤差が生じる可能性がある。このため、同じ角度θx,θyだけ重量計10Aが傾斜している場合でも、加速度センサ120のX軸およびY軸の各加速度の出力値に器差が生じる場合がある。そこで、上述したように、本実施形態の校正処理においては、θx,θyの既知の角度に対応する加速度センサ120の出力値を記憶するようにしている。そして、測定処理においては、加速度センサ120の出力値に対応する補正係数が取得され、その補正係数により重量データMpが補正される。これにより、加速度センサ120の器差をも補正することが可能となる。なお、加速度センサ120や重量センサ130の器差が問題とならない場合には、実験で求められた傾斜誤差のパラメータを同一機種の重量計10Aに共通の補正係数として用いて傾斜誤差を補正するようにしてもよい。また、加速度センサ120が出力した加速度に基づいてX軸とY軸各々について傾斜角度を演算し、その傾斜角度に対応する補正係数を補正テーブルTBLから取得し、その補正係数により重量データを補正する構成としてもよい。
図7は、本実施形態の変形例に係る補正テーブルTBL1aの記憶内容の一例を示す図である。上述した実施形態では、補正係数k0〜k4の5つの補正係数を補正テーブルTBL1に記憶しておく態様について説明したが、図7に示されるように、補正係数k0〜k8の9つの補正係数を補正テーブルTBL1aに記憶する態様としてもよい。すなわち、(θx,θy)=(0,0)に対応する補正係数k0、(θx,θy)=(+1.5,0)に対応する補正係数k1、(θx,θy)=(0,+1.5)に対応する補正係数k2、(θx,θy)=(−1.5,0)に対応する補正係数k3、(θx,θy)=(0,−1.5)に対応する補正係数k4に加え、(θx,θy)=(+1.5,+1.5)に対応する補正係数k5、(θx,θy)=(+1.5,−1.5)に対応する補正係数k6、(θx,θy)=(−1.5,+1.5)に対応する補正係数k7、(θx,θy)=(−1.5,−1.5)に対応する補正係数k8を記憶するようにしてもよい。この態様によれば、補間の精度が向上し、より正確な補正が可能となる。
<B:第2実施形態>
次に、本発明の第2実施形態について説明する。第2実施形態に係る重量計は、傾斜誤差に加えて重力の変動により発生し得る誤差(重力誤差)の補正を自動的に行う点で、第1実施形態の重量計10Aと相違する。なお、本実施形態において、上記実施形態と同様の要素については同一の符号を付し、その説明を適宜省略する。
図8は、第2実施形態に係る重量計10Bの機能構成を示す機能ブロック図である。図8に示されるように、重量計10Bは加速度センサ120bを有し、この加速度センサ120bはX軸、Y軸、Z軸の3軸方向の加速度Xa,Ya,Zaを検出可能である。上記実施形態と同様に、本実施形態では、X軸およびY軸方向の加速度XaとYaに基づいて重量計10Bの傾斜誤差が補正される。さらに、本実施形態では、加速度XaとYaとZaとに基づいて当該重量計10Bにかかる重力gが取得され、重力誤差の補正時に利用される。具体的には、重力gは下記式のように加速度Xa,Ya,Zaの二乗和平方根により求められる。
g=(Xa+Ya+Za1/2
さらに、重量計10Bはメモリ150bを有し、このメモリ150bには図4に示す補正テーブルTBL1と、基準地点の重力を示す基準重力値Gsとが記憶される。本実施形態では、この基準重力値Gsは、工場出荷前に行われる校正処理において生成され、メモリ150bに記憶される(図9のステップSAb21)。なお、この基準重力値Gsは、必ずしも校正時に工場が所在する場所を基準地点として生成される必要はなく、工場の所在場所とは異なる別の基準地点における既知の重力値をメモリ150bに記憶するようにしてもよい。この場合、重量計10Bは、その基準地点において、当該重量計10Bが水平状態にあるときに、基準重量Mrefを第2出力重量データMout2として出力するよう設定される。
上述したように、重量センサ130は、載せ台2の上に測定対象の物体が載せられると、その物体の質量mと重力gに応じた重量mgを重量データMpとして出力する。ところが、重力センサ130にかかる重力gは場所(測定地点の緯度経度や海抜、地殻構造など)によって変動する。例えば、日本国内では、北と南、海面と富士山の頂上ではその重力gに差が出る。結果として、重量センサ130が出力する重量データMpに誤差(以下、「重力誤差」という)が生じる。そこで、本実施形態では、基準地点における基準重力値Gsを予め登録しておき、その基準重力値Gsと加速度センサ120bからの出力値に基づいて求められる重力gとの比により、重量データMpを補正する構成としている。これにより、測定地点が変わった場合にも自動的に重力誤差が補正される。従来からの方法として、重量計が使用される使用地域をユーザに手動設定させることにより、重力誤差を補正することが行われてきたが、この方法と比較して、ユーザが使用地域を設定する手間が不要となり、利便性が向上する。
メモリ150bには、上記補正テーブルTBL1および基準重力値Gsに加え、加速度Xa,Ya,Zaの二乗和平方根により重力gを求める演算プログラム、補正テーブルTBL1を生成するとともに基準重力値Gsを生成するための校正プログラム(図9)、および傾斜誤差を補正するとともに重力誤差を補正するための測定プログラム(図10)など、各種プログラムが記憶されている。
図9は、本実施形態に係る校正処理の流れを示すフローチャートである。この図において、ステップSA1〜ステップSA19の各処理(すなわち、補正テーブルTBL1の生成処理)は上述した実施形態と同様であるので、その説明は省略する。ステップSA1〜ステップSA19の処理が完了すると、すなわち、補正テーブルTBL1が生成されると、続いて、ルーチンはステップSAb21に移り、CPU110は、当該校正処理が行われる地点を基準地点とし、当該基準地点における加速度Xa,Ya,Zaの二乗和平方根を求め、基準重力値Gsとしてメモリ150bに記憶する。このようにして補正テーブルTBL1および基準重力値Gsが生成された後に、重量計10Bは工場から出荷される。
図10は、本実施形態に係る測定処理の流れを示すフローチャートである。本実施形態においては、測定処理において、まず上記第1実施形態と同様にして傾斜誤差が補正され、その補正結果である第1出力重量データMout1対して重力誤差の補正が施されて第2出力重量データMout2として出力される。よって、図10において、ステップSB3〜ステップSB7の各処理(すなわち、傾斜誤差の補正処理)は上述した実施形態と同様であるので、その説明は省略する。
本実施形態の測定処理において、まず、ユーザは、任意の測定地点において重量計10Bの電源を投入し、測定対象の物体を載せ台2に載せ、測定を開始する。ステップSBb1において、CPU110は測定対象の物体の重量データMpを取得するとともに、加速度センサ120の出力値Xa,Ya,Zaを取得する。次に、ステップSB3〜ステップSB7の各処理により傾斜誤差の補正が完了すると、第1出力重量データMout1が生成される。続いて、ステップSBb1において取得した加速度センサ120bの出力値Xa,Ya,Zaの二乗和平方根を求めることにより、この測定地点における重力gを求める(ステップSBb9)。次に、メモリ150bに記憶された基準重力Gsと上記測定地点における重力gとの比を求め、この比を第2補正係数とする。そして、第1出力重量データMout1に第2補正係数を乗じて、第2出力重量データMout2を生成する。続いて、この第2出力重量データMout2を表示部140に表示して出力する(ステップSBb11)。以上のようにして、傾斜誤差補正処理および重力誤差補正処理を含む測定処理が完了する。
以上説明したように、本実施形態によれば、上記第1実施形態と同様の効果が得られる。加えて、本実施形態では、重量データMpの重力誤差を自動的に補正する処理が行われるので、より正確な重量データをユーザの手間を必要とせず出力することが可能となる。
なお、本実施形態では、上記実施形態と同様に、補正テーブルTBL1(図4)の代わりに、補正テーブルTBL1a(図7)を用いる構成としてもよい。補正テーブルTBL1aにはより多くの補正係数kが記憶されているので、補間の精度が向上し、傾斜誤差の補正に際して、より信頼性が高い補正を行うことが可能となる。
また、本実施形態では、傾斜誤差の補正処理に加えて、重力誤差を補正する態様としたが、傾斜誤差の補正を行わずに重力誤差を行う態様としてもよい。また、上述した第1および第2実施形態では、校正プログラム(図5および図9)を重量計10A,10Bのメモリ150,150bに記憶してCPU110に校正処理を実行させる構成としていたが、外部の記憶装置に校正プログラムを記憶させ、当該プログラムに従って外部の処理装置に補正テーブルTBLおよび基準重力値Gsデータを生成する処理を実行させてメモリ150,150bに記憶させる構成としてもよい。
(A)は、本発明の第1実施形態に係る重量計10Aの平面図であり、(B)は、同重量計10Aの正面図である。 重量計10Aの機能構成を示す機能ブロック図である。 重量計10Aの加速度センサ120の原理を説明するための概念図である。 補正テーブルTBL1の記憶内容の一例を示すテーブルである。 同実施形態に係る校正処理の流れを示すフローチャートである。 同実施形態に係る測定処理の流れを示すフローチャートである。 補正テーブルTBL1aの記憶内容の一例を示すテーブルである。 本発明の第2実施形態に係る重量計10Bの機能構成を示す機能ブロック図である。 同実施形態に係る校正処理の流れを示すフローチャートである。 同実施形態に係る測定処理の流れを示すフローチャートである。
符号の説明
1…ケース、2…載せ台(測定面)、3…電源スイッチ、10A,10B…重量計、110…CPU、120,120b…加速度センサ、130…重量センサ(重量測定手段)、140…表示部、150,150b…メモリ、Mp…重量データ、Mout1…第1出力重量データ、Mout2…第2出力重量データ、TBL,TBL1…補正テーブル。

Claims (4)

  1. 測定面に載せられた物体の重量を測定して重量データを出力する重量測定手段と、
    互いに直交する少なくとも2軸における各加速度を検出する加速度センサと、
    前記測定面が水平状態にあるときの前記重量データと前記測定面が傾斜状態にあるときの前記重量データとの比を第1補正係数として、前記測定面が傾斜状態にあるときに前記加速度センサによって検出された前記各加速度と対応付けて記憶するメモリと、
    前記メモリを参照することにより、前記加速度センサが測定した前記加速度に対応する第1補正係数を取得し、前記重量データを当該第1補正係数により補正して第1出力重量データとして出力する第1補正手段と、
    を有する重量計。
  2. 測定面に載せられた物体の重量を測定して重量データを出力する重量測定手段と、
    互いに直交する少なくとも2軸における各加速度を検出する加速度センサと、
    前記測定面が水平状態にあるときの前記重量データと前記測定面が傾斜状態にあるときの前記重量データとの比を第1補正係数として、前記測定面の傾斜角度と対応付けて記憶するメモリと、
    前記加速度センサが測定した前記各加速度に基づいて前記測定面の傾斜角度を算出し、前記メモリを参照することにより、算出した傾斜角度に対応する第1補正係数を取得し、前記重量データを当該第1補正係数により補正して第1出力重量データとして出力する第1補正手段と、
    を有する重量計。
  3. 前記第1補正係数を生成する第1補正係数生成手段をさらに有し、
    前記重量測定手段は、前記測定面が水平状態にあるときの前記重量データと、前記測定面が傾斜状態にあるときの前記重量データを前記第1補正係数生成手段に供給し、
    前記第1補正係数生成手段は、前記測定面が水平状態にあるときの前記重量データと、前記測定面が傾斜状態にあるときの前記重量データとに基づいて前記第1補正係数を生成する、
    請求項1または2に記載の重量計。
  4. 前記メモリには基準地点における基準重力が記憶されており、
    前記加速度センサは、互いに直交する3軸における各加速度を検出し、
    前記加速度センサが測定した各加速度の二乗和平方根を求めることにより前記測定面にかかる重力を算出する重力算出手段と、
    前重力算出手段によって算出された前記測定面にかかる前記重力と前記基準重力との比を第2補正係数として求め、当該第2補正係数により、前記第1補正手段によって出力された前記第1出力重量データを補正して第2出力重量データとして出力する第2補正手段とをさらに有する、
    請求項1ないし請求項3のいずれか一項に記載の重量計。

JP2007115123A 2007-04-25 2007-04-25 重量計 Pending JP2008268147A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007115123A JP2008268147A (ja) 2007-04-25 2007-04-25 重量計
EP08005813A EP1985977A1 (en) 2007-04-25 2008-03-27 Weighing scale
CNA2008100953401A CN101294842A (zh) 2007-04-25 2008-04-25 重量计
US12/149,099 US20080264141A1 (en) 2007-04-25 2008-04-25 Weighing scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115123A JP2008268147A (ja) 2007-04-25 2007-04-25 重量計

Publications (1)

Publication Number Publication Date
JP2008268147A true JP2008268147A (ja) 2008-11-06

Family

ID=39560891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115123A Pending JP2008268147A (ja) 2007-04-25 2007-04-25 重量計

Country Status (4)

Country Link
US (1) US20080264141A1 (ja)
EP (1) EP1985977A1 (ja)
JP (1) JP2008268147A (ja)
CN (1) CN101294842A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038855A (ja) * 2008-08-08 2010-02-18 Universal Weight Enterprise Co Ltd 重力校正機能を備える質量測定装置
JP2010133785A (ja) * 2008-12-03 2010-06-17 Yamato Scale Co Ltd 荷重検出装置
EP2237001A1 (en) 2009-04-03 2010-10-06 Tanita Corporation Weighing scale
CN103090955A (zh) * 2011-10-28 2013-05-08 台衡精密测控(昆山)股份有限公司 一种用于电子衡器的重力加速度补偿的方法
JP2013120121A (ja) * 2011-12-07 2013-06-17 Yamato Scale Co Ltd 組合せ秤
JP2015059807A (ja) * 2013-09-18 2015-03-30 株式会社タニタ 計量装置、計量システム、計量方法、プログラム及び記録媒体
WO2023026337A1 (ja) * 2021-08-23 2023-03-02 株式会社 エー・アンド・デイ 三軸加速度センサを利用した計量装置および計量方法
WO2023047564A1 (ja) * 2021-09-27 2023-03-30 株式会社 エー・アンド・デイ 三軸加速度センサを搭載した計量装置およびその点検方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2461369B (en) * 2008-06-10 2010-08-04 Datalogic Scanning Inc Automatic calibration system for scanner-scale or other scale system
US20090306924A1 (en) * 2008-06-10 2009-12-10 Datalogic Scanning, Inc. Automatic calibration system for scanner-scale or other scale system
GB2469823B (en) * 2009-04-28 2011-07-06 Illinois Tool Works Weighing method and apparatus
CN102116669B (zh) * 2009-12-31 2012-08-29 北京卫星环境工程研究所 消除质心测试***中传感器零漂影响的方法
DE102010012640A1 (de) * 2010-03-15 2011-09-15 Seca Ag Verfahren und Vorrichtung zur Justierung einer Wiegeeinrichtung
CN102445259B (zh) * 2010-10-14 2014-08-06 深圳市宇恒互动科技开发有限公司 一种重量测量方法和装置
CN102778287B (zh) * 2012-07-27 2014-12-31 中山佳维电子有限公司 一种可倾斜称重电子秤的控制***和控制方法
TW201421360A (zh) * 2012-11-24 2014-06-01 bing-xun Yang 判斷是否前進或是溺水的程式
FI124888B (fi) * 2013-06-04 2015-03-13 Ponsse Oyj Menetelmä ja järjestely punnitusjärjestelmässä sekä vastaava ohjelmistotuote ja materiaalinkäsittelykone
CN103954344A (zh) * 2014-05-12 2014-07-30 浙江大学 基于加速度传感器的动态称重信号实时补偿装置及方法
BR102015026489B1 (pt) 2015-10-19 2020-12-22 Robert Bosch Limitada plataforma de pesagem de animal e processo de pesagem de animal
JP2017167051A (ja) * 2016-03-17 2017-09-21 北川工業株式会社 計測情報出力システム及びプログラム
CN106441538A (zh) * 2016-09-07 2017-02-22 广州视源电子科技股份有限公司 一种箱包的自称重方法、装置与具有自称重功能的箱包
CN106441536A (zh) * 2016-09-07 2017-02-22 广州视源电子科技股份有限公司 一种箱包的自称重方法、装置与具有自称重功能的箱包
TWM550194U (zh) * 2017-06-16 2017-10-11 Sigma Cnc Technology Machinery Co Ltd 加工頭旋轉角度補償系統
CN107314803A (zh) * 2017-06-30 2017-11-03 汤建华 一种农机车载称重***及其称重方法
CN109425420B (zh) * 2017-08-29 2022-04-19 梅特勒-托利多(常州)精密仪器有限公司 一种称重方法及其存储介质
CN107702773B (zh) 2017-09-07 2020-01-03 歌尔股份有限公司 负重测量装置、方法及负重设备
CN108801427A (zh) * 2018-08-08 2018-11-13 梅特勒-托利多(常州)测量技术有限公司 水平度自动调节的称重装置及其调节方法
CN111006750B (zh) * 2018-10-08 2021-11-23 阿里巴巴集团控股有限公司 电子秤设备、商品对象信息处理方法及装置
US11397105B2 (en) * 2018-10-22 2022-07-26 Michael Caraway Modular wireless scale system comprising microscales
US11300442B2 (en) 2020-02-07 2022-04-12 Illinois Tool Works Inc. Weighing apparatus with alignment of accelerometer coordinate system and load cell coordinate system and related method
CN112818287B (zh) * 2021-01-29 2024-04-09 三一海洋重工有限公司 一种抓料机的称重方法及其***、存储介质以及电子设备
CN113588063A (zh) * 2021-07-28 2021-11-02 天津市府易科技股份有限公司 一种基于活体重力感应与边缘智能识别技术的出门检测***
CN116256049A (zh) * 2021-12-10 2023-06-13 梅特勒-托利多(常州)精密仪器有限公司 一种倾斜补偿装置及其倾斜补偿方法
CN115839756B (zh) * 2023-02-27 2023-06-23 锐马(福建)电气制造有限公司 一种车体倾斜自适应车载称重方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180722A (ja) * 1989-12-08 1991-08-06 Yamato Scale Co Ltd
DE4001614A1 (de) * 1990-01-20 1991-07-25 Bosch Gmbh Robert Kompensationswaage
US5646376A (en) * 1994-06-09 1997-07-08 Intercomp Company Aircraft weighing scale with improved base, platform and load cell mounting assembly
US5717167A (en) * 1995-01-24 1998-02-10 Lts Scale Corp. Device and method for weighing solid waste with an angle-correction scale
DE19715590A1 (de) * 1997-04-15 1998-11-05 Bosch Gmbh Robert Sensormodul
US5959257A (en) * 1998-04-15 1999-09-28 Harvestmaster, Inc. System for weighing material on a conveyor
JP2004138570A (ja) * 2002-10-21 2004-05-13 Tanita Corp 重力補正機能付きはかり、重力補正指示計及び重力補正はかりシステム
ITMO20030134A1 (it) * 2003-05-09 2004-11-10 Cooperativa Bilanciai Cam Pogalliano A R Soc Sistema di pesatura
JP2005049271A (ja) 2003-07-30 2005-02-24 Teraoka Seiko Co Ltd 秤装置
DE102006059261B4 (de) * 2006-12-15 2010-09-09 Sartorius Ag Elektronische Waage mit einem Neigungsmesser und zugehöriges Verfahren zur Signalauswertung

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038855A (ja) * 2008-08-08 2010-02-18 Universal Weight Enterprise Co Ltd 重力校正機能を備える質量測定装置
JP2010133785A (ja) * 2008-12-03 2010-06-17 Yamato Scale Co Ltd 荷重検出装置
EP2237001A1 (en) 2009-04-03 2010-10-06 Tanita Corporation Weighing scale
US8263881B2 (en) 2009-04-03 2012-09-11 Tanita Corporation Weighing scale that automatically switches between a display mode or a communications mode based on whether communications is established with another scale
CN103090955A (zh) * 2011-10-28 2013-05-08 台衡精密测控(昆山)股份有限公司 一种用于电子衡器的重力加速度补偿的方法
JP2013120121A (ja) * 2011-12-07 2013-06-17 Yamato Scale Co Ltd 組合せ秤
JP2015059807A (ja) * 2013-09-18 2015-03-30 株式会社タニタ 計量装置、計量システム、計量方法、プログラム及び記録媒体
WO2023026337A1 (ja) * 2021-08-23 2023-03-02 株式会社 エー・アンド・デイ 三軸加速度センサを利用した計量装置および計量方法
WO2023047564A1 (ja) * 2021-09-27 2023-03-30 株式会社 エー・アンド・デイ 三軸加速度センサを搭載した計量装置およびその点検方法

Also Published As

Publication number Publication date
US20080264141A1 (en) 2008-10-30
EP1985977A1 (en) 2008-10-29
CN101294842A (zh) 2008-10-29

Similar Documents

Publication Publication Date Title
JP2008268147A (ja) 重量計
US9417116B2 (en) Weighing method and apparatus
US7805851B2 (en) Articulated arm coordinate measuring machine
US20030084704A1 (en) Self-calibrating inertial measurement system method and apparatus
US20110066395A1 (en) Systems and methods for gyroscope calibration
JP4118297B2 (ja) 2軸地磁気センサーと加速度センサーを用いた傾き補償方法及びその装置
JP5445270B2 (ja) 校正データ取得方法、加速度センサー出力補正方法及び校正データ取得システム
JP2006133230A (ja) 傾度センサ及びその使用方法
CN109029502B (zh) 一种惯性平台***石英加速度计输出值确定方法
CN109425420B (zh) 一种称重方法及其存储介质
US6137065A (en) Level weighing device
US6164117A (en) Inclination sensor and method of measuring the accuracy thereof
EP2214030B1 (en) A Method for Calibrating an Accelerometer of an Electronic Device, an Accelerometer, and an Electronic Device having an Accelerometer with Improved Calibration Features
JP2007033127A (ja) 荷重検出装置
WO2023026337A1 (ja) 三軸加速度センサを利用した計量装置および計量方法
CN110631605A (zh) 一种陀螺阵列标定方法及***
JP2007225366A (ja) 傾斜誤差決定装置、傾斜誤差決定方法、計量器及び計量方法
Chang et al. Hydrostatic weighing at KRISS
JP6990486B1 (ja) 傾斜検知方法およびそのための装置
KR102143462B1 (ko) Ahrs 센서, 그 바이어스 및 스케일 오차 보정 장치 및 방법
GB2427279A (en) Portable inclinometer comprising a gas heater
JP2010107266A (ja) ロードセル
JP2020173233A (ja) 測量装置
JP3163448U (ja) 電子秤
CN113819927B (zh) 用于倾斜测量***的检测***及误差检测方法