JP2008262904A - Forming method of fuel cell catalyst layer, catalyst layer transfer sheet, and catalyst layer-electrolyte membrane laminate - Google Patents

Forming method of fuel cell catalyst layer, catalyst layer transfer sheet, and catalyst layer-electrolyte membrane laminate Download PDF

Info

Publication number
JP2008262904A
JP2008262904A JP2008063930A JP2008063930A JP2008262904A JP 2008262904 A JP2008262904 A JP 2008262904A JP 2008063930 A JP2008063930 A JP 2008063930A JP 2008063930 A JP2008063930 A JP 2008063930A JP 2008262904 A JP2008262904 A JP 2008262904A
Authority
JP
Japan
Prior art keywords
catalyst layer
transfer sheet
catalyst
solvent
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008063930A
Other languages
Japanese (ja)
Other versions
JP5634013B2 (en
Inventor
Hironobu Nishimura
浩宣 西村
Rei Hiromitsu
礼 弘光
Mitsuo Okada
光男 岡田
Etsuji Komoda
悦之 菰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008063930A priority Critical patent/JP5634013B2/en
Publication of JP2008262904A publication Critical patent/JP2008262904A/en
Application granted granted Critical
Publication of JP5634013B2 publication Critical patent/JP5634013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple forming method of a catalyst layer in which the generation of cracks is suppressed and excellent battery performance can be exhibited. <P>SOLUTION: The forming method of the catalyst layer has a process to carry out drying in an atmosphere containing a gas of an identical component as a main solvent contained in the solvent and at a pressure of 20-50 hPa when manufacturing the fuel cell catalyst using a catalyst-layer formation paste composition containing catalyst particles, an ion conductive polymer electrolyte, and a solvent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池用触媒層の新規な製造方法、触媒層転写シート及び触媒層−電解質膜積層体に関する。   The present invention relates to a novel method for producing a fuel cell catalyst layer, a catalyst layer transfer sheet, and a catalyst layer-electrolyte membrane laminate.

燃料電池は、電解質膜の両面に触媒層を配置し、水素と酸素との電気化学反応により発電する発電するシステムであり、発電時に発生するのは水のみである。従来の内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しない為、次世代のクリーンエネルギーシステムとして注目されている。   A fuel cell is a system in which a catalyst layer is disposed on both sides of an electrolyte membrane and generates power by an electrochemical reaction between hydrogen and oxygen, and only water is generated during power generation. Unlike conventional internal combustion engines, it does not generate environmentally harmful gases such as carbon dioxide, and is therefore attracting attention as a next-generation clean energy system.

固体高分子形燃料電池は、電解質膜として水素イオン伝導性高分子電解質膜を用いて、その両面に触媒層及び電極基材を順次積層し、さらにセパレータで挟まれた構造をしている。   A polymer electrolyte fuel cell has a structure in which a hydrogen ion conductive polymer electrolyte membrane is used as an electrolyte membrane, a catalyst layer and an electrode base material are sequentially laminated on both sides, and further sandwiched between separators.

このうち特に触媒層は電池反応の中心的役割を果たすものであるため、高性能化が盛んに進められている。この触媒層は通常、触媒粒子、水素イオン伝導性高分子電解質及び溶剤を含むペースト組成物を基材等に塗布及び乾燥することにより製造される。   Of these, the catalyst layer plays a central role in the battery reaction, and therefore high performance is being actively promoted. This catalyst layer is usually produced by applying and drying a paste composition containing catalyst particles, a hydrogen ion conductive polymer electrolyte and a solvent on a substrate or the like.

しかしながら、この製造工程において、乾燥した場合に乾燥後の触媒層にクラック(ひび割れ)が生じる問題がある。触媒層のクラックは、電池性能の低下を招くため、クラックの発生を極力回避する必要がある。   However, in this manufacturing process, there is a problem that cracks occur in the dried catalyst layer when dried. Since cracks in the catalyst layer cause a decrease in battery performance, it is necessary to avoid the generation of cracks as much as possible.

クラックの発生を回避する方法としては、例えば、触媒インク面と基材シート面とを異なる湿度雰囲気に曝し双方の収束速度をほぼ一致させた状態で乾燥させる方法(特許文献1)、触媒層形成用ペースト組成物を電極基板上に塗布した後、複数の燃料電池セルの電極基板をほぼ同一の水分量に保持した後、真空下で乾燥して水分を除去する方法(特許文献2)等が提案されている。   As a method for avoiding the occurrence of cracks, for example, a method in which the catalyst ink surface and the substrate sheet surface are exposed to different humidity atmospheres and dried in a state in which the convergence speeds of the two are substantially the same (Patent Document 1), catalyst layer formation After applying the paste composition on the electrode substrate, holding the electrode substrates of the plurality of fuel cells at approximately the same amount of water, and then drying under vacuum to remove moisture (Patent Document 2), etc. Proposed.

しかしながら、特許文献1の方法では、触媒インク面と基材シート面とを異なる湿度雰囲気に曝すため、特殊且つ複雑な乾燥装置が必要となる。また、当該方法は、収束速度をほぼ一致させた状態の判断が難しく、再現性に問題があり、所望の触媒層を工業的に製造できない。   However, in the method of Patent Document 1, the catalyst ink surface and the substrate sheet surface are exposed to different humidity atmospheres, so that a special and complicated drying apparatus is required. In addition, this method makes it difficult to determine the state in which the convergence speeds are substantially matched, has a problem in reproducibility, and cannot produce a desired catalyst layer industrially.

一方、特許文献2の方法では、高温多湿条件下におくことにより水分量を調整し、その後水蒸気の供給を止めた後0.1〜0.5kPaで急激に真空乾燥を行う必要がある。従って、急激な真空乾燥により触媒層構造中の微細な空隙(細孔径10nm〜200nmの空隙)が閉塞されてしまい(例えば、当該空隙の空隙率は5%程度であり)、却って電池性能が低下した触媒層が製造される問題を有している。
特開2004−259509号公報 特開2005−302538号公報
On the other hand, in the method of Patent Document 2, it is necessary to adjust the amount of water by placing it under a high-temperature and high-humidity condition. Therefore, the fine voids (voids having a pore diameter of 10 nm to 200 nm) in the catalyst layer structure are closed by rapid vacuum drying (for example, the void ratio is about 5%), and the battery performance is deteriorated. The catalyst layer thus produced has a problem.
Japanese Patent Laid-Open No. 2004-259509 JP 2005-302538 A

従って、クラックの発生が抑制され、かつ良好な電池性能を発揮できる触媒層の簡便な製造方法の開発が要望されている。   Accordingly, there is a demand for the development of a simple method for producing a catalyst layer capable of suppressing the occurrence of cracks and exhibiting good battery performance.

本発明者らは、上記課題を解決すべく鋭意研究を重ねてきた。その結果、触媒層形成用ペースト組成物から触媒層を製造するに当たり、特定の条件下で乾燥を行うことにより、クラックが少ない触媒層を製造することを見出し、本発明を完成するに至った。本発明は下記項1〜項6に示す触媒層の製造方法、転写シート及び触媒層−電解質膜積層体を提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, when producing a catalyst layer from a paste composition for forming a catalyst layer, it was found that a catalyst layer with few cracks was produced by drying under specific conditions, and the present invention was completed. The present invention provides a method for producing a catalyst layer, a transfer sheet, and a catalyst layer-electrolyte membrane laminate shown in the following items 1 to 6.

項1.触媒粒子、イオン伝導性高分子電解質及び溶剤を含む触媒層形成用ペースト組成物を用いて燃料電池用触媒層を製造するに当たり、
前記溶剤に含まれる主溶剤と同一成分の気体を含む雰囲気下であって20〜50hPaの圧力下で乾燥を行う工程、
を備えた触媒層の製造方法。
Item 1. In producing a catalyst layer for a fuel cell using a catalyst layer forming paste composition containing catalyst particles, an ion conductive polymer electrolyte and a solvent,
A step of drying under a pressure of 20 to 50 hPa in an atmosphere containing the same component gas as the main solvent contained in the solvent;
The manufacturing method of the catalyst layer provided with.

項2.20〜100℃で乾燥を行う、項1に記載の製造方法。   Item 2. The method according to Item 1, wherein the drying is performed at 2.20 to 100 ° C.

項3.前記溶剤が炭素数1〜4のアルコールである、項1又は2に記載の製造方法。   Item 3. Item 3. The method according to Item 1 or 2, wherein the solvent is an alcohol having 1 to 4 carbon atoms.

項4.前記主溶剤が1−プロパノール、2−プロパノール、1−ブタノール又はt−ブタノールである、項1〜3のいずれかに記載の製造方法。   Item 4. Item 4. The production method according to any one of Items 1 to 3, wherein the main solvent is 1-propanol, 2-propanol, 1-butanol, or t-butanol.

項5.項1〜4のいずれかの製造方法で得られた触媒層が転写基材上に形成されてなる触媒層転写シート。   Item 5. Item 5. A catalyst layer transfer sheet in which the catalyst layer obtained by the production method according to any one of Items 1 to 4 is formed on a transfer substrate.

項6.項5に記載の触媒層転写シートを電解質膜に転写することにより得られる、触媒層−電解質膜積層体。   Item 6. Item 6. A catalyst layer-electrolyte membrane laminate obtained by transferring the catalyst layer transfer sheet according to Item 5 to an electrolyte membrane.

本発明の製造方法は、燃料電池用触媒層の製造方法であって、触媒粒子、イオン伝導性高分子電解質及び溶剤を含む触媒層形成用ペースト組成物を、前記溶剤に含まれる主溶剤の気体を含む雰囲気下であって、20〜50hPaの圧力下で乾燥する工程、を備えることを特徴とする。   The production method of the present invention is a method of producing a catalyst layer for a fuel cell, wherein a paste composition for forming a catalyst layer containing catalyst particles, an ion conductive polymer electrolyte and a solvent is used as a gas of a main solvent contained in the solvent. And a step of drying under a pressure of 20 to 50 hPa.

触媒層形成用ペースト組成物
本発明の触媒層形成用ペースト組成物は、例えば、触媒粒子、イオン伝導性高分子電解質及び溶剤を含む。
Catalyst Layer Forming Paste Composition The catalyst layer forming paste composition of the present invention includes, for example, catalyst particles, an ion conductive polymer electrolyte, and a solvent.

触媒粒子は、公知又は市販のものを使用することができ、燃料電池の燃料極又は空気極における燃料電池反応を起こさせるものであれば特に限定されない。例えば白金、白金合金、白金化合物等が挙げられる。白金合金としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と白金との合金等が挙げられる。一般的に、カソード触媒層として用いられる場合の触媒粒子は白金、アノード触媒層として用いられる場合の触媒粒子は上述した合金である。   Known or commercially available catalyst particles can be used, and are not particularly limited as long as they cause a fuel cell reaction at the fuel electrode or air electrode of the fuel cell. For example, platinum, a platinum alloy, a platinum compound, etc. are mentioned. Examples of the platinum alloy include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like. Generally, the catalyst particles when used as the cathode catalyst layer are platinum, and the catalyst particles when used as the anode catalyst layer are the alloys described above.

また、触媒粒子は、触媒粒子が炭素粒子に担持した、いわゆる触媒担持炭素粒子であってもよい。触媒担持炭素粒子の平均粒子径は、通常10〜100nm程度、好ましくは20〜80nm程度、最も好ましくは40〜50nm程度である。触媒担持炭素粒子を構成する炭素粒子は特に制限されず、例えば、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラックなどのカーボンブラック、黒鉛、活性炭、カーボン繊維、カーボンナノチューブ等からなる群から選択される少なくとも1種が挙げられる。   The catalyst particles may be so-called catalyst-supported carbon particles in which the catalyst particles are supported on carbon particles. The average particle size of the catalyst-supporting carbon particles is usually about 10 to 100 nm, preferably about 20 to 80 nm, and most preferably about 40 to 50 nm. The carbon particles constituting the catalyst-supporting carbon particles are not particularly limited, for example, a group consisting of carbon black such as channel black, furnace black, ketjen black, acetylene black, lamp black, graphite, activated carbon, carbon fiber, carbon nanotube, etc. And at least one selected from.

イオン伝導性高分子電解質は、水素イオン伝導性のものであればよく、公知又は市販のものを使用することができる。例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂等が挙げられる。また、電気陰性度の高いフッ素原子を導入することにより、化学的に非常に安定し、スルホン酸基の乖離度が高く、良好な水素イオン伝導性が実現できる。このような水素イオン伝導性高分子電解質の具体例としては、例えば、デュポン社製の「Nafion」、旭硝子(株)製の「Flemion」、旭化成(株)製の「Aciplex」、ゴア(Gore)社製の「Gore Select」等が挙げられる。   The ion conductive polymer electrolyte may be a hydrogen ion conductive one, and a known or commercially available one can be used. Examples thereof include perfluorosulfonic acid-based fluorine ion exchange resins. Moreover, by introducing a fluorine atom having a high electronegativity, it is chemically very stable, the degree of dissociation of the sulfonic acid group is high, and good hydrogen ion conductivity can be realized. Specific examples of such a hydrogen ion conductive polymer electrolyte include, for example, “Nafion” manufactured by DuPont, “Flemion” manufactured by Asahi Glass Co., Ltd., “Aciplex” manufactured by Asahi Kasei Co., Ltd., and Gore. “Gore Select” manufactured by the company can be used.

使用される溶剤としては公知又は市販のものを使用することができる。例えば、各種アルコール、各種エーテル、各種ジアルキルスルホキシド、水又はこれらの混合物等が挙げられる。これらのうち、炭素数1〜4のアルコールが好ましく、具体的には、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブタノール、t−ブタノール等が好ましい。最も好ましくは、2−プロパノールである。   As the solvent to be used, known or commercially available solvents can be used. Examples thereof include various alcohols, various ethers, various dialkyl sulfoxides, water, or a mixture thereof. Among these, alcohols having 1 to 4 carbon atoms are preferable, and specifically, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, t-butanol and the like are preferable. Most preferred is 2-propanol.

本発明では、特に、溶剤の含まれる主溶剤が1−プロパノール、2−プロパノール、1−ブタノール、t−ブタノール等からなる群から選択される1種であることが好ましい。より好ましくは2−プロパノールである。   In the present invention, it is particularly preferable that the main solvent containing the solvent is one selected from the group consisting of 1-propanol, 2-propanol, 1-butanol, t-butanol and the like. More preferred is 2-propanol.

本発明において、主溶剤とは、ペースト組成物に含まれる全溶剤のうち、最も多く含まれている溶剤であり、好ましくは全溶剤中において25重量%以上、より好ましくは50重量%以上含まれる溶剤をいう。   In the present invention, the main solvent is a solvent that is contained in the largest amount among all the solvents contained in the paste composition, preferably 25% by weight or more, more preferably 50% by weight or more in the total solvent. Solvent.

本発明の触媒層形成用ペースト組成物中に含まれる上記触媒粒子、イオン伝導性高分子電解質及び溶剤の割合は限定されるものではなく、広い範囲内で適宜選択できる。   The ratio of the catalyst particles, the ion conductive polymer electrolyte and the solvent contained in the catalyst layer forming paste composition of the present invention is not limited and can be appropriately selected within a wide range.

例えば、触媒粒子1重量部(触媒担持炭素粒子の場合は、当該触媒担持炭素粒子1重量部)に対して、イオン伝導性高分子電解質が0.1〜2重量部(好ましくは0.2〜1重量部)程度、溶剤が5〜35重量部(好ましくは10〜25重量部)程度含まれていればよい。   For example, the ion conductive polymer electrolyte is 0.1 to 2 parts by weight (preferably 0.2 to 2 parts by weight with respect to 1 part by weight of catalyst particles (in the case of catalyst-supported carbon particles, 1 part by weight of the catalyst-supported carbon particles). About 1 part by weight) and about 5 to 35 parts by weight (preferably 10 to 25 parts by weight) of solvent.

触媒層形成用ペースト組成物は、上記触媒粒子、イオン伝導性高分子電解質及び溶剤を混合することにより、製造される。上記触媒粒子、イオン伝導性高分子電解質及び溶剤の混合順序は、特に制限されない。例えば、上記触媒粒子、イオン伝導性高分子電解質及び溶剤を順次又は同時に混合し、触媒粒子を分散させることにより、触媒層形成用ペースト組成物を調製できる。   The paste composition for forming a catalyst layer is produced by mixing the catalyst particles, the ion conductive polymer electrolyte, and a solvent. The mixing order of the catalyst particles, the ion conductive polymer electrolyte and the solvent is not particularly limited. For example, a catalyst layer forming paste composition can be prepared by mixing the catalyst particles, the ion conductive polymer electrolyte and the solvent sequentially or simultaneously to disperse the catalyst particles.

なお、本発明の触媒層形成用ペースト組成物には、本発明の効果を阻害しない程度であれば、その他の公知の添加剤等を含有していてもよい。   The catalyst layer forming paste composition of the present invention may contain other known additives as long as the effects of the present invention are not impaired.

製造方法
本発明の製造方法は、上記触媒層形成用ペースト組成物を用いて燃料電池用触媒層を製造するに当たり、溶剤に含まれる主溶剤と同一成分の気体が含まれている雰囲気下であって20〜50hPaの圧力下で乾燥を行う工程を備えることを特徴とする。
Production method The production method of the present invention is carried out in an atmosphere containing a gas having the same component as the main solvent contained in the solvent when the catalyst layer for a fuel cell is produced using the catalyst layer forming paste composition. And a step of drying under a pressure of 20 to 50 hPa.

この乾燥工程に際し、例えば、上記触媒層形成用ペースト組成物を、公知の転写基材等の基材に所望の層厚となるように塗布してから、乾燥すればよい。   In this drying step, for example, the catalyst layer forming paste composition may be applied to a substrate such as a known transfer substrate so as to have a desired layer thickness and then dried.

ペースト組成物の塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。   The method for applying the paste composition is not particularly limited, and examples include general methods such as knife coater, bar coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, and screen printing. Can be applied.

なお、転写基材のほかに、燃料電池用の電解質膜、電極基材等の基材に直接塗布してもよい。   In addition to the transfer substrate, it may be applied directly to a substrate such as an electrolyte membrane for a fuel cell or an electrode substrate.

斯かるペースト組成物を塗布した後、本発明の乾燥工程を行うことにより、触媒層が形成される。本発明の乾燥工程は、溶剤に含まれる主溶剤と同一成分の気体を含む雰囲気下であって20〜50hPaの圧力下で行うことを必須とする。これにより、適度な乾燥速度となり、乾燥中において、触媒層が適度な空隙を構成するように触媒粒子を配列させることができる。この結果、クラックの発生及び触媒層中の空隙の閉塞が抑制された、優れた電池性能を発揮する触媒層を製造できる。また、この工程は、乾燥装置内を特定の気体で充満して特定の圧力下に調節すればよいため、特殊な装置及び複雑な工程を必要としない。   After applying the paste composition, the catalyst layer is formed by performing the drying process of the present invention. The drying step of the present invention is essential to be performed under an atmosphere containing a gas having the same component as the main solvent contained in the solvent and under a pressure of 20 to 50 hPa. Thereby, it becomes a moderate drying speed and can arrange | position a catalyst particle so that a catalyst layer may comprise a moderate space | gap during drying. As a result, it is possible to produce a catalyst layer exhibiting excellent battery performance in which generation of cracks and blockage of voids in the catalyst layer are suppressed. Moreover, this process does not require a special apparatus and a complicated process, because the inside of the drying apparatus may be filled with a specific gas and adjusted to a specific pressure.

具体的には、例えば、デシケータ等の乾燥装置内に、(1)触媒層形成用ペースト組成物が塗布された基材、及び(2)当該ペースト組成物に含まれる主溶剤と同一成分の液体で満たした開口容器(例えば、シャーレ等)を静置し、次いで、当該乾燥装置内を20hPa〜50hPaの圧力となるように減圧することにより、乾燥させればよい。必要に応じて、減圧時に連続的又は断続的に装置内を脱気すればよい。   Specifically, for example, in a drying apparatus such as a desiccator, (1) a substrate on which the catalyst layer forming paste composition is applied, and (2) a liquid having the same component as the main solvent contained in the paste composition The opening container (for example, petri dish etc.) satisfy | filled with (4) should be left still, and then it may be dried by decompressing the inside of the said drying apparatus so that it may become a pressure of 20 hPa-50 hPa. What is necessary is just to deaerate the inside of an apparatus continuously or intermittently at the time of pressure reduction as needed.

さらに必要に応じて、上記乾燥工程終了後、更に圧力を下げることにより、触媒層に残存しているごく少量の溶剤を確実に除去してもよい。   Further, if necessary, a very small amount of solvent remaining in the catalyst layer may be surely removed by lowering the pressure after the drying step.

乾燥時の圧力は20〜50hPaであり、好ましくは30〜45hPaである。また、特に本発明では、主溶剤の飽和蒸気圧付近で行うのが好ましい。例えば、主要剤が2−プロパノールである場合、20℃で41hPa(±4hPa)程度の範囲にて行うことが好ましい。これによって、より一層のクラック抑制効果が得られる。   The pressure at the time of drying is 20 to 50 hPa, preferably 30 to 45 hPa. In particular, in the present invention, it is preferable to carry out near the saturated vapor pressure of the main solvent. For example, when the main agent is 2-propanol, it is preferably performed at 20 ° C. in a range of about 41 hPa (± 4 hPa). Thereby, a further crack suppressing effect can be obtained.

乾燥時間は乾燥時の圧力、溶剤等の種類に応じて決定されるが、通常1〜120分程度、好ましくは5分〜60分程度、より好ましくは15分〜30分程度とすればよい。   The drying time is determined according to the pressure during drying, the type of solvent and the like, but is usually about 1 to 120 minutes, preferably about 5 to 60 minutes, more preferably about 15 to 30 minutes.

乾燥時の温度は限定的でないが、好ましくは15〜100℃程度、より好ましくは20〜80℃程度とすればよい。   The temperature during drying is not limited, but is preferably about 15 to 100 ° C, more preferably about 20 to 80 ° C.

本発明の製造方法によって得られる触媒層は、その細孔径10nm〜200nmの空隙における空隙率が触媒層に対して、好ましくは6〜30%であり、より好ましくは12〜30%であるか又は7.5〜20%であり、さらに好ましくは15〜20%である。細孔径5μm〜50μmの空隙における空隙率は触媒層に対して好ましくは2〜18%であり、より好ましくは2〜9%であるか又は4〜17%であり、場合に応じて4〜8.5%が最も好ましい。   The catalyst layer obtained by the production method of the present invention has a porosity in the voids having a pore diameter of 10 nm to 200 nm, preferably 6 to 30%, more preferably 12 to 30%, relative to the catalyst layer, or It is 7.5 to 20%, More preferably, it is 15 to 20%. The porosity in the pores with a pore size of 5 μm to 50 μm is preferably 2 to 18%, more preferably 2 to 9% or 4 to 17% with respect to the catalyst layer, depending on the case. .5% is most preferred.

なお、本発明における空隙率は水銀ポロシメーター(島津製作所社製、製品名「AUTOPORE9500」)によって測定されるものである。   The porosity in the present invention is measured by a mercury porosimeter (manufactured by Shimadzu Corporation, product name “AUTOPORE 9500”).

触媒層の厚さは限定的でなく、例えば、通常5μm〜120μm程度、好ましくは、10μm〜50μm程度、より好ましくは15μm〜30μm程度とすればよい。   The thickness of the catalyst layer is not limited, and is usually about 5 μm to 120 μm, preferably about 10 μm to 50 μm, more preferably about 15 μm to 30 μm.

触媒層中の触媒粒子の含量(触媒担持炭素粒子の場合は、当該触媒担持炭素粒子の含量)は、触媒層全量に対して、通常10〜90重量%程度、好ましくは40〜80重量%程度である。   The content of catalyst particles in the catalyst layer (in the case of catalyst-supported carbon particles, the content of the catalyst-supported carbon particles) is usually about 10 to 90% by weight, preferably about 40 to 80% by weight, based on the total amount of the catalyst layer. It is.

本発明の触媒層は、例えば固体高分子形燃料電池、直接燃料形燃料電池等に用いることができる。   The catalyst layer of the present invention can be used for, for example, a polymer electrolyte fuel cell, a direct fuel fuel cell and the like.

本発明の触媒層転写シートは、本発明製造方法によって得られる触媒層が転写基材上に形成しているものであり、例えば、上記触媒層形成用ペースト組成物を転写基材に塗布し、次いで本発明の乾燥工程を行うことにより得られる。   The catalyst layer transfer sheet of the present invention is such that the catalyst layer obtained by the production method of the present invention is formed on a transfer substrate. For example, the catalyst layer forming paste composition is applied to a transfer substrate, Subsequently, it obtains by performing the drying process of this invention.

転写基材は特に限定されず、例えば、ポリイミド、ポリエチレンテレフタレート、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート、ポリプロピレン等の高分子フィルムを挙げることができる。また、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性フッ素樹脂を用いることもできる。更に、基材は、高分子フィルム以外に、アート紙、コート紙、軽量コート紙等の塗工紙、ノート用紙、コピー用紙等の非塗工紙等の紙であってもよい。これらの中でも、安価で入手が容易な高分子フィルムが好ましく、ポリエチレンテレフタレート、ポリテトラフルオロエチレン等がより好ましい。   The transfer substrate is not particularly limited. For example, polyimide, polyethylene terephthalate, polyparvanic acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate. Examples thereof include polymer films such as phthalate and polypropylene. Further, heat resistance of ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. Fluorine resin can also be used. Further, the base material may be paper such as art paper, coated paper, light coated paper, and other non-coated paper such as notebook paper and copy paper, in addition to the polymer film. Among these, inexpensive and easily available polymer films are preferable, and polyethylene terephthalate, polytetrafluoroethylene, and the like are more preferable.

転写基材の厚さは、取り扱い性及び経済性の観点から、通常6μm〜100μm程度、好ましくは10μm〜60μm程度とするのがよい。   The thickness of the transfer substrate is usually about 6 μm to 100 μm, preferably about 10 μm to 60 μm, from the viewpoints of handleability and economy.

転写基材には、必要に応じて離型層が積層されていてもよい。離型層としては、例えば、公知のワックスから構成されたもの、公知のフッ素系樹脂でコーティングされたプラスチックフィルムが挙げられる。   A release layer may be laminated on the transfer substrate as necessary. Examples of the release layer include those composed of known waxes and plastic films coated with known fluororesins.

本発明の触媒層−電解質膜積層体は、電解質膜の一方面又は両面に本発明の製造方法によって得られた触媒層が形成されたものである。   In the catalyst layer-electrolyte membrane laminate of the present invention, the catalyst layer obtained by the production method of the present invention is formed on one or both surfaces of the electrolyte membrane.

本発明の触媒層が積層された電解質膜(触媒層−電解質膜積層体)は、例えば、本発明触媒層転写シートの触媒層面が電解質膜面に対面するように転写シートを配置し、加圧した後、当該転写シートの転写基材を剥離することにより製造される。この操作を1回又は2回繰り返すことにより、触媒層面が電解質膜の両面に積層された触媒層−電解質膜積層体が製造される。   The electrolyte membrane (catalyst layer-electrolyte membrane laminate) in which the catalyst layer of the present invention is laminated is, for example, arranged by placing the transfer sheet so that the catalyst layer surface of the catalyst layer transfer sheet of the present invention faces the electrolyte membrane surface, and pressurizing Then, it is manufactured by peeling off the transfer substrate of the transfer sheet. By repeating this operation once or twice, a catalyst layer-electrolyte membrane laminate in which the catalyst layer surface is laminated on both surfaces of the electrolyte membrane is produced.

作業性を考慮すると、触媒層面を電解質膜の両面に同時に積層するのがよい。この場合には、例えば、本発明転写シートの触媒層面が電解質膜の両面に対面するように転写シートを配置し、加圧した後、当該転写シートの転写基材を剥離すればよい。   In consideration of workability, the catalyst layer surface is preferably laminated on both surfaces of the electrolyte membrane at the same time. In this case, for example, the transfer sheet may be disposed so that the catalyst layer surface of the transfer sheet of the present invention faces both surfaces of the electrolyte membrane, pressurize, and then the transfer substrate of the transfer sheet may be peeled off.

使用する電解質膜は、公知又は市販のものを使用すればよい。電解質膜の具体例としては、デュポン社製の「Nafion」(登録商標)膜、旭硝子(株)製の「Flemion」(登録商標)膜、旭化成(株)製の「Aciplex」(登録商標)膜、ゴア(Gore)社製の「Gore Select」(登録商標)膜等の水素イオン伝導性高分子電解質膜が挙げられる。電解質膜の膜厚は、通常20μm〜250μm程度、好ましくは20μm〜80μm程度とすればよい。   The electrolyte membrane to be used may be a known or commercially available one. Specific examples of the electrolyte membrane include “Nafion” (registered trademark) membrane manufactured by DuPont, “Flemion” (registered trademark) membrane manufactured by Asahi Glass Co., Ltd., and “Aciplex” (registered trademark) membrane manufactured by Asahi Kasei Corporation. And hydrogen ion conductive polymer electrolyte membranes such as “Gore Select” (registered trademark) membrane manufactured by Gore. The thickness of the electrolyte membrane is usually about 20 μm to 250 μm, preferably about 20 μm to 80 μm.

加圧レベルは、転写不良を避けるために、通常0.5MPa〜10MPa程度、好ましくは1MPa〜10MPa程度がよい。また、この加圧操作の際に、転写不良を避けるために、加圧面を加熱するのが好ましい。加熱温度は、電解質膜の破損、変性等を避けるために、通常80〜200℃程度、好ましくは135〜150℃程度がよい。   The pressure level is usually about 0.5 MPa to 10 MPa, preferably about 1 MPa to 10 MPa in order to avoid transfer defects. Further, it is preferable to heat the pressure surface during this pressure operation in order to avoid transfer failure. The heating temperature is usually about 80 to 200 ° C., preferably about 135 to 150 ° C., in order to avoid breakage, modification and the like of the electrolyte membrane.

本発明によれば、クラックの発生が少なく、かつ適度な空隙を有する触媒層を製造できるため、本発明で得られた触媒層は良好な電池性能を発揮できる。また、本発明の製造方法は、特定の気体で充満された雰囲気下且つ特定の圧力下で乾燥を行えばよいため、特殊な装置及び複雑な工程を必要としない。   According to the present invention, since a catalyst layer having few cracks and having appropriate voids can be produced, the catalyst layer obtained in the present invention can exhibit good battery performance. Moreover, since the manufacturing method of this invention should just dry in the atmosphere and the specific pressure which were filled with the specific gas, a special apparatus and a complicated process are not required.

以下に実施例及び比較例を挙げて、本発明をより一層詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, this invention is not limited to a following example.

実施例1
白金担持カーボン(Pt:40重量%、ジョンソンマッセイ(株)製、)0.8重量部及び5重量%電解質溶液(5wt%Nafion溶液、Aldrich社製、製品番号「274704」、溶剤「水:1−プロパノール:2−プロパノール=1:1.5:2(重量比)」)4重量部を、2−プロパノール1.5重量部に添加し、混合及び分散を行い、触媒層形成用ペースト組成物を調製した。
Example 1
Platinum-supported carbon (Pt: 40% by weight, manufactured by Johnson Matthey Co., Ltd.) 0.8 part by weight and 5% by weight electrolyte solution (5 wt% Nafion solution, manufactured by Aldrich, product number “274704”, solvent “water: 1” -Propanol: 2-propanol = 1: 1.5: 2 (weight ratio) ") 4 parts by weight is added to 1.5 parts by weight of 2-propanol, mixed and dispersed, and a paste composition for forming a catalyst layer. Was prepared.

調製した触媒層形成用ペースト組成物を転写基材(テフロン(登録商標)シート、50μm、ニチアス社製)の一方面上にブレードコーターにて乾燥後の触媒層の厚さが100μmになるように塗布した後、2−プロパノールで満たされたシャーレとともに、デシケータ内に静置した。   The prepared paste composition for forming a catalyst layer is placed on one side of a transfer substrate (Teflon (registered trademark) sheet, 50 μm, manufactured by NICHIAS) so that the thickness of the catalyst layer after drying with a blade coater becomes 100 μm. After coating, it was allowed to stand in a desiccator with a petri dish filled with 2-propanol.

次いで、減圧ポンプを用いて、5分間かけてデシケータ内を40hPaまで減圧し、40hPaの状態を30分間保持することにより、触媒層形成用ペースト組成物を乾燥させ、本発明の触媒層転写シートを作製した。なお、デシケータ内の温度は約20℃とした。   Next, using a vacuum pump, the desiccator is depressurized to 40 hPa over 5 minutes, and the state of 40 hPa is maintained for 30 minutes to dry the catalyst layer forming paste composition. Produced. The temperature in the desiccator was about 20 ° C.

得られた触媒層転写シート上の触媒層を走査型電子顕微鏡(SEM)で500倍にて観察したところ、クラックがほとんど発生していなかった。このSEM写真を図1に示す。   When the catalyst layer on the obtained catalyst layer transfer sheet was observed at 500 times with a scanning electron microscope (SEM), almost no cracks were generated. This SEM photograph is shown in FIG.

また、触媒層の空隙率を水銀ポロシメーター(島津製作所製、製品名「AUTOPORE9500」)を用いて測定したところ、細孔径10nm〜200nmの空隙における空隙率が9.98%、細孔径5μm〜50μmの空隙における空隙率が7.22%であった。   The porosity of the catalyst layer was measured using a mercury porosimeter (manufactured by Shimadzu Corporation, product name “AUTOPORE 9500”). The void ratio in the void was 7.22%.

実施例2
5分間かけてデシケータ内を30hPaまで減圧し、30hPaの状態を30分間保持する以外は実施例1と同様にして、触媒層転写シートを作製した。
Example 2
A catalyst layer transfer sheet was produced in the same manner as in Example 1 except that the pressure in the desiccator was reduced to 30 hPa over 5 minutes and the state of 30 hPa was maintained for 30 minutes.

得られた触媒層転写シート上の触媒層を走査型電子顕微鏡(SEM)で500倍にて観察したところ、クラックがほとんど発生していなかった。このSEM写真を図2に示す。また、触媒層転写シート上の触媒層の空隙率を測定したところ、細孔径10nm〜200nmの空隙における空隙率が8.21%、細孔径5μm〜50μmの空隙における空隙率が5.26%であった。   When the catalyst layer on the obtained catalyst layer transfer sheet was observed at 500 times with a scanning electron microscope (SEM), almost no cracks were generated. This SEM photograph is shown in FIG. Further, when the porosity of the catalyst layer on the catalyst layer transfer sheet was measured, the porosity in the void having a pore diameter of 10 nm to 200 nm was 8.21%, and the porosity in the void having a pore diameter of 5 μm to 50 μm was 5.26%. there were.

実施例3
触媒層形成用ペースト組成物の塗布量を、乾燥前の液膜の厚さが100μmとなるようにした以外は実施例1と同様にして、触媒層転写シートを作製した。なお、乾燥後の触媒層の厚さは45μmであった。
Example 3
A catalyst layer transfer sheet was produced in the same manner as in Example 1 except that the coating amount of the catalyst layer forming paste composition was such that the thickness of the liquid film before drying was 100 μm. In addition, the thickness of the catalyst layer after drying was 45 μm.

得られた触媒層転写シート上の触媒層を走査型電子顕微鏡(SEM)で500倍にて観察したところ、クラックがほとんど発生していなかった。このSEM写真を図3に示す。また、触媒層転写シート上の触媒層の空隙率を測定したところ、細孔径10nm〜200nmの空隙における空隙率が19.96%、細孔径5μm〜50μmの空隙における空隙率が14.44%であった。   When the catalyst layer on the obtained catalyst layer transfer sheet was observed at 500 times with a scanning electron microscope (SEM), almost no cracks were generated. This SEM photograph is shown in FIG. Further, when the porosity of the catalyst layer on the catalyst layer transfer sheet was measured, the porosity in the void having a pore diameter of 10 nm to 200 nm was 19.96%, and the porosity in the void having a pore diameter of 5 μm to 50 μm was 14.44%. there were.

実施例4
触媒層形成用ペースト組成物の塗布量を、乾燥前の液膜の厚さが100μmとなるようにした以外は実施例2と同様にして、触媒層転写シートを作製した。なお、乾燥後の触媒層の厚さは46μmであった。
Example 4
A catalyst layer transfer sheet was prepared in the same manner as in Example 2, except that the coating amount of the catalyst layer forming paste composition was such that the thickness of the liquid film before drying was 100 μm. The dried catalyst layer had a thickness of 46 μm.

得られた触媒層転写シート上の触媒層を走査型電子顕微鏡(SEM)で500倍にて観察したところ、クラックがほとんど発生していなかった。このSEM写真を図4に示す。また、触媒層転写シート上の触媒層の空隙率を測定したところ、細孔径10nm〜200nmの空隙における空隙率が16.42%、細孔径5μm〜50μmの空隙における空隙率が10.52%であった。   When the catalyst layer on the obtained catalyst layer transfer sheet was observed at 500 times with a scanning electron microscope (SEM), almost no cracks were generated. This SEM photograph is shown in FIG. Further, when the porosity of the catalyst layer on the catalyst layer transfer sheet was measured, the porosity in the void having a pore diameter of 10 nm to 200 nm was 16.42%, and the porosity in the void having a pore diameter of 5 μm to 50 μm was 10.52%. there were.

実施例5
5分間かけてデシケータ内を50hPaまで減圧し、50hPaの状態を30分間保持する以外は実施例3と同様にして、触媒層転写シートを作製した。なお、乾燥後の触媒層の厚さは46μmであった。
Example 5
A catalyst layer transfer sheet was produced in the same manner as in Example 3 except that the pressure in the desiccator was reduced to 50 hPa over 5 minutes and the state of 50 hPa was maintained for 30 minutes. The dried catalyst layer had a thickness of 46 μm.

得られた触媒層転写シート上の触媒層を走査型電子顕微鏡(SEM)で500倍にて観察したところ、クラックがほとんど発生していなかった。このSEM写真を図5に示す。また、触媒層転写シート上の触媒層の空隙率を測定したところ、細孔径10nm〜200nmの空隙における空隙率が18.30%、細孔径5μm〜50μmの空隙における空隙率が6.39%であった。   When the catalyst layer on the obtained catalyst layer transfer sheet was observed at 500 times with a scanning electron microscope (SEM), almost no cracks were generated. This SEM photograph is shown in FIG. Further, when the porosity of the catalyst layer on the catalyst layer transfer sheet was measured, the porosity in the void having a pore diameter of 10 nm to 200 nm was 18.30%, and the porosity in the void having a pore diameter of 5 μm to 50 μm was 6.39%. there were.

実施例6
5分間かけてデシケータ内を40hPaまで減圧し、40hPaの状態を60分間保持する以外は実施例3と同様にして、触媒層転写シートを作製した。なお、乾燥後の触媒層の厚さは50μmであった。
Example 6
A catalyst layer transfer sheet was prepared in the same manner as in Example 3 except that the pressure in the desiccator was reduced to 40 hPa over 5 minutes and the state of 40 hPa was maintained for 60 minutes. In addition, the thickness of the catalyst layer after drying was 50 μm.

得られた触媒層転写シート上の触媒層を走査型電子顕微鏡(SEM)で500倍にて観察したところ、クラックがほとんど発生していなかった。このSEM写真を図6に示す。また、触媒層転写シート上の触媒層の空隙率を測定したところ、細孔径10nm〜200nmの空隙における空隙率が18.04%、細孔径5μm〜50μmの空隙における空隙率が15.50%であった。   When the catalyst layer on the obtained catalyst layer transfer sheet was observed at 500 times with a scanning electron microscope (SEM), almost no cracks were generated. This SEM photograph is shown in FIG. Further, when the porosity of the catalyst layer on the catalyst layer transfer sheet was measured, the porosity in the void having a pore diameter of 10 nm to 200 nm was 18.04%, and the porosity in the void having a pore diameter of 5 μm to 50 μm was 15.50%. there were.

実施例7
5分間かけてデシケータ内を50hPaまで減圧し、50hPaの状態を60分間保持する以外は実施例3と同様にして、触媒層転写シートを作製した。なお、乾燥後の触媒層の厚さは46μmであった。
Example 7
A catalyst layer transfer sheet was produced in the same manner as in Example 3 except that the pressure in the desiccator was reduced to 50 hPa over 5 minutes and the state of 50 hPa was maintained for 60 minutes. The dried catalyst layer had a thickness of 46 μm.

得られた触媒層転写シート上の触媒層を走査型電子顕微鏡(SEM)で500倍にて観察したところ、クラックがほとんど発生していなかった。このSEM写真を図7に示す。また、触媒層転写シート上の触媒層の空隙率を測定したところ、細孔径10nm〜200nmの空隙における空隙率が16.22%、細孔径5μm〜50μmの空隙における空隙率が5.50%であった。   When the catalyst layer on the obtained catalyst layer transfer sheet was observed at 500 times with a scanning electron microscope (SEM), almost no cracks were generated. This SEM photograph is shown in FIG. Further, when the porosity of the catalyst layer on the catalyst layer transfer sheet was measured, the porosity in the void having a pore diameter of 10 nm to 200 nm was 16.22%, and the porosity in the void having a pore diameter of 5 μm to 50 μm was 5.50%. there were.

実施例8
5分間かけてデシケータ内を30hPaまで減圧し、30hPaの状態を60分間保持する以外は実施例3と同様にして、触媒層転写シートを作製した。なお、乾燥後の触媒層の厚さは45μmであった。
Example 8
A catalyst layer transfer sheet was produced in the same manner as in Example 3 except that the pressure in the desiccator was reduced to 30 hPa over 5 minutes and the state of 30 hPa was maintained for 60 minutes. In addition, the thickness of the catalyst layer after drying was 45 μm.

得られた触媒層転写シート上の触媒層を走査型電子顕微鏡(SEM)で500倍にて観察したところ、クラックがわずかに認識できた程度であった。このSEM写真を図8に示す。また、触媒層転写シート上の触媒層の空隙率を測定したところ、細孔径10nm〜200nmの空隙における空隙率が16.48%、細孔径5μm〜50μmの空隙における空隙率が18.80%であった。   When the catalyst layer on the obtained catalyst layer transfer sheet was observed at 500 times with a scanning electron microscope (SEM), cracks were only slightly recognized. This SEM photograph is shown in FIG. Further, when the porosity of the catalyst layer on the catalyst layer transfer sheet was measured, the porosity in the void having a pore diameter of 10 nm to 200 nm was 16.48%, and the porosity in the void having a pore diameter of 5 μm to 50 μm was 18.80%. there were.

比較例1
5分間かけてデシケータ内を57hPaまで減圧し、57hPaの状態を30分間保持する以外は実施例1と同様にして、触媒層転写シートを作製した。
Comparative Example 1
A catalyst layer transfer sheet was produced in the same manner as in Example 1 except that the pressure in the desiccator was reduced to 57 hPa over 5 minutes and the state of 57 hPa was maintained for 30 minutes.

得られた触媒層転写シート上の触媒層を走査型電子顕微鏡(SEM)で500倍にて観察したところ、クラックが多量に発生していた。このSEM写真を図9に示す。また、得られた触媒層転写シート上の触媒層の空隙率を測定したところ、細孔径10nm〜200nmの空隙における空隙率が8.11%、細孔径5μm〜50μmの空隙における空隙率が10.51%であった。   When the catalyst layer on the obtained catalyst layer transfer sheet was observed with a scanning electron microscope (SEM) at 500 times, a large amount of cracks were generated. This SEM photograph is shown in FIG. Further, when the porosity of the catalyst layer on the obtained catalyst layer transfer sheet was measured, the porosity in the voids having a pore diameter of 10 nm to 200 nm was 8.11%, and the porosity in the voids having a pore diameter of 5 μm to 50 μm was 10. 51%.

比較例2
5分間かけてデシケータ内を74hPaまで減圧し、74hPaの状態を30分間保持する以外は実施例1と同様にして、触媒層転写シートを作製した。
Comparative Example 2
A catalyst layer transfer sheet was prepared in the same manner as in Example 1 except that the pressure in the desiccator was reduced to 74 hPa over 5 minutes and the state of 74 hPa was maintained for 30 minutes.

得られた触媒層転写シート上の触媒層を走査型電子顕微鏡(SEM)で500倍にて観察したところ、クラックが多量に発生していた。このSEM写真を図10に示す。また、触媒層転写シート上の触媒層の空隙率を測定したところ、細孔径10nm〜200nmの空隙における空隙率が8.77%、細孔径5μm〜50μmの空隙における空隙率が9.25%であった。   When the catalyst layer on the obtained catalyst layer transfer sheet was observed with a scanning electron microscope (SEM) at 500 times, a large amount of cracks were generated. This SEM photograph is shown in FIG. Further, when the porosity of the catalyst layer on the catalyst layer transfer sheet was measured, the porosity in the void having a pore diameter of 10 nm to 200 nm was 8.77%, and the porosity in the void having a pore diameter of 5 μm to 50 μm was 9.25%. there were.

比較例3
触媒層形成用ペースト組成物の塗布量を、乾燥前の液膜の厚さが100μmとなるようにした以外は比較例1と同様にして、触媒層転写シートを作製した。なお、乾燥後の触媒層の厚さは55μmであった。
Comparative Example 3
A catalyst layer transfer sheet was produced in the same manner as in Comparative Example 1 except that the coating amount of the catalyst layer forming paste composition was such that the thickness of the liquid film before drying was 100 μm. The dried catalyst layer had a thickness of 55 μm.

得られた触媒層転写シート上の触媒層を走査型電子顕微鏡(SEM)で500倍にて観察したところ、クラックが多量に発生していた。このSEM写真を図11に示す。また、得られた触媒層転写シート上の触媒層の空隙率を測定したところ、細孔径10nm〜200nmの空隙における空隙率が16.22%、細孔径5μm〜50μmの空隙における空隙率が21.02%であった。   When the catalyst layer on the obtained catalyst layer transfer sheet was observed with a scanning electron microscope (SEM) at 500 times, a large amount of cracks were generated. This SEM photograph is shown in FIG. Further, when the porosity of the catalyst layer on the obtained catalyst layer transfer sheet was measured, the porosity in the void having a pore diameter of 10 nm to 200 nm was 16.22%, and the porosity in the void having a pore diameter of 5 μm to 50 μm was 21. 02%.

比較例4
触媒層形成用ペースト組成物の塗布量を、乾燥前の液膜の厚さが100μmとなるようにした以外は比較例2と同様にして、触媒層転写シートを作製した。なお、乾燥後の触媒層の厚さは56μmであった。
Comparative Example 4
A catalyst layer transfer sheet was prepared in the same manner as in Comparative Example 2, except that the coating amount of the catalyst layer forming paste composition was such that the thickness of the liquid film before drying was 100 μm. The dried catalyst layer had a thickness of 56 μm.

得られた触媒層転写シート上の触媒層を走査型電子顕微鏡(SEM)で500倍にて観察したところ、クラックが多量に発生していた。このSEM写真を図12に示す。また、得られた触媒層転写シート上の触媒層の空隙率を測定したところ、細孔径10nm〜200nmの空隙における空隙率が17.54%、細孔径5μm〜50μmの空隙における空隙率が18.50%であった。   When the catalyst layer on the obtained catalyst layer transfer sheet was observed with a scanning electron microscope (SEM) at 500 times, a large amount of cracks were generated. This SEM photograph is shown in FIG. Further, when the porosity of the catalyst layer on the obtained catalyst layer transfer sheet was measured, the porosity in the void having a pore diameter of 10 nm to 200 nm was 17.54%, and the porosity in the void having a pore diameter of 5 μm to 50 μm was 18. 50%.

図1は、実施例1の触媒層表面のSEM写真を示す。1 shows an SEM photograph of the catalyst layer surface of Example 1. FIG. 図2は、実施例2の触媒層表面のSEM写真を示す。FIG. 2 shows an SEM photograph of the catalyst layer surface of Example 2. 図3は、実施例3の触媒層表面のSEM写真を示す。FIG. 3 shows an SEM photograph of the catalyst layer surface of Example 3. 図4は、実施例4の触媒層表面のSEM写真を示す。4 shows an SEM photograph of the catalyst layer surface of Example 4. FIG. 図5は、実施例5の触媒層表面のSEM写真を示す。FIG. 5 shows an SEM photograph of the catalyst layer surface of Example 5. 図6は、実施例6の触媒層表面のSEM写真を示す。6 shows an SEM photograph of the catalyst layer surface of Example 6. FIG. 図7は、実施例7の触媒層表面のSEM写真を示す。FIG. 7 shows an SEM photograph of the catalyst layer surface of Example 7. 図8は、実施例8の触媒層表面のSEM写真を示す。FIG. 8 shows an SEM photograph of the catalyst layer surface of Example 8. 図9は、比較例1の触媒層表面のSEM写真を示す。FIG. 9 shows an SEM photograph of the catalyst layer surface of Comparative Example 1. 図10は、比較例2の触媒層表面のSEM写真を示す。FIG. 10 shows an SEM photograph of the catalyst layer surface of Comparative Example 2. 図11は、比較例3の触媒層表面のSEM写真を示す。FIG. 11 shows an SEM photograph of the catalyst layer surface of Comparative Example 3. 図12は、比較例4の触媒層表面のSEM写真を示す。FIG. 12 shows an SEM photograph of the catalyst layer surface of Comparative Example 4.

Claims (6)

触媒粒子、イオン伝導性高分子電解質及び溶剤を含む触媒層形成用ペースト組成物を用いて燃料電池用触媒層を製造するに当たり、
前記溶剤に含まれる主溶剤と同一成分の気体を含む雰囲気下であって20〜50hPaの圧力下で乾燥を行う工程、
を備えた触媒層の製造方法。
In producing a catalyst layer for a fuel cell using a catalyst layer forming paste composition containing catalyst particles, an ion conductive polymer electrolyte and a solvent,
A step of drying under a pressure of 20 to 50 hPa in an atmosphere containing the same component gas as the main solvent contained in the solvent;
The manufacturing method of the catalyst layer provided with.
20〜100℃で乾燥を行う、請求項1に記載の製造方法。   The manufacturing method of Claim 1 which performs drying at 20-100 degreeC. 前記溶剤が炭素数1〜4のアルコールである、請求項1又は2に記載の製造方法。   The manufacturing method of Claim 1 or 2 whose said solvent is a C1-C4 alcohol. 前記主溶剤が1−プロパノール、2−プロパノール、1−ブタノール又はt−ブタノールである、請求項1〜3のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-3 whose said main solvent is 1-propanol, 2-propanol, 1-butanol, or t-butanol. 請求項1〜4のいずれかの製造方法で得られた触媒層が転写基材上に形成されてなる触媒層転写シート。   A catalyst layer transfer sheet in which the catalyst layer obtained by the production method according to claim 1 is formed on a transfer substrate. 請求項5に記載の触媒層転写シートを電解質膜に転写することにより得られる、触媒層−電解質膜積層体。   A catalyst layer-electrolyte membrane laminate obtained by transferring the catalyst layer transfer sheet according to claim 5 onto an electrolyte membrane.
JP2008063930A 2007-03-16 2008-03-13 Method for producing catalyst layer for fuel cell, catalyst layer transfer sheet, and catalyst layer-electrolyte membrane laminate Expired - Fee Related JP5634013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063930A JP5634013B2 (en) 2007-03-16 2008-03-13 Method for producing catalyst layer for fuel cell, catalyst layer transfer sheet, and catalyst layer-electrolyte membrane laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007068901 2007-03-16
JP2007068901 2007-03-16
JP2008063930A JP5634013B2 (en) 2007-03-16 2008-03-13 Method for producing catalyst layer for fuel cell, catalyst layer transfer sheet, and catalyst layer-electrolyte membrane laminate

Publications (2)

Publication Number Publication Date
JP2008262904A true JP2008262904A (en) 2008-10-30
JP5634013B2 JP5634013B2 (en) 2014-12-03

Family

ID=39985198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063930A Expired - Fee Related JP5634013B2 (en) 2007-03-16 2008-03-13 Method for producing catalyst layer for fuel cell, catalyst layer transfer sheet, and catalyst layer-electrolyte membrane laminate

Country Status (1)

Country Link
JP (1) JP5634013B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033910A (en) * 2008-07-29 2010-02-12 Dainippon Printing Co Ltd Method of manufacturing catalyst layer of polymer electrolyte fuel cell, and catalyst layer-electrolyte film laminate
WO2011077991A1 (en) 2009-12-25 2011-06-30 昭和電工株式会社 Ink, catalyst layer for fuel cell produced using the ink, and use of the catalyst layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289207A (en) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd Manufacturing method for hydrogen ion conductive polymer membrane with catalyst layer for fuel cell
JP2006024556A (en) * 2004-06-08 2006-01-26 Dainippon Printing Co Ltd Fuel cell, junction of electrode and electrolyte membrane, electrode substrate with catalyst layer, process of manufacturing same, and transfer sheet
JP2006220538A (en) * 2005-02-10 2006-08-24 Univ Of Yamanashi Activity evaluating method of electrode catalyst, and test electrode used for it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289207A (en) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd Manufacturing method for hydrogen ion conductive polymer membrane with catalyst layer for fuel cell
JP2006024556A (en) * 2004-06-08 2006-01-26 Dainippon Printing Co Ltd Fuel cell, junction of electrode and electrolyte membrane, electrode substrate with catalyst layer, process of manufacturing same, and transfer sheet
JP2006220538A (en) * 2005-02-10 2006-08-24 Univ Of Yamanashi Activity evaluating method of electrode catalyst, and test electrode used for it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033910A (en) * 2008-07-29 2010-02-12 Dainippon Printing Co Ltd Method of manufacturing catalyst layer of polymer electrolyte fuel cell, and catalyst layer-electrolyte film laminate
WO2011077991A1 (en) 2009-12-25 2011-06-30 昭和電工株式会社 Ink, catalyst layer for fuel cell produced using the ink, and use of the catalyst layer

Also Published As

Publication number Publication date
JP5634013B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5266794B2 (en) Catalyst layer for polymer electrolyte fuel cell and method for producing the same
US8715878B2 (en) Polymer electrolyte fuel cell, membrane electrode assembly and manufacturing method thereof
JP2004311057A (en) Paste composition for forming catalyst layer, and transfer sheet for manufacturing catalyst layer-electrolyte film laminate
JP5233075B2 (en) Catalyst layer-electrolyte membrane laminate and method for producing the same
JP2007123253A (en) Paste composition for catalyst layer formation, transfer sheet for manufacturing catalyst layer-electrolyte membrane laminate, and catalyst layer-electrolyte membrane laminate
JP5207607B2 (en) Paste composition for forming catalyst layer and catalyst layer-electrolyte membrane laminate
JP2007103083A (en) Transfer sheet for manufacturing catalyst layer-electrolyte film laminate for fuel cell, and catalyst layer-electrolyte film laminate
JP2010086674A (en) Inkjet ink for forming catalyst layer for fuel cell, catalyst layer for fuel cell and its manufacturing method, and catalyst layer-electrolyte film laminate
JP5634013B2 (en) Method for producing catalyst layer for fuel cell, catalyst layer transfer sheet, and catalyst layer-electrolyte membrane laminate
JP3978757B2 (en) Gas diffusion electrode-electrolyte membrane assembly for fuel cell and method for producing the same
JP4826190B2 (en) Catalyst layer forming paste composition, catalyst layer-electrolyte membrane laminate transfer sheet, and catalyst layer-electrolyte membrane laminate
JP6661979B2 (en) Membrane electrode assembly
JP4893704B2 (en) Method for producing catalyst layer for polymer electrolyte fuel cell and catalyst layer-electrolyte membrane laminate
JP2010033731A (en) Manufacturing method of catalyst layer for solid polymer fuel cell and catalyst layer-electrolyte film laminate
JP2008305610A (en) Conductive porous sheet and method of manufacturing the same
JP2010033897A (en) Method of manufacturing catalyst layer of solid polymer fuel cell, and catalyst layer-electrolyte film laminate
JP5617994B2 (en) Catalyst layer transfer film
JP5266832B2 (en) Catalyst layer for polymer electrolyte fuel cell, catalyst layer transfer sheet, catalyst layer-electrolyte membrane laminate, and polymer electrolyte fuel cell
JP2009048936A (en) Repair method of electrolyte membrane with catalyst layer, and transcription film for repair
JP2006073313A (en) Paste composition for forming catalyst layer and catalyst layer transfer sheet
JP5303979B2 (en) Catalyst layer transfer film for polymer electrolyte fuel cells
JP2013084427A (en) Method for manufacturing membrane-catalyst layer assembly and method for manufacturing membrane electrode assembly
JP5422957B2 (en) Ink for inkjet for forming catalyst layer for fuel cell, catalyst layer for fuel cell and method for producing the same, and catalyst layer-electrolyte membrane laminate
JP2010062062A (en) Method of manufacturing membrane electrode assembly, membrane electrode assembly, and polymer electrolyte fuel cell
JP2008034163A (en) Manufacturing method of hydrocarbon-based polymer electrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131113

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

LAPS Cancellation because of no payment of annual fees