JP2008256281A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2008256281A
JP2008256281A JP2007099564A JP2007099564A JP2008256281A JP 2008256281 A JP2008256281 A JP 2008256281A JP 2007099564 A JP2007099564 A JP 2007099564A JP 2007099564 A JP2007099564 A JP 2007099564A JP 2008256281 A JP2008256281 A JP 2008256281A
Authority
JP
Japan
Prior art keywords
heat exchanger
water
refrigerant
compressor
water heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007099564A
Other languages
Japanese (ja)
Inventor
Eiji Kuwabara
永治 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2007099564A priority Critical patent/JP2008256281A/en
Publication of JP2008256281A publication Critical patent/JP2008256281A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase temperature rise of water in a delivery gas region of a refrigerant delivered from a compressor, to lower a condensation temperature correspondingly, and thereby, to achieve efficient operation. <P>SOLUTION: The heat pump type water heater is provided with a refrigerating cycle constituted by successively connecting a first water heat exchanger 3, a second water heat exchanger 4, an expansion valve 5, and an air heat exchanger 7 to a compressor 1 having an injection port 1a through a refrigerant pipe 2; a hot water supply pipe 10 for feeding water to the first and second water heat exchangers 3 and 4 in order to supply hot water; and an injection circuit 8 for connecting a refrigerant outflow side of the first water heat exchanger 3 and the injection port 1a of the compressor 1. The gas refrigerant is cooled in the first water heat exchanger 3, and the gas refrigerant is condensed in the second water heat exchanger 4, and the injection circuit 8 injects a part of the refrigerant gas flowing out of the first water heat exchanger 3 to the compressor 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水の加熱構造を改良したヒートポンプ式給湯機に関する。   The present invention relates to a heat pump type water heater having an improved water heating structure.

この種のヒートポンプ式給湯機としては、例えば、図5に示すようなものが知られている。   As this type of heat pump type hot water heater, for example, the one shown in FIG. 5 is known.

このヒートポンプ式給湯機は、冷凍サイクルを備え、この冷凍サイクルを流れる冷媒は、空気熱交換器101で蒸発して外気から熱を取り入れる。そして、この熱を水熱交換器102で凝縮することにより放出して水熱交換器102を流れる水を加熱し給湯するようになっている。   The heat pump type hot water heater includes a refrigeration cycle, and the refrigerant flowing through the refrigeration cycle evaporates in the air heat exchanger 101 and takes in heat from outside air. Then, this heat is discharged by condensing in the water heat exchanger 102 and the water flowing through the water heat exchanger 102 is heated to supply hot water.

水熱交換器102において冷媒と水は対向流で流され、熱交換により冷媒は120℃から20℃に低下し、水は10℃〜90℃に加熱される(例えば、特許文献1参照。)。   In the water heat exchanger 102, the refrigerant and the water are caused to flow in opposite directions, the refrigerant is lowered from 120 ° C. to 20 ° C. by heat exchange, and the water is heated to 10 ° C. to 90 ° C. (see, for example, Patent Document 1). .

図6はこの冷凍サイクルの動きをモリエル線図上に表したものである。   FIG. 6 shows the movement of the refrigeration cycle on the Mollier diagram.

圧縮機104で圧縮された冷媒は高温高圧のガスとなって吐出され、水熱交換器102に流入する。水熱交換器102でガス冷媒は、水と熱交換してまず温度が下がり、その後、凝縮域に入り完全に液化されて過冷却の状態で水熱交換器102から流出される。この後、液冷媒は膨張弁105で減圧されてから空気熱交換器101に流入されて蒸発しガス冷媒となって圧縮機104に吸い込まれる。   The refrigerant compressed by the compressor 104 is discharged as a high-temperature and high-pressure gas and flows into the water heat exchanger 102. The gas refrigerant first exchanges heat with water in the water heat exchanger 102, and then the temperature is lowered. Then, the gas refrigerant enters the condensing region, is completely liquefied, and flows out of the water heat exchanger 102 in a supercooled state. Thereafter, the liquid refrigerant is decompressed by the expansion valve 105, then flows into the air heat exchanger 101, evaporates and becomes a gas refrigerant and is sucked into the compressor 104.

図7は水熱交換器102内における冷媒と水の状態変化をTH線図上に表したもので、主に水熱交換器102内での温度変化を示す。   FIG. 7 shows changes in the state of refrigerant and water in the water heat exchanger 102 on the TH diagram, and mainly shows temperature changes in the water heat exchanger 102.

横軸はエンタルピであり、水は冷媒から熱を得て左から右ヘエンタルピを増加しそれに連れ温度もほぼ直線的に上昇(比熱がほぼ一定のため)している。一方、冷媒は右から熱を水に放出し、エンタルピが減少してそれに連れ温度が下がっている。   The horizontal axis is enthalpy, and water gains heat from the refrigerant and increases the left-to-right heat enthalpy, and accordingly the temperature rises almost linearly (because the specific heat is almost constant). On the other hand, the refrigerant releases heat into the water from the right, and the enthalpy decreases and the temperature decreases accordingly.

ところで、水熱交換器102内で冷媒が凝縮域に入ると、エンタルピは低下するが温度は一定となり図では横線になる。そして、冷媒が完全に液化すると、その後はエンタルピの低下と共に温度も下がる。
特開2007−71426号公報
By the way, when the refrigerant enters the condensation zone in the water heat exchanger 102, the enthalpy decreases, but the temperature becomes constant and becomes a horizontal line in the figure. And if a refrigerant | coolant liquefies completely, temperature will fall with a fall of enthalpy after that.
JP 2007-71426 A

しかしながら、従来においては、図7からも分かるように水と冷媒の温度差が最少となるところがあり、ここがネックとなり熱交換器をいくら大きくしても凝縮温度が下げられない。熱交換器を大きくすると凝縮温度が下がるが、水の線とぶつかったところが最低の凝縮温度になり、それ以上凝縮温度を下げられない。即ち、貯湯運転の効率をそれ以上上げられないという問題点がある。   However, in the prior art, as can be seen from FIG. 7, there is a place where the temperature difference between water and the refrigerant is minimized, and this becomes a bottleneck, and the condensation temperature cannot be lowered no matter how large the heat exchanger is. The larger the heat exchanger, the lower the condensation temperature, but the place where it hits the water line is the lowest condensation temperature, and the condensation temperature cannot be lowered any further. That is, there is a problem that the efficiency of the hot water storage operation cannot be further increased.

本発明は上記事情に着目してなされたもので、その目的とするところは、冷媒の凝縮温度を下げて運転効率を向上できるようにしたヒートポンプ式給湯機を提供することにある。   The present invention has been made paying attention to the above circumstances, and an object of the present invention is to provide a heat pump type water heater capable of improving the operation efficiency by lowering the condensation temperature of the refrigerant.

上記課題を解決するため、請求項1記載のものは、インジェクションポートを有した圧縮機に、冷媒管を介して順次、第1の水熱交換器、第2の水熱交換器、膨張弁、及び空気熱交換器を接続して構成される冷凍サイクルと、前記第1及び第2の水熱交換器に送水して給湯する給湯管と、前記第1の水熱交換器の冷媒流出側と前記圧縮機の前記インジェクションポートとを接続するインジェクション回路とを具備し、前記第1の水熱交換器ではガス冷媒を冷却させ、前記第2の水熱交換器ではガス冷媒を凝縮させ、前記インジェクション回路は、前記第1の水熱交換器から流出される冷媒ガスの一部を前記圧縮機にインジェクションすることを特徴とする。   In order to solve the above-described problem, the first aspect of the present invention includes a compressor having an injection port, and sequentially through a refrigerant pipe, a first water heat exchanger, a second water heat exchanger, an expansion valve, And a refrigeration cycle configured by connecting an air heat exchanger, a hot water supply pipe for supplying hot water to the first and second water heat exchangers, and a refrigerant outflow side of the first water heat exchanger; An injection circuit for connecting to the injection port of the compressor, the first water heat exchanger cools the gas refrigerant, the second water heat exchanger condenses the gas refrigerant, and the injection The circuit is characterized in that a part of the refrigerant gas flowing out from the first water heat exchanger is injected into the compressor.

本発明によれば、圧縮機から吐出する冷媒の吐出ガス域での水の温度上昇を大きくでき、その分、凝縮温度を下げて高効率の運転を可能とする。   According to the present invention, the temperature rise of water in the discharge gas region of the refrigerant discharged from the compressor can be increased, and the condensing temperature is lowered correspondingly to enable high-efficiency operation.

以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は本発明の一実施の形態であるヒートポンプ式給湯機を示すものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a heat pump type water heater according to an embodiment of the present invention.

このヒートポンプ式給湯機は、冷媒としてR410Aを用いる冷凍サイクルを備えている。この冷凍サイクルは、圧縮機1に冷媒管2を介して順次、第1の水熱交換器3、第2の水熱交換器4、膨張弁5、空気熱交換器7、及び冷媒熱交換器9を接続することにより構成されている。   This heat pump type hot water heater includes a refrigeration cycle using R410A as a refrigerant. In this refrigeration cycle, a first water heat exchanger 3, a second water heat exchanger 4, an expansion valve 5, an air heat exchanger 7, and a refrigerant heat exchanger are sequentially connected to the compressor 1 through a refrigerant pipe 2. 9 is connected.

圧縮機1はインジェクションポート1aを有し、インジェクション可能に構成されている。第1の水熱交換器3は冷媒のガス域の冷却を担当し、第2の水熱交換器4は、凝縮域と液域の冷却を担当するようになっている。   The compressor 1 has an injection port 1a and is configured to be capable of injection. The first water heat exchanger 3 is in charge of cooling the refrigerant gas region, and the second water heat exchanger 4 is in charge of cooling the condensing region and the liquid region.

第1の水熱交換器3の冷媒出ロ側と圧縮機1のインジェクションポート1aとは、インジェクション回路8を介して接続されている。第2の水熱交換器4と膨張弁5とを接続する冷媒管2の中途部は冷媒熱交換器9に接続されている。   The refrigerant outlet side of the first water heat exchanger 3 and the injection port 1 a of the compressor 1 are connected via an injection circuit 8. A midway portion of the refrigerant pipe 2 connecting the second water heat exchanger 4 and the expansion valve 5 is connected to the refrigerant heat exchanger 9.

一方、第1の水熱交換器3と第2の水熱交換器4とには、給湯管10が冷媒管2と平行に挿通されている。給湯管10の一端部側にはポンプ11が接続され、他端部側は図示しない貯湯タンクに接続されている。   On the other hand, a hot water supply pipe 10 is inserted through the first water heat exchanger 3 and the second water heat exchanger 4 in parallel with the refrigerant pipe 2. A pump 11 is connected to one end side of the hot water supply pipe 10, and the other end side is connected to a hot water storage tank (not shown).

上記した構成において、圧縮機1から吐出された吐出冷媒ガスは第1の水熱交換器3に流入して水と熱交換し、温度が低下した状態で凝縮温度近くになり第1の水熱交換器3から流出する。第1の水熱交換器3から流出するガス冷媒の一部は、インジェクション回路8を介して圧縮機1にインジェクションポート1aから注入される。ここで、圧縮機1に注入される冷媒のインジェクション量をg、圧縮機1の冷媒吸入量をGとすると、圧縮機1から吐出される吐出冷媒量はG+gとなり、通常の吐出冷媒量より多くなる。従って、第1の水熱交換器3を流れる冷媒の循環量は従来機器よりgだけ多くなる。第2の水熱交換器4に入る冷媒は、従来機器と同じ冷媒循環量となり、第2の水熱交換器4での作用は従来機器と同じである。   In the above-described configuration, the discharged refrigerant gas discharged from the compressor 1 flows into the first water heat exchanger 3 and exchanges heat with water. It flows out of the exchanger 3. A part of the gas refrigerant flowing out from the first water heat exchanger 3 is injected from the injection port 1a into the compressor 1 via the injection circuit 8. Here, when the injection amount of the refrigerant injected into the compressor 1 is g and the refrigerant intake amount of the compressor 1 is G, the discharge refrigerant amount discharged from the compressor 1 is G + g, which is larger than the normal discharge refrigerant amount. Become. Therefore, the circulation amount of the refrigerant flowing through the first water heat exchanger 3 is increased by g as compared with the conventional device. The refrigerant entering the second water heat exchanger 4 has the same refrigerant circulation amount as that of the conventional device, and the operation of the second water heat exchanger 4 is the same as that of the conventional device.

第2の水熱交換器4から流出した液冷媒は、冷媒熱交換器9に流入し、この冷媒熱交換器9で空気熱交換器7から出たガス冷媒と熱交換する。これにより、液冷媒は20℃から5℃に温度低下するが、圧縮機1に吸い込まれるガス冷媒は20℃に上昇される。   The liquid refrigerant that has flowed out of the second water heat exchanger 4 flows into the refrigerant heat exchanger 9, and exchanges heat with the gas refrigerant that has exited from the air heat exchanger 7. Thereby, the temperature of the liquid refrigerant is lowered from 20 ° C. to 5 ° C., but the gas refrigerant sucked into the compressor 1 is raised to 20 ° C.

このように圧縮機1に吸い込まれるガス冷媒の温度を上昇させるのは、圧縮機1から吐出されるガス冷媒の温度を120℃に保つためである。即ち、上記したように圧縮機1にインジェクション回路8を介して60℃のガス冷媒が圧縮の最終段階で注入されると、吸込み温度が従来機器と同じ5℃であれば吐出温度が120℃まで上がらず低下する。この低下を補うため、上記したように圧縮機1のガス冷媒吸込温度を従来よりも15℃上昇させている。   The reason for raising the temperature of the gas refrigerant sucked into the compressor 1 in this way is to keep the temperature of the gas refrigerant discharged from the compressor 1 at 120 ° C. That is, as described above, when a gas refrigerant of 60 ° C. is injected into the compressor 1 through the injection circuit 8 at the final stage of compression, if the suction temperature is 5 ° C., which is the same as that of the conventional device, the discharge temperature is up to 120 ° C. It does not rise and falls. In order to compensate for this decrease, as described above, the gas refrigerant suction temperature of the compressor 1 is increased by 15 ° C. than before.

一方、冷媒熱交換器9で熱交換されて温度が20℃から5℃に低下された液冷媒は膨張弁5を介して空気熱交換器7に流入されて蒸発したのち、冷媒熱交換器9を介して圧縮機1に吸い込まれる。以後、順次同様に冷媒が流されて給湯運転が継続される。   On the other hand, the liquid refrigerant that has been heat-exchanged by the refrigerant heat exchanger 9 and whose temperature has been reduced from 20 ° C. to 5 ° C. flows into the air heat exchanger 7 through the expansion valve 5 and evaporates, and then the refrigerant heat exchanger 9 Is sucked into the compressor 1 via Thereafter, the refrigerant is sequentially flown in the same manner and the hot water supply operation is continued.

図2は、上記した冷凍サイクルのモリエル線図上の動きを表したものである。   FIG. 2 shows the movement on the Mollier diagram of the above-described refrigeration cycle.

圧縮機1のガス冷媒吸込温度を上昇させることにより、インジェクション前の圧縮機1内のガス冷媒温度を高めることができ、第1の水熱交換器3からのガス冷媒のインジェクションによる冷却があっても圧縮機1の吐出温度を120℃に保っことができる。   By increasing the gas refrigerant suction temperature of the compressor 1, the gas refrigerant temperature in the compressor 1 before injection can be increased, and there is cooling by injection of the gas refrigerant from the first hydrothermal exchanger 3. Also, the discharge temperature of the compressor 1 can be kept at 120 ° C.

図3は、出湯温度を100℃にした場合における第1及び第2の水熱交換器3,4での冷媒と水の温度変化(TH線図上の冷媒と水の状態変化)を示すものである。   FIG. 3 shows the temperature change of the refrigerant and water in the first and second water heat exchangers 3 and 4 (change in state of the refrigerant and water on the TH diagram) when the tapping temperature is 100 ° C. It is.

圧縮機1からの吐出ガスの冷媒循環量が従来機器よりgだけ増えているため、第1の水熱交換器3での水の温度上昇が従来機器より大きくなり、従来機器より高温に加熱できる。   Since the refrigerant circulation amount of the discharge gas from the compressor 1 is increased by g from the conventional device, the temperature rise of the water in the first water heat exchanger 3 is larger than that of the conventional device and can be heated to a higher temperature than the conventional device. .

図4は、従来機器と同じ出湯温度を90℃にした場合における第1及び第2の水熱交換器3,4での冷媒と水の温度変化(TH線図上の冷媒と水の状態変化)を示すものである。   FIG. 4 shows changes in the temperature of the refrigerant and water in the first and second water heat exchangers 3 and 4 (changes in the state of the refrigerant and water on the TH diagram) when the same tapping temperature is 90 ° C. as in the conventional device. ).

出湯温度を90℃まで下げた場合には、第2の水熱交換器4の出ロ水温が下がり、これにつれ凝縮温度も下がって(熱交換量は同じため水と冷媒の温度差は従来機器と同じになる)高効率運転が可能となる。   When the tapping temperature is lowered to 90 ° C., the bottom water temperature of the second water heat exchanger 4 is lowered, and the condensing temperature is lowered accordingly (the amount of heat exchange is the same, so the temperature difference between water and refrigerant is the conventional equipment). High efficiency operation is possible.

なお、上記した第1の実施の形態では、冷凍サイクルの構成要素として冷媒熱交換器9を備えたが、これに限られることなく、膨張弁5の開度を小さくして空気熱交換器7の出口側のスーパーヒートを大きくとって圧縮機1の吸込み温度を高くしても、効果の程度は少なくなるが高効率化は可能である。   In the first embodiment described above, the refrigerant heat exchanger 9 is provided as a component of the refrigeration cycle. However, the present invention is not limited to this, and the air heat exchanger 7 is made by reducing the opening of the expansion valve 5. Even if the superheat on the outlet side of the compressor is increased to increase the suction temperature of the compressor 1, the degree of effect is reduced but the efficiency can be improved.

また、冷媒としてはR410Aを用いたが、高圧で凝縮しないCO2を用いても同様の効果が得られる。   Moreover, although R410A was used as the refrigerant, the same effect can be obtained even if CO2 that does not condense at high pressure is used.

なお、この発明は、上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、上述した実施の形態に示される全構成要素から幾つかの構成要素を削除しても良い。更に、異なる実施の形態に亘る構成要素を適宜組み合わせても良い。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, you may delete some components from all the components shown by embodiment mentioned above. Furthermore, you may combine the component covering different embodiment suitably.

本発明の一実施の形態であるヒートポンプ式給湯機の構成を示す図。The figure which shows the structure of the heat pump type water heater which is one embodiment of this invention. 図1のヒートポンプ式給湯機の冷凍サイクルのモリエル線図上の動きを示す図。The figure which shows the movement on the Mollier diagram of the refrigerating cycle of the heat pump type water heater of FIG. 図1のヒートポンプ式給湯機の出湯温度100℃の場合におけるTH線図上の冷媒と水の状態変化を示す図。The figure which shows the state change of the refrigerant | coolant and water on a TH diagram in the case of the tapping temperature of 100 degreeC of the heat pump type water heater of FIG. 図1のヒートポンプ式給湯機の出湯温度90℃の場合におけるTH線図上の冷媒と水の状態変化を示す図。The figure which shows the state change of the refrigerant | coolant and water on a TH diagram in the case of the hot-water supply temperature of 90 degreeC of the heat pump type water heater of FIG. 従来のヒートポンプ式給湯機の構成を示す図。The figure which shows the structure of the conventional heat pump type water heater. 従来のヒートポンプ式給湯機の冷凍サイクルのモリエル線図上の動きを示す図。The figure which shows the movement on the Mollier diagram of the refrigerating cycle of the conventional heat pump type water heater. 従来のヒートポンプ式給湯機のTH線図上の冷媒と水の状態変化を示す図。The figure which shows the state change of the refrigerant | coolant and water on the TH diagram of the conventional heat pump type water heater.

符号の説明Explanation of symbols

1…圧縮機、1a…インジェクションポート、2…冷媒管、3…第1の水冷媒熱交換器、4…第2の水冷媒熱交換器、5…膨張弁、7…空気熱交換器、8…インジェクション回路、9…冷媒熱交換器、10…送水管。   DESCRIPTION OF SYMBOLS 1 ... Compressor, 1a ... Injection port, 2 ... Refrigerant pipe | tube, 3 ... 1st water-refrigerant heat exchanger, 4 ... 2nd water-refrigerant heat exchanger, 5 ... Expansion valve, 7 ... Air heat exchanger, 8 ... injection circuit, 9 ... refrigerant heat exchanger, 10 ... water pipe.

Claims (2)

インジェクションポートを有した圧縮機に、冷媒管を介して順次、第1の水熱交換器、第2の水熱交換器、膨張弁、及び空気熱交換器を接続して構成される冷凍サイクルと、
前記第1及び第2の水熱交換器に送水して給湯する給湯管と、
前記第1の水熱交換器の冷媒流出側と前記圧縮機の前記インジェクションポートとを接続するインジェクション回路とを具備し、
前記第1の水熱交換器ではガス冷媒を冷却させ、前記第2の水熱交換器ではガス冷媒を凝縮させ、前記インジェクション回路は、前記第1の水熱交換器から流出されるガス冷媒の一部を前記圧縮機にインジェクションすることを特徴とするヒートポンプ式給湯機。
A refrigeration cycle configured by connecting a first water heat exchanger, a second water heat exchanger, an expansion valve, and an air heat exchanger sequentially to a compressor having an injection port via a refrigerant pipe; ,
A hot water supply pipe for supplying hot water to the first and second water heat exchangers;
An injection circuit for connecting a refrigerant outflow side of the first water heat exchanger and the injection port of the compressor;
The first water heat exchanger cools the gas refrigerant, the second water heat exchanger condenses the gas refrigerant, and the injection circuit supplies gas refrigerant flowing out of the first water heat exchanger. A heat pump type hot water supply apparatus, characterized in that a part is injected into the compressor.
前記圧縮機の吸込み側と前記空気熱交換器との間に前記第2の水熱交換器から流出される液冷媒と前記空気熱交換器から流出されるガス冷媒とを熱交換させる熱交換器を設けたことを特徴とする請求項1記載のヒートポンプ式給湯機。   A heat exchanger that exchanges heat between the liquid refrigerant flowing out of the second water heat exchanger and the gas refrigerant flowing out of the air heat exchanger between the suction side of the compressor and the air heat exchanger. The heat pump type water heater according to claim 1, wherein
JP2007099564A 2007-04-05 2007-04-05 Heat pump type water heater Pending JP2008256281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007099564A JP2008256281A (en) 2007-04-05 2007-04-05 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099564A JP2008256281A (en) 2007-04-05 2007-04-05 Heat pump type water heater

Publications (1)

Publication Number Publication Date
JP2008256281A true JP2008256281A (en) 2008-10-23

Family

ID=39980013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099564A Pending JP2008256281A (en) 2007-04-05 2007-04-05 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP2008256281A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163672A (en) * 2010-02-10 2011-08-25 Mitsubishi Heavy Ind Ltd Water heater
JP2012149844A (en) * 2011-01-20 2012-08-09 Mitsubishi Electric Corp Refrigerating cycle device
JP2013185741A (en) * 2012-03-07 2013-09-19 Rinnai Corp Heat pump type water heater
CN105276859A (en) * 2015-10-23 2016-01-27 云南热泊尔太阳能设备有限公司 Air energy recovery system
CN105674609A (en) * 2014-11-21 2016-06-15 青岛海尔空调电子有限公司 Heat recoverer structure and air-cooled heat pump unit
CN111811157A (en) * 2020-06-01 2020-10-23 青岛经济技术开发区海尔热水器有限公司 Heat exchange equipment, water heater and air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163672A (en) * 2010-02-10 2011-08-25 Mitsubishi Heavy Ind Ltd Water heater
JP2012149844A (en) * 2011-01-20 2012-08-09 Mitsubishi Electric Corp Refrigerating cycle device
JP2013185741A (en) * 2012-03-07 2013-09-19 Rinnai Corp Heat pump type water heater
CN105674609A (en) * 2014-11-21 2016-06-15 青岛海尔空调电子有限公司 Heat recoverer structure and air-cooled heat pump unit
CN105276859A (en) * 2015-10-23 2016-01-27 云南热泊尔太阳能设备有限公司 Air energy recovery system
CN111811157A (en) * 2020-06-01 2020-10-23 青岛经济技术开发区海尔热水器有限公司 Heat exchange equipment, water heater and air conditioner

Similar Documents

Publication Publication Date Title
CA2839087C (en) Refrigeration system
JP2009243793A (en) Heat pump type hot water supply outdoor unit
JP2008256281A (en) Heat pump type water heater
JP2009204235A (en) Heat pump type water heater
CN104006533A (en) Water heater
JP6065213B2 (en) Water heating system
ES2781483T3 (en) Cascade cooling system
JP5919036B2 (en) Heat pump type water heater
JP2013124802A (en) Refrigeration cycle apparatus
JP2008082601A (en) Heat pump hot water supply device
JP2008134887A (en) Cup-type beverage vending machine
JP5150300B2 (en) Heat pump type water heater
JP2011027358A (en) Heater
JP4075844B2 (en) Heat pump water heater
JP4892365B2 (en) Heat pump water heater
JP2006194537A (en) Heat pump device
JP2009085476A (en) Heat pump water heater
JP2012073008A (en) Refrigeration cycle device
JP5402164B2 (en) Refrigeration cycle equipment
JP2009281629A (en) Heat pump water heater
JP2007155203A (en) Air conditioner
JP2014169822A (en) Feedwater heating system
JP6455752B2 (en) Refrigeration system
JP2014169818A (en) Feedwater heating system
JP2008256282A (en) Heat pump type water heater