JP2006194537A - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
JP2006194537A
JP2006194537A JP2005007409A JP2005007409A JP2006194537A JP 2006194537 A JP2006194537 A JP 2006194537A JP 2005007409 A JP2005007409 A JP 2005007409A JP 2005007409 A JP2005007409 A JP 2005007409A JP 2006194537 A JP2006194537 A JP 2006194537A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
hot water
heat pump
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005007409A
Other languages
Japanese (ja)
Other versions
JP4595546B2 (en
Inventor
Kazuo Nakatani
和生 中谷
Noriho Okaza
典穂 岡座
Masahito Megata
雅人 目片
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005007409A priority Critical patent/JP4595546B2/en
Publication of JP2006194537A publication Critical patent/JP2006194537A/en
Application granted granted Critical
Publication of JP4595546B2 publication Critical patent/JP4595546B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump device capable of securing durability of a compressor even when the temperature of water flowing in a heat exchanger for hot water supply is high. <P>SOLUTION: This heat pump device is provided with a refrigerant circuit formed by sequentially connecting the compressor 31, a heat radiator 32, a main restrictor 33 and an evaporator 34, and a bypass circuit 38 for connecting the main restrictor 33 of the refrigerant circuit to the evaporator 34 and the evaporator 34 to the compressor 31. The bypass circuit 38 is provided with an auxiliary restrictor 38. The heat pump device has an auxiliary heat exchanger 41 for carrying out heat exchange among the bypass circuit on the upstream side of the auxiliary restrictor 38, the radiator 32 and the main restrictor 33; and a refrigerant discharged from the radiator 32 is cooled by exchanging the heat thereof with a low-temperature two-phase refrigerant flowing into the evaporator 34 by the auxiliary heat exchanger 41, whereby a heat pump cycle can safely be operated without raising it into a high pressure even when the temperature of introduced water is high. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はヒートポンプ湯装置に関するものである。   The present invention relates to a heat pump hot water apparatus.

従来、この種のヒートポンプ給湯装置は、図3に示すものがある(例えば、特許文献1参照)。   Conventionally, this type of heat pump hot-water supply apparatus has what is shown in FIG. 3 (for example, refer patent document 1).

図3は従来のヒートポンプ給湯機のサイクル構成図である。図3において、圧縮機1、給湯用熱交換器2、絞り装置3、蒸発器4からなる冷媒循環回路と、貯湯槽5、循環ポンプ6、前記給湯用熱交換器2、補助加熱器19を接続した給湯回路からなり、前記圧縮機1より吐出された高温高圧の過熱ガス冷媒は前記給湯用熱交換器2に流入し、ここで前記循環ポンプ6から送られてきた給湯水を加熱する。そして、凝縮液化した冷媒は前記絞り装置3で減圧され、前記蒸発器4に流入し、ここで大気熱を吸熱して蒸発ガス化し、前記圧縮機1にもどる。   FIG. 3 is a cycle configuration diagram of a conventional heat pump water heater. In FIG. 3, a refrigerant circulation circuit comprising a compressor 1, a hot water supply heat exchanger 2, an expansion device 3 and an evaporator 4, a hot water storage tank 5, a circulation pump 6, the hot water supply heat exchanger 2 and an auxiliary heater 19 are provided. The high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2 and heats the hot water supplied from the circulation pump 6. The condensed and liquefied refrigerant is decompressed by the expansion device 3 and flows into the evaporator 4, where it absorbs atmospheric heat to evaporate and returns to the compressor 1.

一方、前記給湯用熱交換器2で加熱された湯は前記貯湯槽5の上部に流入し、上から次第に貯湯されていく。そして、前記給湯用熱交換器2の入口水温が設定値に達すると水温検知器20が検知し、前記圧縮機1によるヒートポンプ運転を停止して、前記補助加熱器19の単独運転に切り換えるものである。
特開昭60−164157号公報
On the other hand, the hot water heated by the hot water supply heat exchanger 2 flows into the upper part of the hot water storage tank 5 and is gradually stored from above. When the inlet water temperature of the hot water supply heat exchanger 2 reaches a set value, the water temperature detector 20 detects it, stops the heat pump operation by the compressor 1, and switches to the independent operation of the auxiliary heater 19. is there.
JP 60-164157 A

しかしながら、上記のような従来の構成では、沸き上げ運転時間の経過とともに貯湯槽5内の湯と水の接する部分で湯水混合層が生じ、その層は次第に拡大していく。これは、高温湯と低温水の熱伝導および対流により発生するものであり、高温湯から低温水へ伝熱されその境界部分で高温湯は温度低下し、逆に低温水は温度上昇する。従って、沸き上げ運転完了近くになると、前記給湯用熱交換器2に流入する水温は高くなるため、前記圧縮機1の吐出圧力が上昇して、前記圧縮機1の耐久性が課題となっていた。   However, in the conventional configuration as described above, a hot water mixed layer is formed at the portion where the hot water in the hot water tank 5 is in contact with water as the boiling operation time elapses, and the layer gradually expands. This occurs due to heat conduction and convection in high temperature hot water and low temperature water. Heat is transferred from the high temperature hot water to the low temperature water, and the temperature of the high temperature hot water decreases at the boundary portion, while the temperature of the low temperature water increases. Therefore, when the boiling operation is almost completed, the temperature of the water flowing into the hot water supply heat exchanger 2 becomes high, so that the discharge pressure of the compressor 1 rises and the durability of the compressor 1 is an issue. It was.

本発明は前記従来の課題を解決するもので、給湯用熱交換器に流入する水温が高いときでも圧縮機の耐久性を確保したヒートポンプ装置を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the heat pump apparatus which ensured the durability of the compressor even when the water temperature which flows in into the heat exchanger for hot water supply is high.

前記従来の課題を解決するために、本発明のヒートポンプ装置は、圧縮機、放熱器、主絞り装置、蒸発器を順次接続して形成した冷媒回路と、前記冷媒回路の前記主絞り装置、前記蒸発器の間と前記蒸発器、前記圧縮機の間とを接続するバイパス回路とを備え、前記バイパス回路に副絞り装置を設けるとともに、前記副絞り装置の上流側のバイパス回路と前記放熱器、前記主絞り装置の間とで熱交換を行う補助熱交換器を有するもので、入水温度が高い場合、通常のヒートポンプサイクルの場合、放熱器の出口温度も上昇し、放熱器および蒸発器の冷媒ホールド量が減少するため高圧が上昇する傾向にあるが、本発明のように、補助熱交換器で蒸発器に流入する低温の二相冷媒と熱交換して、放熱器を出た冷媒を冷却することにより、冷媒エンタルピーが減少してその密度が増加し、また、蒸発器入口の乾き度も減少して蒸発器の冷媒ホールドが増加するため、入水温度が高い場合でも、高圧は上昇することなくヒートポンプサイクルを安全に運転できる。   In order to solve the conventional problems, a heat pump device of the present invention includes a refrigerant circuit formed by sequentially connecting a compressor, a radiator, a main throttle device, and an evaporator, the main throttle device of the refrigerant circuit, A bypass circuit for connecting between the evaporator and the evaporator, between the compressor, and providing a sub-throttle device in the bypass circuit, a bypass circuit upstream of the sub-throttle device and the radiator, It has an auxiliary heat exchanger that exchanges heat with the main throttle device. When the incoming water temperature is high, in the case of a normal heat pump cycle, the outlet temperature of the radiator also rises, and the refrigerant of the radiator and evaporator Since the hold amount decreases, the high pressure tends to increase. However, as in the present invention, the auxiliary heat exchanger exchanges heat with the low-temperature two-phase refrigerant flowing into the evaporator to cool the refrigerant that has exited the radiator. By Talpy is reduced and its density is increased, and also the evaporator inlet dryness is reduced and the evaporator refrigerant hold is increased, so even if the incoming water temperature is high, the high pressure does not rise and the heat pump cycle is safe Can drive to.

本発明によれば、給湯用熱交換器に流入する水温が高いときでも圧縮機の耐久性を確保したヒートポンプ装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, even when the water temperature which flows in into the heat exchanger for hot water supply is high, the heat pump apparatus which ensured the durability of the compressor can be provided.

第1の発明は、圧縮機、放熱器、主絞り装置、蒸発器を順次接続して形成した冷媒回路と、前記冷媒回路の前記主絞り装置、前記蒸発器の間と前記蒸発器、前記圧縮機の間とを接続するバイパス回路とを備え、前記バイパス回路に副絞り装置を設けるとともに、前記副絞り装置の上流側のバイパス回路と前記放熱器、前記主絞り装置の間とで熱交換を行う補助熱交換器を有するもので、入水温度が高い場合、通常のヒートポンプサイクルの場合、放熱器の出口温度も上昇し、放熱器および蒸発器の冷媒ホールド量が減少するため高圧が上昇する傾向にあるが、本発明のように、補助熱交換器で蒸発器に流入する低温の二相冷媒と熱交換して、放熱器を出た冷媒を冷却することにより、冷媒エンタルピーが減少してその密度が増加し、また、蒸発器入口の乾き度も減少して蒸発器の冷媒ホールドが増加するため、入水温度が高い場合でも、高圧は上昇することなくヒートポンプサイクルを安全に運転できる。   The first invention is a refrigerant circuit formed by sequentially connecting a compressor, a radiator, a main throttle device, and an evaporator, the main throttle device of the refrigerant circuit, between the evaporator, the evaporator, and the compression And a bypass circuit for connecting between the compressors, a sub-throttle device is provided in the bypass circuit, and heat exchange is performed between the bypass circuit upstream of the sub-throttle device, the radiator, and the main throttle device. With an auxiliary heat exchanger to perform, when the incoming water temperature is high, in the case of a normal heat pump cycle, the outlet temperature of the radiator also rises, and the refrigerant hold amount of the radiator and evaporator decreases, so the high pressure tends to rise However, as in the present invention, the heat exchange with the low-temperature two-phase refrigerant flowing into the evaporator by the auxiliary heat exchanger and the refrigerant exiting the radiator are cooled, so that the refrigerant enthalpy is reduced. Density increases, Since the vessel inlet of dryness degree even refrigerant hold decreases and the evaporator is increased, even when the incoming water temperature is high, high pressure heat pump cycle can be operated safely without increasing.

第2の発明は、第1の発明のバイパス回路に、副絞り装置と直列に開閉弁を設けたもので、副絞り装置で流量を適度に制限しながら、開閉弁の開閉を制御することで、補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、生成する給湯水温度に適した高効率な運転が可能となる。   According to a second aspect of the present invention, an on-off valve is provided in series with the sub-throttle device in the bypass circuit of the first invention. By controlling the opening / closing of the on-off valve while appropriately limiting the flow rate with the sub-throttle device, The amount of heat exchange in the auxiliary heat exchanger can be increased / decreased, and it is possible to control the discharge pressure and discharge temperature of the compressor by controlling the refrigerant dryness of the evaporator inlet and the compressor suction gas temperature. High-efficiency operation suitable for the hot water temperature to be performed becomes possible.

第3の発明は、第1の発明に、貯湯槽、循環手段、放熱器を順次接続した給湯回路と、前記循環手段により前記貯湯槽から前記放熱器に搬送される給湯水の温度を検知する入水温度検知手段とを備え、前記入水温度検知手段の検知温度に基づいて、副絞り装置の開度を制御する制御装置を設けたことを特徴とするもので、前記入水温度に応じて、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、生成する給湯水温度に適した高効率な運転が可能となる。   A third aspect of the invention relates to the hot water supply circuit in which the hot water storage tank, the circulation means, and the radiator are sequentially connected to the first invention, and the temperature of the hot water conveyed from the hot water tank to the radiator is detected by the circulation means. And a controller for controlling the opening of the sub-throttle device on the basis of the detected temperature of the incoming water temperature detecting means, according to the incoming water temperature. The amount of heat exchange in the auxiliary heat exchanger can be increased / decreased, the refrigerant dryness at the inlet of the evaporator and the compressor suction gas temperature can be controlled, and the discharge pressure and discharge temperature of the compressor can be controlled. High-efficiency operation suitable for the temperature of the hot water to be generated becomes possible.

また、沸き上げ運転完了近くになって入水温度が高くなった場合にも、圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。したがって、入水温度が高くなっても高圧が上昇することなく連続運転ができるので、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できるものである。   In addition, even when the incoming water temperature rises near the completion of the boiling operation, the hot water supply can be easily heated to a high temperature while reducing the discharge pressure and discharge temperature of the compressor, making the heat pump safe. And it can be operated with high efficiency. Therefore, since continuous operation can be performed without increasing the high pressure even when the incoming water temperature increases, hot water can be stored up to the lower part of the hot water tank, and the capacity of the hot water tank can be used effectively.

第4の発明は、第3の発明の入水温度検知手段の検知温度が、予め設定された所定値より高い場合に、副絞り装置の開度を大きくすることを特徴とするもので、入水温度が高く、高温給湯が必要な場合に、前記補助熱交換器に流入する吸入ガス冷媒循環量を多くして熱交換量を増加でき、蒸発器入口の乾き度を低くして、そこでの冷媒ホールド量を多くでき、圧縮機の吐出圧力を低く維持したまま高温給湯を高効率で生成することができる。   The fourth invention is characterized in that the opening degree of the sub-throttle device is increased when the detected temperature of the incoming water temperature detecting means of the third invention is higher than a predetermined value set in advance. When the hot water supply is high and high temperature hot water supply is required, the amount of intake gas refrigerant flowing into the auxiliary heat exchanger can be increased to increase the heat exchange amount, the degree of dryness at the evaporator inlet is lowered, and the refrigerant hold there The amount can be increased, and high-temperature hot water supply can be generated with high efficiency while keeping the discharge pressure of the compressor low.

第5の発明は、第1の発明に、放熱器出口の冷媒温度を検知する冷媒温度検知手段を備え、前記冷媒温度検知手段の検知温度に基づいて、副絞り装置の開度を制御する制御装置を設けたことを特徴とするもので、前記放熱器出口冷媒温度に応じて、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、生成する給湯水温度に適した高効率な運転が可能となる
また、沸き上げ運転完了近くになって入水温度が高くなった場合にも、圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプ
を安全にかつ高効率で運転できる。
A fifth aspect of the invention is the control according to the first aspect, further comprising refrigerant temperature detection means for detecting the refrigerant temperature at the outlet of the radiator, and controlling the opening of the sub-throttle device based on the detected temperature of the refrigerant temperature detection means. According to the present invention, the amount of heat exchange in the auxiliary heat exchanger can be increased or decreased according to the refrigerant temperature at the outlet of the radiator, the refrigerant dryness at the evaporator inlet, the compressor intake gas temperature, It is possible to control the discharge pressure and discharge temperature of the compressor, enabling highly efficient operation suitable for the temperature of the hot water to be generated. Even when it becomes high, hot water supply can be easily heated to a high temperature while reducing the discharge pressure and discharge temperature of the compressor, and the heat pump can be operated safely and efficiently.

第6の発明は、第5の発明の冷媒温度検知手段の検知温度が、予め設定された所定値より高い場合に、副絞り装置の開度を大きくすることを特徴とするもので、入水温度が高く、高温給湯が必要な場合に、前記補助熱交換器に流入する吸入ガス冷媒循環量を多くして熱交換量を増加でき、蒸発器入口の乾き度を低くして、そこでの冷媒ホールド量を多くでき、圧縮機の吐出圧力を低く維持したまま高温給湯を高効率で生成することができる。   The sixth invention is characterized in that the opening degree of the sub-throttle device is increased when the detected temperature of the refrigerant temperature detecting means of the fifth invention is higher than a predetermined value set in advance. When the hot water supply is high and high temperature hot water supply is required, the amount of intake gas refrigerant flowing into the auxiliary heat exchanger can be increased to increase the heat exchange amount, the degree of dryness at the evaporator inlet is lowered, and the refrigerant hold there The amount can be increased, and high-temperature hot water supply can be generated with high efficiency while keeping the discharge pressure of the compressor low.

第7の発明は、第1の発明に、圧縮機より吐出される冷媒温度を検知する吐出温度検知手段を備え、前記吐出温度検知手段の検知温度に基づいて、副絞り装置の開度を制御する制御装置を設けたことを特徴とするもので、前記副絞り装置の開度を増減することにより、前記補助熱交換器での熱交換量を制御でき、給湯温度に適した吐出温度に制御することが可能となる。   According to a seventh aspect of the present invention, the first aspect further includes a discharge temperature detection unit that detects a refrigerant temperature discharged from the compressor, and controls the opening of the sub-throttle device based on the detected temperature of the discharge temperature detection unit. The amount of heat exchange in the auxiliary heat exchanger can be controlled by increasing or decreasing the opening degree of the sub-throttle device, and the discharge temperature can be controlled to match the hot water supply temperature. It becomes possible to do.

第8の発明は、第7の発明の吐出温度検知手段の検知温度が、予め設定された所定値より低い場合に、副絞り装置の開度を大きくすることを特徴とするもので、外気温度が高く、高温給湯が必要な場合に、前記補助熱交換器での熱交換量を増加でき、圧縮機の吸入温度を高くすることにより、吐出温度を高くすることができ、高温給湯に適した運転が可能となる。   The eighth invention is characterized in that when the detected temperature of the discharge temperature detecting means of the seventh invention is lower than a predetermined value set in advance, the opening of the sub-throttle device is increased. When high temperature hot water supply is required, the amount of heat exchange in the auxiliary heat exchanger can be increased, and the discharge temperature can be increased by increasing the suction temperature of the compressor, which is suitable for high temperature hot water supply. Driving is possible.

第9の発明は、第2の発明に、貯湯槽、循環手段、放熱器を順次接続した給湯回路と、前記循環手段により前記貯湯槽から前記放熱器に搬送される給湯水の温度を検知する入水温度検知手段とを備え、前記入水温度検知手段の検知温度に基づいて、開閉弁の開閉動作を制御する制御装置を設けたことを特徴とするもので、前記入水温度に応じて、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、生成する給湯水温度に適した高効率な運転が可能となる。   A ninth aspect of the invention relates to the hot water supply circuit in which the hot water storage tank, the circulation means, and the radiator are sequentially connected to the second invention, and the temperature of the hot water conveyed from the hot water tank to the radiator is detected by the circulation means. An inlet water temperature detecting means, and provided with a control device for controlling the opening and closing operation of the on-off valve based on the detected temperature of the incoming water temperature detecting means, according to the incoming water temperature, The amount of heat exchange in the auxiliary heat exchanger can be increased or decreased, and it is possible to control the discharge pressure and discharge temperature of the compressor by controlling the refrigerant dryness of the evaporator inlet and the compressor suction gas temperature. High-efficiency operation suitable for the hot water temperature to be performed becomes possible.

また、沸き上げ運転完了近くになって入水温度が高くなった場合にも、圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。   In addition, even when the incoming water temperature rises near the completion of the boiling operation, the hot water supply can be easily heated to a high temperature while reducing the discharge pressure and discharge temperature of the compressor, making the heat pump safe. And it can be operated with high efficiency. Moreover, hot water can be stored up to the bottom of the hot water tank, and the capacity of the hot water tank can be used effectively.

第10の発明は、第2の発明に、放熱器出口の冷媒温度を検知する冷媒温度検知手段を備え、前記冷媒温度検知手段の検知温度に基づいて、開閉弁の開閉動作を制御する制御装置を設けたことを特徴とするもので、前記放熱器出口冷媒温度に応じて、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、生成する給湯水温度に適した高効率な運転が可能となる
また、沸き上げ運転完了近くになって入水温度が高くなった場合にも、圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。
A tenth aspect of the invention is the control apparatus according to the second aspect of the invention, further comprising refrigerant temperature detection means for detecting the refrigerant temperature at the outlet of the radiator, and controlling the opening / closing operation of the on-off valve based on the detected temperature of the refrigerant temperature detection means. The amount of heat exchange in the auxiliary heat exchanger can be increased or decreased in accordance with the refrigerant temperature at the radiator outlet, and the refrigerant dryness and the compressor intake gas temperature at the evaporator inlet can be increased or decreased. It is possible to control the discharge pressure and discharge temperature of the compressor, enabling highly efficient operation suitable for the temperature of the hot water to be generated. Even in such a case, the hot water supply can be easily heated to a high temperature while reducing the discharge pressure and discharge temperature of the compressor, and the heat pump can be operated safely and efficiently.

第11の発明は、第2の発明に、圧縮機より吐出される冷媒温度を検知する吐出温度検知手段を備え、前記吐出温度検知手段の検知温度に基づいて、開閉弁の開閉動作を制御する制御装置を設けたことを特徴とするもので、前記開閉弁の開閉動作を制御することにより、前記補助熱交換器での熱交換量を制御でき、給湯温度に適した吐出温度に制御することが可能となる。   In an eleventh aspect of the invention, in the second aspect of the invention, there is provided discharge temperature detection means for detecting a refrigerant temperature discharged from the compressor, and the opening / closing operation of the on-off valve is controlled based on the detected temperature of the discharge temperature detection means. A control device is provided, and the amount of heat exchange in the auxiliary heat exchanger can be controlled by controlling the opening / closing operation of the on-off valve, and the discharge temperature is controlled to be suitable for the hot water supply temperature. Is possible.

第12の発明は、第1〜11のいずれか1つの発明の冷媒として炭酸ガスを用いたので
、給湯水の高温化を高効率で実現すると共に、冷媒が外部に漏れた場合にも、地球温暖化への影響は非常に少なくなる。
In the twelfth invention, carbon dioxide gas is used as the refrigerant of any one of the first to eleventh inventions, so that the hot water can be heated at high efficiency, and even when the refrigerant leaks to the outside, The impact on global warming is very small.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。なお、各実施の形態において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments. In each embodiment, portions having the same configuration and the same operation are denoted by the same reference numerals, and detailed description thereof is omitted.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ装置の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a heat pump apparatus according to a first embodiment of the present invention.

図1において、圧縮機31、放熱器32、主絞り装置33、蒸発器34を順に環状に接続し、冷媒として炭酸ガスを封入して冷媒循環回路を形成し、蒸発器34は外気を送風するためのファン35を備えている。また、貯湯槽36、循環ポンプ37、放熱器32を順に接続した給湯回路を形成しており、圧縮機31より吐出された高温高圧の過熱ガス冷媒は放熱器32に流入し、ここで循環ポンプ37から送られてきた給湯水を加熱するようになっている。   In FIG. 1, a compressor 31, a radiator 32, a main throttle device 33, and an evaporator 34 are sequentially connected in an annular form, and carbon dioxide gas is sealed as a refrigerant to form a refrigerant circulation circuit. The evaporator 34 blows outside air. Fan 35 is provided. Further, a hot water supply circuit in which the hot water tank 36, the circulation pump 37, and the radiator 32 are connected in order is formed, and the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 31 flows into the radiator 32, where the circulation pump The hot water supplied from 37 is heated.

さらに、主絞り装置33と蒸発器34の間の配管から分岐して、蒸発器34と圧縮機31との間の配管に接続するバイパス回路38が設けられている。そして、バイパス回路38の途中には開閉弁39と副絞り装置40が直列に設けられ、開閉弁39と副絞り装置40の間の配管と、放熱器32と主絞り装置33の間の配管とを、補助熱交換器41を介して間接的に熱交換するようにしている。   Further, a bypass circuit 38 is provided which branches from a pipe between the main throttle device 33 and the evaporator 34 and is connected to a pipe between the evaporator 34 and the compressor 31. In the middle of the bypass circuit 38, an on-off valve 39 and a sub-throttle device 40 are provided in series, a pipe between the on-off valve 39 and the sub-throttle device 40, a pipe between the radiator 32 and the main throttling device 33, Is indirectly exchanged through the auxiliary heat exchanger 41.

さらに、循環ポンプ37より放熱器32に流入する給湯水の入水温度を検知する入水温度センサー42と、その温度を検知し開閉弁39の開閉を制御する制御装置43が設けられている。この、制御装置43は、入水温度センサー42の温度と、予め設定した温度とを比較して、入水温度が設定温度より高い場合に開閉弁39を開放するように制御する。また、冷媒としては炭酸ガスが封入されている。   Furthermore, an incoming water temperature sensor 42 that detects the incoming temperature of hot water flowing into the radiator 32 from the circulation pump 37 and a control device 43 that detects the temperature and controls the opening and closing of the on-off valve 39 are provided. The control device 43 compares the temperature of the incoming water temperature sensor 42 with a preset temperature, and controls to open the on-off valve 39 when the incoming water temperature is higher than the set temperature. Further, carbon dioxide gas is sealed as the refrigerant.

以上のように構成されたヒートポンプ装置とその制御方法について、以下その動作、作用を説明する。   About the heat pump apparatus comprised as mentioned above and its control method, the operation | movement and an effect | action are demonstrated below.

圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、放熱器32で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、補助熱交換器41を通過して、主絞り装置33で減圧された後、蒸発器34に流入し、ここでファン35で送風された外気と熱交換して蒸発ガス化する。   The refrigerant (carbon dioxide gas) compressed to a supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing in the hot water supply circuit by the radiator 32 and becomes a medium temperature and high pressure refrigerant and passes through the auxiliary heat exchanger 41. Then, after being decompressed by the main throttle device 33, it flows into the evaporator 34, where it exchanges heat with the outside air blown by the fan 35, thereby evaporating gas.

通常の場合、循環ポンプ37で送られた給湯水の入水温度は低く、その場合には開閉弁39は閉止している。そのため、主絞り装置33を出た冷媒はすべて蒸発器34を通って圧縮機31にもどる通常のヒートポンプサイクルで運転される。一方、循環ポンプ37で送られた給湯水は放熱器32で加熱され、生成した湯は貯湯槽36の上部に流入し、上から次第に貯湯されていく。   In normal cases, the incoming temperature of the hot water supplied by the circulation pump 37 is low, and in this case, the on-off valve 39 is closed. Therefore, all the refrigerant that has exited the main throttle device 33 is operated in a normal heat pump cycle in which it returns to the compressor 31 through the evaporator 34. On the other hand, the hot water supplied by the circulation pump 37 is heated by the radiator 32, and the generated hot water flows into the upper part of the hot water storage tank 36 and is gradually stored from above.

一方、沸き上げ運転時間の経過とともに貯湯槽36内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯槽36の下部に拡大し、沸き上げ運転完了近くになると、貯湯槽36下部より循環ポンプ37を経て、放熱器32に流入する水温は高くなってくる。   On the other hand, as the boiling operation time elapses, a hot water mixed layer is formed at a portion where the hot water in the hot water storage tank 36 is in contact with water, and the layer expands to the lower part of the hot water storage tank 36. The temperature of the water flowing into the radiator 32 from the lower part through the circulation pump 37 becomes higher.

この場合、入水温度センサー42で検知した入水温度が制御装置43に予め設定してある温度よりも上昇した場合には、開閉弁39を開放する方向に動作させる。こうすること
により、主絞り装置33を出た低温の冷媒の一部は開閉弁39を通って補助熱交換器41に流入する。一方、放熱器32を出た中温高圧の冷媒は、補助熱交換器41に流入し、ここで、開閉弁39を出た低温の二相冷媒と熱交換して、その温度が低下してエンタルピーが減少する。
In this case, when the incoming water temperature detected by the incoming water temperature sensor 42 rises above the temperature preset in the control device 43, the on-off valve 39 is operated in the opening direction. By doing so, a part of the low-temperature refrigerant exiting the main throttle device 33 flows into the auxiliary heat exchanger 41 through the on-off valve 39. On the other hand, the medium-temperature and high-pressure refrigerant that has exited the radiator 32 flows into the auxiliary heat exchanger 41, where it exchanges heat with the low-temperature two-phase refrigerant that has exited the on-off valve 39, and its temperature decreases, resulting in enthalpy. Decrease.

このように入水温度が高い場合、通常のヒートポンプサイクルの場合、放熱器32の出口温度も上昇し、放熱器32および蒸発器34の冷媒ホールド量が減少するため高圧が上昇する傾向にあるが、本発明のように、補助熱交換器41で蒸発器34に流入する低温の二相冷媒と熱交換して、放熱器32を出た冷媒を冷却することにより、冷媒エンタルピーが減少してその密度が増加し、また、蒸発器34入口の乾き度も減少して蒸発器34の冷媒ホールドが増加するため、高圧は上昇することなくヒートポンプサイクルを安全に運転できる。したがって、入水温度が高くなっても高圧が上昇することなく連続運転ができるので、貯湯槽36の下部まで高温湯を貯湯でき、貯湯槽36の容量を有効に利用できる効果がある。   Thus, when the incoming water temperature is high, in the case of a normal heat pump cycle, the outlet temperature of the radiator 32 also rises, and the refrigerant hold amount of the radiator 32 and the evaporator 34 decreases, so the high pressure tends to rise. As in the present invention, the heat exchange with the low-temperature two-phase refrigerant flowing into the evaporator 34 by the auxiliary heat exchanger 41 to cool the refrigerant exiting the radiator 32 reduces the refrigerant enthalpy and its density. In addition, the dryness at the inlet of the evaporator 34 also decreases and the refrigerant hold of the evaporator 34 increases, so that the heat pump cycle can be operated safely without increasing the high pressure. Therefore, since continuous operation can be performed without increasing the high pressure even when the incoming water temperature becomes high, hot water can be stored up to the lower part of the hot water tank 36, and the capacity of the hot water tank 36 can be effectively used.

一方、補助熱交換器41で吸熱した低圧の冷媒は、副絞り装置40で流量を適度に制限されながら、蒸発器34を出た冷媒と合流して圧縮機31に吸入される。一方、入水温度センサー42で検知した入水温度が、制御装置43に予め設定してある温度よりも低下した場合には、開閉弁39を閉止する方向に動作させる。こうすることにより、主絞り装置33を出た冷媒は、すべて蒸発器34を通って圧縮機31に吸入される通常の高効率なヒートポンプサイクルで運転される。   On the other hand, the low-pressure refrigerant that has absorbed heat by the auxiliary heat exchanger 41 joins the refrigerant that has exited the evaporator 34 and is sucked into the compressor 31 while the flow rate is appropriately limited by the sub-throttle device 40. On the other hand, when the incoming water temperature detected by the incoming water temperature sensor 42 is lower than the temperature preset in the control device 43, the on-off valve 39 is operated to close. In this way, all the refrigerant that has exited the main throttle device 33 is operated in a normal high-efficiency heat pump cycle that is drawn into the compressor 31 through the evaporator 34.

なお、入水温度が低い通常運転時に、開閉弁39を開放のまま運転した場合には、圧縮機31の吸入ガス温度が、最適な状態とはならないため、本発明のように入水温度が高い場合に開閉弁39を開放することが望ましい。また、開閉弁39は開度を制御できる膨張弁としても同様な効果があり、この場合には副絞り装置40は設ける必要はない。   In the normal operation where the incoming water temperature is low, when the on-off valve 39 is operated while being opened, the intake gas temperature of the compressor 31 is not in an optimal state, and therefore the incoming water temperature is high as in the present invention. It is desirable to open the on-off valve 39. Further, the opening / closing valve 39 has the same effect as an expansion valve capable of controlling the opening degree. In this case, the sub-throttle device 40 does not need to be provided.

この場合には、入水温度センサー42で検知した入水温度が制御装置43に予め設定してある温度よりも上昇した場合には、副絞り装置の開度を大きくする(開く)方向に動作させる。こうすることにより、同じく、低温の二相冷媒が補助熱交換器41に流入し、同様な作用により、入水温度が高くなっても、安全に、かつ高効率な運転ができる。   In this case, when the incoming water temperature detected by the incoming water temperature sensor 42 is higher than the temperature preset in the control device 43, the sub-throttle device is operated in the direction of increasing (opening). In this way, similarly, a low-temperature two-phase refrigerant flows into the auxiliary heat exchanger 41, and a similar operation can be performed safely and efficiently even when the incoming water temperature becomes high.

なお、ここにおいては、補助熱交換器41は、管と管をロー付してある構成や、二重管の構成などの形態でもよく、これらは、すべて本発明に含まれる。また、開閉弁39は、バイパス回路38上のどこに設けても同様な効果を有し、これらも本発明に含まれる。さらに、入水温度センサー42に代わって、放熱器32の出口冷媒温度としても良い。すなわち、入水温度が高い場合には、放熱器出口冷媒温度も高くなり、温度の上昇下降の傾向は同様になるため、これらも本発明に含まれる。   In addition, here, the auxiliary heat exchanger 41 may have a configuration in which tubes and tubes are brazed, a configuration of a double tube, and the like, which are all included in the present invention. The on-off valve 39 has the same effect regardless of where it is provided on the bypass circuit 38, and these are also included in the present invention. Further, instead of the incoming water temperature sensor 42, the outlet refrigerant temperature of the radiator 32 may be used. That is, when the incoming water temperature is high, the radiator outlet refrigerant temperature is also high, and the tendency of temperature rise and fall is the same, and these are also included in the present invention.

(実施の形態2)
図2は、本発明の第2の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。図2において、実施の形態1で示した図1と同様の構成で同様の機能を有する部品については同一の番号を付してある。
(Embodiment 2)
FIG. 2 shows a configuration diagram of a heat pump water heater in the second embodiment of the present invention. In FIG. 2, parts having the same functions as those in FIG. 1 shown in the first embodiment are given the same numbers.

本実施の形態においては、主絞り装置33と蒸発器34の間の配管から分岐して、蒸発器34と圧縮機31との間の配管に接続するバイパス回路51が設けられている。そして、バイパス回路51の途中には開度が制御できる副絞り装置である膨張弁52が設けられ、膨張弁52の上流側の配管と、放熱器32と主絞り装置33の間の配管とを、補助熱交換器53を介して間接的に熱交換するようにしている。   In the present embodiment, a bypass circuit 51 that branches from a pipe between the main throttle device 33 and the evaporator 34 and is connected to a pipe between the evaporator 34 and the compressor 31 is provided. An expansion valve 52, which is a sub-throttle device whose opening degree can be controlled, is provided in the middle of the bypass circuit 51, and a pipe upstream of the expansion valve 52 and a pipe between the radiator 32 and the main throttle device 33 are connected. The heat is indirectly exchanged via the auxiliary heat exchanger 53.

また、圧縮機31の吐出ガス温度を検知する吐出温度センサー54と、その温度を検知し膨張弁52の開度を制御する制御装置55が設けられている。この、制御装置55は、吐出温度センサー54の温度と、予め設定した吐出温度とを比較して、吐出温度が設定温度より低い場合に膨張弁52の開度を大きくするように制御する。また、冷媒としては炭酸ガスが封入されている。   A discharge temperature sensor 54 that detects the discharge gas temperature of the compressor 31 and a control device 55 that detects the temperature and controls the opening degree of the expansion valve 52 are provided. The control device 55 compares the temperature of the discharge temperature sensor 54 with a preset discharge temperature, and controls to increase the opening of the expansion valve 52 when the discharge temperature is lower than the set temperature. Further, carbon dioxide gas is sealed as the refrigerant.

以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用を説明する。圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、放熱器32で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、補助熱交換器53を通過して、主絞り装置33で減圧された後、蒸発器34に流入し、ここでファン35で送風された外気と熱交換して蒸発ガス化する。   About the heat pump hot-water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. The refrigerant (carbon dioxide gas) compressed into the supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing in the hot water supply circuit by the radiator 32 and becomes a medium temperature and high pressure refrigerant and passes through the auxiliary heat exchanger 53. Then, after being decompressed by the main throttle device 33, it flows into the evaporator 34, where it exchanges heat with the outside air blown by the fan 35, thereby evaporating gas.

外気温度が比較的低い場合、蒸発器34での蒸発温度も低いため、圧縮機31の吸入圧力は低下し、圧縮機31での圧縮比が大きくとれるので、圧縮機31の吐出温度は高くなり、高温の給湯が容易に生成できる。   When the outside air temperature is relatively low, since the evaporation temperature in the evaporator 34 is also low, the suction pressure of the compressor 31 is reduced, and the compression ratio in the compressor 31 can be increased, so that the discharge temperature of the compressor 31 is increased. High temperature hot water supply can be easily generated.

一方、外気温度が高い場合には、蒸発器34での蒸発温度も高くなるため、圧縮機31の吸入圧力は上昇し、圧縮機31での圧縮比が小さくなるので、圧縮機31の吐出温度は高くできず、高温の給湯が生成できない。そのため、従来は、主絞り装置33の開度をさらに小さくして、冷媒を流れにくくして、圧縮機31の吐出圧力を上昇、吸入圧力を低下させて圧縮比を大きくして吐出温度を上昇させていた。   On the other hand, when the outside air temperature is high, the evaporation temperature in the evaporator 34 also increases, so the suction pressure of the compressor 31 increases and the compression ratio in the compressor 31 decreases, so the discharge temperature of the compressor 31 Cannot be made high, and hot water cannot be generated. Therefore, conventionally, the opening of the main throttle device 33 is further reduced to make it difficult for the refrigerant to flow, the discharge pressure of the compressor 31 is increased, the suction pressure is decreased, the compression ratio is increased, and the discharge temperature is increased. I was letting.

本発明では、吐出温度センサー54の温度と、予め設定した吐出温度とを比較して、吐出温度が設定温度より低い場合に副絞り装置52の開度を大きくするように制御する。
そうすることにより、蒸発器34に流入する前の低温の冷媒の一部は補助熱交換器53に流入する。
In the present invention, the temperature of the discharge temperature sensor 54 is compared with a preset discharge temperature, and when the discharge temperature is lower than the set temperature, control is performed to increase the opening of the sub-throttle device 52.
By doing so, a part of the low-temperature refrigerant before flowing into the evaporator 34 flows into the auxiliary heat exchanger 53.

一方、放熱器32で給湯水と熱交換した後の中温高圧の冷媒は、補助熱交換器52に流入し、ここで、低温の冷媒の一部と熱交換して、冷媒温度を上昇させ、膨張弁52を通過して、過熱度が高くなった状態で圧縮機31に吸入される。こうすることにより、主絞り装置33の開度を小さくして、圧縮機31の吐出圧力を上昇、吸入圧力を低下させて圧縮比を大きくすることなく、吐出温度を上昇させることができるので、高効率な運転で高温の給湯水が生成できる。   On the other hand, the medium-temperature and high-pressure refrigerant after heat exchange with the hot water in the radiator 32 flows into the auxiliary heat exchanger 52, where heat exchange with a part of the low-temperature refrigerant increases the refrigerant temperature, It passes through the expansion valve 52 and is sucked into the compressor 31 in a state where the degree of superheat is high. By doing so, the opening temperature of the main throttle device 33 can be reduced, the discharge pressure of the compressor 31 can be increased, and the discharge temperature can be increased without decreasing the suction pressure and increasing the compression ratio. Hot water can be generated at high efficiency.

したがって、外気温が高い場合にも、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転でき、貯湯槽の容量を有効に利用できる効果がある。一方、吐出温度センサー54の温度と、予め設定した吐出温度とを比較して、吐出温度が設定温度より高い場合には、副絞り装置52の開度を小さくするように制御する。こうすることにより、主絞り装置33を出た冷媒は蒸発器34を通って圧縮機31に吸入されるため、吸入ガス冷媒が過度に温度上昇することはなくなり、通常の高効率なヒートポンプサイクルで運転される。   Therefore, even when the outside air temperature is high, hot water can be easily heated to a high temperature, the heat pump can be operated safely and with high efficiency, and the capacity of the hot water tank can be effectively utilized. On the other hand, the temperature of the discharge temperature sensor 54 is compared with a preset discharge temperature, and when the discharge temperature is higher than the set temperature, the opening of the sub-throttle device 52 is controlled to be small. By doing so, the refrigerant that has exited the main throttle device 33 is sucked into the compressor 31 through the evaporator 34, so that the temperature of the suction gas refrigerant does not increase excessively, and a normal high-efficiency heat pump cycle is performed. Driven.

また、膨張弁52は開閉弁と副絞り装置の直列回路しても同様な効果があり、この場合には、吐出温度センサー54の温度と、予め設定した吐出温度とを比較して、吐出温度が設定温度より低い場合に開閉弁を開放するように制御する。こうすることにより、主絞り装置33の開度を小さくして、圧縮機31の吐出圧力を上昇、吸入圧力を低下させて圧縮比を大きくすることなく、吐出温度を上昇させることができるので、高効率な運転で高温の給湯水が生成できる。   The expansion valve 52 has the same effect even when a series circuit of an on-off valve and a sub-throttle device is provided. In this case, the temperature of the discharge temperature sensor 54 is compared with a preset discharge temperature to determine the discharge temperature. When the temperature is lower than the set temperature, the on-off valve is controlled to open. By doing so, the opening temperature of the main throttle device 33 can be reduced, the discharge pressure of the compressor 31 can be increased, and the discharge temperature can be increased without decreasing the suction pressure and increasing the compression ratio. Hot water can be generated at high efficiency.

なお、ここにおいては、補助熱交換器53は、管と管をロー付してある構成や、二重管
の構成などの形態でもよく、これらは、すべて本発明に含まれる。
Here, the auxiliary heat exchanger 53 may have a configuration in which a tube and a tube are brazed, a configuration of a double tube, and the like, which are all included in the present invention.

以上のように、本発明にかかるヒートポンプ装置とその制御方法は、冷媒回路の圧縮機の吐出圧力を低減しながら、給湯水を容易に高温に加熱することができが可能となるので、高温を得るヒートポンプ給湯機や高温風を得る空調機等の用途にも適用できる。   As described above, the heat pump device and the control method thereof according to the present invention can easily heat hot water to a high temperature while reducing the discharge pressure of the compressor of the refrigerant circuit. It can also be applied to uses such as a heat pump water heater to be obtained and an air conditioner to obtain high temperature air.

本発明の実施の形態1におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 1 of this invention 本発明の実施の形態2におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 2 of this invention 従来のヒートポンプ給湯装置の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

31 圧縮機
32 放熱器
33 主絞り装置
34 蒸発器
35 ファン
36 貯湯槽
37 循環ポンプ(循環手段)
38、51 バイパス回路
39 開閉弁
40 副絞り装置
41、53 補助熱交換器
42 入水温度センサー(入水温度検知手段)
43、55 制御装置
52 膨張弁(副絞り装置)
54 冷媒温度センサー(冷媒温度検知手段)


31 Compressor 32 Radiator 33 Main throttle device 34 Evaporator 35 Fan 36 Hot water storage tank 37 Circulation pump (circulation means)
38, 51 Bypass circuit 39 On-off valve 40 Sub-throttle device 41, 53 Auxiliary heat exchanger 42 Incoming water temperature sensor (incoming water temperature detecting means)
43, 55 Control device 52 Expansion valve (sub-throttle device)
54 Refrigerant temperature sensor (refrigerant temperature detection means)


Claims (12)

圧縮機、放熱器、主絞り装置、蒸発器を順次接続して形成した冷媒回路と、前記冷媒回路の前記主絞り装置、前記蒸発器の間と前記蒸発器、前記圧縮機の間とを接続するバイパス回路とを備え、前記バイパス回路に副絞り装置を設けるとともに、前記副絞り装置の上流側のバイパス回路と前記放熱器、前記主絞り装置の間とで熱交換を行う補助熱交換器を有するヒートポンプ装置。 A refrigerant circuit formed by sequentially connecting a compressor, a radiator, a main throttle device, and an evaporator, and a connection between the main throttle device and the evaporator of the refrigerant circuit and between the evaporator and the compressor An auxiliary heat exchanger for exchanging heat between the bypass circuit on the upstream side of the sub-throttle device, the radiator, and the main throttle device. Heat pump device having. バイパス回路に、副絞り装置と直列に開閉弁を設けた請求項1記載のヒートポンプ装置。 The heat pump device according to claim 1, wherein the bypass circuit is provided with an on-off valve in series with the sub-throttle device. 貯湯槽、循環手段、放熱器を順次接続した給湯回路と、前記循環手段により前記貯湯槽から前記放熱器に搬送される給湯水の温度を検知する入水温度検知手段とを備え、前記入水温度検知手段の検知温度に基づいて、副絞り装置の開度を制御する制御装置を設けたことを特徴とする請求項1記載のヒートポンプ装置。 A hot water storage circuit in which a hot water storage tank, a circulation means, and a radiator are sequentially connected, and an incoming water temperature detection means for detecting a temperature of hot water conveyed from the hot water storage tank to the radiator by the circulation means, and the incoming water temperature 2. The heat pump device according to claim 1, further comprising a control device for controlling the opening degree of the sub-throttle device based on the temperature detected by the detection means. 入水温度検知手段の検知温度が、予め設定された所定値より高い場合に、副絞り装置の開度を大きくすることを特徴とする請求項3記載のヒートポンプ装置。 The heat pump device according to claim 3, wherein the opening degree of the sub-throttle device is increased when the detected temperature of the incoming water temperature detecting means is higher than a predetermined value set in advance. 放熱器出口の冷媒温度を検知する冷媒温度検知手段を備え、前記冷媒温度検知手段の検知温度に基づいて、副絞り装置の開度を制御する制御装置を設けたことを特徴とする請求項1記載のヒートポンプ装置。 The refrigerant temperature detection means which detects the refrigerant | coolant temperature of a radiator exit, The control apparatus which controls the opening degree of a sub-throttle device based on the detected temperature of the said refrigerant temperature detection means was provided. The heat pump apparatus as described. 冷媒温度検知手段の検知温度が、予め設定された所定値より高い場合に、副絞り装置の開度を大きくすることを特徴とする請求項5記載のヒートポンプ装置。 6. The heat pump device according to claim 5, wherein the opening degree of the sub-throttle device is increased when the detected temperature of the refrigerant temperature detecting means is higher than a predetermined value set in advance. 圧縮機より吐出される冷媒温度を検知する吐出温度検知手段を備え、前記吐出温度検知手段の検知温度に基づいて、副絞り装置の開度を制御する制御装置を設けたことを特徴とする請求項1記載のヒートポンプ装置。 A discharge temperature detection means for detecting a refrigerant temperature discharged from the compressor is provided, and a control device for controlling the opening degree of the sub-throttle device based on the detected temperature of the discharge temperature detection means is provided. Item 2. A heat pump apparatus according to Item 1. 吐出温度検知手段の検知温度が、予め設定された所定値より低い場合に、副絞り装置の開度を大きくすることを特徴とする請求項7記載のヒートポンプ装置。 8. The heat pump device according to claim 7, wherein the opening degree of the sub-throttle device is increased when the detected temperature of the discharge temperature detecting means is lower than a predetermined value set in advance. 貯湯槽、循環手段、放熱器を順次接続した給湯回路と、前記循環手段により前記貯湯槽から前記放熱器に搬送される給湯水の温度を検知する入水温度検知手段とを備え、前記入水温度検知手段の検知温度に基づいて、開閉弁の開閉動作を制御する制御装置を設けたことを特徴とする請求項2記載のヒートポンプ装置。 A hot water storage circuit in which a hot water storage tank, a circulation means, and a radiator are sequentially connected, and an incoming water temperature detection means for detecting a temperature of hot water conveyed from the hot water storage tank to the radiator by the circulation means, and the incoming water temperature The heat pump device according to claim 2, further comprising a control device for controlling the opening / closing operation of the on-off valve based on the temperature detected by the detecting means. 放熱器出口の冷媒温度を検知する冷媒温度検知手段を備え、前記冷媒温度検知手段の検知温度に基づいて、開閉弁の開閉動作を制御する制御装置を設けたことを特徴とする請求項2記載のヒートポンプ装置。 3. The apparatus according to claim 2, further comprising a refrigerant temperature detecting means for detecting the refrigerant temperature at the outlet of the radiator, and a control device for controlling the opening / closing operation of the on-off valve based on the detected temperature of the refrigerant temperature detecting means. Heat pump device. 圧縮機より吐出される冷媒温度を検知する吐出温度検知手段を備え、前記吐出温度検知手段の検知温度に基づいて、開閉弁の開閉動作を制御する制御装置を設けたことを特徴とする請求項2記載のヒートポンプ装置。 The discharge temperature detection means for detecting the refrigerant temperature discharged from the compressor is provided, and a control device for controlling the opening / closing operation of the opening / closing valve based on the detected temperature of the discharge temperature detection means is provided. 2. The heat pump device according to 2. 冷媒として炭酸ガスを用いたことを特徴とする請求項1〜11のいずれか1項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 11, wherein carbon dioxide gas is used as the refrigerant.
JP2005007409A 2005-01-14 2005-01-14 Heat pump equipment Expired - Fee Related JP4595546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007409A JP4595546B2 (en) 2005-01-14 2005-01-14 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005007409A JP4595546B2 (en) 2005-01-14 2005-01-14 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2006194537A true JP2006194537A (en) 2006-07-27
JP4595546B2 JP4595546B2 (en) 2010-12-08

Family

ID=36800760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007409A Expired - Fee Related JP4595546B2 (en) 2005-01-14 2005-01-14 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP4595546B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127938A (en) * 2007-11-22 2009-06-11 Hitachi Appliances Inc Heat pump water heater
JP2016166703A (en) * 2015-03-10 2016-09-15 パナソニックIpマネジメント株式会社 Air conditioning unit
JP2018124046A (en) * 2017-02-03 2018-08-09 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
WO2018143726A1 (en) * 2017-02-03 2018-08-09 삼성전자주식회사 Heat pump system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032628A (en) * 1973-07-30 1975-03-29
JPH09310925A (en) * 1996-05-21 1997-12-02 Hitachi Ltd Air conditioner
JP2002081766A (en) * 2000-09-06 2002-03-22 Matsushita Electric Ind Co Ltd Refrigerating cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032628A (en) * 1973-07-30 1975-03-29
JPH09310925A (en) * 1996-05-21 1997-12-02 Hitachi Ltd Air conditioner
JP2002081766A (en) * 2000-09-06 2002-03-22 Matsushita Electric Ind Co Ltd Refrigerating cycle device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127938A (en) * 2007-11-22 2009-06-11 Hitachi Appliances Inc Heat pump water heater
JP2016166703A (en) * 2015-03-10 2016-09-15 パナソニックIpマネジメント株式会社 Air conditioning unit
JP2018124046A (en) * 2017-02-03 2018-08-09 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
WO2018143726A1 (en) * 2017-02-03 2018-08-09 삼성전자주식회사 Heat pump system
KR20190105219A (en) * 2017-02-03 2019-09-16 삼성전자주식회사 Heat pump system
KR102487265B1 (en) 2017-02-03 2023-01-13 삼성전자주식회사 heat pump system
US11629891B2 (en) 2017-02-03 2023-04-18 Samsung Electronics Co., Ltd. Heat pump system

Also Published As

Publication number Publication date
JP4595546B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
KR101192346B1 (en) Heat pump type speed heating apparatus
KR101155496B1 (en) Heat pump type speed heating apparatus
JP2005291622A (en) Refrigerating cycle device and its control method
JP4317793B2 (en) Cooling system
JP2007051841A (en) Refrigeration cycle device
JP2009092258A (en) Refrigerating cycle device
JP2008082601A (en) Heat pump hot water supply device
JP4595546B2 (en) Heat pump equipment
JP5194492B2 (en) Heat pump water heater
JP4665736B2 (en) Control method for refrigeration cycle apparatus and refrigeration cycle apparatus using the same
JP4075844B2 (en) Heat pump water heater
JP5150300B2 (en) Heat pump type water heater
JP2005308344A (en) Heat pump water heater
JP2011027358A (en) Heater
JP2009281631A (en) Heat pump unit
JP2005214442A (en) Refrigerator
JP2004340419A (en) Heat pump type water-heater
JP4082389B2 (en) Heat pump water heater
JP2009085476A (en) Heat pump water heater
JP4124166B2 (en) Heat pump water heater
JP2007017013A (en) Heat pump water heater
JP2005351538A (en) Heat pump water heater
JP2005351588A (en) Heat pump water heater
JP2006234211A (en) Heat pump water heater
JP6455752B2 (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees