JP5402164B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP5402164B2
JP5402164B2 JP2009085526A JP2009085526A JP5402164B2 JP 5402164 B2 JP5402164 B2 JP 5402164B2 JP 2009085526 A JP2009085526 A JP 2009085526A JP 2009085526 A JP2009085526 A JP 2009085526A JP 5402164 B2 JP5402164 B2 JP 5402164B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat
compressor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009085526A
Other languages
Japanese (ja)
Other versions
JP2010236796A (en
Inventor
恵子 城本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2009085526A priority Critical patent/JP5402164B2/en
Publication of JP2010236796A publication Critical patent/JP2010236796A/en
Application granted granted Critical
Publication of JP5402164B2 publication Critical patent/JP5402164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、空気調和機の冷凍サイクルの発明であって、より詳細には、温度帯の異なる複数の熱交換器を有する冷凍装置に関わるものである。   The present invention is an invention of a refrigeration cycle of an air conditioner, and more particularly relates to a refrigeration apparatus having a plurality of heat exchangers having different temperature zones.

従来、高温用熱交換器と低温用熱交換器からなる、温度帯の異なる複数の熱交換器を有する冷凍装置において、それぞれの熱交換器に冷媒を供給するため、高温用熱交換器に冷媒を供給する高温用圧縮手段としての高温用圧縮機と、低温用熱交換器に冷媒を供給する低温用圧縮手段としての低温用圧縮機とを備えた冷凍装置がある。(特許文献1)
このような冷凍装置においては、低温用熱交換器は高温用熱交換器に比べ温度が低いため、低温用圧縮手段の吐出冷媒の温度も高温用圧縮手段の吐出冷媒温度に比べ低温で良いが、吸熱器を経て低温用圧縮手段および高温用圧縮手段に導入される冷媒の温度は同じである。
2. Description of the Related Art Conventionally, in a refrigeration apparatus having a plurality of heat exchangers having different temperature zones, which includes a high-temperature heat exchanger and a low-temperature heat exchanger, the refrigerant is supplied to each heat exchanger. There is a refrigeration apparatus provided with a high-temperature compressor as a high-temperature compression means for supplying the refrigerant and a low-temperature compressor as a low-temperature compression means for supplying a refrigerant to the low-temperature heat exchanger. (Patent Document 1)
In such a refrigeration apparatus, the temperature of the low-temperature heat exchanger is lower than that of the high-temperature heat exchanger, so the temperature of the refrigerant discharged from the low-temperature compression means may be lower than the temperature of the refrigerant discharged from the high-temperature compression means. The temperature of the refrigerant introduced into the low temperature compression means and the high temperature compression means through the heat absorber is the same.

ここで低温と高温とを作り出すためには、圧縮手段あるいは熱交換器で冷媒温度をコントロールすることが考えられるが、低温用圧縮手段に、高温用圧縮手段に導入される冷媒と同じ温度の冷媒を供給しているため、低温用熱交換器を含む冷凍サイクルの熱が有効に利用されていない。   Here, in order to produce a low temperature and a high temperature, it is conceivable to control the refrigerant temperature with a compression means or a heat exchanger, but the refrigerant having the same temperature as the refrigerant introduced into the high temperature compression means is used as the low temperature compression means. Therefore, the heat of the refrigeration cycle including the low-temperature heat exchanger is not effectively used.

また、上述した冷凍装置においては、凝縮器の温度を高くするためには圧縮機からの冷媒吐出圧力を高くする必要があるため、圧縮機での圧縮比を大きくする必要がある。しかしながら、単段圧縮で圧縮比を大きくすると圧縮機での損失が多くなるため、高い吐出圧力が必要な場合には、冷媒の圧縮を低圧圧縮手段と高圧圧縮手段からなる複数の圧縮手段で行う、多段圧縮が採用されている。   Moreover, in the refrigeration apparatus described above, in order to increase the temperature of the condenser, it is necessary to increase the refrigerant discharge pressure from the compressor, so it is necessary to increase the compression ratio in the compressor. However, since the loss in the compressor increases when the compression ratio is increased by single-stage compression, the refrigerant is compressed by a plurality of compression means including a low-pressure compression means and a high-pressure compression means when a high discharge pressure is required. Multi-stage compression is adopted.

しかしながら、上述したような多段圧縮を採用した冷凍装置の場合、高い圧力で冷凍サイクルの運転を行い凝縮器の温度を高くすることが可能であるが、圧縮機の吐出温度が高温になるという問題があった。   However, in the case of a refrigeration apparatus that employs multi-stage compression as described above, it is possible to increase the temperature of the condenser by operating the refrigeration cycle at a high pressure, but the problem is that the discharge temperature of the compressor becomes high. was there.

特開2008−209012号公報JP 2008-209021 A

本発明は、高温用熱交換器と低温用熱交換器からなる、温度帯の異なる複数の熱交換器を有する冷凍装置において、冷凍サイクルの運転効率をよくすることを目的とする。   An object of the present invention is to improve the operating efficiency of a refrigeration cycle in a refrigeration apparatus having a plurality of heat exchangers having different temperature zones, each of which includes a high-temperature heat exchanger and a low-temperature heat exchanger.

本発明は上述の課題を解決するため、請求項1に関する発明は、冷媒が、第一圧縮機、第一熱交換器、第一膨張手段、吸熱器の順に循環する第一の冷媒回路と、第二圧縮機、第二熱交換器、第二膨張手段、前記吸熱器の順に循環する第二の冷媒回路とを有し、
前記第一膨張手段および前記第二膨張手段の下流側であって前記吸熱器の上流側の冷媒の一部を、前記第一圧縮機の吸入側の冷媒と熱交換させる冷媒間熱交換器を設け、前記冷媒間熱交換器を通過した冷媒を第二圧縮機の吸入側に戻すようにしたことを特徴としている。
In order to solve the above-mentioned problems, the present invention relates to a first refrigerant circuit in which the refrigerant circulates in the order of the first compressor, the first heat exchanger, the first expansion means, and the heat absorber. A second compressor, a second heat exchanger, a second expansion means, and a second refrigerant circuit circulating in the order of the heat absorber,
An inter-refrigerant heat exchanger that exchanges heat between a part of the refrigerant downstream of the first expansion means and the second expansion means and upstream of the heat absorber with the refrigerant on the suction side of the first compressor. And the refrigerant that has passed through the inter-refrigerant heat exchanger is returned to the suction side of the second compressor.

また、請求項2に関する発明は、冷媒が、第一圧縮手段、第一熱交換器、第一膨張手段、主膨張手段、吸熱器、低圧側圧縮手段の順に循環する第一の冷媒回路と、第二圧縮手段、第二熱交換器、第二膨張手段、前記主膨張手段、前記吸熱器、前記低圧側圧縮手段の順に循環する第二の冷媒回路とを有し、
前記主膨張手段の下流側であって前記吸熱器の上流側の冷媒の一部を、前記低圧側圧縮手段の下流側であって前記第一圧縮手段の吸入側の冷媒と熱交換させる冷媒間熱交換器を設け、前記冷媒間熱交換器を通過した冷媒を前記第二圧縮手段の吸入側にインジェクションするようにしたことを特徴としている。
The invention relating to claim 2 is a first refrigerant circuit in which the refrigerant circulates in the order of the first compression means, the first heat exchanger, the first expansion means, the main expansion means, the heat absorber, and the low pressure side compression means; A second refrigerant circuit that circulates in the order of the second compression means, the second heat exchanger, the second expansion means, the main expansion means, the heat absorber, and the low-pressure side compression means,
Between the refrigerants that exchange heat with a refrigerant on the downstream side of the main expansion unit and on the upstream side of the heat absorber with the refrigerant on the downstream side of the low-pressure side compression unit and on the suction side of the first compression unit A heat exchanger is provided, and the refrigerant that has passed through the inter-refrigerant heat exchanger is injected into the suction side of the second compression means.

さらには、請求項3に関する発明は、前記吸熱器の下流側の冷媒を、前記第一熱交換器の下流側の冷媒と熱交換するようにしたことを特徴としている。   Furthermore, the invention relating to claim 3 is characterized in that heat is exchanged between the refrigerant on the downstream side of the heat absorber and the refrigerant on the downstream side of the first heat exchanger.

低温用熱交換器は高温用熱交換器に比べ温度が低いため、低温用圧縮手段の吐出冷媒の温度も高温用圧縮手段の吐出冷媒温度に比べ低温で良いが、吸熱器を経て低温用圧縮手段および高温用圧縮手段に導入される冷媒の温度は同じであるため、冷媒間熱交換器を用いない場合には、圧縮手段及び熱交換器で冷媒温度をコントロールし、低温と高温とを作り出す必要がある。   Since the temperature of the low-temperature heat exchanger is lower than that of the high-temperature heat exchanger, the temperature of the refrigerant discharged from the low-temperature compression means may be lower than the temperature of the refrigerant discharged from the high-temperature compression means. Because the temperature of the refrigerant introduced into the means and the high-temperature compression means is the same, when the inter-refrigerant heat exchanger is not used, the refrigerant temperature is controlled by the compression means and the heat exchanger to produce a low temperature and a high temperature. There is a need.

請求項1および請求項2に係わる発明によれば、冷媒の一部を、低温用熱交換器に冷媒を供給する第一圧縮機の吸入側の冷媒と熱交換させる冷媒間熱交換器を通過させ、高温用熱交換器に冷媒を供給する第二圧縮機の吸入側に戻すようにすることで、吸熱器から、低温用圧縮手段を経て低温用熱交換器に供給される冷媒および、高温用圧縮手段を経て高温用熱交換器に供給される冷媒のうち、低温用熱交換器に供給される冷媒の熱を、冷媒が低温用圧縮手段に導入される前に高温用熱交換器に供給される冷媒に与えることが可能になる。   According to the first and second aspects of the invention, a part of the refrigerant passes through the inter-refrigerant heat exchanger that exchanges heat with the refrigerant on the suction side of the first compressor that supplies the refrigerant to the low-temperature heat exchanger. The refrigerant to be supplied to the low-temperature heat exchanger from the heat absorber through the low-temperature compression means by returning to the suction side of the second compressor that supplies the refrigerant to the high-temperature heat exchanger, and the high temperature Of the refrigerant supplied to the high temperature heat exchanger via the compression means, the heat of the refrigerant supplied to the low temperature heat exchanger is transferred to the high temperature heat exchanger before the refrigerant is introduced into the low temperature compression means. It becomes possible to give to the refrigerant | coolant supplied.

このように、低温用熱交換器には不必要となる熱を、低温用圧縮手段に冷媒が吸入される前に高温用圧縮手段の吸入冷媒に伝達し、高温用熱交換器で利用することが可能となるため、冷凍サイクルの運転効率を向上させることができる。   In this way, heat unnecessary for the low temperature heat exchanger is transferred to the refrigerant sucked into the high temperature compression means before the refrigerant is sucked into the low temperature compression means and used in the high temperature heat exchanger. Therefore, the operating efficiency of the refrigeration cycle can be improved.

また、請求項3に係わる発明は、低温用熱交換器の出口側冷媒と吸熱器の出口側冷媒とを熱交換させることで、吸熱器の出口側冷媒に熱を与えることが可能となるため、低温用熱交換器を通過した冷媒の過冷却を得ると同時に、膨張手段で減圧された冷媒に熱を与えることができる。   In the invention according to claim 3, heat can be applied to the outlet side refrigerant of the heat absorber by exchanging heat between the outlet side refrigerant of the low temperature heat exchanger and the outlet side refrigerant of the heat absorber. In addition, it is possible to obtain supercooling of the refrigerant that has passed through the low-temperature heat exchanger and at the same time to apply heat to the refrigerant that has been decompressed by the expansion means.

本発明の実施例である冷凍サイクルの説明図である。It is explanatory drawing of the refrigerating cycle which is an Example of this invention. 本発明の他の実施例である冷凍サイクルの説明図である。It is explanatory drawing of the refrigerating cycle which is the other Example of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。尚、実施例としては、空気調和機等に用いられて温水を生成する冷凍サイクル装置であって、多段圧縮を行うものを例として説明することとする。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an example, a refrigeration cycle apparatus that is used in an air conditioner or the like to generate hot water and performs multi-stage compression will be described as an example.

図1は、本発明に係る第一の実施例を示す冷凍サイクル装置の説明図であり、図2は本発明に係る第二の実施例を示す説明図である。これらの冷凍サイクル装置は、第一熱交換器41としての低温用熱交換器と、第二熱交換器42としての高温用熱交換器とを備え、第一熱交換器41から第二熱交換器42の順に水を循環させ温水を得るための水回路71を有している。   FIG. 1 is an explanatory view of a refrigeration cycle apparatus showing a first embodiment according to the present invention, and FIG. 2 is an explanatory view showing a second embodiment according to the present invention. These refrigeration cycle apparatuses include a low-temperature heat exchanger as the first heat exchanger 41 and a high-temperature heat exchanger as the second heat exchanger 42, and the second heat exchange from the first heat exchanger 41 A water circuit 71 is provided to circulate water in the order of the vessel 42 to obtain hot water.

水を第一熱交換器41から第二熱交換器42の順に循環させることで、高い温度の熱交換器のみで水と冷媒を熱交換させる場合に比べ、それぞれの熱交換器を順に通過する水と冷媒の温度差を少なくすることができるため、冷媒と水の熱交換効率を高くすることができる。   By circulating water in the order from the first heat exchanger 41 to the second heat exchanger 42, the water and the refrigerant are passed through each heat exchanger in order compared to the case where heat is exchanged between the water and the refrigerant using only the high-temperature heat exchanger. Since the temperature difference between the water and the refrigerant can be reduced, the heat exchange efficiency of the refrigerant and water can be increased.

図1に示すように、実施例1における冷凍サイクル装置は、冷媒が、第一圧縮機としての低温用圧縮機11、第一熱交換器41、第一膨張手段21、主膨張手段23、吸熱器43、低圧側圧縮機10の順に循環する第一の冷媒回路と、第二圧縮機としての高温用圧縮機12、第二熱交換器42、第二膨張手段22、主膨張手段23、吸熱器43、低圧側圧縮機10の順に循環する第二の冷媒回路とを有し、主膨張手段10と第一膨張手段21との間の冷媒の一部を、低圧側圧縮機10の下流側であって第一圧縮機11の吸入側の冷媒と熱交換させる主冷媒間熱交換器33を設け、主冷媒間熱交換器33を通過した冷媒を高温用圧縮機12の吸入側に、インジェクションポート61を介してインジェクションするようにした冷凍サイクル装置である。   As shown in FIG. 1, in the refrigeration cycle apparatus in the first embodiment, the refrigerant is a low-temperature compressor 11 as a first compressor, a first heat exchanger 41, a first expansion means 21, a main expansion means 23, an endothermic heat. The first refrigerant circuit circulating in the order of the compressor 43, the low-pressure side compressor 10, the high-temperature compressor 12 as the second compressor, the second heat exchanger 42, the second expansion means 22, the main expansion means 23, the heat absorption And a second refrigerant circuit that circulates in the order of the low-pressure compressor 10, and a part of the refrigerant between the main expansion means 10 and the first expansion means 21 is disposed downstream of the low-pressure compressor 10. The main refrigerant heat exchanger 33 for exchanging heat with the refrigerant on the suction side of the first compressor 11 is provided, and the refrigerant that has passed through the main refrigerant heat exchanger 33 is injected into the suction side of the high-temperature compressor 12. The refrigeration cycle apparatus is configured to inject through the port 61.

このように、高温用圧縮機12の吸入側に主膨張手段10と第一膨張手段21との間の冷媒の一部をインジェクションするようにしたため、高温用圧縮機12吐出冷媒の温度が高くなることを防止できる。   Thus, since a part of the refrigerant between the main expansion means 10 and the first expansion means 21 is injected into the suction side of the high temperature compressor 12, the temperature of the refrigerant discharged from the high temperature compressor 12 becomes high. Can be prevented.

また、主冷媒間熱交換器33で低温用圧縮機11の吸入側の冷媒と高温用圧縮機12の吸入側にインジェクションする冷媒とを熱交換させるようにしたため、低温側冷媒回路の冷媒の熱を、高温側冷媒回路に与えることが可能となる。   In addition, since the main refrigerant heat exchanger 33 exchanges heat between the refrigerant on the suction side of the low-temperature compressor 11 and the refrigerant injected into the suction side of the high-temperature compressor 12, the heat of the refrigerant in the low-temperature side refrigerant circuit. Can be provided to the high temperature side refrigerant circuit.

例えば、第一熱交換器41を含む低温側冷媒回路と第二熱交換器42を含む高温側冷媒回路において水回路71で温水を生成する場合、あえて第一熱交換器41の温度を第二熱交換器42よりも低くしている。上述した実施例1のような構成によれば、このような運転状況において、第一熱交換器41で不必要となる分の熱を、第二熱交換器42を含む高温側冷媒回路に与えることが可能となる。   For example, when the hot water is generated in the water circuit 71 in the low-temperature side refrigerant circuit including the first heat exchanger 41 and the high-temperature side refrigerant circuit including the second heat exchanger 42, the temperature of the first heat exchanger 41 is intentionally set to the second temperature. It is lower than the heat exchanger 42. According to the configuration as in the first embodiment described above, in such an operating situation, heat unnecessary for the first heat exchanger 41 is given to the high-temperature side refrigerant circuit including the second heat exchanger 42. It becomes possible.

さらに、吸熱器43の下流側の冷媒と、第一熱交換器41の下流側の冷媒とを、第2冷媒間熱交換器32を用いて熱交換するようになっている。この熱交換を行うことで、第一熱交換器41を通過した冷媒の過冷却を得ると同時に、吸熱器43を通過した冷媒を過熱することが可能となる。   Further, heat is exchanged between the refrigerant on the downstream side of the heat absorber 43 and the refrigerant on the downstream side of the first heat exchanger 41 using the second heat exchanger 32 between refrigerants. By performing this heat exchange, the refrigerant that has passed through the first heat exchanger 41 can be supercooled, and at the same time, the refrigerant that has passed through the heat absorber 43 can be superheated.

このように吸熱器43を通過した冷媒に熱を与えることで、例えば吸熱器43を通過した冷媒に液相状態の冷媒が残っていたとしても、第2冷媒間熱交換器32でさらに吸熱させることで気相状態とすることが可能になる。   By applying heat to the refrigerant that has passed through the heat absorber 43 in this manner, for example, even if the liquid phase refrigerant remains in the refrigerant that has passed through the heat absorber 43, the second inter-refrigerant heat exchanger 32 further absorbs heat. This makes it possible to obtain a gas phase state.

さらに、前記主膨張手段23と前記第一膨張手段21との間から前記主冷媒間熱交換器33に導入される冷媒と、前記第二熱交換器42の下流側の冷媒とを、第1冷媒間熱交換器31を用いて熱交換するようになっている。この熱交換を行うことで、前記第二熱交換器42を通過した冷媒の過冷却を得ると同時に、前記主冷媒間熱交換器33に導入される冷媒に熱を与えることが可能となる。   Further, the refrigerant introduced into the main inter-refrigerant heat exchanger 33 from between the main expansion means 23 and the first expansion means 21, and the refrigerant on the downstream side of the second heat exchanger 42, the first Heat is exchanged using the inter-refrigerant heat exchanger 31. By performing this heat exchange, it is possible to obtain supercooling of the refrigerant that has passed through the second heat exchanger 42 and at the same time to apply heat to the refrigerant introduced into the main inter-refrigerant heat exchanger 33.

また、低圧側圧縮機10と低温用圧縮機11との間及び、低圧側圧縮機10と高温用圧縮機12との間に、第1流量調節弁51および第2流量調節弁52を配置している。   A first flow rate control valve 51 and a second flow rate control valve 52 are arranged between the low pressure side compressor 10 and the low temperature compressor 11 and between the low pressure side compressor 10 and the high temperature compressor 12. ing.

さらに、主膨張手段23と第一膨張手段21との間から、主冷媒間熱交換器33を介して高温用圧縮12の吸入側にインジェクションする冷媒回路に、第3流量調節弁53を配置している。
これにより、第一熱交換器41、第二熱交換器42及び冷媒間熱交換器における冷媒流量を、適宜調節するようにしている。
Further, a third flow rate adjusting valve 53 is arranged in the refrigerant circuit that injects from between the main expansion means 23 and the first expansion means 21 to the suction side of the high-temperature compression 12 through the main refrigerant heat exchanger 33. ing.
Thereby, the refrigerant | coolant flow volume in the 1st heat exchanger 41, the 2nd heat exchanger 42, and the heat exchanger between refrigerant | coolants is adjusted suitably.

ここで吸熱器43は、図示しない送風機を用いて外気と熱交換を行うようにしても良いし、電熱ヒーターや他の冷凍サイクルなどの熱源から冷媒に熱を与えるようにしても良い。   Here, the heat absorber 43 may exchange heat with the outside air using a blower (not shown), or may supply heat to the refrigerant from a heat source such as an electric heater or another refrigeration cycle.

図2に示す実施例2においては、主膨張手段としてエジェクタ24を用いており、エジェクタ24に導入された冷媒は気液分離器62で気相冷媒と液相冷媒に分離され、気相冷媒は低圧側圧縮機10に供給される。また、気液分離器62で分離された液相冷媒は、第2冷媒間熱交換器32で第一熱交換器41の下流側の冷媒と熱交換したのち吸熱器43で熱交換され、エジェクタ24へ導入されるようになっている。   In the second embodiment shown in FIG. 2, an ejector 24 is used as the main expansion means, and the refrigerant introduced into the ejector 24 is separated into a gas-phase refrigerant and a liquid-phase refrigerant by a gas-liquid separator 62. Supplied to the low-pressure compressor 10. The liquid-phase refrigerant separated by the gas-liquid separator 62 exchanges heat with the refrigerant on the downstream side of the first heat exchanger 41 by the second inter-refrigerant heat exchanger 32, and is then heat-exchanged by the heat absorber 43. Introduced to 24.

このように、膨張手段としてエジェクタ24を用いるため、減圧時のエネルギー損失を低減することができる。   Thus, since the ejector 24 is used as the expansion means, energy loss during decompression can be reduced.

また、気液分離器62で分離された液相冷媒を、第一熱交換器41の下流側の冷媒と熱交換するようにしたため、吸熱器43での吸熱と合わせ、液冷媒により多くの熱を与えることができるようになっている。   Further, since the liquid-phase refrigerant separated by the gas-liquid separator 62 is heat-exchanged with the refrigerant on the downstream side of the first heat exchanger 41, more heat is absorbed by the liquid refrigerant together with the heat absorption by the heat absorber 43. Can be given.

また、高温用熱交換器を有する冷媒回路の冷媒圧力を第二膨張手段22で減圧した後、低温用熱交換器を有する冷媒回路の冷媒と合流させ、合流した冷媒の圧力を第一膨張手段21で減圧するようにしている。これは、高温用熱交換器を有する冷媒回路の冷媒圧力の方が低温用熱交換器を有する冷媒回路の冷媒圧力よりも高いため、第一膨張手段21の上流側で高温用熱交換器を有する冷媒回路の冷媒圧力を減圧し、低温用熱交換器を有する冷媒回路の冷媒圧力と同じにした後、第一膨張手段21で減圧するためである。   Further, after the refrigerant pressure of the refrigerant circuit having the high-temperature heat exchanger is reduced by the second expansion means 22, the refrigerant is joined with the refrigerant of the refrigerant circuit having the low-temperature heat exchanger, and the combined refrigerant pressure is changed to the first expansion means. The pressure is reduced at 21. This is because the refrigerant pressure of the refrigerant circuit having the high-temperature heat exchanger is higher than the refrigerant pressure of the refrigerant circuit having the low-temperature heat exchanger, so the high-temperature heat exchanger is installed upstream of the first expansion means 21. This is because the pressure of the refrigerant circuit having the refrigerant circuit is reduced to be the same as the refrigerant pressure of the refrigerant circuit having the low-temperature heat exchanger and then reduced by the first expansion means 21.

この他、実施例1と共通する構成については同様の付番をし、詳細な説明は省略する。   In addition, the same reference numerals are given to configurations common to the first embodiment, and detailed description thereof is omitted.

尚、以上説明した実施例では、低圧側圧縮機を有し多段圧縮を行う冷凍サイクル装置について説明したが、これに限るものでなく、例えば、主膨張手段23を用いることなく第一膨張手段21と第二膨張手段22のみで減圧を行い、冷媒の圧縮を、低圧側圧縮機10を用いることなく低温用圧縮機11と高温用圧縮機12のみで行うようにした冷凍サイクル装置においても同様に適用できる。   In the embodiment described above, a refrigeration cycle apparatus having a low-pressure side compressor and performing multi-stage compression has been described. However, the present invention is not limited to this, for example, the first expansion means 21 without using the main expansion means 23. Similarly, in the refrigeration cycle apparatus in which the pressure is reduced only by the second expansion means 22 and the refrigerant is compressed only by the low temperature compressor 11 and the high temperature compressor 12 without using the low pressure compressor 10. Applicable.

10 低圧側圧縮機
11 低温用圧縮機
12 高温用圧縮機
21 第一膨張手段
22 第二膨張手段
23 主膨張手段
24 エジェクタ
31 第1冷媒間熱交換器
32 第2冷媒間熱交換器
33 主冷媒間熱交換器
41 第一熱交換器
42 第二熱交換器
43 吸熱器
51 第1流量調節弁
52 第2流量調節弁
53 第3流量調節弁
61 インジェクションポート
62 気液分離器
71 水回路
10 Low pressure compressor
11 Low temperature compressor
12 High temperature compressor
21 First expansion means
22 Second expansion means
23 Main expansion means
24 Ejector
31 1st refrigerant heat exchanger
32 Second refrigerant heat exchanger
33 Main refrigerant heat exchanger
41 1st heat exchanger
42 Second heat exchanger
43 heat sink
51 1st flow control valve
52 Second flow control valve
53 Third flow control valve
61 Injection port
62 Gas-liquid separator
71 Water circuit

Claims (3)

冷媒が、第一圧縮機、第一熱交換器、第一膨張手段、吸熱器の順に循環する第一の冷媒回路と、第二圧縮機、第二熱交換器、第二膨張手段、前記吸熱器の順に循環する第二の冷媒回路と、前記吸熱器からの冷媒が前記第一圧縮機と前記第二圧縮機とに分岐される分岐部とを有し、
前記第一膨張手段と前記吸熱器との間の冷媒の一部を、前記第一圧縮機の吸入側の冷媒と熱交換させる冷媒間熱交換器を設け、前記冷媒間熱交換器を通過した冷媒を第二圧縮機の吸入側に戻すようにし
前記分岐部と前記冷媒間熱交換器との間、および前記分岐部と前記第二圧縮機との間にそれぞれ流量調整弁を設けた冷凍サイクル装置。
The first refrigerant circuit in which the refrigerant circulates in the order of the first compressor, the first heat exchanger, the first expansion means, and the heat absorber, the second compressor, the second heat exchanger, the second expansion means, and the heat absorption A second refrigerant circuit that circulates in the order of the vessel, and a branching portion into which the refrigerant from the heat absorber branches into the first compressor and the second compressor ,
A refrigerant-to-refrigerant heat exchanger that exchanges a part of the refrigerant between the first expansion means and the heat absorber with the refrigerant on the suction side of the first compressor is provided, and passes through the refrigerant-to-refrigerant heat exchanger. Return the refrigerant to the suction side of the second compressor ,
A refrigeration cycle apparatus in which a flow rate adjusting valve is provided between the branch portion and the inter-refrigerant heat exchanger and between the branch portion and the second compressor .
冷媒が、第一圧縮手段、第一熱交換器、第一膨張手段、主膨張手段、吸熱器、低圧側圧縮手段の順に循環する第一の冷媒回路と、第二圧縮手段、第二熱交換器、第二膨張手段、前記主膨張手段、前記吸熱器、前記低圧側圧縮手段の順に循環する第二の冷媒回路と、前記低圧側圧縮手段からの冷媒が前記第一圧縮機と前記第二圧縮機とに分岐される分岐部とを有し、
前記主膨張手段と前記第一膨張手段との間の冷媒の一部を、前記低圧側圧縮手段の下流側であって前記第一圧縮手段の吸入側の冷媒と熱交換させる冷媒間熱交換器を設け、前記冷媒間熱交換器を通過した冷媒を前記第二圧縮手段の吸入側にインジェクションするようにし
前記低圧側圧縮手段と前記冷媒間熱交換器の間、および前記低圧側圧縮手段と前記第二圧縮機との間にそれぞれ流量調整弁を設けた冷凍サイクル装置。
A first refrigerant circuit in which refrigerant circulates in the order of the first compression means, the first heat exchanger, the first expansion means, the main expansion means, the heat absorber, and the low pressure side compression means, the second compression means, and the second heat exchange A second refrigerant circuit that circulates in the order of the compressor, the second expansion means, the main expansion means, the heat absorber, and the low-pressure side compression means, and the refrigerant from the low-pressure side compression means is the first compressor and the second A branching portion branched to the compressor ,
An inter-refrigerant heat exchanger that exchanges heat between a part of the refrigerant between the main expansion means and the first expansion means with the refrigerant on the downstream side of the low-pressure side compression means and on the suction side of the first compression means. Injecting the refrigerant that has passed through the inter-refrigerant heat exchanger to the suction side of the second compression means ,
A refrigeration cycle apparatus provided with a flow rate adjusting valve between the low pressure side compression means and the inter-refrigerant heat exchanger, and between the low pressure side compression means and the second compressor .
前記吸熱器の下流側の冷媒を、前記第一熱交換器の下流側の冷媒と熱交換するようにしたことを特徴とする、請求項1または2記載の冷凍サイクル装置。

The refrigeration cycle apparatus according to claim 1 or 2, wherein heat is exchanged between the refrigerant on the downstream side of the heat absorber and the refrigerant on the downstream side of the first heat exchanger.

JP2009085526A 2009-03-31 2009-03-31 Refrigeration cycle equipment Active JP5402164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085526A JP5402164B2 (en) 2009-03-31 2009-03-31 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085526A JP5402164B2 (en) 2009-03-31 2009-03-31 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2010236796A JP2010236796A (en) 2010-10-21
JP5402164B2 true JP5402164B2 (en) 2014-01-29

Family

ID=43091273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085526A Active JP5402164B2 (en) 2009-03-31 2009-03-31 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5402164B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105142813B (en) * 2013-03-15 2017-04-05 诺维尔里斯公司 For the manufacture method and equipment of the orientation cooling in thermometal rolling
JP6643632B2 (en) * 2016-03-10 2020-02-12 パナソニックIpマネジメント株式会社 Air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA8562B (en) * 1984-01-11 1985-09-25 Copeland Corp Highly efficient flexible two-stage refrigeration system
US4787211A (en) * 1984-07-30 1988-11-29 Copeland Corporation Refrigeration system
CA2080197A1 (en) * 1991-11-04 1993-05-05 Leroy John Herbst Household refrigerator with improved refrigeration circuit
JP2924460B2 (en) * 1992-06-16 1999-07-26 ダイキン工業株式会社 Air conditioner
ES2652023T3 (en) * 2003-11-28 2018-01-31 Mitsubishi Denki Kabushiki Kaisha Freezer and air conditioner
JP2006220318A (en) * 2005-02-08 2006-08-24 Iwaya Reitouki Seisakusho:Kk Vapor compression type refrigerating machine system

Also Published As

Publication number Publication date
JP2010236796A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US9618234B2 (en) Refrigerant circuit
RU2472078C2 (en) Refrigeration systems and method of cold generation
KR101171151B1 (en) Air-Conditioning System using Exhaustion Heat Recovery Ejector
EP2322875B1 (en) Refrigeration cycle device and air conditioner
CN103105020B (en) Hot and cold water water supply installation
JP5681549B2 (en) Refrigeration cycle method
KR101288681B1 (en) Air conditioner
JP2011094814A (en) Refrigerating cycle device and refrigerant compressing method
JP2012247081A (en) Composite system cum power generation and heat pump
KR101210629B1 (en) Heat pump system for both one step and two step compression type
JP5919036B2 (en) Heat pump type water heater
JP5402164B2 (en) Refrigeration cycle equipment
JP2008256281A (en) Heat pump type water heater
WO2016013077A1 (en) Refrigeration cycle device
KR102339673B1 (en) Refrigeration unit and temperature control unit
KR101162020B1 (en) Heat pump heating apparatus
JP2004340418A (en) Water-heating air conditioner
JP2004257627A (en) Heat pump device
KR101528160B1 (en) Duality for refrigerating/heating cycle type Heat pump system
JP2012149844A (en) Refrigerating cycle device
KR20100128210A (en) Cooling/heating system for generating hot water using heat pump
US20080184722A1 (en) Method and apparatus for a refrigeration circuit
JP2015152293A (en) refrigeration cycle apparatus
KR101164360B1 (en) Heat pump apparatus comprising vapor injection compressor
WO2018186043A1 (en) Hot-water supply device, and dual hot-water generation unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R151 Written notification of patent or utility model registration

Ref document number: 5402164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350