JP2008248423A - Carbon fiber and composite material using the same - Google Patents

Carbon fiber and composite material using the same Download PDF

Info

Publication number
JP2008248423A
JP2008248423A JP2007090358A JP2007090358A JP2008248423A JP 2008248423 A JP2008248423 A JP 2008248423A JP 2007090358 A JP2007090358 A JP 2007090358A JP 2007090358 A JP2007090358 A JP 2007090358A JP 2008248423 A JP2008248423 A JP 2008248423A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
strength
composite material
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007090358A
Other languages
Japanese (ja)
Other versions
JP5226238B2 (en
Inventor
Taro Oyama
太郎 尾山
Rie Kawahito
理恵 川人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2007090358A priority Critical patent/JP5226238B2/en
Publication of JP2008248423A publication Critical patent/JP2008248423A/en
Application granted granted Critical
Publication of JP5226238B2 publication Critical patent/JP5226238B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber that provides a composite material having excellent impact resistance etc., and high composite characteristics and has improved surface characteristics, strength and modulus of elasticity. <P>SOLUTION: The carbon fiber has a compressive strength in the traverse direction of single yarn of ≥130 kgf/mm<SP>2</SP>, a surface oxygen concentration (O/C) of 20-30%, and a specific surface area value by a BET method by krypton absorption of 0.65-2.5 m<SP>2</SP>/g. The composite material is composed of the carbon fiber and a matrix resin and has an compressive strength after impact of preferably ≥220 MPa. A carbon fiber having a modulus of elasticity of ≥340 GPa and a strength of ≥5,970 MPa is preferable as the carbon fiber. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、マトリックス樹脂と炭素繊維とから複合材料を作製するに際し、耐衝撃性等に優れた複合材料を与える表面特性に優れた炭素繊維とその複合材料に関する。 The present invention relates to a carbon fiber excellent in surface properties and a composite material thereof, which gives a composite material excellent in impact resistance and the like when a composite material is produced from a matrix resin and carbon fiber.

近年、炭素繊維を強化繊維として用いた複合材料は、軽く、高強度等の優れた機械的特性を有するので、航空機等の構造材として多く用いられてきている。これらの複合材料は、例えば、強化繊維にマトリックス樹脂が含浸された中間製品であるプリプレグから、加熱・加圧といった成形・加工工程を経て成形される。従って、所望の複合材料を得るためには、それぞれに最適の材料あるいは成形・加工手段を採用する必要がある。そして、用途によっては、強化繊維である炭素繊維も、更に高い強度等が要求される場合がある。例えば、航空機用の複合材料において軽量化を目的とした場合には、炭素繊維の強度を維持したまま弾性を上げることが必要になるが、炭素繊維は一般的に、弾性率が上がるに従って脆性が増し耐衝撃性能等が低下するので、高いコンポジット性能を有する複合材料を得ることが困難である。 In recent years, composite materials using carbon fibers as reinforcing fibers are light and have excellent mechanical properties such as high strength, and thus have been widely used as structural materials for aircraft and the like. These composite materials are molded, for example, from a prepreg, which is an intermediate product in which a reinforcing fiber is impregnated with a matrix resin, through molding and processing steps such as heating and pressing. Therefore, in order to obtain a desired composite material, it is necessary to employ an optimum material or molding / processing means for each. Depending on the application, the carbon fiber, which is a reinforcing fiber, may be required to have higher strength. For example, when it is intended to reduce the weight of a composite material for aircraft, it is necessary to increase the elasticity while maintaining the strength of the carbon fiber. However, the carbon fiber generally becomes brittle as the elastic modulus increases. Since the impact resistance and the like are increased, it is difficult to obtain a composite material having high composite performance.

炭素繊維とマトリックス樹脂との複合化において、高性能化を追求するためには、炭素繊維そのもの自体の強度や弾性率、更には表面特性等を向上させることが必要不可欠である。つまり、炭素繊維表面とマトリックス樹脂との接着性が高いもの同士を複合化し、マトリックス樹脂と炭素繊維をより均一に分散することで、複合材料のより高性能(高強度、高弾性、高耐衝撃性等)なものを得ることができると期待される。そして、炭素繊維の強度や弾性率の向上、更に表面特性の向上や表層部の結晶性の改善等については、従来から色々と検討がなされている(例えば、特許文献1〜3参照)。
特開平5−214614号公報 特開平10−25627号公報 特開平11−217734号公報
In order to pursue high performance in the composite of carbon fiber and matrix resin, it is indispensable to improve the strength and elastic modulus of the carbon fiber itself as well as the surface characteristics. In other words, by combining materials with high adhesion between the carbon fiber surface and the matrix resin, and dispersing the matrix resin and the carbon fiber more uniformly, the higher performance of the composite material (high strength, high elasticity, high impact resistance) Expected to be able to obtain something). Various studies have been made on the improvement of the strength and elastic modulus of carbon fibers, the improvement of surface characteristics, the improvement of crystallinity of the surface layer, and the like (see, for example, Patent Documents 1 to 3).
JP-A-5-214614 Japanese Patent Laid-Open No. 10-25627 JP-A-11-217734

炭素繊維の表面状態と複合材料の強度との関係は、一般的に、炭素繊維表面の官能基によるマトリクス樹脂との接着性、及び炭素繊維表面凹凸によるマトリクス樹脂とのアンカー効果による効果が大きいとされている。また、表面が平坦な炭素繊維ではマトリクス樹脂とのアンカー効果が低いため複合材料としての強度が十分に発現されず、表面の凹凸が大きな炭素繊維ではマトリクス樹脂とのアンカー効果は高いが、大きすぎる表面の凹凸が繊維欠陥となり複合材料の強度低下につながるともいわれている。例えば、走査型プローブ顕微鏡を用いて測定された炭素繊維表面の凹凸と、炭素繊維及び複合材料の強度との関係について検討がなされ、改善方法も提案されている(例えば、特許文献4〜6参照)。しかしながら、従来の炭素繊維は、航空機等に使用される高いコンポジット特性を有する複合材料を得るためには、まだその性能が十分ではなかった。
特開2003−73932号公報 特開2005−133274号公報 特開2004−277192号公報
In general, the relationship between the surface state of carbon fiber and the strength of the composite material is that the effect of the anchoring effect with the matrix resin due to the carbon fiber surface unevenness and the adhesion with the matrix resin due to the functional group on the carbon fiber surface is large. Has been. In addition, the carbon fiber with a flat surface has a low anchor effect with the matrix resin, so that the strength as a composite material is not sufficiently developed. The carbon fiber with a large surface unevenness has a high anchor effect with the matrix resin, but is too large. It is said that unevenness on the surface becomes a fiber defect and leads to a decrease in strength of the composite material. For example, the relationship between the unevenness of the carbon fiber surface measured using a scanning probe microscope and the strength of the carbon fiber and the composite material has been studied, and improvement methods have also been proposed (see, for example, Patent Documents 4 to 6). ). However, the performance of conventional carbon fibers has not been sufficient to obtain a composite material having high composite properties used for aircraft and the like.
JP2003-73932A JP 2005-133274 A JP 2004-277192 A

本発明の課題は、従来のものよりも耐衝撃性等に優れた高いコンポジット特性を有する複合材料を得ることができる、表面特性や強度や弾性率が向上した炭素繊維を提供することにある。 An object of the present invention is to provide a carbon fiber having improved surface characteristics, strength, and elastic modulus, which can obtain a composite material having high composite characteristics that are superior in impact resistance and the like than conventional ones.

本発明者は、耐衝撃性能を向上させ、高いコンポジット特性、特に衝撃後圧縮強度(CAI)に優れた複合材料を得るために、炭素繊維の繊維表面に衝撃を吸収させるような構造を持たせ、繊維自身の耐衝撃性能を向上させると共に、マトリックス樹脂との接着性をコントロールすることを試みた。そして、CAIの向上のためには、炭素繊維の単糸のトランスバース圧縮強度を、適正な値にコントロールすることで脆さを改善することができること、また、マトリックス樹脂との接着性に関与する表面酸素濃度(O/C)と比表面積値を、適正な値に管理することで複合材料のCAIが向上すること等を知見し、本発明に到達した。 In order to improve the impact resistance and to obtain a composite material having high composite properties, particularly excellent compressive strength after impact (CAI), the inventor has a structure that absorbs impact on the fiber surface of carbon fiber. An attempt was made to improve the impact resistance of the fiber itself and to control the adhesion with the matrix resin. And in order to improve CAI, brittleness can be improved by controlling the transverse compressive strength of the single yarn of the carbon fiber to an appropriate value, and it is involved in adhesion to the matrix resin. The inventors have found that the CAI of the composite material is improved by controlling the surface oxygen concentration (O / C) and the specific surface area to appropriate values, and have reached the present invention.

本発明のうち請求項1に記載された発明は、単糸のトランスバース方向の圧縮強度が130kgf/mm以上で、且つ、表面酸素濃度(O/C)が20〜30%の範囲にあり、クリプトン吸着によるBET法での比表面積値が0.65〜2.5m/gの範囲にある炭素繊維である。 The invention described in claim 1 of the present invention has a compressive strength in the transverse direction of the single yarn of 130 kgf / mm 2 or more and a surface oxygen concentration (O / C) in the range of 20 to 30%. The carbon fiber has a specific surface area value in the range of 0.65 to 2.5 m 2 / g by BET method by krypton adsorption.

請求項2に記載された発明は、炭素繊維の弾性率が340GPa以上で、且つ、強度が5970MPa以上である請求項1記載の炭素繊維である。 The invention described in claim 2 is the carbon fiber according to claim 1, wherein the elastic modulus of the carbon fiber is 340 GPa or more and the strength is 5970 MPa or more.

請求項3に記載された発明は、単糸のトランスバース方向の圧縮強度が130kgf/mm以上で、且つ、表面酸素濃度(O/C)が20〜30%の範囲にあり、クリプトン吸着によるBET法での比表面積値が0.65〜2.5m/gの範囲にある炭素繊維とマトリックス樹脂とからなる複合材料である。 The invention described in claim 3 has a compressive strength in the transverse direction of the single yarn of 130 kgf / mm 2 or more and a surface oxygen concentration (O / C) in the range of 20 to 30%, and is based on krypton adsorption. It is a composite material composed of carbon fibers and a matrix resin having a specific surface area value in the range of 0.65 to 2.5 m 2 / g according to the BET method.

請求項4に記載された発明は、炭素繊維の弾性率が340GPa以上で、且つ、強度が5970MPa以上である請求項3記載の複合材料である。 The invention described in claim 4 is the composite material according to claim 3, wherein the elastic modulus of the carbon fiber is 340 GPa or more and the strength is 5970 MPa or more.

そして、請求項5に記載された発明は、衝撃後圧縮強度(CAI)が220MPa以上のものである請求項3又は4記載の複合材料である。 The invention described in claim 5 is the composite material according to claim 3 or 4 whose compressive strength after impact (CAI) is 220 MPa or more.

本発明の炭素繊維は、単糸のトランスバース方向の圧縮強度が高く、繊維表面の表面酸素濃度(O/C)及びクリプトン吸着によるBET法での比表面積値が適当な範囲にあるので、高い強度と弾性率を有する。そして、本発明の炭素繊維は、マトリックス樹脂との良好な接着性を有する補強材として機能し、得られた複合材料は優れたコンポジット特性、特に優れたCAIを有する。従って、本発明の炭素繊維を用いると、従来のものよりもより高性能な複合材料を得ることができ、これらは、航空宇宙分野や自動車分野等において安全性が高く、且つ、軽量な複合材料として利用できる。 The carbon fiber of the present invention has a high compressive strength in the transverse direction of the single yarn, and has a high surface oxygen concentration (O / C) on the fiber surface and a specific surface area value in the BET method by krypton adsorption. Has strength and elastic modulus. And the carbon fiber of this invention functions as a reinforcing material which has favorable adhesiveness with a matrix resin, and the obtained composite material has the outstanding composite characteristic, especially the outstanding CAI. Therefore, by using the carbon fiber of the present invention, it is possible to obtain composite materials with higher performance than conventional ones, and these are highly safe and lightweight composite materials in the aerospace field, the automobile field, etc. Available as

本発明は、単糸のトランスバース方向の圧縮強度が130kgf/mm以上、好ましくは、135kgf/mm以上で、且つ、表面酸素濃度(O/C)が20〜30%、好ましくは、25〜29%の範囲にあり、クリプトン吸着によるBET法での比表面積値が0.65〜2.5m/g、好ましくは、1.3〜2.4m/gの範囲にある炭素繊維である。そして、弾性率は340GPa以上で、且つ、強度が5970MPa以上のものが更に好ましい。 In the present invention, the compressive strength in the transverse direction of the single yarn is 130 kgf / mm 2 or more, preferably 135 kgf / mm 2 or more, and the surface oxygen concentration (O / C) is 20 to 30%, preferably 25 A carbon fiber having a specific surface area value of 0.65 to 2.5 m 2 / g, preferably 1.3 to 2.4 m 2 / g, in a range of ˜29% and a BET method by krypton adsorption. is there. It is more preferable that the elastic modulus is 340 GPa or more and the strength is 5970 MPa or more.

CAIの高い炭素繊維強化複合材料を得るためには、従来は、強度と弾性率が中程度の炭素繊維、例えば、強度が5680MPa、弾性率が294GPa程度のものを用いて、CAIが230〜250MPaのものが得られていた。しかし、航空機の分野においては、機体の軽量化を主目的に、より高性能の複合材料が要求されるようになり、それに答えるために、高強度と高弾性率を両立させる炭素繊維の開発が行われているが、弾性率を増加させるのに伴い、炭素繊維の伸度が低下するために、得られた複合材料のCAIは低下するという問題があった。 In order to obtain a carbon fiber reinforced composite material having a high CAI, a carbon fiber having a medium strength and elastic modulus, for example, a carbon fiber having a strength of about 5680 MPa and an elastic modulus of about 294 GPa is used. Things were obtained. However, in the field of aircraft, higher-performance composite materials have been demanded mainly for the purpose of reducing the weight of aircraft, and in order to respond to this, the development of carbon fibers that achieve both high strength and high elastic modulus has become necessary. Although it has been carried out, there is a problem that the CAI of the obtained composite material is lowered because the elongation of the carbon fiber is lowered as the elastic modulus is increased.

本発明では、炭素繊維の破断開始点となる部分を除去しつつ、表面に衝撃を吸収させる構造を持たせることで、繊維自身の耐衝撃性を向上させると共に、炭素繊維の表面状態をコントロールすることで、繊維とマトリックス樹脂との接着性を向上させ剥離を抑制し、炭素繊維の脆弱化による複合材料の破壊を防ぐ工夫がなされている。 In the present invention, the surface of the carbon fiber is controlled while the impact resistance of the fiber itself is improved by removing the portion that becomes the break start point of the carbon fiber and by providing the surface with a structure that absorbs the impact. Thus, the device has been devised to improve the adhesion between the fiber and the matrix resin, suppress the peeling, and prevent the composite material from being destroyed by the weakening of the carbon fiber.

本発明において、単糸のトランスバース方向の圧縮強度とは、炭素繊維の単糸の繊維方向に直角方向での圧縮強度をいう。圧縮強度は130kgf/mm以上、好ましくは、135kgf/mm以上である。測定法については実施例の項で説明する。 In the present invention, the compressive strength in the transverse direction of a single yarn refers to the compressive strength in a direction perpendicular to the fiber direction of the single yarn of carbon fiber. The compressive strength is 130 kgf / mm 2 or more, preferably 135 kgf / mm 2 or more. The measuring method will be described in the section of the examples.

本発明において表面酸素濃度とは、X線光電子分光器により測定される炭素繊維のO/C値を意味し、O/C値が20〜30%の範囲にあることが必要である。O/C値が25〜29%のものがより好ましい。O/C値が20%未満の場合は、炭素繊維とマトリックス樹脂との接着性が劣り、得られる複合材料の物性低下の原因になる。一方、O/C値が30%を超える場合は、過剰な酸化処理により炭素繊維自体の強度が低下すると共にマトリクス樹脂との接着性が強すぎ、コンポジットにした際に衝撃を界面で緩和することができず、耐衝撃性に劣る傾向にあるので不適当である。 In the present invention, the surface oxygen concentration means an O / C value of carbon fiber measured by an X-ray photoelectron spectrometer, and the O / C value needs to be in a range of 20 to 30%. Those having an O / C value of 25 to 29% are more preferred. When the O / C value is less than 20%, the adhesion between the carbon fiber and the matrix resin is inferior, causing a decrease in physical properties of the resulting composite material. On the other hand, when the O / C value exceeds 30%, the strength of the carbon fiber itself decreases due to excessive oxidation treatment, and the adhesiveness to the matrix resin is too strong, and the impact is mitigated at the interface when it is made into a composite. This is unsuitable because it tends to be inferior in impact resistance.

本発明において、クリプトン吸着によるBET法での比表面積値とは、炭素繊維の表面状態を示す値である。吸着占有面積の判明しているガス分子をサンプルに吸着させ、その際の単分子層吸着量の値を用い、次の式によって算出される。 In the present invention, the specific surface area value in the BET method by krypton adsorption is a value indicating the surface state of the carbon fiber. Gas molecules whose adsorption occupying area is known are adsorbed to the sample, and the value of the monomolecular layer adsorption amount at that time is used to calculate by the following formula.

S=([Vm×N×Acs]M)/w
S:比表面積
Vm:単分子層吸着量
N:アボガドロ定数
Acs:吸着断面積
M:分子量
w:サンプル重量
S = ([Vm × N × Acs] M) / w
S: Specific surface area Vm: Monolayer adsorption amount N: Avogadro constant Acs: Adsorption cross section M: Molecular weight w: Sample weight

本発明の炭素繊維は、この比表面積値が0.65〜2.5m/gにある必要がある。好ましくは、1.3〜2.4m/gの範囲である。この値は、炭素繊維表面の表面処理によるエッチング作用の程度を示す指標である。クリプトン吸着によるBET法での比表面積値は、表面処理によるエッチング作用により生じ、かかる指標の値が増加するにつれ、炭素繊維の表面積が増加し、また凹凸差が増加する。 The carbon fiber of the present invention needs to have a specific surface area value of 0.65 to 2.5 m 2 / g. Preferably, it is the range of 1.3-2.4 m < 2 > / g. This value is an index indicating the degree of etching effect by the surface treatment of the carbon fiber surface. The specific surface area value in the BET method by krypton adsorption is caused by the etching action by the surface treatment, and as the value of the index increases, the surface area of the carbon fiber increases and the unevenness difference increases.

炭素繊維の表面を、例えば、電解酸化によりエッチング処理を行うと、炭素繊維の表面欠陥となる焼成工程で生じた脆弱部が、エッチングにより優先的に取り除かれ炭素繊維自体の強度が向上する。また、脆弱部の除去に伴い繊維表面に細かな凹凸が生じ、炭素繊維の表面積が広がり、炭素繊維とマトリックス樹脂間に十分な接触を得ることができるようになる。更に、マトリックス樹脂との親和性を向上させる効果を有する、カルボキシル基や水酸基等の官能基が導入される。それらの結果、アンカー効果により炭素繊維とマトリックス樹脂との接着性が向上し、得られた複合材料の耐衝撃性等が向上すると推測される。 When the surface of the carbon fiber is etched by, for example, electrolytic oxidation, the fragile portion generated in the firing step that becomes the surface defect of the carbon fiber is preferentially removed by the etching, and the strength of the carbon fiber itself is improved. Further, with the removal of the fragile portion, fine irregularities are generated on the fiber surface, the surface area of the carbon fiber is increased, and sufficient contact can be obtained between the carbon fiber and the matrix resin. Furthermore, a functional group such as a carboxyl group or a hydroxyl group having an effect of improving the affinity with the matrix resin is introduced. As a result, it is presumed that the anchoring effect improves the adhesion between the carbon fiber and the matrix resin and improves the impact resistance and the like of the obtained composite material.

一方、表面処理の程度、例えば、電解酸化によるエッチングの場合、その程度は、使用する電気量に依存し、電気量が高いほど繊維表面が強くエッチングされるが、過度な処理を行うと、逆に、削れ過ぎた部分が新たな欠陥となるため好ましくない。この際に生じるクラックやボイドなどの物理的欠陥(結晶性が高く配向度が低い構造部分)は、炭素繊維の破断開始点となる。従って、最適な表面状態を形成させるためには、適度なエッチングが必要である。 On the other hand, the degree of surface treatment, for example, in the case of etching by electrolytic oxidation, the degree depends on the amount of electricity used. The higher the amount of electricity, the more strongly the fiber surface is etched. In addition, an excessively cut portion becomes a new defect, which is not preferable. Physical defects such as cracks and voids (structural parts with high crystallinity and low degree of orientation) generated at this time serve as starting points for breaking the carbon fibers. Accordingly, in order to form an optimum surface state, appropriate etching is necessary.

本発明の炭素繊維は、例えば、以下の方法により製造することができる。 The carbon fiber of the present invention can be produced, for example, by the following method.

[前駆体繊維]
本発明において、炭素繊維の製造方法に用いる前駆体繊維としては、ピッチ系繊維、アクリル系繊維等従来公知のものが何ら制限なく使用できる。その中でもアクリル系繊維が好ましく、広角X線回折(回折角17°)による配向度が90.5%以下のアクリル系繊維がより好ましい。具体的にはアクリロニトリルを90質量%以上、好ましくは95質量%以上含有する単量体を重合した紡糸溶液を紡糸して、炭素繊維原料とする。紡糸方法としては、湿式又は乾湿式紡糸方法いずれの方法も用いることができるが、樹脂との接着性を考慮すると、湿式紡糸方法がより好ましい。また、凝固した後は、水洗・乾燥・延伸して炭素繊維原料とすることが好ましい。
[Precursor fiber]
In the present invention, as the precursor fiber used in the carbon fiber production method, conventionally known fibers such as pitch fibers and acrylic fibers can be used without any limitation. Among them, acrylic fibers are preferable, and acrylic fibers having an orientation degree by wide-angle X-ray diffraction (diffraction angle 17 °) of 90.5% or less are more preferable. Specifically, a spinning solution obtained by polymerizing a monomer containing 90% by mass or more, preferably 95% by mass or more of acrylonitrile is spun to obtain a carbon fiber raw material. As the spinning method, either a wet or dry wet spinning method can be used, but considering the adhesiveness to the resin, the wet spinning method is more preferable. Moreover, after solidifying, it is preferable to wash with water, dry and stretch to obtain a carbon fiber raw material.

[耐炎化処理]
得られた前駆体繊維は、引き続き加熱空気中200〜280℃、好ましくは、240〜250℃の温度範囲内で耐炎化処理される。この時の処理は、一般的に、延伸倍率0.85〜1.30の範囲で処理されるが、高強度・高弾性率の炭素繊維を得るためには、0.95以上がより好ましい。この耐炎化処理は、繊維密度1.3〜1.5g/cmの耐炎化繊維とするものであり、耐炎化時の糸にかかる張力は特に限定されるものでは無い。
[Flame resistance treatment]
The obtained precursor fiber is subsequently flameproofed in a temperature range of 200 to 280 ° C., preferably 240 to 250 ° C. in heated air. The treatment at this time is generally carried out in the range of a draw ratio of 0.85 to 1.30, but 0.95 or more is more preferable in order to obtain a carbon fiber with high strength and high elastic modulus. This flameproofing treatment is to make a flameproof fiber having a fiber density of 1.3 to 1.5 g / cm 3 , and the tension applied to the yarn at the time of flameproofing is not particularly limited.

[第一炭素化処理]
上記耐炎化繊維を、不活性雰囲気中で、第一炭素化工程において、300〜900℃、好ましくは、300〜550℃の温度範囲内で、1.03〜1.06の延伸倍率で一次延伸処理し、次いで0.9〜1.01の延伸倍率で二次延伸処理して、繊維密度1.40〜1.70g/cmの第一炭素化処理繊維を得る。第一炭素化工程において、一次延伸処理では、耐炎化繊維の弾性率が極小値まで低下した時点から9.8GPaに増加するまでの範囲、同繊維の密度が1.5g/cmに達するまでの範囲で、1.03〜1.06の延伸倍率で延伸処理を行うのが好ましい。二次延伸処理においては、一次延伸処理後の繊維の密度が二次延伸処理中に上昇し続ける範囲で、0.9〜1.01倍の延伸倍率で延伸処理を行うのが好ましい。かかる条件を採用すると、結晶が成長することなく、緻密化され、ボイドの生成も抑制でき、最終的に高い緻密性を有した高強度炭素繊維を得ることができる。上記第一炭素化工程は、一つの炉若しくは二つ以上の炉で、連続的若しくは別々に処理することができる。
[First carbonization treatment]
In the first carbonization step, the flame-resistant fiber is primarily stretched at a stretching ratio of 1.03 to 1.06 within a temperature range of 300 to 900 ° C., preferably 300 to 550 ° C., in the first carbonization step. Next, a secondary stretch treatment is performed at a draw ratio of 0.9 to 1.01 to obtain a first carbonized fiber having a fiber density of 1.40 to 1.70 g / cm 3 . In the first carbonization step, in the primary stretching treatment, the range from the time when the elastic modulus of the flameproof fiber decreases to a minimum value until it increases to 9.8 GPa, until the density of the fiber reaches 1.5 g / cm 3. In this range, it is preferable to perform the stretching treatment at a stretching ratio of 1.03 to 1.06. In the secondary stretching process, it is preferable to perform the stretching process at a stretching ratio of 0.9 to 1.01 within a range in which the density of the fiber after the primary stretching process continues to rise during the secondary stretching process. When such conditions are employed, the crystals are densified without growing, the formation of voids can be suppressed, and finally high-strength carbon fibers having high density can be obtained. The first carbonization step can be performed continuously or separately in one furnace or two or more furnaces.

[第二炭素化処理]
上記第一炭素化処理繊維を、不活性雰囲気中で、第二炭素化工程において800〜2100℃、好ましくは、1000〜1450℃の温度範囲内で、同工程を一次処理と二次処理とに分けて延伸処理して、第二炭素化処理繊維を得る。一次処理では、第一炭素化処理繊維の密度が一次処理中上昇し続ける範囲、同繊維の窒素含有量が10質量%以上の範囲で、同繊維を延伸処理するのが好ましい。二次処理においては、一次処理繊維の密度が変化しない又は低下する範囲で、同繊維を延伸処理するのが好ましい。第二炭素化処理繊維の伸度は2.0%以上、より好ましくは2.2%以上である。また、第二炭素化処理繊維の直径は、5〜6.5μmであるのが好ましい。また、これら焼成工程は、単一設備で連続して処理することも、数個の設備で連続して処理することも可能であり、特に限定されるものではない。
[Second carbonization treatment]
The first carbonized fiber is subjected to a primary treatment and a secondary treatment in an inert atmosphere within a temperature range of 800 to 2100 ° C., preferably 1000 to 1450 ° C., in the second carbonization step. Separately, it is stretched to obtain a second carbonized fiber. In the primary treatment, it is preferable to stretch the fiber in a range where the density of the first carbonized fiber continues to increase during the primary treatment, and in a range where the nitrogen content of the fiber is 10% by mass or more. In the secondary treatment, it is preferable to stretch the fiber in a range where the density of the primary treated fiber does not change or decreases. The elongation of the second carbonized fiber is 2.0% or more, more preferably 2.2% or more. Moreover, it is preferable that the diameter of a 2nd carbonization processing fiber is 5-6.5 micrometers. Moreover, these baking processes can be processed continuously with a single facility or with several facilities, and are not particularly limited.

[第三炭素化処理]
第三炭素化処理においては、上記第二炭素化処理繊維を1500〜2100℃、好ましくは、1650〜1900℃で更に炭素化又は黒鉛化処理する。
[Third carbonization treatment]
In the third carbonization treatment, the second carbonization treatment fiber is further carbonized or graphitized at 1500 to 2100 ° C, preferably 1650 to 1900 ° C.

[表面処理]
上記第三炭素化処理繊維は、引き続いて表面処理を施こされる。表面処理には気相、液相処理も用いることができるが、工程管理の簡便さと生産性を高める点から、電解処理による表面処理が好ましい。表面処理において用いる電解液としては、無機酸、無機酸塩等を用いることができるが、硫酸、硝酸、塩酸等の無機酸がより好ましい。これらの電解液の濃度が1〜25質量%、温度が10〜80℃、より好ましくは20〜50℃の範囲内で、繊維1gあたり10〜2000クーロン、より好ましくは100〜500クーロンの電気量で化学的・電気的酸化処理を行うのが良い。電気量を大きくすることで、エッチング量が増え、脆弱部の除去が進むが、電気量が大きすぎると、エッチング過剰により逆に表面に欠陥を作り出すこととなり、繊維強度が低下するため好ましくない。また、電気量が小さすぎると、脆弱部の除去が不十分で繊維強度が低下するため好ましくない。
[surface treatment]
The third carbonized fiber is subsequently subjected to a surface treatment. For the surface treatment, a gas phase or a liquid phase treatment can be used, but surface treatment by electrolytic treatment is preferable from the viewpoint of easy process control and productivity. As the electrolytic solution used in the surface treatment, an inorganic acid, an inorganic acid salt, or the like can be used, but an inorganic acid such as sulfuric acid, nitric acid, or hydrochloric acid is more preferable. The amount of these electrolytes is 1 to 25% by mass, the temperature is 10 to 80 ° C., more preferably 20 to 50 ° C., and the amount of electricity is 10 to 2000 coulombs per 1 g of fiber, more preferably 10 to 500 coulombs. It is better to perform chemical and electrical oxidation. By increasing the amount of electricity, the amount of etching increases and the removal of the fragile portion proceeds. However, if the amount of electricity is too large, defects will be created on the surface due to excessive etching, which is not preferable because the fiber strength decreases. On the other hand, if the amount of electricity is too small, the removal of the fragile portion is insufficient and the fiber strength decreases, which is not preferable.

電解液として硝酸を用いると、炭素繊維のグラファイト構造の層間に硝酸が入り込み反応するため、より効率的にエッチングを行うことができるので好ましい。この場合、グラファイト構造の層間部分で電解酸化反応が起こることで層間に隙間ができ、この隙間は結晶子サイズの大きい、電気抵抗の低い部分に沿って起こると考えられる。そして、電解処理に伴い、表層は電気二重層に覆われてしまい、界面部分の電気抵抗値は高くなる。かかる理由で、低い電気量では極表層部分までしか電解処理されないと考えられる。 It is preferable to use nitric acid as the electrolytic solution because nitric acid enters and reacts between the layers of the carbon fiber graphite structure, so that etching can be performed more efficiently. In this case, an electrolytic oxidation reaction takes place in the interlayer part of the graphite structure, so that a gap is formed between the layers. This gap is considered to occur along a part having a large crystallite size and a low electrical resistance. Then, along with the electrolytic treatment, the surface layer is covered with the electric double layer, and the electric resistance value of the interface portion becomes high. For this reason, it is considered that the electrolytic treatment is performed only up to the extreme surface layer portion with a low amount of electricity.

[サイジング処理]
上記表面処理繊維は、引き続いてサイジング処理を施こされる。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥することが好ましい。
[Sizing process]
The surface-treated fiber is subsequently subjected to sizing treatment. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering.

本発明の他の態様は、上記のごとくして得られた本発明の炭素繊維を強化繊維として用い、これとマトリックス樹脂とから得られる複合材料である。炭素繊維としては、単糸のトランスバース方向の圧縮強度が130kgf/mm以上で、且つ、表面酸素濃度(O/C)が20〜30%の範囲にあり、クリプトン吸着によるBET法での比表面積値が0.65〜2.5m/gの範囲にある炭素繊維が用いられる。そして、好ましくは、弾性率が340GPa以上で、且つ、強度が5970MPa以上の炭素繊維が用いられる。本発明において複合材料とは、例えば、炭素繊維と各種マトリックス樹脂とから、ホットメルト法、フィラメントワインディング法等の公知の各種の方法で製造されるプリプレグ、中間成形品又は成形品等を意味する。 Another aspect of the present invention is a composite material obtained by using the carbon fiber of the present invention obtained as described above as a reinforcing fiber and a matrix resin. The carbon fiber has a compressive strength in the transverse direction of a single yarn of 130 kgf / mm 2 or more and a surface oxygen concentration (O / C) in the range of 20 to 30%, and the ratio according to the BET method by krypton adsorption. A carbon fiber having a surface area value in the range of 0.65 to 2.5 m 2 / g is used. Preferably, carbon fibers having an elastic modulus of 340 GPa or more and a strength of 5970 MPa or more are used. In the present invention, the composite material means, for example, a prepreg, an intermediate molded product or a molded product produced from carbon fiber and various matrix resins by various known methods such as a hot melt method and a filament winding method.

炭素繊維は、通常、シート状の強化繊維材料として用いられる。シート状の材料とは、繊維材料を一方向にシート状に引き揃えたもの、これらを、例えば、直交に積層したもの、繊維材料を織編物や不織布等の布帛に成形したもの、ストランド状のもの、多軸織物等を全て含む。繊維の形態としては、長繊維状モノフィラメントあるいはこれらを束にしたものが好ましく使用される。 Carbon fiber is usually used as a sheet-like reinforcing fiber material. The sheet-like material is a material in which fiber materials are arranged in a sheet shape in one direction, these are laminated in an orthogonal manner, a fiber material is formed into a fabric such as a woven or knitted fabric or a non-woven fabric, or a strand-like material. All things, including multi-axis fabrics. As the fiber form, long fiber monofilaments or bundles of these are preferably used.

本発明において用いられるマトリックス樹脂は、特に限定されない。熱硬化性マトリックス樹脂の具体例として、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂、ビスマレイミド樹脂、アセチレン末端を有するポリイミド樹脂及びポリイソイミド樹脂、ナジック酸末端を有するポリイミド樹脂等を挙げることができる。これらは1種又は2種以上の混合物として用いることもできる。中でも、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂やビニルエステル樹脂が、特に好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤以外に、通常用いられる着色剤や各種添加剤等が含まれていてもよい。 The matrix resin used in the present invention is not particularly limited. Specific examples of thermosetting matrix resins include epoxy resins, unsaturated polyester resins, phenol resins, vinyl ester resins, cyanate ester resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, maleimide resins and cyanate ester resins. And a prepolymerized resin, bismaleimide resin, polyimide resin and polyisoimide resin having acetylene terminal, and polyimide resin having nadic acid terminal. These can also be used as one type or a mixture of two or more types. Of these, epoxy resins and vinyl ester resins excellent in heat resistance, elastic modulus, and chemical resistance are particularly preferable. These thermosetting resins may contain commonly used colorants and various additives in addition to the curing agent and the curing accelerator.

また、マトリックス樹脂として用いられる熱可塑性樹脂としては、例えば、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミド、ポリアミドイミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリアクリロニトリル、ポリアラミド、ポリベンズイミダゾール等が挙げられる。 Examples of the thermoplastic resin used as the matrix resin include polypropylene, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, and polyarylene. Examples thereof include oxide, thermoplastic polyimide, polyamide, polyamideimide, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyacrylonitrile, polyaramid, and polybenzimidazole.

複合材料中に占める樹脂組成物の含有率は、10〜90重量%、好ましくは20〜60重量%、更に好ましくは25〜45重量%である。複合材料としては、実施例で詳述する方法で測定を行った、CAIが220MPa以上のものが好ましい。 The content of the resin composition in the composite material is 10 to 90% by weight, preferably 20 to 60% by weight, and more preferably 25 to 45% by weight. As the composite material, those having a CAI of 220 MPa or more, measured by the method described in detail in Examples, are preferable.

以下、実施例により本発明を詳述するが、本発明はこれに限定されるものではない。実施例における各種物性値の測定方法は下記のとおりである。 Hereinafter, although an example explains the present invention in detail, the present invention is not limited to this. The measuring method of various physical property values in the examples is as follows.

単糸のトランスバース方向の圧縮強度とは、炭素繊維の単糸の繊維方向に直角方向での圧縮強度(n=5で測定)を意味する。測定に際しては、スライドグラス上に炭素繊維の単糸を固定したサンプルを作成し、島津製作所製微小圧縮試験機「MCTM-200」を用いて、平面50μm圧子を使用し、負荷速度7.25mgf/secにて測定を行った。 The compressive strength in the transverse direction of a single yarn means the compressive strength (measured at n = 5) in the direction perpendicular to the fiber direction of the single yarn of carbon fiber. In the measurement, a sample in which a single fiber of carbon fiber was fixed on a slide glass was prepared, and a 50 μm flat indenter was used with a micro compression tester “MCTM-200” manufactured by Shimadzu Corporation. Measurement was performed in sec.

炭素繊維の表面酸素濃度(O/C)は、次の手順に従ってXPS(ESCA)によって求めることができる。炭素繊維をカットしてステンレス製の試料支持台上に拡げて並べた後、光電子脱出角度を90度に設定し、X線源としてMgKαを用い、試料チャンバー内を1×10−6Paの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値B.E.を284.6eVに合わせる。O1sピーク面積は、528〜540eVの範囲で直線のベースラインを引くことにより求め、C1sピーク面積は、282〜292eVの範囲で直線のベースラインを引くことにより求める。炭素繊維表面の表面酸素濃度O/Cは、上記O1sピーク面積とC1sピーク面積の比で計算して求められる。 The surface oxygen concentration (O / C) of the carbon fiber can be determined by XPS (ESCA) according to the following procedure. After cutting the carbon fibers and spreading them on a stainless steel sample support table, the photoelectron escape angle was set to 90 degrees, MgKα was used as the X-ray source, and the inside of the sample chamber was vacuumed at 1 × 10 −6 Pa. Keep it up. As correction of the peak accompanying charging during measurement, first, the binding energy value B. of the main peak of C1s. E. Is adjusted to 284.6 eV. The O1s peak area is obtained by drawing a straight base line in the range of 528 to 540 eV, and the C1s peak area is obtained by drawing a straight base line in the range of 282 to 292 eV. The surface oxygen concentration O / C on the surface of the carbon fiber is determined by calculating the ratio of the O1s peak area to the C1s peak area.

炭素繊維のクリプトンガス吸着によるBET法比表面積は、炭素繊維を長さ1m程度に切り出したものを使用し、BET理論に従ってBETプロットの約0.1〜0.25の相対圧域を解析し算出した。ガス吸着に際しては、ユアサアイオニクス(株)社製全自動ガス吸着装置「AUTOSORB - 1」を使用し、下記条件により行った。 The BET specific surface area of carbon fiber by krypton gas adsorption is calculated by analyzing the relative pressure range of about 0.1 to 0.25 in the BET plot according to the BET theory using carbon fiber cut to about 1 m in length. did. For gas adsorption, a fully automatic gas adsorption device “AUTOSORB-1” manufactured by Yuasa Ionics Co., Ltd. was used under the following conditions.

吸着ガス:Kr
死容積:He
吸着温度:77K(液体窒素温度)
測定範囲:相対圧(P/Po)= 0.05−0.3
P:測定圧、Po:Krの飽和蒸気圧
Adsorption gas: Kr
Dead volume: He
Adsorption temperature: 77K (liquid nitrogen temperature)
Measuring range: Relative pressure (P / Po) = 0.05-0.3
P: Measurement pressure, Po: Kr saturated vapor pressure

耐衝撃性は、SACMA法に準拠して、衝撃後圧縮強度(CAI)の測定によって評価した。CAIの測定には、サイジングを行った後の炭素繊維及び東邦テナックス社製エポキシ樹脂(No.133)樹脂を使用し、炭素繊維目付け270g/m、樹脂含有率33%の一方向性プリプレグを作製し、[+45°/0°/-45°/90°]4Sの擬似等法に積層した。積層した供試体(サンプル)を180℃、2時間で硬化させた後、100×150×4.2mmの供試体(サンプル)を作製した。 The impact resistance was evaluated by measuring the compressive strength after impact (CAI) according to the SACMA method. For the measurement of CAI, carbon fiber after sizing and epoxy resin (No. 133) resin manufactured by Toho Tenax Co., Ltd. are used, and a unidirectional prepreg with a carbon fiber basis weight of 270 g / m 2 and a resin content of 33% is used. [+ 45 ° / 0 ° / -45 ° / 90 °] 4S pseudo-equal method was prepared. After the laminated specimens (samples) were cured at 180 ° C. for 2 hours, 100 × 150 × 4.2 mm specimens (samples) were produced.

供試体(サンプル)は各試験片の寸法測定後、衝撃試験は落錘型衝撃試験機(Dynatup社製GRC-8250)を用いて、30Jの衝撃エネルギーを与えた。衝撃後、供試体の損傷面積は、超音波探傷試験機(キャノン社製M610)にて測定した。衝撃後、供試体の強度試験は、供試体の上から25.4mmでサイドから25.4mmの位置に、歪みゲージを左右各1本ずつ貼付し、同様に表裏に合計4本/体の歪みゲージを貼付けた後、試験機(島津製作所製オートグラフAG-100TB型)のクロスヘッド速度を1.3mm/minとし、供試体の破断まで荷重を負荷した。 The specimen (sample) was subjected to measurement of the dimensions of each test piece, and the impact test was performed using a falling weight impact tester (GRC-8250 manufactured by Dynatup) with an impact energy of 30 J. After the impact, the damaged area of the specimen was measured with an ultrasonic flaw detector (M610 manufactured by Canon Inc.). After the impact, the strength test of the specimen was performed by applying one strain gauge to each of the left and right sides of the specimen at 25.4 mm from the top and 25.4 mm from the side. After affixing the gauge, the crosshead speed of the testing machine (manufactured by Shimadzu Autograph AG-100TB type) was set to 1.3 mm / min, and a load was applied until the specimen was broken.

炭素繊維の樹脂含浸ストランド強度と弾性率は、JIS R 7601に規定された方法により測定した。炭素繊維のサイジング剤の除去は、アセトンを用い3時間のソックスレー処理によって行い、そののち繊維を風乾した。密度は、アルキメデス法により測定し、試料繊維はアセトン中にて脱気処理し測定した。 The resin-impregnated strand strength and elastic modulus of carbon fiber were measured by the method defined in JIS R7601. The carbon fiber sizing agent was removed by Soxhlet treatment with acetone for 3 hours, and then the fiber was air-dried. The density was measured by the Archimedes method, and the sample fiber was measured after degassing in acetone.

[実施例1]
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を、常法により湿式紡糸し、水洗・オイリング・乾燥後、トータル延伸倍率が14倍になるようにスチーム延伸を行い、0.65デニールの繊度を有するフィラメント数12,000の前駆体繊維を得た。
[Example 1]
A copolymer spinning stock solution of 95% by mass of acrylonitrile / 4% by mass of methyl acrylate / 1% by mass of itaconic acid is wet-spun by a conventional method so that the total draw ratio is 14 times after washing with water, oiling and drying. Steam stretching was performed to obtain a precursor fiber having a filament number of 12,000 having a fineness of 0.65 denier.

得られた前駆体繊維を加熱空気中で延伸しながら、240〜250℃の温度範囲内で耐炎化処理を行い、次いで窒素雰囲気中、300〜2000℃の温度範囲内で第一、第二及び第三炭素化処理を行い、未電解処理炭素繊維を得た。 While the obtained precursor fiber is stretched in heated air, flameproofing treatment is performed within a temperature range of 240 to 250 ° C., and then in a nitrogen atmosphere, the first, second and second portions are heated within a temperature range of 300 to 2000 ° C. A third carbonization treatment was performed to obtain unelectrolyzed carbon fibers.

前記未電解処理炭素繊維を、電解質溶液として6.3質量%の硝酸水溶液を用い、電気量が450クーロン/gの条件で4槽使用して電解処理した後、極性を変え15クーロン/gの条件で2槽使用して電解処理した。電解処理を施した炭素繊維に常法によるサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度(樹脂含浸ストランド強度)と弾性率、単糸圧縮強度、表面酸素濃度O/C、比表面積値とCAIの測定値は表1に示したとおりであった。 The unelectrolyzed carbon fiber was subjected to electrolytic treatment using a 6.3 mass% nitric acid aqueous solution as an electrolyte solution and using four tanks under the condition of an electric charge of 450 coulomb / g, and then the polarity was changed to 15 coulomb / g. Electrolysis was performed using 2 tanks under the conditions. The carbon fiber subjected to electrolytic treatment was subjected to sizing treatment by a conventional method and dried to obtain carbon fiber having a density of 1.77 g / cm 3 and 0.31 denier. Table 1 shows the measured carbon fiber strength (resin impregnated strand strength) and elastic modulus, single yarn compressive strength, surface oxygen concentration O / C, specific surface area value, and CAI.

[実施例2]
実施例1で得られた未電解処理炭素繊維を、6.3質量%の硝酸水溶液を用い、電気量が290クーロン/gの条件で4槽使用して電解処理した後、極性を変え25クーロン/gの条件で2槽使用して電解処理した。電解処理を施した炭素繊維に常法によるサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、単糸圧縮強度、表面酸素濃度O/C、比表面積値とCAIの測定値を表1に示した。
[Example 2]
The electrolessly treated carbon fiber obtained in Example 1 was subjected to electrolytic treatment using a 6.3 mass% nitric acid aqueous solution in four tanks under the condition of an electric quantity of 290 coulomb / g, and then the polarity was changed to 25 coulomb. The electrolytic treatment was performed using 2 tanks under the conditions of / g. The carbon fiber subjected to electrolytic treatment was subjected to sizing treatment by a conventional method and dried to obtain carbon fiber having a density of 1.77 g / cm 3 and 0.31 denier. Table 1 shows the strength and elastic modulus, single yarn compressive strength, surface oxygen concentration O / C, specific surface area value, and measured value of CAI of the obtained carbon fiber.

[実施例3]
実施例1で得られた未電解処理炭素繊維を、6.3質量%の硝酸水溶液を用い、総電気量が100クーロン/gの条件で12槽使用して電解処理し、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、単糸圧縮強度、表面酸素濃度O/C、比表面積値とCAIの測定値を表1に示した。
[Example 3]
The unelectrolyzed carbon fiber obtained in Example 1 was electrolytically treated using a 6.3 mass% nitric acid aqueous solution in 12 tanks under the condition of a total electricity of 100 coulomb / g, and sizing treatment by a conventional method. And dried to obtain a carbon fiber having a density of 1.77 g / cm 3 and a denier of 0.31. Table 1 shows the strength and elastic modulus, single yarn compressive strength, surface oxygen concentration O / C, specific surface area value, and measured value of CAI of the obtained carbon fiber.

[比較例1]
実施例1で得られた未電解処理炭素繊維を、6.3質量%の硝酸水溶液を用い、総電気量が50クーロン/gの条件で12槽使用して電解処理し、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、単糸圧縮強度、表面酸素濃度O/C、比表面積値とCAIの測定値を表1に示した。
[Comparative Example 1]
The electrolessly treated carbon fiber obtained in Example 1 was subjected to electrolytic treatment using a 6.3% by mass nitric acid aqueous solution using 12 tanks under the condition of a total electricity of 50 coulomb / g, and sizing treatment by a conventional method. And dried to obtain a carbon fiber having a density of 1.77 g / cm 3 and a denier of 0.31. Table 1 shows the strength and elastic modulus, single yarn compressive strength, surface oxygen concentration O / C, specific surface area value, and measured value of CAI of the obtained carbon fiber.

[比較例2]
実施例1で得られた未電解処理炭素繊維を、6.3質量%の硝酸水溶液を用い、総電気量が250クーロン/gの条件で12槽使用して電解処理し、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、単糸圧縮強度、表面酸素濃度O/C、比表面積値とCAIの測定値を表1に示した。
[Comparative Example 2]
The unelectrolyzed carbon fiber obtained in Example 1 was subjected to electrolytic treatment using a 6.3 mass% nitric acid aqueous solution in 12 tanks under the condition of a total electricity of 250 coulomb / g, and sizing treatment by a conventional method. And dried to obtain a carbon fiber having a density of 1.77 g / cm 3 and a denier of 0.31. Table 1 shows the strength and elastic modulus, single yarn compressive strength, surface oxygen concentration O / C, specific surface area value, and measured value of CAI of the obtained carbon fiber.

[比較例3]
実施例1で得られた未電解処理炭素繊維を、6.3質量%の硝酸水溶液を用い、総電気量が250クーロン/gの条件で3槽使用して電解処理し、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、単糸圧縮強度、表面酸素濃度O/C、比表面積値とCAIの測定値を表1に示した。
[Comparative Example 3]
The electrolessly treated carbon fiber obtained in Example 1 was subjected to electrolytic treatment using a 6.3% by mass nitric acid aqueous solution in three tanks under the condition of a total electricity of 250 coulomb / g, and sizing treatment by a conventional method. And dried to obtain a carbon fiber having a density of 1.77 g / cm 3 and a denier of 0.31. Table 1 shows the strength and elastic modulus, single yarn compressive strength, surface oxygen concentration O / C, specific surface area value, and measured value of CAI of the obtained carbon fiber.

[比較例4]
実施例1で得られた未電解処理炭素繊維を、6.3質量%の硝酸水溶液を用い、総電気量が250クーロン/gの条件で4槽使用して電解処理し、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、単糸圧縮強度、表面酸素濃度O/C、比表面積値とCAIの測定値を表1に示した。
[Comparative Example 4]
The unelectrolyzed carbon fiber obtained in Example 1 was subjected to electrolytic treatment using a 6.3 mass% nitric acid aqueous solution in four tanks under the condition of a total electricity of 250 coulomb / g, and sizing treatment by a conventional method. And dried to obtain a carbon fiber having a density of 1.77 g / cm 3 and a denier of 0.31. Table 1 shows the strength and elastic modulus, single yarn compressive strength, surface oxygen concentration O / C, specific surface area value, and measured value of CAI of the obtained carbon fiber.

[比較例5]
実施例1で得られた未電解処理炭素繊維を、電解処理を施さずに、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、単糸圧縮強度、表面酸素濃度O/C、比表面積値とCAIの測定値を表1に示した。
[Comparative Example 5]
The unelectrolyzed carbon fiber obtained in Example 1 was subjected to sizing treatment by an ordinary method without being subjected to electrolytic treatment, and dried to obtain carbon fiber having a density of 1.77 g / cm 3 and 0.31 denier. . Table 1 shows the strength and elastic modulus, single yarn compressive strength, surface oxygen concentration O / C, specific surface area value, and measured value of CAI of the obtained carbon fiber.

[比較例6]
実施例1で得られた未電解処理炭素繊維を、10.0質量%の硫酸アンモニウム水溶液を用い、総電気量が80クーロン/gの条件で3槽使用して電解処理し、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、単糸圧縮強度、表面酸素濃度O/C、比表面積値とCAIの測定値を表1に示した。
[Comparative Example 6]
The unelectrolyzed carbon fiber obtained in Example 1 was subjected to electrolytic treatment using 10.0 tanks of an ammonium sulfate aqueous solution under the condition that the total electricity was 80 coulomb / g, and sizing treatment by a conventional method. And dried to obtain a carbon fiber having a density of 1.77 g / cm 3 and a denier of 0.31. Table 1 shows the strength and elastic modulus, single yarn compressive strength, surface oxygen concentration O / C, specific surface area value, and measured value of CAI of the obtained carbon fiber.

Figure 2008248423
Figure 2008248423


Claims (5)

単糸のトランスバース方向の圧縮強度が130kgf/mm以上で、且つ、表面酸素濃度(O/C)が20〜30%の範囲にあり、クリプトン吸着によるBET法での比表面積値が0.65〜2.5m/gの範囲にある炭素繊維。 The compressive strength in the transverse direction of the single yarn is 130 kgf / mm 2 or more, the surface oxygen concentration (O / C) is in the range of 20 to 30%, and the specific surface area value by the BET method by krypton adsorption is 0.1. Carbon fiber in the range of 65-2.5 m 2 / g. 炭素繊維の弾性率が340GPa以上で、且つ、強度が5970MPa以上である請求項1記載の炭素繊維。 The carbon fiber according to claim 1, wherein the elastic modulus of the carbon fiber is 340 GPa or more and the strength is 5970 MPa or more. 単糸のトランスバース方向の圧縮強度が130kgf/mm以上で、且つ、表面酸素濃度(O/C)が20〜30%の範囲にあり、クリプトン吸着によるBET法での比表面積値が0.65〜2.5m/gの範囲にある炭素繊維とマトリックス樹脂とからなる複合材料。 The compressive strength in the transverse direction of the single yarn is 130 kgf / mm 2 or more, the surface oxygen concentration (O / C) is in the range of 20 to 30%, and the specific surface area value by the BET method by krypton adsorption is 0.1. A composite material composed of carbon fibers and a matrix resin in the range of 65 to 2.5 m 2 / g. 炭素繊維の弾性率が340GPa以上で、且つ、強度が5970MPa以上である請求項3記載の複合材料。 The composite material according to claim 3, wherein the elastic modulus of the carbon fiber is 340 GPa or more and the strength is 5970 MPa or more. 衝撃後圧縮強度(CAI)が220MPa以上のものである請求項3又は4記載の複合材料。


The composite material according to claim 3 or 4, which has a compressive strength after impact (CAI) of 220 MPa or more.


JP2007090358A 2007-03-30 2007-03-30 Carbon fiber and composite material using the same Expired - Fee Related JP5226238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090358A JP5226238B2 (en) 2007-03-30 2007-03-30 Carbon fiber and composite material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090358A JP5226238B2 (en) 2007-03-30 2007-03-30 Carbon fiber and composite material using the same

Publications (2)

Publication Number Publication Date
JP2008248423A true JP2008248423A (en) 2008-10-16
JP5226238B2 JP5226238B2 (en) 2013-07-03

Family

ID=39973699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090358A Expired - Fee Related JP5226238B2 (en) 2007-03-30 2007-03-30 Carbon fiber and composite material using the same

Country Status (1)

Country Link
JP (1) JP5226238B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216997A (en) * 2012-04-10 2013-10-24 Toho Tenax Co Ltd Carbon fiber chopped strand and method for producing the same
JP2015028147A (en) * 2013-06-26 2015-02-12 東レ株式会社 Sizing agent-applied carbon fiber, production method thereof, prepreg, and carbon fiber-reinforced composite material
JP2015074844A (en) * 2013-10-08 2015-04-20 東邦テナックス株式会社 Carbon fiber and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112916A (en) * 1984-06-22 1986-01-21 Toray Ind Inc Super high-strength carbon fiber and its production
JPH01306619A (en) * 1988-05-30 1989-12-11 Toray Ind Inc High-strength and high elastic modulus carbon fiber
JP2000096354A (en) * 1998-09-29 2000-04-04 Toray Ind Inc Carbon fiber bundle, and its production
JP2004217485A (en) * 2003-01-17 2004-08-05 Toray Ind Inc Carbon fiber for carbon-fiber reinforced carbon composite material, and its manufacturing method
JP2005179794A (en) * 2003-12-16 2005-07-07 Toho Tenax Co Ltd Method for producing carbon fiber
JP2006169541A (en) * 1996-12-18 2006-06-29 Toray Ind Inc Prepreg

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112916A (en) * 1984-06-22 1986-01-21 Toray Ind Inc Super high-strength carbon fiber and its production
JPH01306619A (en) * 1988-05-30 1989-12-11 Toray Ind Inc High-strength and high elastic modulus carbon fiber
JP2006169541A (en) * 1996-12-18 2006-06-29 Toray Ind Inc Prepreg
JP2000096354A (en) * 1998-09-29 2000-04-04 Toray Ind Inc Carbon fiber bundle, and its production
JP2004217485A (en) * 2003-01-17 2004-08-05 Toray Ind Inc Carbon fiber for carbon-fiber reinforced carbon composite material, and its manufacturing method
JP2005179794A (en) * 2003-12-16 2005-07-07 Toho Tenax Co Ltd Method for producing carbon fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012016927; 田中 潔,平松 幹雄,辻井 泰孝: 'CFRPの衝撃後圧縮試験の破壊力学的解析(小型試験方法の確立)' 日本機械学会論文集(A編) 61巻 586号, 199506, 1265-1272頁, 社団法人 日本機械学会 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216997A (en) * 2012-04-10 2013-10-24 Toho Tenax Co Ltd Carbon fiber chopped strand and method for producing the same
JP2015028147A (en) * 2013-06-26 2015-02-12 東レ株式会社 Sizing agent-applied carbon fiber, production method thereof, prepreg, and carbon fiber-reinforced composite material
JP2015074844A (en) * 2013-10-08 2015-04-20 東邦テナックス株式会社 Carbon fiber and method for producing the same

Also Published As

Publication number Publication date
JP5226238B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP6211881B2 (en) Carbon fiber and method for producing the same
US20100266827A1 (en) Carbon fiber and composite material using the same
KR20160096724A (en) Carbon fibre thermoplastic resin prepreg, carbon fibre composite material and manufacturing method
Kim et al. A study on the microstructural changes and mechanical behaviors of carbon fibers induced by optimized electrochemical etching
US20210108042A1 (en) Fiber-reinforced resin prepreg, molded article, and fiber-reinforced thermoplastic resin prepreg
JP2021059834A (en) Carbon fiber precursor acrylic fiber, carbon fiber, and production method of the same
JP5226238B2 (en) Carbon fiber and composite material using the same
JP5662113B2 (en) Carbon fiber surface treatment method
JP5873358B2 (en) Flame-resistant fiber strand, method for producing the same, and method for producing carbon fiber strand
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP6846868B2 (en) Method for manufacturing carbon fiber and carbon fiber with sizing agent attached
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP6139318B2 (en) Carbon fiber manufacturing method
JP2013202803A (en) Carbon fiber reinforced composite material
JP2008248424A (en) Method of multistage electrolytic treatment of carbon fiber
JP2010111957A (en) Carbon fiber, composite material, and method for producing carbon fiber
JP2004244258A (en) Carbon fiber for carbon fiber reinforced carbon composite materials and method of manufacturing the same
JPH08296124A (en) Non-circular cross section carbon fiber and carbon fiber-reinforced composite material
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2017193791A (en) Carbon fiber and method for producing the same
JP2008248427A (en) Method for surface electrolytic treatment of carbon fiber
JP2016125173A (en) Carbon fiber bundle and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100917

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

R150 Certificate of patent or registration of utility model

Ref document number: 5226238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees