JP2008192784A - Resistive paste for forming thermistor - Google Patents

Resistive paste for forming thermistor Download PDF

Info

Publication number
JP2008192784A
JP2008192784A JP2007024990A JP2007024990A JP2008192784A JP 2008192784 A JP2008192784 A JP 2008192784A JP 2007024990 A JP2007024990 A JP 2007024990A JP 2007024990 A JP2007024990 A JP 2007024990A JP 2008192784 A JP2008192784 A JP 2008192784A
Authority
JP
Japan
Prior art keywords
thermistor
paste
glass frit
resistance
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007024990A
Other languages
Japanese (ja)
Other versions
JP2008192784A5 (en
Inventor
Fujio Makuta
富士雄 幕田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007024990A priority Critical patent/JP2008192784A/en
Publication of JP2008192784A publication Critical patent/JP2008192784A/en
Publication of JP2008192784A5 publication Critical patent/JP2008192784A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide resistive paste for forming a thermistor having excellent characteristics such as a temperature coefficient of a resistance and capable of being baked together with paste forming a resistor and containing no lead and bismuth. <P>SOLUTION: Resistive paste for forming the thermistor is composed substantially of conductive particles, a glass frit and an organic vehicle. The conductive particles are represented by Y<SB>2</SB>Ru<SB>2</SB>O<SB>7</SB>, Nd<SB>2</SB>Ru<SB>2</SB>O<SB>7</SB>, Sm<SB>2</SB>Ru<SB>2</SB>O<SB>7</SB>or Gd<SB>2</SB>Ru<SB>2</SB>O<SB>7</SB>. The glass frit does not contain lead and bismuth such as a borosilicate glass, an alumino borosilicate glass or the like. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、絶縁性セラミック基板上に厚膜サーミスタを形成するために使用される鉛を含まないペーストに関するものである。   The present invention relates to a lead-free paste used to form a thick film thermistor on an insulating ceramic substrate.

従来、サーミスタとしては、ディスク形、厚膜形、薄膜形の3種類が知られている。ディスク形は、金属酸化物を高温で焼結した後、所定形状に成形加工したものである。また、薄膜形は、サーミスタ材料のターゲットをスパッタリングして、絶縁性セラミック基板上にサーミスタ膜を形成したものである。   Conventionally, three types of thermistors are known: disk type, thick film type, and thin film type. The disk shape is obtained by sintering a metal oxide at a high temperature and then molding it into a predetermined shape. The thin film type is obtained by sputtering a thermistor material target to form a thermistor film on an insulating ceramic substrate.

一方、厚膜形は、サーミスタ材料のペーストを絶縁性セラミック基板上に印刷した後、焼成してサーミスタ膜を形成したものである。この厚膜形は、抵抗値の精度が良いのサーミスタを安価に製造できるという利点を有している。   On the other hand, in the thick film type, a thermistor material paste is printed on an insulating ceramic substrate and then fired to form a thermistor film. This thick film type has the advantage that a thermistor with high accuracy in resistance can be manufactured at low cost.

厚膜形サーミスタの形成に用いるペーストは、導電性粒子、ガラスフリット、及び有機ビヒクルから実質的に構成される。導電性粒子としては、Mn、Ni、Coなど遷移金属の金属酸化物の固溶体が一般に使用されている。導電性粒子としてMn、Ni、Coなど遷移金属の金属酸化物の固溶体が使用されるのは、主に材料組成を変えることによって、広い範囲にわたってサーミスタ特性を任意に制御することができるからである。   The paste used to form the thick film thermistor is substantially composed of conductive particles, glass frit, and an organic vehicle. As the conductive particles, solid solutions of transition metal metal oxides such as Mn, Ni and Co are generally used. The reason why the metal oxide solid solution of transition metals such as Mn, Ni, and Co is used as the conductive particles is that the thermistor characteristics can be arbitrarily controlled over a wide range mainly by changing the material composition. .

また、ガラスフリットとしては、ホウケイ酸鉛ガラス(PbO−SiO−B)やアルミノホウケイ酸鉛ガラス(PbO−SiO−B−Al)など、鉛を含むホウケイ酸鉛系ガラスが使われている。ガラスフリットにホウケイ酸鉛系ガラスが用いられるのは、上記した金属酸化物との濡れ性が良く、焼成時の粘性などが適しているからである。 Further, examples of the glass frit include lead borosilicate such as lead borosilicate glass (PbO—SiO 2 —B 2 O 3 ) and lead aluminoborosilicate glass (PbO—SiO 2 —B 2 O 3 —Al 2 O 3 ). Lead acid glass is used. The reason why lead borosilicate glass is used for the glass frit is that it has good wettability with the above-mentioned metal oxide and is suitable for viscosity during firing.

しかし、このような従来のサーミスタ用ペーストは、焼成温度が900℃以上と高く、抵抗ペーストと同時に焼成すことができなかった。また、先にサーミスタ用ペーストを焼成してから抵抗ペーストを焼成すると、先に焼成したサーミスタの抵抗値が変化してしまうという問題があった。   However, such a conventional thermistor paste has a high firing temperature of 900 ° C. or higher, and cannot be fired simultaneously with the resistance paste. Further, if the resistance paste is fired after firing the thermistor paste first, there is a problem that the resistance value of the previously fired thermistor changes.

一方、最近では環境保護の観点から、電子部品の鉛フリ−化が進み、抵抗ペーストについても鉛のフリ−化が強く望まれている。このような観点から、抵抗又はサーミスタ形成用の鉛を含まない厚膜ペーストの研究がなされ、例えば特開平8−253342号公報には、Ru系導電材料と鉛を含まないガラスを用いたペーストが提案されている。   On the other hand, recently, from the viewpoint of environmental protection, lead freezing of electronic components has progressed, and lead freezing of resistance pastes is strongly desired. From this point of view, research has been conducted on thick film pastes that do not contain lead for resistance or thermistor formation. Proposed.

しかし、上記特開平08−253342号公報に記載のペーストは、酸化ビスマスを含むガラスフリットを用いている。ガラスフリット中の酸化ビスマスには抵抗値を下げる効果があることから、所定の抵抗値を得るためには、抵抗体中の導電性粒子の割合を少なくする必要があり、その結果得られる抵抗体の抵抗値のばらつきやノイズが大きくなるという問題があった。
特開平8−253342号公報
However, the paste described in Japanese Patent Application Laid-Open No. 08-253342 uses glass frit containing bismuth oxide. Since bismuth oxide in the glass frit has an effect of lowering the resistance value, in order to obtain a predetermined resistance value, it is necessary to reduce the proportion of conductive particles in the resistor, and the resulting resistor There was a problem that variation in resistance value and noise increased.
JP-A-8-253342

本発明は、このような従来の事情に鑑み、抵抗温度係数などの優れた特性を有する厚膜サーミスタを形成することができるペーストを提供すること、特に、抵抗体を形成するペーストと同時に焼成することができ、且つ鉛を含まないサーミスタ形成用のペーストを提供することを目的とする。   In view of such conventional circumstances, the present invention provides a paste capable of forming a thick film thermistor having excellent characteristics such as a temperature coefficient of resistance, and in particular, is fired simultaneously with the paste forming the resistor. An object of the present invention is to provide a thermistor-forming paste that can be used and that does not contain lead.

上記目的を達成するため、本発明が提供するサーミスタ形成用抵抗ペーストは、導電性粒子とガラスフリットと有機ビヒクルとで実質的に構成され、該導電性粒子がYRu、NdRu、SmRu、及びGdRuから選ばれた少なくとも1種であり、且つガラスフリットが鉛及びビスマスを含まないガラスフリットであることを特徴とする。 In order to achieve the above object, the resistance paste for thermistor formation provided by the present invention is substantially composed of conductive particles, glass frit, and an organic vehicle, and the conductive particles are Y 2 Ru 2 O 7 , Nd 2. It is at least one selected from Ru 2 O 7 , Sm 2 Ru 2 O 7 , and Gd 2 Ru 2 O 7 , and the glass frit is a glass frit containing no lead and bismuth.

本発明によれば、厚膜サーミスタと抵抗体を含む電子回路を作製する場合に、サーミスタと抵抗体をペーストの同時焼成により形成することができるので、抵抗値の精度を維持できると共に、抵抗温度係数などの優れた特性を有するサーミスタを安価に製造することができる。また、本発明のペースト及びそれを用いて形成される厚膜サーミスタから有害な鉛を排除することによって、環境汚染の問題を無くすことができる。   According to the present invention, when an electronic circuit including a thick film thermistor and a resistor is manufactured, the thermistor and the resistor can be formed by simultaneous baking of the paste. A thermistor having excellent characteristics such as a coefficient can be manufactured at low cost. Moreover, the problem of environmental pollution can be eliminated by eliminating harmful lead from the paste of the present invention and the thick film thermistor formed using the paste.

本発明のサーミスタ形成用抵抗ペーストにおいては、導電性粒子として、YRu、NdRu、SmRu、GdRuのいずれか1種を用いるか、又は2種以上を併用する。抵抗値のばらつき及びノイズの悪化を防ぐためには、厚膜抵抗体中の導電パスを微細にする必要があり、そのためには上記した導電性粒子の平均粒径は1.0μm以下であることが望ましい。 In the resistance paste for thermistor formation of the present invention, any one of Y 2 Ru 2 O 7 , Nd 2 Ru 2 O 7 , Sm 2 Ru 2 O 7 , and Gd 2 Ru 2 O 7 is used as the conductive particles. Or use two or more. In order to prevent variation in resistance value and deterioration of noise, it is necessary to make the conductive path in the thick film resistor fine, and for this purpose, the average particle diameter of the above-described conductive particles should be 1.0 μm or less. desirable.

これら導電性粒子は、各種の製法で得られたものを使用することができる。例えば、YRu、NdRu、SmRu、あるいはGdRuは、Y、Nd、Sm又はGdのいずれかの粉末と、RuOの粉末とを混合し、焙焼した後、粉砕する方法によって、それぞれ製造することができる。 As these conductive particles, those obtained by various production methods can be used. For example, Y 2 Ru 2 O 7 , Nd 2 Ru 2 O 7 , Sm 2 Ru 2 O 7 , or Gd 2 Ru 2 O 7 is Y 2 O 3 , Nd 2 O 3 , Sm 2 O 3 or Gd 2 O. Each of the powders of No. 3 and RuO 2 powder can be mixed, roasted, and then pulverized and then pulverized.

また、ガラスフリットは、鉛及びビスマスを含まないものであれば、その組成に特に制限はない。例えば、ホウケイ酸ガラス、アルミノホウケイ酸ガラス、ホウケイ酸アルカリ土類ガラス、ホウケイ酸アルカリガラス、ホウケイ酸亜鉛ガラスなどを用いることができる。また、抵抗値のばらつき及びノイズの悪化を防ぐには、厚膜抵抗体中の導電パスを微細にする必要があり、そのためには、ガラスフリットの平均粒径は5μm以下であることが好ましい。   The glass frit is not particularly limited as long as it does not contain lead and bismuth. For example, borosilicate glass, alumino borosilicate glass, borosilicate alkaline earth glass, borosilicate alkali glass, borosilicate zinc glass, or the like can be used. Further, in order to prevent variation in resistance value and deterioration of noise, it is necessary to make the conductive path in the thick film resistor finer. For this purpose, the average particle size of the glass frit is preferably 5 μm or less.

有機ビヒクルは、導電性粒子とガラスフリットを印刷に適したペースト状にするためのものである。有機ビヒクルとしては、抵抗又はサーミスタ形成用のペーストに通常使用されているものであってよく、例えば、エチルセルロ−ス、ブチラ−ル、アクリルなどの樹脂を、タ−ピネオ−ル、ブチルカルビト−ルアセテ−トなどの溶剤に溶解したものが用いられる。   The organic vehicle is for making conductive particles and glass frit into a paste suitable for printing. The organic vehicle may be one commonly used in pastes for forming resistors or thermistors. For example, a resin such as ethyl cellulose, butyral, or acrylic is used for terpineol, butyl carbitol acetate. Those dissolved in a solvent such as Toto are used.

尚、本発明のサーミスタ形成用抵抗ペーストにおいては、上記した必須成分の他に、厚膜抵抗体や厚膜サーミスタの電気的特性を調整するために従来から通常使用されている種々の添加剤、あるいは、分散剤、可塑剤などを適宜添加することができる。また、本発明のサーミスタ形成用抵抗ペーストの製造は、ロールミルなどの市販の粉砕装置を用いて、各成分を通常のごとく粉砕混練すればよい。   In addition, in the resistance paste for thermistor formation of the present invention, in addition to the above essential components, various additives conventionally used for adjusting the electrical characteristics of thick film resistors and thick film thermistors, Or a dispersing agent, a plasticizer, etc. can be added suitably. The resistance paste for forming the thermistor of the present invention can be produced by pulverizing and kneading each component as usual using a commercially available pulverizer such as a roll mill.

本発明のサーミスタ形成用抵抗ペーストは、絶縁性セラミックなどの基板上に印刷した後、750℃以上900℃未満の温度で焼成することによって、厚膜サーミスタを形成することができる。このように900℃未満の温度で焼成できるため、抵抗ペーストと同時に焼成すことが可能であり、サーミスタの抵抗値変化を防ぐことができる。   The resistance paste for forming the thermistor of the present invention can be printed on a substrate such as an insulating ceramic and then fired at a temperature of 750 ° C. or higher and lower than 900 ° C. to form a thick film thermistor. Thus, since it can bake at the temperature below 900 degreeC, it is possible to bake simultaneously with a resistance paste, and can prevent the resistance value change of a thermistor.

[実施例1]
Ruをアルカリ溶解して得たNaRuOの水溶液に、エタノ−ルを含むY(NO)の水溶液を添加して沈殿物を得た。この沈殿物をろ過して洗浄し、800℃で2時間焙焼して、YRu粉末を作製した。このYRu粉末の平均粒径は100nmであった。
[Example 1]
An aqueous solution of Y (NO 3 ) 3 containing ethanol was added to an aqueous solution of Na 2 RuO 4 obtained by dissolving Ru in an alkali to obtain a precipitate. The precipitate was filtered and washed, and baked at 800 ° C. for 2 hours to produce Y 2 Ru 2 O 7 powder. The average particle size of this Y 2 Ru 2 O 7 powder was 100 nm.

このYRu粉末と、ガラスフリットA(24重量%SiO−18重量%B−8重量%Al−5重量%CaO−27重量%BaO−15重量%ZnO−2重量%ZrO−1重量%SnO)と、エチルセルロ−スとタ−ピネオ−ルを主成分とする有機ビヒクルとを、下記表1に示す配合で混合し、三本ロ−ルミルで混練することにより、試料1〜3のペーストをそれぞれ作製した。 This Y 2 Ru 2 O 7 powder and glass frit A (24 wt% SiO 2 -18 wt% B 2 O 3 -8 wt% Al 2 O 3 -5 wt% CaO-27 wt% BaO-15 wt% ZnO -2 wt% ZrO 2 -1 wt% SnO 2 ) and an organic vehicle mainly composed of ethyl cellulose and turpineol in the composition shown in Table 1 below, The pastes of Samples 1 to 3 were prepared by kneading.

これらのペーストを、それぞれアルミナ基板上に1mm×1mmのサイズにスクリ−ン印刷し、150℃で10分間乾燥した後、ベルト炉にてピ−ク温度850℃で9分間焼成した。得られた試料1〜3の厚膜サーミスタについて、面積抵抗値と抵抗温度係数(TCR)を測定し、その結果を下記表1に併せて示した。サーミスタの抵抗値は、KEITHLEY社製のModel2001Multimeterを用い、4端子法にて測定した。   Each of these pastes was screen-printed on an alumina substrate to a size of 1 mm × 1 mm, dried at 150 ° C. for 10 minutes, and then fired in a belt furnace at a peak temperature of 850 ° C. for 9 minutes. For the thick film thermistors of Samples 1 to 3, the sheet resistance value and the temperature coefficient of resistance (TCR) were measured, and the results are also shown in Table 1 below. The resistance value of the thermistor was measured by a four-terminal method using a Model 2001 Multimeter manufactured by KEITHLEY.

尚、抵抗温度係数(TCR)は、下記計算式により求めた。
高温抵抗温度係数(HTCR)=[(R125−R25)]/R25(125−25)]×10ppm/℃
低温抵抗温度係数(CTCR)=[(R−55−R25)]/R25(−55−25)]×10ppm/℃
上記計算式において、R25は25℃での抵抗値、R125は125℃での抵抗値、R−55は−55℃での抵抗値である。
The temperature coefficient of resistance (TCR) was obtained by the following formula.
High temperature resistance temperature coefficient (HTCR) = [(R 125 −R 25 )] / R 25 (125−25)] × 10 6 ppm / ° C.
Low temperature resistance temperature coefficient (CTCR) = [(R− 55− R 25 )] / R 25 (−55−25)] × 10 6 ppm / ° C.
In the above formula, R 25 is a resistance value at 25 ° C., R 125 is a resistance value at 125 ° C., and R −55 is a resistance value at −55 ° C.

Figure 2008192784
Figure 2008192784

[実施例2]
Ruをアルカリ溶解して得たNaRuOの水溶液に、エタノ−ルを含むNd(NO)の水溶液を添加して沈殿物を得た。この沈殿物をろ過して洗浄し、800℃で2時間焙焼して、NdRu粉末を作製した。このNdRu粉末の平均粒径は130nmであった。
[Example 2]
An aqueous solution of Nd (NO 3 ) 3 containing ethanol was added to an aqueous solution of Na 2 RuO 4 obtained by dissolving Ru in an alkali to obtain a precipitate. The precipitate was filtered and washed, and baked at 800 ° C. for 2 hours to produce Nd 2 Ru 2 O 7 powder. The average particle size of this Nd 2 Ru 2 O 7 powder was 130 nm.

また、Ruをアルカリ溶解して得たNaRuOの水溶液に、エタノ−ルを含むSm(NO)の水溶液を添加して沈殿物を得た。この沈殿物をろ過して洗浄し、800℃で2時間焙焼して、SmRu粉末を作製した。このSmRu粉末の平均粒径は90nmであった。 Further, an aqueous solution of Sm (NO 3 ) 3 containing ethanol was added to an aqueous solution of Na 2 RuO 4 obtained by alkali dissolution of Ru to obtain a precipitate. The precipitate was filtered and washed, and baked at 800 ° C. for 2 hours to produce Sm 2 Ru 2 O 7 powder. The average particle diameter of this Sm 2 Ru 2 O 7 powder was 90 nm.

上記実施例1のYRu粉末(試料4)、上記したNdRu粉末(試料5)及びSmRu粉末(試料6)と、ガラスフリットB(60重量%SiO−5重量%B−11重量%Al−3重量%LiO−8重量%NaO−13重量%ZnO)と、エチルセルロ−スとタ−ピネオ−ルを主成分とする有機ビヒクルとを、下記表2に示す配合(ただし、有機ビヒクルは全て40重量%)で混合し、三本ロ−ルミルで混練することにより、試料4〜6のペーストをそれぞれ作製した。 Y 2 Ru 2 O 7 powder of Example 1 (Sample 4), Nd 2 Ru 2 O 7 powder (Sample 5) and Sm 2 Ru 2 O 7 powder (Sample 6), and glass frit B (60 wt.) % and SiO 2 -5 wt% B 2 O 3 -11 wt% Al 2 O 3 -3 wt% Li 2 O-8 wt% Na 2 O-13 wt% ZnO), ethylcellulose - scan and data - Pineo - Le Are mixed in the composition shown in Table 2 below (all organic vehicles are 40% by weight), and kneaded in a three-roll mill, whereby each of the pastes of Samples 4 to 6 is mixed. Produced.

これらのペーストを用い、上記実施例1と同様にして厚膜サーミスタを形成した。得られた試料4〜6の厚膜サーミスタについて、電気的特性を上記実施例1と同様に測定し、得られた結果を下記表2に併せて示した。   Using these pastes, thick film thermistors were formed in the same manner as in Example 1 above. About the thick film thermistor of the obtained samples 4-6, the electrical property was measured similarly to the said Example 1, and the obtained result was combined with following Table 2, and was shown.

Figure 2008192784
Figure 2008192784

[実施例3]
Ruをアルカリ溶解して得たNaRuOの水溶液に、エタノ−ルを含むGd(NO)の水溶液を添加して沈殿物を得た。この沈殿物をろ過して洗浄し、800℃で2時間焙焼して、GdRu粉末を作製した。このGdRu粉末の平均粒径は100nmであった。
[Example 3]
An aqueous solution of Gd (NO 3 ) 3 containing ethanol was added to an aqueous solution of Na 2 RuO 4 obtained by dissolving Ru in an alkali to obtain a precipitate. The precipitate was filtered and washed, and baked at 800 ° C. for 2 hours to produce Gd 2 Ru 2 O 7 powder. The average particle size of this Gd 2 Ru 2 O 7 powder was 100 nm.

このGdRu粉末と、上記実施例1で用いたガラスフリットAと、エチルセルロ−スとタ−ピネオ−ルを主成分とする有機ビヒクルとを、下記表3に示す配合で混合し、三本ロ−ルミルで混練することにより、試料7〜9のペーストをそれぞれ作製した。 This Gd 2 Ru 2 O 7 powder, the glass frit A used in Example 1 above, and an organic vehicle mainly composed of ethyl cellulose and terpineol were mixed in the formulation shown in Table 3 below. The pastes of Samples 7 to 9 were prepared by kneading with a three-roll mill.

これらのペーストを用い、上記実施例1と同様にして厚膜サーミスタを形成した。得られた試料7〜9の厚膜サーミスタについて、電気的特性を上記実施例1と同様に測定し、得られた結果を下記表3に併せて示した。   Using these pastes, thick film thermistors were formed in the same manner as in Example 1 above. About the thick film thermistor of the obtained samples 7-9, the electrical property was measured similarly to the said Example 1, and the obtained result was combined with following Table 3, and was shown.

Figure 2008192784
Figure 2008192784

上記した表1〜3の結果から、本発明よるサーミスタ形成用抵抗ペーストは、抵抗値の温度による変化率が大きく、サーミスタ形成用として好適であることが分る。しかも、本発明よるサーミスタ形成用抵抗ペーストは、その成分である導電性粒子及びガラスフリット中に鉛を含まず、従って環境汚染を引き起こすことなく使用することができる。   From the results shown in Tables 1 to 3 above, it can be seen that the resistance paste for forming the thermistor according to the present invention has a large rate of change in resistance value due to temperature and is suitable for forming the thermistor. Moreover, the resistance paste for forming the thermistor according to the present invention does not contain lead in the conductive particles and glass frit which are the components thereof, and can therefore be used without causing environmental pollution.

Claims (1)

導電性粒子とガラスフリットと有機ビヒクルとで実質的に構成されるサーミス形成用抵抗ペーストであって、該導電性粒子がYRu、NdRu、SmRu、及びGdRuから選ばれた少なくとも1種であり、且つガラスフリットが鉛及びビスマスを含まないガラスフリットであることを特徴とするサーミス形成用抵抗ペースト。 A resistive paste for thermist formation substantially composed of conductive particles, glass frit, and an organic vehicle, wherein the conductive particles are Y 2 Ru 2 O 7 , Nd 2 Ru 2 O 7 , Sm 2 Ru 2 O 7 and Gd 2 Ru 2 O 7 , and the glass frit is a glass frit containing no lead and bismuth, and thermist forming resistance paste.
JP2007024990A 2007-02-05 2007-02-05 Resistive paste for forming thermistor Pending JP2008192784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024990A JP2008192784A (en) 2007-02-05 2007-02-05 Resistive paste for forming thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024990A JP2008192784A (en) 2007-02-05 2007-02-05 Resistive paste for forming thermistor

Publications (2)

Publication Number Publication Date
JP2008192784A true JP2008192784A (en) 2008-08-21
JP2008192784A5 JP2008192784A5 (en) 2009-05-21

Family

ID=39752611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024990A Pending JP2008192784A (en) 2007-02-05 2007-02-05 Resistive paste for forming thermistor

Country Status (1)

Country Link
JP (1) JP2008192784A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209744A (en) * 2004-01-20 2005-08-04 Tdk Corp Thick film resistor paste, thick film resistor, electronic component
JP2006108610A (en) * 2004-09-07 2006-04-20 Tdk Corp Conductive material, resistor paste, resistor and electronic component
JP2006202579A (en) * 2005-01-19 2006-08-03 Tdk Corp Conductor composition and conductive paste
JP2007103594A (en) * 2005-10-03 2007-04-19 Shoei Chem Ind Co Resistor composition and thick film resistor
JP2007189040A (en) * 2006-01-13 2007-07-26 Alps Electric Co Ltd Resistive paste, resistance object, and circuit board using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209744A (en) * 2004-01-20 2005-08-04 Tdk Corp Thick film resistor paste, thick film resistor, electronic component
JP2006108610A (en) * 2004-09-07 2006-04-20 Tdk Corp Conductive material, resistor paste, resistor and electronic component
JP2006202579A (en) * 2005-01-19 2006-08-03 Tdk Corp Conductor composition and conductive paste
JP2007103594A (en) * 2005-10-03 2007-04-19 Shoei Chem Ind Co Resistor composition and thick film resistor
JP2007189040A (en) * 2006-01-13 2007-07-26 Alps Electric Co Ltd Resistive paste, resistance object, and circuit board using the same

Similar Documents

Publication Publication Date Title
CN109844871B (en) Resistor paste, resistor, electronic component, and method for producing lead-free resistor
KR20100134767A (en) Lead-free resistive compositions having ruthenium oxide
JP2006294589A (en) Resistance paste and resistor
JP6931455B2 (en) A composition for a resistor, a resistor paste containing the same, and a thick film resistor using the same.
KR20190022296A (en) Thick film resistor composition and thick film resistor paste comprising the same
JP3843767B2 (en) Method for manufacturing resistor paste and method for manufacturing thick film resistor
KR100686533B1 (en) Glass composition for thick film resistor paste, thick film resistor paste, thick-film resistor, and electronic device
JP2018049900A (en) Resistance paste and resistor produced by firing the same
JP2009007199A (en) Thick film resistor composition, resistor paste, and thick film resistor
JP4692028B2 (en) Ru-Mn-O fine powder, method for producing the same, and thick film resistor composition using the same
JP2005236274A (en) Resistive paste, resistor and electronic components
JP2018067640A (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor, and method for manufacturing positive temperature coefficient resistor
JP6932905B2 (en) Resistor paste and resistors made by firing it
JP2005244115A (en) Resistor paste, resistor and electronic part
JP2007227114A (en) Resistor paste and thick membrane resistor using it
JP2008192784A (en) Resistive paste for forming thermistor
JP2006279043A (en) Thick film resistor paste, thick film resistor, and electronic component
JP2009026903A (en) Thick film resistor composition, resistance paste, and thick film resistor
JP2013214591A (en) Thick film composition for forming thermistor, paste composition, and thermistor using the same
JP2005129806A (en) Resistor paste and thick film resistor
JP2018014211A (en) Resistance paste and resistive element prepared from the resistance paste
JP7245418B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7273266B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7110780B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2018101531A (en) Resistance composition and resistance paste mainly composed of the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927