JP2008156401A - Mixture of electroconductive thermoplastic resin composition for molding, and molded article obtained by molding the same - Google Patents

Mixture of electroconductive thermoplastic resin composition for molding, and molded article obtained by molding the same Download PDF

Info

Publication number
JP2008156401A
JP2008156401A JP2006344019A JP2006344019A JP2008156401A JP 2008156401 A JP2008156401 A JP 2008156401A JP 2006344019 A JP2006344019 A JP 2006344019A JP 2006344019 A JP2006344019 A JP 2006344019A JP 2008156401 A JP2008156401 A JP 2008156401A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
conductive
weight
molding
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006344019A
Other languages
Japanese (ja)
Other versions
JP5224686B2 (en
Inventor
Mihoko Yamamoto
美穂子 山本
Hisao Ando
久雄 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2006344019A priority Critical patent/JP5224686B2/en
Publication of JP2008156401A publication Critical patent/JP2008156401A/en
Application granted granted Critical
Publication of JP5224686B2 publication Critical patent/JP5224686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molded article achieving high electroconductivity and having high reliability with little dispersion of the electroconductivity without coating an electroconductive paste. <P>SOLUTION: The mixture of two or more kinds of thermoplastic resin pellets each containing a specific proportion of an electroconductive fiber by using each specified treating method is used for the molding. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は電気・電子製造分野に好適な熱可塑性樹脂の成形品に関するものである。   The present invention relates to a molded article of a thermoplastic resin suitable for the electric / electronic manufacturing field.

熱可塑性樹脂は、その優れた機械的強度と成形加工性から様々な分野で用いられており、近年では熱可塑性樹脂に導電性、電磁波シールド性を付与して金属部品を代替する動きも活発である。その一つに、電極、スイッチ等の接点材料や抵抗体の部品が挙げられる。
熱可塑性樹脂に導電性を付与する方法としては、導電性繊維の短繊維やカーボンブラック等の導電性充填材を配合する方法が知られているが、目標とする導電性を得るためには多量の添加が必要であったため、得られた成形品は機械的強度に劣ったものであった。これを改良する目的で、連続導電性繊維を熱可塑性樹脂で被覆後、冷却・切断してペレット長と同じ長さの導電性繊維を含有する熱可塑性樹脂ペレットを得、これを成形に用いることで、成形品中の導電繊維を長く保ち、高い導電性と機械的強度を発現する方法が提案されている。(特許文献1〜6)
Thermoplastic resins are used in various fields because of their excellent mechanical strength and moldability, and in recent years there has been an active movement to replace metal parts by imparting conductivity and electromagnetic shielding properties to thermoplastic resins. is there. One of them is contact materials such as electrodes and switches, and resistor parts.
As a method for imparting conductivity to a thermoplastic resin, a method of blending conductive fillers such as short fibers of conductive fibers or carbon black is known. Therefore, the obtained molded product was inferior in mechanical strength. To improve this, after coating continuous conductive fibers with thermoplastic resin, cooling and cutting to obtain thermoplastic resin pellets containing conductive fibers of the same length as the pellet length, and using this for molding Thus, a method has been proposed in which the conductive fibers in the molded article are kept long and high conductivity and mechanical strength are exhibited. (Patent Documents 1 to 6)

しかし、少量且つ繊維長の長い導電性繊維を用いて導電性を付与された成形品は、測定部位や成形品毎に表面抵抗率が大きくばらついてしまうという問題があった。このばらつきは、導電性繊維の添加量を増加することにより、ある程度は改善される。しかしながら、従来の手法を用いて製造された導電性繊維含有量の多い成形用ペレットは、ペレタイズ時、あるいはペレットの運搬中に導電性繊維に沿って割れ易く、その際導電性繊維の毛羽立ちが生じてしまう。この毛羽の成形品への混入が、成形品の外観不良、及び表面抵抗率のばらつきの原因となってしまうという問題があった。このため、信頼性を要する電極等の接点材料として使用するためには、接点部に導電ペーストを塗布する等、多大な手間とコストが必要であった。   However, a molded product imparted with conductivity using a small amount of conductive fibers having a long fiber length has a problem that the surface resistivity varies greatly between measurement sites and molded products. This variation is improved to some extent by increasing the amount of conductive fiber added. However, molding pellets with a high content of conductive fibers produced using conventional techniques are susceptible to cracking along the conductive fibers during pelletization or during transportation of the pellets, and the conductive fibers become fuzzy. End up. There is a problem that the mixture of the fluff into the molded product causes the appearance defect of the molded product and the variation in the surface resistivity. For this reason, in order to use as contact materials, such as an electrode which requires reliability, much effort and cost, such as apply | coating a conductive paste to a contact part, were required.

特開昭60−18315号公報Japanese Patent Laid-Open No. 60-18315 特開昭63−51109号公報JP 63-51109 A 特開平6−270142号公報JP-A-6-270142 特開2000−167828号公報JP 2000-167828 A 特開2000−71245号公報JP 2000-71245 A 特開2005−89515号公報JP 2005-89515 A

上述の通り、成形品中の導電性繊維長を長く保つことにより、高い機械的強度と導電性を同時に発現する方法は既にいくつか検討されている。しかしながら、高い導電性を発現し、且つ導電ペーストを塗布することなく導電性のばらつきの少ない信頼性の高い成形品を得ることは困難であった。   As described above, several methods have already been studied for maintaining high mechanical strength and conductivity simultaneously by keeping the length of the conductive fiber in the molded article long. However, it has been difficult to obtain a highly reliable molded product that exhibits high conductivity and has little variation in conductivity without applying a conductive paste.

本発明者等は、上述の問題を解決するために鋭意検討した結果、導電性繊維を特定方法を用いて、それぞれ特定量含有する熱可塑性樹脂ペレット二種以上を特定の比率で混合したものを成形に用いることにより、上述した課題を解決できることを見出し、本発明に到達した。
即ち本発明は、
[1]全混合物中における導電性繊維の含有量が20〜40重量%であって、下記[I
]および[II]を主構成成分とすることを特徴とする導電性熱可塑性樹脂組成物の成形用混合物。
[I]熱可塑性樹脂(A)にて導電性連続繊維束を押出被覆した後、所定の長さに切断して得られたペレットであって、導電性繊維の含有量が5〜25重量%である熱可塑性樹脂ペレット。
[II]熱可塑性樹脂(B)にて導電性連続繊維束を含浸被覆した後、所定の長さに切断して得られたペレットであって、導電性繊維の含有量が50〜95重量%である熱可塑性樹脂ペレット、
As a result of intensive studies to solve the above-mentioned problems, the present inventors have mixed two or more types of thermoplastic resin pellets each containing a specific amount of conductive fibers at a specific ratio using a specific method. The inventors have found that the above-mentioned problems can be solved by using the molding, and have reached the present invention.
That is, the present invention
[1] The content of the conductive fiber in the entire mixture is 20 to 40% by weight, and the following [I
] And [II] as main constituents, a molding mixture of a conductive thermoplastic resin composition.
[I] A pellet obtained by extrusion-coating a conductive continuous fiber bundle with the thermoplastic resin (A) and then cutting into a predetermined length, and the content of the conductive fiber is 5 to 25% by weight. Is a thermoplastic resin pellet.
[II] A pellet obtained by impregnating and coating a conductive continuous fiber bundle with a thermoplastic resin (B) and then cutting into a predetermined length, and the conductive fiber content is 50 to 95% by weight. Thermoplastic pellets, which is

[2]熱可塑性樹脂(A)がスチレン系樹脂であることを特徴とする上記[1]記載の導電性熱可塑性樹脂組成物の成形用混合物、
[3][I]が導電性連続繊維束を熱可塑性樹脂(B)にて含浸被覆した後、さらに熱可塑性樹脂(A)にて押出被覆して、所定の長さに切断して得られたペレットであることを特徴とする上記[1]又は[2]に記載の導電性熱可塑性樹脂組成物の成形用混合物、
[4]熱可塑性樹脂(B)がゴム強化スチレン系樹脂であることを特徴とする上記[1]〜[3]いずれかに記載の導電性熱可塑性樹脂組成物の成形用混合物、
[5]全混合物を100重量部とした時、[I]が50〜95重量部、且つ[II]が5〜50重量部であることを特徴とする上記[1]〜[4]いずれかに記載の導電性熱可塑性樹脂組成物の成形用混合物、
[6]上記[1]〜[5]のいずれかに記載の導電性熱可塑性樹脂組成物の成形用混合物を射出成形してなることを特徴とする成形品、
である。
[2] The molding mixture of the conductive thermoplastic resin composition according to the above [1], wherein the thermoplastic resin (A) is a styrene resin,
[3] [I] is obtained by impregnating and coating the conductive continuous fiber bundle with the thermoplastic resin (B), and further extrusion-coating with the thermoplastic resin (A) and cutting to a predetermined length. A molding mixture of the conductive thermoplastic resin composition according to the above [1] or [2], wherein the mixture is a pellet.
[4] The molding mixture of the conductive thermoplastic resin composition according to any one of the above [1] to [3], wherein the thermoplastic resin (B) is a rubber-reinforced styrene resin.
[5] Any of the above [1] to [4], wherein [I] is 50 to 95 parts by weight and [II] is 5 to 50 parts by weight when the total mixture is 100 parts by weight. A molding mixture of the conductive thermoplastic resin composition according to claim 1,
[6] A molded article obtained by injection molding a molding mixture of the conductive thermoplastic resin composition according to any one of [1] to [5] above,
It is.

本発明により、導電性に優れ、成形条件、あるいは測定部位による導電性のばらつきが極めて少ない、電極等の接点材料に最適な成形品を得ることが出来る。   According to the present invention, it is possible to obtain a molded product that is excellent in electrical conductivity and has an extremely small variation in electrical conductivity depending on molding conditions or measurement sites, and that is optimal for contact materials such as electrodes.

本発明において、導電性連続繊維束とは、導電性を有する連続繊維のモノフィラメントが千本から数十万本の束になったものを言う。導電性連続繊維としては、例えば、炭素繊維、金属繊維、金属メッキを施した炭素繊維、あるいは金属メッキを施したガラス繊維等が挙げられるが、この中で導電性と比重のバランスを考慮すると、炭素繊維が好ましい。
連続炭素繊維としては、公知のものを使用することが出来、例えば、ポリアクリロニトリル系(以下、PAN系と言う。)、ピッチ系、セルロース系が挙げられるが、この中で強度と導電性のバランスからPAN系が好ましい。炭素繊維のモノフィラメントの直径としては、導電性と取り扱いの容易さのバランスを考慮すると、3〜20μm、好ましくは5〜15μm、更に好ましくは5〜10μmである。また、炭素繊維束中のモノフィラメントの数としては、1,000〜100,000本、好ましくは3,000〜50,000本、更に好ましくは3,000〜20,000本である。生産性の観点から1000本以上が好ましい。1000本未満であると、組成物中の導電性繊維含有量を調整するために、熱可塑性樹脂による被覆工程における生産性を著しく落として運転せざるを得ない。一方、射出成形工程における導電性繊維の分散性、成形品の外観や導電性、及び導電性の信頼性の観点から100,000本以下が好ましい。
連続金属繊維としては、公知の導電性金属繊維を使用することが出来、例えば、銅、鉄、ニッケル、金、銀、チタン、アルミニウムやこれらを主成分とするステンレス、真鍮等の合金製の繊維が挙げられる。
In the present invention, the conductive continuous fiber bundle refers to a bundle of thousands to hundreds of thousands of monofilaments of continuous fibers having conductivity. Examples of the conductive continuous fiber include carbon fiber, metal fiber, carbon fiber subjected to metal plating, or glass fiber subjected to metal plating, among them, considering the balance between conductivity and specific gravity. Carbon fiber is preferred.
As the continuous carbon fiber, known ones can be used, and examples thereof include polyacrylonitrile (hereinafter referred to as PAN), pitch, and cellulose. Among these, the balance between strength and conductivity is included. To PAN system is preferred. The diameter of the carbon fiber monofilament is 3 to 20 μm, preferably 5 to 15 μm, more preferably 5 to 10 μm in consideration of the balance between conductivity and ease of handling. In addition, the number of monofilaments in the carbon fiber bundle is 1,000 to 100,000, preferably 3,000 to 50,000, and more preferably 3,000 to 20,000. From the viewpoint of productivity, 1000 or more are preferable. When the number is less than 1000, in order to adjust the conductive fiber content in the composition, the productivity in the coating process with the thermoplastic resin must be remarkably reduced. On the other hand, 100,000 or less is preferable from the viewpoints of dispersibility of conductive fibers in the injection molding process, appearance and conductivity of the molded product, and reliability of conductivity.
As the continuous metal fiber, a known conductive metal fiber can be used, for example, copper, iron, nickel, gold, silver, titanium, aluminum, or a fiber made of an alloy such as stainless steel or brass mainly composed of these. Is mentioned.

連続炭素繊維に金属メッキを施したものあるいはガラス繊維に金属メッキを施したものとしては、公知の炭素繊維、ガラス繊維に上述した金属をメッキしたものが挙げられる。これら金属繊維、及び金属メッキ処理を施した炭素繊維、あるいは金属メッキ処理を施し
たガラス繊維のモノフィラメントの直径としては、導電性と取り扱いの容易さとのバランスを考慮すると3〜20μm、好ましくは5〜15μmである。
また、これらの導電性連続繊維束には、これを配合した熱可塑性樹脂の力学的特性の向上、あるいは導電性の向上、及び連続繊維束の取り扱い性向上の目的で、カップリング剤やサイジング剤等の表面処理剤による処理を施してあっても良い。かかる表面処理剤としては、例えばシラン系、チタネート系等のカップリング剤、エポキシ系、ウレタン系、エーテル系、エステル系、アミド系、アクリル系、ポリビニルアルコール系のサイジング剤等が挙げられる。
Examples of the continuous carbon fiber plated with metal or the glass fiber plated with metal include known carbon fibers and glass fibers plated with the above-described metals. The diameter of monofilaments of these metal fibers and carbon fibers subjected to metal plating treatment or glass fibers subjected to metal plating treatment is 3 to 20 μm, preferably 5 to 5 in consideration of the balance between conductivity and ease of handling. 15 μm.
In addition, these conductive continuous fiber bundles include a coupling agent and a sizing agent for the purpose of improving the mechanical properties of a thermoplastic resin containing the conductive continuous fiber bundle, or improving the conductivity and handling of the continuous fiber bundle. You may give the process by surface treatment agents, such as. Examples of such surface treatment agents include silane-based and titanate-based coupling agents, epoxy-based, urethane-based, ether-based, ester-based, amide-based, acrylic-based, and polyvinyl alcohol-based sizing agents.

本発明に用いられる熱可塑性樹脂(A)としては、特に制限されないが、スチレン系樹脂、ポリカーボネート、オレフィン系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、熱可塑性ポリエステル、ポリアセタール、ポリスルフォン、シリコーン樹脂、ポリエーテルエーテルケトン等が挙げられ、単独又は二種以上のアロイとしても使用することが出来る。
この中で、特に好ましいのは、スチレン系樹脂、ポリカーボネート、及びこれらのアロイである。
スチレン系樹脂としては、芳香族ビニル化合物の単一重合体、芳香族ビニル化合物、及びこれらと共重合可能な単量体とを共重合させてなる共重合体、ゴム質重合体に芳香族ビニル化合物、及びこれらと共重合可能な単量体とをグラフト共重合させてなるグラフト共重合体、及びこれらの混合物が挙げられる。
The thermoplastic resin (A) used in the present invention is not particularly limited, but styrene resin, polycarbonate, olefin resin, polyamide resin, vinyl chloride resin, thermoplastic polyester, polyacetal, polysulfone, silicone resin, Polyetheretherketone etc. are mentioned, It can use also as single or 2 or more types of alloys.
Among these, styrene resins, polycarbonates, and alloys thereof are particularly preferable.
Styrenic resins include aromatic vinyl compound single polymers, aromatic vinyl compounds, copolymers obtained by copolymerizing these with monomers, rubbery polymers and aromatic vinyl compounds. And a graft copolymer obtained by graft copolymerization with a monomer copolymerizable therewith, and a mixture thereof.

芳香族ビニル化合物としては、スチレン、α−メチルスチレン、o−メチルスチレン、p−メチルスチレン、エチルスチレン、p−t−ブチルスチレン、ビニルナフタレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン等が挙げられ、これらは単独、又は二種以上を組み合わせて使用することが出来るが、この中で特に好ましいのは、スチレン、及びα−メチルスチレンである。
芳香族ビニル化合物と共重合可能な単量体としては、例えば、アクリロニトリル、メタアクリロニトリルなどのシアン化ビニル化合物、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等のアクリル酸エステルや同様な置換体のメタクリル酸エステル、さらに、アクリル酸、メタクリル酸等のアクリル酸類やN−フェニルマレイミド、N−メチルマレイミド等のN−置換マレイミド系単量体、グリシジルメタクリレート等のグリシジル基含有単量体等が挙げられ、この中で特に好ましいのはアクリロニトリル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、N−フェニルマレイミド、グリシジルメタクリレートである。これらは単独、又は二種以上を組み合わせて使用することが出来る。
Examples of aromatic vinyl compounds include styrene, α-methyl styrene, o-methyl styrene, p-methyl styrene, ethyl styrene, pt-butyl styrene, vinyl naphthalene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, etc. These can be used singly or in combination of two or more. Among them, styrene and α-methylstyrene are particularly preferable.
Examples of the monomer copolymerizable with the aromatic vinyl compound include vinyl cyanide compounds such as acrylonitrile and methacrylonitrile, acrylic acid esters such as methyl acrylate, ethyl acrylate, and butyl acrylate, and similar substituents. Examples include methacrylic acid esters, acrylic acids such as acrylic acid and methacrylic acid, N-substituted maleimide monomers such as N-phenylmaleimide and N-methylmaleimide, and glycidyl group-containing monomers such as glycidyl methacrylate. Of these, acrylonitrile, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, N-phenylmaleimide, and glycidyl methacrylate are particularly preferable. These can be used alone or in combination of two or more.

スチレン系樹脂における還元粘度(ηsp/c)は0.2〜1.0dl/g、好ましくは0.3〜1.0dl/g、さらに好ましくは0.4〜1.0dl/g、特に好ましくは0.45〜1.0dl/gである。これがこの範囲にあると耐衝撃性、及び難燃性に優れた組成物を得ることが出来る。還元粘度は、樹脂0.50gを2−ブタノン100mlにて溶解した溶液を、30℃にてCannon−Fenske型毛細管中の流出時間を測定することにより得られる。   The reduced viscosity (ηsp / c) in the styrene-based resin is 0.2 to 1.0 dl / g, preferably 0.3 to 1.0 dl / g, more preferably 0.4 to 1.0 dl / g, particularly preferably. 0.45 to 1.0 dl / g. When this is in this range, a composition excellent in impact resistance and flame retardancy can be obtained. The reduced viscosity can be obtained by measuring the outflow time in a Cannon-Fenske type capillary tube at 30 ° C. with a solution obtained by dissolving 0.50 g of resin in 100 ml of 2-butanone.

スチレン系グラフト共重合体におけるゴム質重合体としては、例えば、ポリブタジエン、ブタジエン−スチレン共重合体、ブタジエン−アクリロニトリル共重合体、ブタジエン−アクリル共重合体、スチレン−ブタジエン−スチレンブロック共重合体、ポリイソプレン、スチレン−イソプレン共重合体等の共役ジエン系ゴム、及びこれらの水素添加物、アクリル酸エチル、アクリル酸ブチル等のアクリル系ゴム、エチレン−α−オレフィン−ポリエン共重合体、エチレン−α−オレフィン共重合体、シリコーンゴム、シリコーン−アクリルゴム等が挙げられ、これらは単独、又は二種以上を組み合わせて使用することが出来る。この中で特に好ましいのは、ポリブタジエン、ポリイソプレン、ブタジエン−スチ
レン共重合体、ブタジエン−アクリロニトリル共重合体、ブタジエン−アクリル共重合体、アクリル系ゴム、エチレン−α−オ
レフィン−ポリエン共重合体、エチレン−α−オレフィン共重合体、シリコーンゴム、シリコーン−アクリルゴムである。
スチレン系グラフト共重合体におけるゴム質重合体の重量平均粒子径は、耐衝撃性等の機械的強度、成形加工性、成形品外観のバランスから、好ましくは0.1〜1.2μm、より好ましくは0.15〜0.8μm、さらに好ましくは0.15〜0.6μm、特に好ましくは0.2〜0.4μmである。
Examples of the rubbery polymer in the styrene-based graft copolymer include polybutadiene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, butadiene-acrylic copolymer, styrene-butadiene-styrene block copolymer, poly Conjugated diene rubbers such as isoprene and styrene-isoprene copolymers, and hydrogenated products thereof, acrylic rubbers such as ethyl acrylate and butyl acrylate, ethylene-α-olefin-polyene copolymers, ethylene-α- Examples include olefin copolymers, silicone rubber, silicone-acrylic rubber, and the like. These may be used alone or in combination of two or more. Of these, polybutadiene, polyisoprene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, butadiene-acrylic copolymer, acrylic rubber, ethylene-α-olefin-polyene copolymer, ethylene are particularly preferable. -Α-olefin copolymer, silicone rubber, silicone-acrylic rubber.
The weight average particle diameter of the rubbery polymer in the styrene-based graft copolymer is preferably 0.1 to 1.2 μm, more preferably from the balance of mechanical strength such as impact resistance, molding processability, and appearance of the molded product. Is 0.15 to 0.8 μm, more preferably 0.15 to 0.6 μm, and particularly preferably 0.2 to 0.4 μm.

また、スチレン系グラフト共重合体におけるグラフト率は、好ましくは10〜150重量%、より好ましくは20〜110重量%、更に好ましくは25〜60重量%である。グラフト率をこの範囲にすることで、耐衝撃性に優れ、成形加工性の良好な組成物を得ることが出来る。尚、グラフト率とは、ゴム質重合体にグラフト共重合した単量体の、ゴム質重合体に対する重量割合として定義される。その測定法は、重合反応により生成した重合体をアセトンに溶解し、遠心分離器によりアセトン可溶分と不溶分とに分離する。この時、アセトンに溶解する成分は重合反応した共重合体のうちグラフト反応しなかった成分(非グラフト成分)であり、アセトン不溶分はゴム質重合体、及びゴム質重合体にグラフト反応した成分(グラフト成分)である。アセトン不溶分の重量からゴム質重合体の重量を差し引いた値がグラフト成分の重量として定義されるので、これらの値からグラフト率を求めることが出来る。   Moreover, the graft ratio in a styrene-type graft copolymer becomes like this. Preferably it is 10 to 150 weight%, More preferably, it is 20 to 110 weight%, More preferably, it is 25 to 60 weight%. By setting the graft ratio within this range, a composition having excellent impact resistance and good moldability can be obtained. The graft ratio is defined as the weight ratio of the monomer graft copolymerized with the rubber polymer to the rubber polymer. In the measurement method, a polymer produced by a polymerization reaction is dissolved in acetone and separated into an acetone-soluble component and an insoluble component by a centrifuge. At this time, the component dissolved in acetone is a component that has not undergone a graft reaction (non-graft component) in the copolymer that has undergone a polymerization reaction, and the acetone insoluble component is a component that has undergone a graft reaction to the rubber polymer and the rubber polymer. (Graft component). Since the value obtained by subtracting the weight of the rubbery polymer from the weight of the acetone-insoluble component is defined as the weight of the graft component, the graft ratio can be determined from these values.

ポリカーボネート樹脂としては、ヒドロキシアリール化合物とホスゲンとの界面重縮合によって得られるもの、又はジヒドロキシアリール化合物とジフェニルカーボネートとのエステル交換反応(溶融重縮合)によって得られるもの等、公知の重合法によって得られるものが挙げられる。
オレフィン系樹脂としては、例えば、高密度、中密度、低密度ポリエチレン、ポリプロピレン、ポリブテン、4−メチルペンテン−1樹脂、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−アルキル(メタ)アクリレート共重合体等が挙げられる。
ポリアミド系樹脂としては、例えば、ナイロン6、ナイロン11、ナイロン66、ナイロン610等が挙げられる。
The polycarbonate resin can be obtained by a known polymerization method such as one obtained by interfacial polycondensation between a hydroxyaryl compound and phosgene, or one obtained by transesterification (melt polycondensation) between a dihydroxyaryl compound and diphenyl carbonate. Things.
Examples of the olefin resin include high density, medium density, low density polyethylene, polypropylene, polybutene, 4-methylpentene-1 resin, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-alkyl (meta ) Acrylate copolymer and the like.
Examples of the polyamide-based resin include nylon 6, nylon 11, nylon 66, nylon 610, and the like.

塩化ビニル系樹脂としては、例えば、塩化ビニル、及びこれと共重合可能な単量体とを共重合させてなる共重合体が挙げられる。塩化ビニルと共重合可能な単量体としては、例えば、スチレン、α−メチルスチレン等の芳香族ビニル化合物、エチレン、プロピレン、1−ヘキセン等のα−オレフィン系単量体、酢酸ビニル、プロピオン酸ビニル等のエステル系単量体、ブチルビニルエーテル、セチルビニルエーテル、フェニルビニルエーテル等のエーテル系単量体、(メタ)アクリロニトリル等のシアン化ビニル化合物、塩化ビニリデン、フッ化ビニル等のハロゲン化ビニル化合物、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等のアクリル酸エステルや同様な置換体のメタクリル酸エステル、さらに、アクリル酸、メタクリル酸等のアクリル酸類やN−フェニルマレイミド、N−メチルマレイミド等のN−置換マレイミド系単量体等が挙げられる。   Examples of the vinyl chloride resin include a copolymer obtained by copolymerizing vinyl chloride and a monomer copolymerizable therewith. Examples of the monomer copolymerizable with vinyl chloride include aromatic vinyl compounds such as styrene and α-methylstyrene, α-olefin monomers such as ethylene, propylene, and 1-hexene, vinyl acetate, and propionic acid. Ester monomers such as vinyl, ether monomers such as butyl vinyl ether, cetyl vinyl ether and phenyl vinyl ether, vinyl cyanide compounds such as (meth) acrylonitrile, vinyl halide compounds such as vinylidene chloride and vinyl fluoride, acrylic Acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, and similar substituted methacrylic acid esters, acrylic acids such as acrylic acid and methacrylic acid, and N-phenylmaleimide and N-methylmaleimide N- Examples thereof include substituted maleimide monomers.

熱可塑性ポリエステルとしては、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリエチレンナフタレート等のジカルボン酸と脂肪族ジオールとから得られるポリエステルが挙げられる。
ジカルボン酸としては、テレフタル酸、アゼライン酸、セバシン酸、アジピン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環式ジカルボン酸等が挙げられ、
これらを単独、又は二種以上を組み合わせて使用することが出来る。
脂肪族ジオールとしては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、トリメチレングリコール、1,4−シクロヘキサンジメタノール、ヘキサメチレングリコール等が挙げられる。
Examples of the thermoplastic polyester include polyesters obtained from dicarboxylic acids and aliphatic diols such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polycyclohexanedimethylene terephthalate, and polyethylene naphthalate.
Examples of dicarboxylic acids include aliphatic dicarboxylic acids such as terephthalic acid, azelaic acid, sebacic acid, adipic acid, and decanedicarboxylic acid, aromatic dicarboxylic acids such as isophthalic acid and naphthalenedicarboxylic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid. Etc.
These can be used alone or in combination of two or more.
Examples of the aliphatic diol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, trimethylene glycol, 1,4-cyclohexanedimethanol, hexamethylene glycol and the like.

熱可塑性樹脂ペレット[I]を製造する方法としては、導電性連続繊維束を張力下で引き揃えながらクロスヘッドダイを通過させて熱可塑性樹脂(A)にて押出被覆し、切断してペレット化する方法を用いることが出来る。この時、導電性連続繊維束に対する被覆量は、例えばクロスヘッドダイのダイス口径や樹脂の引き取り速度を適切に設定することで制御することが出来る。
熱可塑性樹脂ペレット[I]における導電性繊維の含有量は、5〜25重量%、好ましくは10〜25重量%、さらに好ましくは10〜22重量%、特に好ましくは12〜22重量%である。これがこの範囲にあると、導電性繊維が成形品中により均一に分散し、且つペレット割れによる繊維の毛羽立ちを抑制することが出来るので、外観、導電性に優れ、導電性のばらつきの少ない信頼性の高い成形品を得ることが出来る。
As a method for producing the thermoplastic resin pellet [I], the conductive continuous fiber bundle is passed through a crosshead die while being aligned under tension, and is extrusion coated with the thermoplastic resin (A), cut and pelletized. Can be used. At this time, the coating amount with respect to the conductive continuous fiber bundle can be controlled, for example, by appropriately setting the die diameter of the crosshead die and the take-up speed of the resin.
The content of the conductive fiber in the thermoplastic resin pellet [I] is 5 to 25% by weight, preferably 10 to 25% by weight, more preferably 10 to 22% by weight, and particularly preferably 12 to 22% by weight. If this is in this range, the conductive fibers can be more uniformly dispersed in the molded product, and the fluffing of the fibers due to pellet cracking can be suppressed, so the appearance and conductivity are excellent, and reliability with little variation in conductivity is achieved. Can be obtained.

また、導電性連続繊維束を熱可塑性樹脂(A)によって被覆する前に、予め熱可塑性樹脂(B)を含浸させ、繊維束中のモノフィラメント表面を被覆することにより、さらに導電性のばらつきの少ない信頼性の高い成形品を得ることが出来る。含浸被覆法としては、例えば連続繊維束に熱可塑性樹脂を溶融引き出し法により含浸被覆させる方法、連続繊維束を熱可塑性樹脂のエマルジョン、サスペンジョン、溶液、あるいは溶融物の入った含浸槽中を通過させた後に固化する方法、樹脂粉末等を振動や気体で分散させたところへ連続繊維束を通過させ、粉末を付着させた後に加熱して含浸被覆させる方法等が挙げられる。熱可塑性樹脂(B)がゴム強化スチレン系樹脂である時には、含浸被覆法としてエマルジョンを用いる方法が最も好ましい。   In addition, before coating the continuous conductive fiber bundle with the thermoplastic resin (A), impregnating the thermoplastic resin (B) in advance and covering the monofilament surface in the fiber bundle further reduces the variation in conductivity. A highly reliable molded product can be obtained. Examples of the impregnation coating method include a method in which a continuous fiber bundle is impregnated with a thermoplastic resin by a melt drawing method, and the continuous fiber bundle is passed through an impregnation tank containing an emulsion, suspension, solution, or melt of a thermoplastic resin. And a method of solidifying the resin powder and the like, a method in which a continuous fiber bundle is passed through a place where resin powder or the like is dispersed by vibration or gas, and the powder is attached, followed by heating and impregnation coating. When the thermoplastic resin (B) is a rubber-reinforced styrene resin, a method using an emulsion as the impregnation coating method is most preferable.

熱可塑性樹脂(B)としては、特に制限は無く、例えば上述した熱可塑性樹脂(A)の例として挙げられたものを使用することが出来る。この中で好ましいのはスチレン系樹脂、特に好ましいのは、ゴム質重合体に芳香族ビニル化合物、及びこれらと共重合可能な単量体とをグラフト共重合させてなるグラフト共重合体を含有するゴム強化スチレン系樹である。
熱可塑性樹脂(B)は、必ずしも熱可塑性樹脂(A)と組成、分子量、組成分布が同一である必要は無いが、機械的強度、及び分散性を考慮すると、熱可塑性樹脂(A)と相溶性を示すか、公知のポリマーアロイとして用いられている組み合わせであることが好ましい。さらに、熱可塑性樹脂(B)の成形温度における流動性は、熱可塑性樹脂(A)よりも優れている方が導電性繊維をより均一に分散させることが出来るので、外観、導電性に優れ、導電性のばらつきの少ない信頼性の高い成形品を得ることが出来る。
また、熱可塑性樹脂ペレット[I]における熱可塑性樹脂(B)と熱可塑性樹脂ペレット[II]における熱可塑性樹脂(B)も、必ずしも同一である必要は無い。
There is no restriction | limiting in particular as a thermoplastic resin (B), For example, what was mentioned as an example of the thermoplastic resin (A) mentioned above can be used. Among these, a styrene resin is preferable, and a graft copolymer obtained by graft copolymerizing an aromatic vinyl compound and a monomer copolymerizable therewith with a rubbery polymer is particularly preferable. It is a rubber-reinforced styrene tree.
The thermoplastic resin (B) does not necessarily have the same composition, molecular weight, and composition distribution as the thermoplastic resin (A), but considering the mechanical strength and dispersibility, the thermoplastic resin (A) is compatible with the thermoplastic resin (A). It is preferable that the combination shows solubility or is used as a known polymer alloy. Furthermore, since the fluidity at the molding temperature of the thermoplastic resin (B) is more excellent than the thermoplastic resin (A), the conductive fibers can be more uniformly dispersed. A highly reliable molded product with little variation in conductivity can be obtained.
Further, the thermoplastic resin (B) in the thermoplastic resin pellet [I] and the thermoplastic resin (B) in the thermoplastic resin pellet [II] are not necessarily the same.

熱可塑性樹脂ペレット[II]を製造する方法としては、導電性連続繊維束に熱可塑性樹脂(B)を含浸させ、繊維束中のモノフィラメント表面を被覆した後、所定の長さに切断する公知の方法を使用することが出来る。含浸被覆法としては、例えば連続繊維束に熱可塑性樹脂を溶融引き出し法により含浸被覆させる方法、連続繊維束を熱可塑性樹脂のエマルジョン、サスペンジョン、溶液、あるいは溶融物の入った含浸槽中を通過させた後に固化する方法、樹脂粉末等を振動や気体で分散させたところへ連続繊維束を通過させ、粉末を付着させた後に加熱して含浸被覆させる方法等が挙げられる。熱可塑性樹脂(B)がゴム強化スチレン系樹脂である時には、含浸被覆法としてエマルジョンを用いる方法が最も好ましい。
熱可塑性樹脂ペレット[II]における導電性繊維の含有量は、50〜95重量%、好
ましくは50〜90重量%、さらに好ましくは55〜90重量%、特に好ましくは60〜85重量%である。これがこの範囲にあると、導電性繊維が成形品中により均一に分散し、且つペレット割れによる繊維の毛羽立ちを抑制することが出来るので、外観、導電性に優れ、導電性のばらつきの少ない信頼性の高い成形品を得ることが出来る。
As a method for producing the thermoplastic resin pellet [II], a conductive continuous fiber bundle is impregnated with a thermoplastic resin (B), the surface of the monofilament in the fiber bundle is coated, and then cut to a predetermined length. The method can be used. Examples of the impregnation coating method include a method in which a continuous fiber bundle is impregnated with a thermoplastic resin by a melt drawing method, and the continuous fiber bundle is passed through an impregnation tank containing an emulsion, suspension, solution, or melt of a thermoplastic resin. And a method of solidifying the resin powder and the like, a method in which a continuous fiber bundle is passed through a place where resin powder or the like is dispersed by vibration or gas, and the powder is attached, followed by heating and impregnation coating. When the thermoplastic resin (B) is a rubber-reinforced styrene resin, a method using an emulsion as the impregnation coating method is most preferable.
The content of the conductive fiber in the thermoplastic resin pellet [II] is 50 to 95% by weight, preferably 50 to 90% by weight, more preferably 55 to 90% by weight, and particularly preferably 60 to 85% by weight. If this is in this range, the conductive fibers can be more uniformly dispersed in the molded product, and the fluffing of the fibers due to pellet cracking can be suppressed, so the appearance and conductivity are excellent, and reliability with little variation in conductivity is achieved. Can be obtained.

本発明において、熱可塑性樹脂ペレット[I]、および熱可塑性樹脂ペレット[II]の長さは3〜20mmが好ましく、より好ましくは5〜15mm、特に好ましくは5〜12mmである。これがこの範囲にあると外観、導電性に優れ、導電性のばらつきの少ない信頼性の高い成形品を得ることが出来る。
熱可塑性樹脂ペレット[I]、および熱可塑性樹脂ペレット[II]を混合する方法については、タンブラー等公知の方法を用いることが出来る。
少なくとも熱可塑性樹脂ペレット[I]および熱可塑性樹脂ペレット[II]を構成成分とする全混合物中における導電性繊維の含有量は、20〜40重量%、好ましくは20〜35重量%、さらに好ましくは22〜35重量%、特に好ましくは22〜30重量%である。これがこの範囲にあると、成形性、外観、導電性に優れ、導電性のばらつきの少ない信頼性の高い成形品を得ることが出来る。
In the present invention, the length of the thermoplastic resin pellet [I] and the thermoplastic resin pellet [II] is preferably 3 to 20 mm, more preferably 5 to 15 mm, and particularly preferably 5 to 12 mm. When this is in this range, a highly reliable molded product having excellent appearance and conductivity and little variation in conductivity can be obtained.
About the method of mixing thermoplastic resin pellet [I] and thermoplastic resin pellet [II], well-known methods, such as a tumbler, can be used.
The content of the conductive fiber in the total mixture containing at least the thermoplastic resin pellet [I] and the thermoplastic resin pellet [II] as a constituent component is 20 to 40% by weight, preferably 20 to 35% by weight, more preferably It is 22 to 35% by weight, particularly preferably 22 to 30% by weight. When this is in this range, a highly reliable molded product having excellent moldability, appearance, and electrical conductivity and less variation in electrical conductivity can be obtained.

また、全混合物を100重量部とした時の熱可塑性樹脂ペレット[I]は50〜95重量部、好ましくは60〜95重量部、さらに好ましくは60〜90重量部、特に好ましくは70〜90重量部、且つ熱可塑性樹脂ペレット[II]は5〜50重量部、好ましくは5〜40重量部、さらに好ましくは10〜40重量部、特に好ましくは10〜30重量部である。これがこの範囲にあると、外観、導電性に優れ、導電性のばらつきの少ない信頼性の高い成形品を得ることが出来る。
本発明における成形法としては、射出成形、射出圧縮成形、ブロー成形、押出成形、真空成形、圧縮成形等の公知の方法が挙げられるが、この中では生産性に優れる射出成形が特に好ましい。
Further, the thermoplastic resin pellet [I] when the total mixture is 100 parts by weight is 50 to 95 parts by weight, preferably 60 to 95 parts by weight, more preferably 60 to 90 parts by weight, particularly preferably 70 to 90 parts by weight. Part and the thermoplastic resin pellet [II] are 5 to 50 parts by weight, preferably 5 to 40 parts by weight, more preferably 10 to 40 parts by weight, and particularly preferably 10 to 30 parts by weight. When this is in this range, it is possible to obtain a highly reliable molded article having excellent appearance and conductivity and less variation in conductivity.
Examples of the molding method in the present invention include known methods such as injection molding, injection compression molding, blow molding, extrusion molding, vacuum molding, and compression molding. Among these, injection molding having excellent productivity is particularly preferable.

本発明において、その目的に応じて公知の添加剤、例えば、炭素繊維以外の導電性フィラー(例えば、アセチレンブラック、ケッチェンブラック等のカーボンブラック、ナノチューブカーボン、黒鉛等の炭素系フィラー、銅、鉄、ニッケル、金、銀、チタン、アルミニウム、及びステンレス、真鍮等の前述した金属を主成分とする合金等の金属系フィラー、酸化亜鉛、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム等の金属酸化物系フィラー、ガラス表面に上記金属メッキ処理を施した複合系フィラー等)、可塑剤、滑剤(例えば、高級脂肪酸、及びその金属塩、高級脂肪酸アミド類等)、熱安定化剤、酸化防止剤(例えば、フェノール系、フォスファイト系、チオジブロプロピオン酸エステル型のチオエーテル等)、耐候剤(例えば、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系、シアノアクリレート系、蓚酸誘導体、ヒンダードアミン系等)、着色剤、顔料、染料、臭素系難燃剤(例えば、テトラブロモビスフェノールA及びその誘導体、テトラブロモビスフェノールS、テトラブロモ無水フタル酸、ヘキサブロモベンゼン、臭素化ジフェニルエーテル、臭素化ポリカーボネートオリゴマー及びその末端変性品、臭素化エポキシ樹脂(ビスフェノールAタイプ、ノボラックタイプ)及びその末端変性品、臭素化フェノキシ樹脂、トリスブロモフェニルフォスフェート、臭素化ポリスチレン、臭素化フェニレンエーテルオリゴマー等)、リン系難燃剤(トリフェニルホスフェート、トリフェニルホスフェート、トリフェニルチオホスフェート、トリキシレニルホスフェート、トリキシレニルチオホスフェート、ハイドロキノンビス(ジフェニルホスフェート)、レゾルシノールビス(ジフェニルホスフェート)、ハイドロキノンビス(ジキシレニルホスフェート)等のホスフェート類、赤リン、ホスファゼン系化合物、ポリリン酸アンモニウム等)、難燃助剤(例えば、三酸化アンチモン、五酸化アンチモン等)、帯電防止剤(例えば、ポリアミドエーテルエステル等のポリアミドエラストマー、四級アンモニウム塩系、ピリジン誘導体、脂肪族スルホン酸塩、芳香族スルホン酸塩、硫酸エステル塩、多価アルコ
ール部分エステル、アルキルジエタノールアミン、アルクルジエタノールアミド、ポリアルキレングリコール誘導体、ベタイン系、イミダゾリン誘導体等)、抗菌剤、抗カビ剤、摺動性改良剤(例えば、低分子量ポリエチレン等の炭化水素系、高級アルコール、多価アルコール、ポリグリコール、ポリグリセロール、高級脂肪酸、高級脂肪酸金属塩、脂肪酸アミド、脂肪酸と脂肪族アルコールとのエステル、脂肪酸と多価アルコールとのフル、あるいは部分エステル、脂肪酸とポリグリコールとのフル、あるいは部分エステル、シリコーン系、フッ素樹脂系等)等をその目的に合わせて任意の割合で配合することが出来る。
In the present invention, known additives depending on the purpose, for example, conductive fillers other than carbon fiber (for example, carbon black such as acetylene black and ketjen black, carbon-based filler such as nanotube carbon and graphite, copper, iron Nickel, gold, silver, titanium, aluminum, and metal fillers such as alloys based on the aforementioned metals such as stainless steel and brass, metal oxides such as zinc oxide, titanium oxide, aluminum oxide, tin oxide, and indium oxide Physical fillers, composite fillers obtained by subjecting the glass surface to the above metal plating treatment, etc.), plasticizers, lubricants (for example, higher fatty acids and their metal salts, higher fatty acid amides, etc.), thermal stabilizers, antioxidants (For example, phenol-based, phosphite-based, thiodibropropionic acid ester type thioether, etc.), weathering agent ( For example, benzotriazole, benzophenone, salicylate, cyanoacrylate, oxalic acid derivatives, hindered amines, etc., colorants, pigments, dyes, brominated flame retardants (for example, tetrabromobisphenol A and its derivatives, tetrabromobisphenol S) , Tetrabromophthalic anhydride, hexabromobenzene, brominated diphenyl ether, brominated polycarbonate oligomer and its terminal modified product, brominated epoxy resin (bisphenol A type, novolak type) and its terminal modified product, brominated phenoxy resin, tris bromophenyl Phosphate, brominated polystyrene, brominated phenylene ether oligomers, etc.), phosphorus flame retardants (triphenyl phosphate, triphenyl phosphate, triphenylthiophosphate, trike) Phosphates such as rhenyl phosphate, trixylenyl thiophosphate, hydroquinone bis (diphenyl phosphate), resorcinol bis (diphenyl phosphate), hydroquinone bis (dixylenyl phosphate), red phosphorus, phosphazene compounds, ammonium polyphosphate, etc.) Flame retardant aid (for example, antimony trioxide, antimony pentoxide, etc.), antistatic agent (for example, polyamide elastomer such as polyamide ether ester, quaternary ammonium salt system, pyridine derivative, aliphatic sulfonate, aromatic sulfonic acid Salts, sulfate esters, polyhydric alcohol partial esters, alkyldiethanolamines, alkuldiethanolamides, polyalkylene glycol derivatives, betaines, imidazoline derivatives, etc.), antibacterial agents, antifungal agents, slides Mobility improvers (for example, hydrocarbons such as low molecular weight polyethylene, higher alcohols, polyhydric alcohols, polyglycols, polyglycerols, higher fatty acids, higher fatty acid metal salts, fatty acid amides, esters of fatty acids and fatty alcohols, fatty acids And polyhydric alcohol full or partial ester, fatty acid and polyglycol full or partial ester, silicone-based, fluororesin-based, etc.) can be blended at any ratio according to the purpose.

本発明の成形品は、その優れた導電性、導電信頼性、および機械的強度から、電子・電気機器、精密機器、OA機器、及びその周辺機器のハウジング、カバー、及びこれらの部品搬送ケース、電磁波シールド部品、情報電子、自動車等の電気接点部品、電極部品等に用いることが出来る。   The molded product of the present invention has excellent electrical conductivity, conductive reliability, and mechanical strength, so that the housing and cover of electronic / electrical equipment, precision equipment, OA equipment, and peripheral equipment thereof, and their parts carrying cases, It can be used for electromagnetic shielding parts, information electronics, electrical contact parts such as automobiles, electrode parts and the like.

以下に実施例を示し、本発明を具体的に説明する。
[参考例1]熱可塑性樹脂(a−1)の製造
ポリブタジエンゴムラテックス(日機装(株)社製マイクロトラック粒度分析計「nanotrac150」にて測定した体積平均粒子径=0.25μm、固形分量=49重量%)110重量部に、脱イオン水45重量部を加え、気相部を窒素置換した後、脱イオン水25重量部にナトリウムホルムアルデヒドスルホキシレート0.15重量部、硫酸第一鉄0.001重量部、エチレンジアミンテトラ酢酸2ナトリウム塩0.09重量部を溶解してなる水溶液を加えて、55℃に昇温した。続いて、1.5時間かけて70℃まで昇温しながら、アクリロニトリル15重量部、スチレンを35重量部、ターシャリードデシルメルカプタン0.6重量部、クメンハイドロパーオキシド0.1重量部よりなる単量体混合液、及び脱イオン水15重量部にナトリウムホルムアルデヒドスルホキシレート0.13重量部を溶解してなる水溶液を5時間にわたり添加した。添加終了後1時間、反応槽を70℃に制御しながら重合反応を完結させた。
このようにして得られたABSラテックスに、シリコーン樹脂製消泡剤、及びフェノール系酸化防止剤エマルジョンを添加した後、硫酸アルミニウム水溶液を加えて凝固させ、さらに、十分な脱水、水洗を行った後、乾燥させてグラフト共重合体(a−1)を得た。この時、グラフト率は55重量%であり、非グラフト成分の還元粘度(0.5g/100ml、2−ブタノン溶液中、30℃測定)は0.26であった。
Hereinafter, the present invention will be specifically described with reference to examples.
[Reference Example 1] Production of thermoplastic resin (a-1) Polybutadiene rubber latex (volume average particle diameter measured by Microtrac Particle Size Analyzer “nanotrac 150” manufactured by Nikkiso Co., Ltd.) = 0.25 μm, solid content = 49 (Weight%) After adding 45 parts by weight of deionized water to 110 parts by weight and replacing the gas phase with nitrogen, 0.15 parts by weight of sodium formaldehyde sulfoxylate, 0.15 parts by weight of ferrous sulfate, 0.2 part by weight of deionized water. An aqueous solution obtained by dissolving 001 parts by weight and 0.09 part by weight of ethylenediaminetetraacetic acid disodium salt was added, and the temperature was raised to 55 ° C. Subsequently, while the temperature was raised to 70 ° C. over 1.5 hours, a single unit consisting of 15 parts by weight of acrylonitrile, 35 parts by weight of styrene, 0.6 parts by weight of terleaded decyl mercaptan, and 0.1 parts by weight of cumene hydroperoxide. An aqueous solution prepared by dissolving 0.13 parts by weight of sodium formaldehyde sulfoxylate in 15 parts by weight of a monomer mixture and deionized water was added over 5 hours. One hour after completion of the addition, the polymerization reaction was completed while controlling the reaction vessel at 70 ° C.
After adding a silicone resin defoamer and a phenolic antioxidant emulsion to the ABS latex thus obtained, solidify by adding an aqueous aluminum sulfate solution, and after sufficient dehydration and washing with water And dried to obtain a graft copolymer (a-1). At this time, the graft ratio was 55% by weight, and the reduced viscosity of the non-grafted component (0.5 g / 100 ml, measured in 2-butanone solution at 30 ° C.) was 0.26.

[参考例2]熱可塑性樹脂(a−2)の製造
特許1960531号公報に記載の実施例1に記載の方法にて、アクリロニトリル、及びスチレンを、溶媒としてセカンダリーブチルアルコールを用い、重合反応器に上記混合液を連続的に添加し、重合計の温度を140から160℃にコントロールして重合反応を行った。その後、未反応のモノマーを真空下にて除去し、アクリロニトリル−スチレン共重合体の固形粉末を得た。該共重合体の組成は、フーリエ変換赤外分光光度計(FR−IR)(日本分光(株)製)を用いた組成分析の結果、アクリロニトリルは30重量%、スチレンが70重量%であった。また、還元粘度(0.5g/100ml、2−ブタノン溶液中、30℃測定)は0.65であった。
[Reference Example 2] Production of thermoplastic resin (a-2) In the method described in Example 1 described in Japanese Patent No. 1960531, acrylonitrile and styrene were used as solvents and secondary butyl alcohol was used as a polymerization reactor. The above mixture was continuously added, and the polymerization reaction was carried out by controlling the temperature of the polymerization meter from 140 to 160 ° C. Thereafter, unreacted monomers were removed under vacuum to obtain a solid powder of acrylonitrile-styrene copolymer. As a result of composition analysis using a Fourier transform infrared spectrophotometer (FR-IR) (manufactured by JASCO Corporation), the composition of the copolymer was 30% by weight for acrylonitrile and 70% by weight for styrene. . The reduced viscosity (0.5 g / 100 ml, measured in a 2-butanone solution at 30 ° C.) was 0.65.

[参考例3]熱可塑性樹脂(A−1)の製造
充分に乾燥し、水分の除去を行った熱可塑性樹脂(a−1)30重量部、および熱可塑性樹脂(a−2)70重量部をタンブラーにて混合した後、二軸押出機(東芝機械(株)製、TEM−48BS、L/D=46)にてシリンダー温度250℃で溶融混練し、熱可塑性樹脂(A−1)のペレットを得た。
[Reference Example 3] Manufacture of thermoplastic resin (A-1) 30 parts by weight of thermoplastic resin (a-1) sufficiently dried and moisture-removed, and 70 parts by weight of thermoplastic resin (a-2) Were mixed with a tumbler and then melt-kneaded at a cylinder temperature of 250 ° C. with a twin-screw extruder (Toshiba Machine Co., Ltd., TEM-48BS, L / D = 46) to obtain a thermoplastic resin (A-1). Pellets were obtained.

[参考例4]熱可塑性樹脂(A−2)
熱可塑性樹脂(A−2)として以下のものを使用した。
ビスフェノールAとジフェニルカーボネートから、溶融エステル交換法により製造された、ビスフェノールA系ポリカーボネートであり、ヒンダードフェノール系酸化防止剤としてオクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートを300ppm、および、ホスファイト系熱安定剤としてトリス(2,4−ジ−t−ブチルフェニル)ホスファイトを150ppm含むもの。
ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて、テトラヒドロフランを溶媒として、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から下式による換算分子量較正曲線を用いて求められた重量平均分子量(Mw)は22,800であった。
PC=0.3591MPS1.0388
(MPCは芳香族ポリカーボネートの分子量、MPSはポリスチレンの分子量)
[Reference Example 4] Thermoplastic resin (A-2)
The following were used as the thermoplastic resin (A-2).
A bisphenol A polycarbonate produced from bisphenol A and diphenyl carbonate by a melt transesterification method, and octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) as a hindered phenol antioxidant ) One containing 300 ppm propionate and 150 ppm tris (2,4-di-t-butylphenyl) phosphite as a phosphite heat stabilizer.
Using gel permeation chromatography (GPC), using tetrahydrofuran as a solvent and polystyrene gel, the weight average molecular weight determined from the standard monodisperse polystyrene composition curve using the converted molecular weight calibration curve according to the following formula ( Mw) was 22,800.
M PC = 0.3591 M PS 1.0388
( MPC is the molecular weight of aromatic polycarbonate, MPS is the molecular weight of polystyrene)

[参考例5]熱可塑性樹脂Bラテックスの製造
ポリブタジエンゴムラテックス(日機装(株)社製、マイクロトラック粒度分析計「nanotrac150」にて測定した体積平均粒子径=0.25μm、固形分量=49重量%)43重量部に、脱イオン水93重量部、アルケニルコハク酸カリウム(アルケニル基はC13〜C15)5.0重量部、ターシャリードデシルメルカプタン0.1重量部を加え、気相部を窒素置換した後、55℃に昇温した。続いて、アクリロニトリル24重量部、スチレン56重量部、ターシャリードデシルメルカプタン0.7重量部、クメンハイドロパーオキシド0.10重量部よりなる単量体混合液、及び脱イオン水25重量部にナトリウムホルムアルデヒドスルホキシレート0.15重量部、硫酸第一鉄0.001重量部、エチレンジアミンテトラ酢酸2ナトリウム塩0.04重量を溶解してなる水溶液を6時間にわたり添加しながら、1.5時間かけて70℃まで昇温し、それ以降は反応槽を70℃に制御しながら重合反応を完結させた。その後、これにフェノール系酸化防止剤エマルジョンを添加し、充分に攪拌し、さらに固形分40重量%となるように脱イオン水にて希釈した。ラテックス中の未反応の全モノマー量はガスクロマトグラフィーによる定量分析の結果、12000ppmであった。また、樹脂分中のグラフト率は53重量%であり、非グラフト成分の還元粘度(0.5g/100ml、2−ブタノン溶液中、30℃測定)は0.29であった。
Reference Example 5 Production of Thermoplastic Resin B Latex Polybutadiene rubber latex (manufactured by Nikkiso Co., Ltd., volume average particle size measured by Microtrac particle size analyzer “nanotrac 150” = 0.25 μm, solid content = 49 wt% ) To 43 parts by weight, 93 parts by weight of deionized water, 5.0 parts by weight of potassium alkenyl succinate (alkenyl group is C13 to C15) and 0.1 parts by weight of tarsiadedecyl mercaptan were added, and the gas phase part was substituted with nitrogen. Thereafter, the temperature was raised to 55 ° C. Subsequently, a monomer mixture consisting of 24 parts by weight of acrylonitrile, 56 parts by weight of styrene, 0.7 parts by weight of terresidic decyl mercaptan, and 0.10 parts by weight of cumene hydroperoxide, and 25 parts by weight of deionized water, sodium formaldehyde While adding 0.15 part by weight of sulfoxylate, 0.001 part by weight of ferrous sulfate and 0.04 part by weight of ethylenediaminetetraacetic acid disodium salt over 6 hours, 70 hours over 70 hours. The temperature was raised to 0 ° C., and thereafter the polymerization reaction was completed while controlling the reaction vessel at 70 ° C. Thereafter, a phenolic antioxidant emulsion was added thereto, stirred sufficiently, and further diluted with deionized water so as to have a solid content of 40% by weight. The total amount of unreacted monomers in the latex was 12000 ppm as a result of quantitative analysis by gas chromatography. The graft ratio in the resin component was 53% by weight, and the reduced viscosity of the non-grafted component (0.5 g / 100 ml, measured in 2-butanone solution at 30 ° C.) was 0.29.

[参考例6]導電性熱可塑性樹脂ペレット(I−1)の製造
下記導電性連続繊維束を55℃に制御された熱可塑性樹脂(B)のラテックス槽中を通過させて含浸処理を行った後、乾燥機を通過させて水分を完全に除去した。この時、導電性連続繊維束に対する熱可塑性樹脂付着量は、重量測定の結果42重量%であった。熱可塑性樹脂(A−1)ペレットを単軸押出し機中にて溶融混練した後、押出し機先端に取り付けたクロスヘッドダイから押出しながら、前記の含浸処理を施した連続炭素繊維束をクロスヘッドダイ中に連続的に供給することで、熱可塑性樹脂(A−1)にて連続炭素繊維束を被覆してストランドとし、冷却後にこれを回転刃からなるカッターにて切断し、5mmのペレットを得た。
また、上記ストランドを5cm程度の長さに切断したものを10本採取し、これらを2−ブタノンにて溶解して、熱可塑性樹脂(A−1)、及び熱可塑性樹脂(B)を除去後、導電性連続繊維を取り出した。これを乾燥して重量を測定し、ストランド中における導電性連続繊維の含有量を求めた結果、14.1重量%であった。
Reference Example 6 Production of Conductive Thermoplastic Resin Pellet (I-1) The following conductive continuous fiber bundle was passed through a latex tank of thermoplastic resin (B) controlled at 55 ° C. and impregnated. Thereafter, the water was completely removed by passing through a dryer. At this time, the amount of the thermoplastic resin attached to the conductive continuous fiber bundle was 42% by weight as a result of weight measurement. After melt-kneading the thermoplastic resin (A-1) pellets in a single screw extruder, the continuous carbon fiber bundle subjected to the impregnation treatment is extruded from the crosshead die attached to the tip of the extruder, and the crosshead die is used. By supplying continuously, a continuous carbon fiber bundle is coated with the thermoplastic resin (A-1) to form a strand, and after cooling, this is cut with a cutter comprising a rotary blade to obtain a 5 mm pellet. It was.
Further, after 10 strands of the above strands cut to a length of about 5 cm are collected and dissolved in 2-butanone, the thermoplastic resin (A-1) and the thermoplastic resin (B) are removed. The conductive continuous fiber was taken out. This was dried and weighed, and the content of the conductive continuous fiber in the strand was determined. As a result, it was 14.1% by weight.

[導電性連続繊維束]
三菱レイヨン(株)製「パイロフィルCFトウ TR30S−12L」
PAN系炭素繊維、モノフィラメント径=7μm、フィラメント数=12000本
目付=800mg/m、密度=1.79g/cm
引張強度=4410MPa、引張弾性率=235GPa
サイズ剤:エポキシ系樹脂、サイズ剤付着量=0.8wt%
[Conductive continuous fiber bundle]
"Pyrofil CF tow TR30S-12L" manufactured by Mitsubishi Rayon Co., Ltd.
PAN-based carbon fiber, monofilament diameter = 7 μm, number of filaments = 12000, basis weight = 800 mg / m, density = 1.79 g / cm 3
Tensile strength = 4410 MPa, tensile modulus = 235 GPa
Sizing agent: Epoxy resin, sizing agent adhesion amount = 0.8 wt%

[参考例7]導電性熱可塑性樹脂ペレット(I−2)の製造
参考例6と同様にして、導電性熱可塑性樹脂ペレット(I−2)を製造した。ストランド中における導電性連続繊維の含有量を求めた結果、19.8重量%であった。
[参考例8]導電性熱可塑性樹脂ペレット(I−3)の製造
参考例6と同様にして、導電性熱可塑性樹脂ペレット(I−2)を製造した。ストランド中における導電性連続繊維の含有量を求めた結果、30.4重量%であった。
[参考例9]導電性熱可塑性樹脂ペレット(I−4)の製造
熱可塑性樹脂(A−1)を熱可塑性樹脂(A−2)とした以外は参考例6と同様にして、導電性熱可塑性樹脂ペレット(I−4)を製造した。ストランド中における導電性連続繊維の含有量を求めた結果、14.2重量%であった。
[Reference Example 7] Production of Conductive Thermoplastic Resin Pellet (I-2) Conductive thermoplastic resin pellet (I-2) was produced in the same manner as in Reference Example 6. It was 19.8 weight% as a result of calculating | requiring content of the electroconductive continuous fiber in a strand.
Reference Example 8 Production of Conductive Thermoplastic Resin Pellet (I-3) Conductive thermoplastic resin pellet (I-2) was produced in the same manner as Reference Example 6. It was 30.4 weight% as a result of calculating | requiring content of the electroconductive continuous fiber in a strand.
Reference Example 9 Production of Conductive Thermoplastic Resin Pellet (I-4) Conductive heat was obtained in the same manner as Reference Example 6 except that the thermoplastic resin (A-1) was changed to the thermoplastic resin (A-2). A plastic resin pellet (I-4) was produced. It was 14.2 weight% as a result of calculating | requiring content of the electroconductive continuous fiber in a strand.

[参考例10]導電性熱可塑性樹脂ペレット(II−1)の製造
参考例6で用いたものと同様の導電性連続繊維束を55℃に制御された熱可塑性樹脂(B)のラテックス槽中を通過させて含浸処理を行った後、乾燥機を通過させて水分を完全に除去した後、これを回転刃からなるカッターにて切断し、5mmのペレットを得た。ストランド中における導電性連続繊維の含有量を求めた結果、69.6重量%であった。
[参考例11]導電性熱可塑性樹脂ペレット(II−2)の製造
参考例10と同様にして導電性熱可塑性樹脂ペレット(II−2)を得た。ストランド中における導電性連続繊維の含有量を求めた結果、55.2重量%であった。
[参考例12]導電性熱可塑性樹脂ペレット(II−3)
熱可塑性樹脂Bのラテックスを脱イオン水を加えて固形分量を20wt%としたものを使用した以外は参考例10と同様にして導電性熱可塑性樹脂ペレット(II−3)を得た。ストランド中における導電性連続繊維の含有量を求めた結果、97.1重量%であった。
Reference Example 10 Production of Conductive Thermoplastic Resin Pellet (II-1) In a latex tank of a thermoplastic resin (B) controlled at 55 ° C., the same conductive continuous fiber bundle as used in Reference Example 6 Then, after impregnation treatment was performed by passing through a dryer, moisture was completely removed by passing through a drier, and then this was cut with a cutter comprising a rotary blade to obtain 5 mm pellets. As a result of obtaining the content of the conductive continuous fiber in the strand, it was 69.6% by weight.
Reference Example 11 Production of Conductive Thermoplastic Resin Pellet (II-2) Conductive thermoplastic resin pellet (II-2) was obtained in the same manner as Reference Example 10. As a result of obtaining the content of the conductive continuous fiber in the strand, it was 55.2% by weight.
[Reference Example 12] Conductive thermoplastic resin pellet (II-3)
Conductive thermoplastic resin pellets (II-3) were obtained in the same manner as in Reference Example 10 except that the latex of thermoplastic resin B was used after adding deionized water to a solid content of 20 wt%. As a result of obtaining the content of the conductive continuous fiber in the strand, it was 97.1% by weight.

[実施例1]
80℃にて3時間乾燥させた導電性熱可塑性樹脂ペレット(I−1)80重部、および導電性熱可塑性樹脂ペレット(II−1)20重量部を、タンブラーにて30分ブレンドした。これを射出成形機(東芝機械(株)製 IS130FB)のホッパーに投入し、下記成形条件にて直径20mm、厚み1mmの円盤を射出成形した。
[成形条件]
スクリュー径:45mm
シリンダー温度:260℃
金型温度:60℃
背圧:100kgf/cm
射出速度:30%
スクリュー回転数:100rpm
射出時間:10秒
冷却時間:10秒
ゲート形状:ピンゲート(φ=2mm)
ゲート位置:円盤中心部
[Example 1]
80 parts by weight of conductive thermoplastic resin pellets (I-1) dried at 80 ° C. for 3 hours and 20 parts by weight of conductive thermoplastic resin pellets (II-1) were blended in a tumbler for 30 minutes. This was put into a hopper of an injection molding machine (IS130FB manufactured by Toshiba Machine Co., Ltd.), and a disk having a diameter of 20 mm and a thickness of 1 mm was injection molded under the following molding conditions.
[Molding condition]
Screw diameter: 45mm
Cylinder temperature: 260 ° C
Mold temperature: 60 ℃
Back pressure: 100 kgf / cm 3
Injection speed: 30%
Screw rotation speed: 100rpm
Injection time: 10 seconds Cooling time: 10 seconds Gate shape: Pin gate (φ = 2mm)
Gate position: disk center

この円盤の中心部に塩化銀を直径7mmの円形に塗布して図1のように回路を繋ぎ、円盤の円周端から3mmの部位に低抵抗率計(三菱化学(株)製、ロレスターEP MCP−T360)に接続したプローブ(ピン先0.26R)を接触させ、抵抗値を測定した。さらに円盤を約3°回転させて同様に測定を行い、これを500回繰り返した。表面抵抗率の平均は122Ω/□であり、標準偏差σは90であった。また、ISO179に準じて測定した該樹脂組成物の23℃におけるノッチ付きシャルピー衝撃強さは5.1kJ/
、ISO178に準じて測定した曲げ弾性率は13300MPaであった。
また、この円盤を475℃にて電気炉にて加熱処理を施し、熱可塑性樹脂成分を燃焼させて炭素繊維を取り出し、これにクロロホルムを加えて炭素繊維を液中に充分分散させた後、スポイドにてスライドグラス上に数滴落とし、クロロホルムを乾燥させた。その後、これを10〜15倍の倍率で光学顕微鏡にて写真を撮影し、500本以上の炭素繊維から各繊維長を求めたところ、成形品中の含有量が、1.5mmを超える長さの炭素繊維は4.5wt%、0.5〜1.5mmの長さの炭素繊維は9.2wt%、0.5mm未満の長さの炭素繊維は11.5wt%であった。
A silver chloride is applied to the center of this disk in a circular shape with a diameter of 7 mm, and the circuit is connected as shown in FIG. 1. A low resistivity meter (Made by Mitsubishi Chemical Co., Ltd., Lorester EP) is placed 3 mm from the circumference of the disk. A probe (pin tip 0.26R) connected to MCP-T360) was brought into contact, and the resistance value was measured. Further, the disk was rotated about 3 °, and the same measurement was performed, and this was repeated 500 times. The average surface resistivity was 122 Ω / □, and the standard deviation σ was 90. Further, the Charpy impact strength with notch at 23 ° C. of the resin composition measured according to ISO 179 was 5.1 kJ /
The flexural modulus measured according to m 2 and ISO 178 was 13300 MPa.
In addition, the disk is heated in an electric furnace at 475 ° C., the thermoplastic resin component is burned to remove the carbon fiber, and chloroform is added thereto to sufficiently disperse the carbon fiber in the liquid. Drop several drops on the slide glass to dry the chloroform. Then, when this was photographed with an optical microscope at a magnification of 10 to 15 times and each fiber length was determined from 500 or more carbon fibers, the length in the molded product exceeded 1.5 mm. The carbon fiber was 4.5 wt%, the carbon fiber having a length of 0.5 to 1.5 mm was 9.2 wt%, and the carbon fiber having a length of less than 0.5 mm was 11.5 wt%.

[比較例1]
表1の割合で導電性熱可塑性樹脂ペレット(I−3)、導電性熱可塑性樹脂ペレット(II−1)、および熱可塑性樹脂ペレット(A−1)を混合する以外は実施例1と同様に成形、評価を行った。表面抵抗率の平均は405Ω/□であり、標準偏差σは150であった。また、ISO179に準じて測定した該樹脂組成物の23℃におけるノッチ付きシャルピー衝撃強さは5.0kJ/m、ISO178に準じて測定した曲げ弾性率は13200MPaであった。
また、成形品中の炭素繊維の含有量は、1.5mmを超える長さの炭素繊維は4.7wt%、0.5〜1.5mmの長さの炭素繊維は10.3wt%、0.5mm未満の長さの炭素繊維は10.0wt%であった。
[実施例2〜5、および比較例2〜5]
導電性熱可塑性樹脂ペレット(I)、導電性熱可塑性樹脂ペレット(II)、および熱可塑性樹脂ペレット(A)を表1の割合で混合する以外は実施例1と同様に成形、評価を行った。評価結果を表1に示す。
[Comparative Example 1]
Except mixing conductive thermoplastic resin pellets (I-3), conductive thermoplastic resin pellets (II-1), and thermoplastic resin pellets (A-1) in the proportions shown in Table 1, the same as in Example 1. Molding and evaluation were performed. The average surface resistivity was 405Ω / □, and the standard deviation σ was 150. Further, the Charpy impact strength with notch at 23 ° C. of the resin composition measured according to ISO 179 was 5.0 kJ / m 2 , and the flexural modulus measured according to ISO 178 was 13200 MPa.
The carbon fiber content in the molded product is 4.7 wt% for carbon fibers having a length of more than 1.5 mm, 10.3 wt% for carbon fibers having a length of 0.5 to 1.5 mm, and 0.0. The carbon fiber having a length of less than 5 mm was 10.0 wt%.
[Examples 2 to 5 and Comparative Examples 2 to 5]
Molding and evaluation were performed in the same manner as in Example 1 except that the conductive thermoplastic resin pellet (I), the conductive thermoplastic resin pellet (II), and the thermoplastic resin pellet (A) were mixed at the ratio shown in Table 1. . The evaluation results are shown in Table 1.

Figure 2008156401
Figure 2008156401

実施例1〜5は、特定処理方法を用いて、導電性繊維の含有量が特定の範囲にある導電性熱可塑性樹脂ペレット(I)、および導電性熱可塑性樹脂ペレット(II)を併用することにより、表面抵抗率が低く、且つ標準偏差σの値が小さい、すなわち表面抵抗率のばらつきが小さく信頼性の高い成形品を得ることが出来る。
比較例1は、導電性熱可塑性樹脂ペレット(I)中の導電性繊維含有量が範囲外であるため、ペレット割れに起因する導電性繊維の毛羽立ちが発生し、成形品中の導電性繊維の分散性に劣ったものとなる。その結果、実施例1と同等の導電性繊維含有量、および繊維長分布を持っているにも拘わらず、表面抵抗率が高く、また標準偏差σが大きい信頼性の劣ったものとなっている。
Examples 1-5 use together the conductive thermoplastic resin pellet (I) and conductive thermoplastic resin pellet (II) in which the content of conductive fibers is in a specific range, using a specific treatment method. Thus, a molded product having a low surface resistivity and a small standard deviation σ, that is, a small variation in surface resistivity and high reliability can be obtained.
In Comparative Example 1, since the conductive fiber content in the conductive thermoplastic resin pellet (I) is out of the range, fluffing of the conductive fiber due to pellet cracking occurs, and the conductive fiber in the molded product Dispersibility is inferior. As a result, in spite of having the same conductive fiber content and fiber length distribution as in Example 1, the surface resistivity is high and the standard deviation σ is large and the reliability is poor. .

比較例2は導電性熱可塑性樹脂ペレット(II)単独であり導電性熱可塑性樹脂ペレット(I)を含有せず、成形品中の導電性繊維の分散性に劣るため、表面抵抗率が高く、また標準偏差σが大きい信頼性に劣ったものとなっている。
比較例3は導電性熱可塑性樹脂ペレット(II)の導電性繊維含有量が範囲外であり、ペレット割れに起因する導電性繊維の毛羽立ちが発生し、成形品中の導電性繊維の分散性に劣ったものとなる。その結果、実施例1と同等の導電性繊維含有量、および繊維長分布を持っているにも拘わらず、表面抵抗率が高く、また標準偏差σが大きい信頼性に劣ったものとなっている。
Comparative Example 2 is a conductive thermoplastic resin pellet (II) alone and does not contain the conductive thermoplastic resin pellet (I), and is inferior in the dispersibility of the conductive fibers in the molded product, so the surface resistivity is high, Further, the standard deviation σ is large and the reliability is poor.
In Comparative Example 3, the conductive fiber content of the conductive thermoplastic resin pellet (II) is out of the range, the conductive fibers are fluffed due to pellet cracking, and the dispersibility of the conductive fibers in the molded product is increased. It will be inferior. As a result, despite having the same conductive fiber content and fiber length distribution as in Example 1, the surface resistivity is high and the standard deviation σ is large and the reliability is poor. .

比較例4は、導電性熱可塑性樹脂ペレット(I)中における導電性繊維の含有量が範囲外であり、また導電性熱可塑性樹脂ペレット(II)を配合していないため、成形品中における導電性繊維の含有量が多いにも拘わらず表面抵抗率の標準偏差σが大きい信頼性の劣ったものとなっている。
比較例5は、成形品中の導電性繊維の含有量が範囲外であるため、表面抵抗率が高く、また標準偏差σが大きい信頼性に劣ったものとなっている。
In Comparative Example 4, the content of the conductive fiber in the conductive thermoplastic resin pellet (I) is out of the range, and the conductive thermoplastic resin pellet (II) is not blended. The surface resistivity has a large standard deviation σ in spite of a large content of the conductive fiber and is inferior in reliability.
In Comparative Example 5, since the content of the conductive fiber in the molded product is out of the range, the surface resistivity is high and the standard deviation σ is large and the reliability is poor.

本発明により、高い導電性を発現し、成形品の測定部位による導電性のばらつきの少ない信頼性の高い成形品を得ることができる。   According to the present invention, it is possible to obtain a highly reliable molded product that exhibits high conductivity and has little variation in conductivity depending on the measurement site of the molded product.

表面抵抗率の測定方法を説明する概略図である。It is the schematic explaining the measuring method of surface resistivity.

Claims (6)

全混合物中における導電性繊維の含有量が20〜40重量%であって、下記[I]および[II]を主構成成分とすることを特徴とする導電性熱可塑性樹脂組成物の成形用混合物。
[I]熱可塑性樹脂(A)にて導電性連続繊維束を押出被覆した後、所定の長さに切断して得られたペレットであって、導電性繊維の含有量が5〜25重量%である熱可塑性樹脂ペレット。
[II]熱可塑性樹脂(B)にて導電性連続繊維束を含浸被覆した後、所定の長さに切断して得られたペレットであって、導電性繊維の含有量が50〜95重量%である熱可塑性樹脂ペレット。
The mixture for molding a conductive thermoplastic resin composition, wherein the content of the conductive fibers in the total mixture is 20 to 40% by weight, and the following [I] and [II] are the main constituent components .
[I] A pellet obtained by extrusion-coating a conductive continuous fiber bundle with the thermoplastic resin (A) and then cutting into a predetermined length, and the content of the conductive fiber is 5 to 25% by weight. Is a thermoplastic resin pellet.
[II] A pellet obtained by impregnating and coating a conductive continuous fiber bundle with a thermoplastic resin (B) and then cutting into a predetermined length, and the conductive fiber content is 50 to 95% by weight. Is a thermoplastic resin pellet.
熱可塑性樹脂(A)がスチレン系樹脂であることを特徴とする請求項1記載の導電性熱可塑性樹脂組成物の成形用混合物。   The mixture for molding a conductive thermoplastic resin composition according to claim 1, wherein the thermoplastic resin (A) is a styrene resin. [I]が導電性連続繊維束を熱可塑性樹脂(B)にて含浸被覆した後、さらに熱可塑性樹脂(A)にて押出被覆して、所定の長さに切断して得られたペレットであることを特徴とする請求項1又は2に記載の導電性熱可塑性樹脂組成物の成形用混合物。   [I] is a pellet obtained by impregnating and coating a conductive continuous fiber bundle with a thermoplastic resin (B), and further extrusion-coating with a thermoplastic resin (A) and cutting to a predetermined length. The molding mixture of the conductive thermoplastic resin composition according to claim 1, wherein the mixture is a molding mixture. 熱可塑性樹脂(B)がゴム強化スチレン系樹脂であることを特徴とする請求項1〜3いずれかに記載の導電性熱可塑性樹脂組成物の成形用混合物。   The mixture for molding a conductive thermoplastic resin composition according to any one of claims 1 to 3, wherein the thermoplastic resin (B) is a rubber-reinforced styrene-based resin. 全混合物を100重量部とした時、[I]が50〜95重量部、且つ[II]が5〜50重量部であることを特徴とする請求項1〜4いずれかに記載の導電性熱可塑性樹脂組成物の成形用混合物。   The conductive heat according to any one of claims 1 to 4, wherein [I] is 50 to 95 parts by weight and [II] is 5 to 50 parts by weight when the total mixture is 100 parts by weight. A mixture for molding a plastic resin composition. 請求項1〜5のいずれかに記載の導電性熱可塑性樹脂組成物の成形用混合物を射出成形してなることを特徴とする成形品。   A molded article obtained by injection molding the molding mixture of the conductive thermoplastic resin composition according to any one of claims 1 to 5.
JP2006344019A 2006-12-21 2006-12-21 Mixture for molding conductive thermoplastic resin composition and molded article formed by molding the mixture Active JP5224686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344019A JP5224686B2 (en) 2006-12-21 2006-12-21 Mixture for molding conductive thermoplastic resin composition and molded article formed by molding the mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344019A JP5224686B2 (en) 2006-12-21 2006-12-21 Mixture for molding conductive thermoplastic resin composition and molded article formed by molding the mixture

Publications (2)

Publication Number Publication Date
JP2008156401A true JP2008156401A (en) 2008-07-10
JP5224686B2 JP5224686B2 (en) 2013-07-03

Family

ID=39657696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344019A Active JP5224686B2 (en) 2006-12-21 2006-12-21 Mixture for molding conductive thermoplastic resin composition and molded article formed by molding the mixture

Country Status (1)

Country Link
JP (1) JP5224686B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216786A (en) * 2012-04-09 2013-10-24 Riken Technos Corp Resin composition
JP2015203060A (en) * 2014-04-14 2015-11-16 三菱レイヨン株式会社 Carbon filament-containing resin material and method for producing the same
JPWO2013151022A1 (en) * 2012-04-04 2015-12-17 信越ポリマー株式会社 Substrate storage container
KR101811994B1 (en) * 2016-04-28 2017-12-27 재단법인 한국탄소융합기술원 Metal-plated glass fiber reinforced thermoplastic pellet for emi shielding and manufacturing method thereby

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297459A (en) * 1987-05-29 1988-12-05 Furukawa Electric Co Ltd:The Electrically conductive polymer blend
JPH02199175A (en) * 1989-01-27 1990-08-07 Nippon G Ii Plast Kk Conductive molding resin material
JPH05177630A (en) * 1991-12-27 1993-07-20 Ube Nitto Kasei Co Ltd Pellet of long-fiber reinforced thermoplastic resin and preparation of the same
JPH10195311A (en) * 1996-11-14 1998-07-28 Kawasaki Steel Corp Thermoplastic resin molding, material for molding and production of molding
JP2003062829A (en) * 2001-08-30 2003-03-05 Asahi Kasei Corp Method for producing pellet containing carbon fiber, pellet containing carbon fiber, and resin composition for molding
JP2005225126A (en) * 2004-02-13 2005-08-25 Asahi Kasei Chemicals Corp Method for producing molding of conductive thermoplastic resin
JP2006181776A (en) * 2004-12-27 2006-07-13 Toray Ind Inc Molding fiber-reinforced flame-retardant resin mixture and molded product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297459A (en) * 1987-05-29 1988-12-05 Furukawa Electric Co Ltd:The Electrically conductive polymer blend
JPH02199175A (en) * 1989-01-27 1990-08-07 Nippon G Ii Plast Kk Conductive molding resin material
JPH05177630A (en) * 1991-12-27 1993-07-20 Ube Nitto Kasei Co Ltd Pellet of long-fiber reinforced thermoplastic resin and preparation of the same
JPH10195311A (en) * 1996-11-14 1998-07-28 Kawasaki Steel Corp Thermoplastic resin molding, material for molding and production of molding
JP2003062829A (en) * 2001-08-30 2003-03-05 Asahi Kasei Corp Method for producing pellet containing carbon fiber, pellet containing carbon fiber, and resin composition for molding
JP2005225126A (en) * 2004-02-13 2005-08-25 Asahi Kasei Chemicals Corp Method for producing molding of conductive thermoplastic resin
JP2006181776A (en) * 2004-12-27 2006-07-13 Toray Ind Inc Molding fiber-reinforced flame-retardant resin mixture and molded product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013151022A1 (en) * 2012-04-04 2015-12-17 信越ポリマー株式会社 Substrate storage container
US10242896B2 (en) 2012-04-04 2019-03-26 Shin-Etsu Polymer Co., Ltd. Substrate storage container
JP2013216786A (en) * 2012-04-09 2013-10-24 Riken Technos Corp Resin composition
US9660271B2 (en) 2012-04-09 2017-05-23 Riken Technos Corporation Resin composition
JP2015203060A (en) * 2014-04-14 2015-11-16 三菱レイヨン株式会社 Carbon filament-containing resin material and method for producing the same
KR101811994B1 (en) * 2016-04-28 2017-12-27 재단법인 한국탄소융합기술원 Metal-plated glass fiber reinforced thermoplastic pellet for emi shielding and manufacturing method thereby

Also Published As

Publication number Publication date
JP5224686B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
EP2176335B1 (en) Electro-conductive thermoplastic resin compositions and articles manufactured therefrom
EP1367097B1 (en) Carbon fiber reinforced resin composition, molding material and molded article therefrom
US7026388B2 (en) Conductive resin composition and process for producing the same
JP2002088259A (en) Molding material, its manufacturing method and its molded article
JP4588155B2 (en) Aromatic polycarbonate resin composition
JP5224686B2 (en) Mixture for molding conductive thermoplastic resin composition and molded article formed by molding the mixture
EP0337487A1 (en) Electroconductive polymer composition
Ryu et al. Improvements of the electrical conductivity and EMI shielding efficiency for the polycarbonate/ABS/carbon fiber composites prepared by pultrusion process
JP2002231051A (en) Conductive resin component, and molding product using the same
JP3550255B2 (en) Flame retardant resin composition and lithium ion battery case molded therefrom
JP2001081318A (en) Flame-retardant polyamide resin composition and its molded article
CN102424720A (en) Conduction-enhanced PC (Polycarbonate)/PBT (Polybutylece Terephthalate) composite material and preparation method thereof
KR100700742B1 (en) A composition of polycarbonate/styrenic copolymers with improved compatibility prepared by mixing carbon nanotube
JP2001131426A (en) Electrically conductive resin composition and its molded article
JP2002317384A (en) Electrically conductive fiber bundle for filament pellet, filament pellet made thereof, and formed article produced by using the same
JP3960096B2 (en) Conductive resin composition and method for producing the same
JP2003012945A (en) Conductive resin composition and its manufacturing method
JP3634496B2 (en) Conductive resin composition and molded article
JP2002020606A (en) Thermoplastic resin pellet composition and molded article obtained by injection molding
JP2005225126A (en) Method for producing molding of conductive thermoplastic resin
JP2001129826A (en) Conductive fiber-reinforced molding material and manufacturing method therefor
JP2002146679A (en) Carbon fiber bundle, resin composition, forming material and formed product using the same
JP2002338794A (en) Electrically conductive resin composition and molding material or molded part prepared from the composition
JP2002256153A (en) Electroconductive molded product and its manufacturing method
JP2000198915A (en) Flame retardant resin composition having good metal plating characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Ref document number: 5224686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350