JP2008145732A - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP2008145732A
JP2008145732A JP2006332935A JP2006332935A JP2008145732A JP 2008145732 A JP2008145732 A JP 2008145732A JP 2006332935 A JP2006332935 A JP 2006332935A JP 2006332935 A JP2006332935 A JP 2006332935A JP 2008145732 A JP2008145732 A JP 2008145732A
Authority
JP
Japan
Prior art keywords
liquid crystal
group
layer
carbon atoms
retardation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006332935A
Other languages
English (en)
Inventor
Katsufumi Omuro
克文 大室
Hiroyuki Umihoko
洋行 海鉾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006332935A priority Critical patent/JP2008145732A/ja
Publication of JP2008145732A publication Critical patent/JP2008145732A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】簡易な構成で、白表示時の階調反転及び色味付きが軽減されたECB型液晶表示装置を提供する。
【解決手段】互いに対向して配置され、少なくとも一方が透明電極を有する第1及び第2の基板間に、電圧無印加状態で液晶分子が前記基板間でツイスト角45°以下で基板面に略平行に配向し、電圧印加状態で液晶分子が前記基板面の法線方向に配向する液晶層(18);及び該液晶層(18)を挟んで配置され、互いに直交する偏光軸を有する第1及び第2の偏光層(12a、12b);及び前記第1及び第2の偏光層(12a、12b)の少なくとも一方と前記液晶層(18)との間に、第1の位相差層(14a、14b);を有する液晶表示装置であって、前記第1の位相差層が下記式(1)を満たすことを特徴とする液晶表示装置。 −280nm < Rth(550) < 50nm (1) 但し、Rth(λ)は、波長λnmの光に対する厚さ方向のレターデーションである。
【選択図】図1

Description

本発明は電圧無印加状態において基板面に対して略平行配向(ホモジニアス配向)し、電圧印加状態において基板面に対して略垂直配向(ホメトロピック配向)する、例えばECBモードの、液晶表示装置に関し、視野角特性を向上させる光学補償法に関するものである。
液晶表示装置は、液晶セル及び偏光板を有する。一般的に使用されている偏光板は保護膜と偏光膜とからなり、偏光膜は、一般的にはポリビニルアルコールフィルムをヨウ素にて染色、延伸して作製され、この偏光膜の両面に保護膜を貼り合わせて偏光板が作製されている。透過型液晶表示装置では、この偏光板を液晶セルの両側に取り付け、さらには一枚以上の光学補償膜を配置することもある。反射型液晶表示装置では、通常、反射板、液晶セル、一枚以上の光学補償膜、偏光板の順に配置する。液晶セルは、液晶分子、それを封入するための二枚の基板及び液晶性分子に電圧を加えるための電極層を有する。液晶セルは、液晶分子の配向状態の違いで、複屈折率を制御することで光学的なスイッチングを実現している。代表的な液晶の光学モードとしてはTN(Twisted Nematic)、IPS(In−Plane Switching)、OCB(Optically Compensatory Bend)、VA(Vertically Aligned)、ECB(Electrically Controlled Birefringence)のような表示モードが提案されている。
光学補償膜は、画像着色の解消、視野角の拡大を実現するために様々な液晶表示装置で用いられている。光学補償膜としては、延伸複屈折ポリマーフィルムが従来から使用されている。また、延伸複屈折フィルムからなる光学補償膜に代えて、透明支持体上に低分子もしくは高分子液晶性分子から形成された光学補償膜を有する光学補償膜を使用することが提案されている。液晶性分子には多様な配向形態があるため、液晶性分子を用いることで、従来の延伸複屈折ポリマーフィルムでは得ることができない光学的性質を実現することができる。さらに、偏光板の保護膜に複屈折性を付加することで、保護膜と光学補償膜を兼ねる構成も提案されている。
光学補償膜の光学的性質は、液晶セルの光学的性質、具体的には上記のような表示モードの違いに応じて決定する。液晶性分子を用いると、液晶セルの様々な表示モードに対応する様々な光学的性質を有する光学補償膜を製造することができる。液晶性分子を用いて製造された光学補償膜として、様々な表示モードに対応するものが既に提案されている。例えば、TNモード液晶セルでは、電圧印加により液晶性分子がねじれ構造を解消しつつ基板面に傾斜した配向状態となるので、TNモード液晶セル用光学補償膜はこの状態の光学補償を行い、黒表示時の斜め方向の光漏れ防止によるコントラストの視角特性を向上させる(特許文献1参照)。しかし、例えば、ディスコティック液晶性化合物を均一にハイブリッド配向させた光学補償膜を用いても、液晶セルを問題なく完全に光学的に補償することは非常に難しい。例えば、TNモード液晶セルでは斜め方向から観察したときに、各階調での透過率が反転する階調反転現象が生じる。階調反転を生じさせないために、液晶セル中の液晶性分子のチルト角範囲を制限する方法が知られているがまだ不十分である(非特許文献1参照)。
一方、ECBモードの液晶表示装置は、液晶セルの複屈折を電界によって制御する方式であり、その一例として、電圧無印加時、即ち白表示時、に液晶分子を基板面に対して略平行配向(ホモジニアス配向)させ、電圧印加状態、即ち黒表示時、に液晶分子を基板面に対して略垂直配向(ホメトロピック配向)させる方式がある。この方式においては、白表示時に、視野角を大きくして観察した場合に生じる階調反転及び色味変化(黄色化)について、改善が望まれている。
特開平6−214116号公報 TECHNICAL REPORT OF IEICE。 EID2001−108 P47−52
本発明は前記諸問題に鑑みなされたものであって、簡易な構成で、白表示時において生じる階調反転及び色味付き(黄色化)が軽減された、高品位な画像を表示可能な液晶表示装置、特に液晶層にねじれ構造を持たない平行配向型のホモジニアスECB型液晶表示装置、を提供することを課題とする。
前記課題を解決するための手段は以下の通りである。
[1] 互いに対向して配置され、且つ少なくとも一方が透明電極を有する第1及び第2の基板;前記第1及び第2の基板間に、電圧無印加状態で液晶分子が前記基板間でツイスト角45°以下で、且つ基板面に略平行に配向し、電圧印加状態で液晶分子が前記基板面の法線方向に配向する液晶層;及び該液晶層を挟んで配置され、互いに直交する偏光軸を有する第1及び第2の偏光層;及び前記第1及び第2の偏光層の少なくとも一方と前記液晶層との間に、第1の位相差層;を有する液晶表示装置であって、前記第1の位相差層が下記式(1)を満たすことを特徴とする液晶表示装置:
−280nm < Rth(550) < 50nm (1)
但し、Rth(λ)は、波長λnmの光に対する厚さ方向のレターデーションである。
[2] 前記第1の位相差層が、下記式(2)を満たすことを特徴とする[1]の液晶表示装置:
−200nm ≦ Rth(550) ≦ 0nm (2)。
[3] 前記第1の位相差層が、前記第1の偏光層と前記液晶層との間に配置され、前記第1の偏光層の保護層であることを特徴とする[1]又は[2]の液晶表示装置。
[4] 前記第1及び第2の偏光層の少なくとも一方と前記液晶層との間に、ディスコティック構造単位を有する化合物を含む組成物から形成された第2の位相差層をさらに有することを特徴とする[1]〜[3]のいずれかの液晶表示装置。
[5] 前記第1の位相差層と前記液晶層との間に、前記第2の位相差層が配置され、且つ前記第1の位相差層が、下記式(3)を満たすことを特徴とする[4]の液晶表示装置:
Re(550nm) < 200nm (3)
但し、Re(λ)は、波長λnmの光に対する面内レターデーションである。
[6] 前記第1の位相差層が、下記式(4)を満たすことを特徴とする[5]の液晶表示装置:
−50nm ≦ Re(550) ≦ 150nm (4)。
[7] 前記第1の位相差層が、下記式(A)で表される分極率異方性Δαが2.5×10-24cm-3以上である置換基を含むセルロースアシレートを含有するフィルムからなる[1]〜[6]のいずれかの液晶表示装置:
Δα=αx−(αy+αz)/2 (A)
式中、αx、αy及びαzは分極率テンソルを対角化後に得られる固有値であり、αx≧αy≧αzを満足する。
[8] 前記第1の位相差層が、棒状液晶構造単位を有する化合物を含有する組成物から形成された層であることを特徴とする[1]〜[6]のいずれかの液晶表示装置。
本発明によれば、簡易な構成で、白表示時に生じる階調反転及び色味付き(黄色化)が軽減された、高品位な画像を表示可能な液晶表示装置、特に液晶層にねじれ構造を持たない平行配向型のホモジニアスECB型液晶表示装置、を提供することができる。
発明の実施の形態
以下において、本発明の内容について詳細に説明する。なお、本明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
また、本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADHまたはWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
測定されるフィルムが1軸または2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRが算出する。
尚、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値及び入力された膜厚値を基に、以下の式(1)及び式(2)よりRthを算出することもできる。
Figure 2008145732
−−−式(1)
Rth=((nx+ny)/2 − nz) × d −−−式(2)
注記:
上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値をあらわす。
式中、nxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnx及びnyに直交する方向の屈折率を表す。
測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記の測定において、平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:
セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。
これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHまたはWRはnx、ny、nzを算出する。この算出されたnx,ny,nzよりNz=(nx−nz)/(nx−ny)が更に算出される。
以下、図面を用いて、本発明の液晶表示装置について説明する。
図1は本発明の液晶表示装置の一例の概略断面図である。なお、図1は概略図であって、層の厚さ等の相対的関係、各層中の液晶性分子の形状及び大きさ等については、実際のものと必ずしても一致しているわけではない。後述する図2においても同様である。
図1に示す液晶表示装置は、ECBモードの液晶セル18、及び液晶セルを挟んで配置された一対の上偏光板20a及び下偏光板20bを有する。偏光板20a、20bはそれぞれ、偏光膜12a、12b、位相差を有する保護フィルム14a、14b及び位相差層16a、16bを有する。
液晶セル18は、ホモジニアスECBモードの液晶セルである。図中、詳細な構造は省略するが、一般的には、一対の透明基板と、その間に封入された液晶層とを有し、透明基板の内面には、電圧無印加時に液晶の配向を制御する配向膜、及び液晶の配向を制御可能な電極膜を有する。ホモジニアスECB液晶セル18中の液晶性分子は、電圧無印加時には基板面に略平行配向し、基板間の液晶分子ツイスト角は、配向膜に施されたラビング処理等の方向に依存する。配向膜に施されるラビング処理の方向を45°以下とするのが好ましく、略平行(±10°以下)とするのがより好ましい。かかる範囲とすることで、ツイスト構造を持たない略平行配向(ツイスト角が45°以下)を実現できる。電極膜は、液晶セル18中の液晶に電圧を印加して、その配向を制御する。電極膜は、通常、透明であり、例えば、酸化インジウム錫(ITO)からなる。上下透明基板間に封入される液晶としては、特に制限されない。誘電率異方性Δεが正で、一般的には屈折率異方性Δn=0.06〜0.1(589nm、20°C)程度の材料を用いる。液晶層の厚さdは2.5〜5μm程度である。厚さdと屈折率異方性Δnの積Δn・dの大きさにより白表示時の明るさが変化するので、200nm≦Δn・d≦400nmの範囲になるように設定すると、良好な明るさの白表示となるΔndは、260nm〜320nmであるのがより好ましい。
上下偏光板20a、20bは、偏光膜12a、12bの吸収軸を互いに直交にして配置された、直交ニコル配置となっている。また、偏光膜12a、12bの吸収軸は、液晶セル18のより近くに位置する透明基板の近傍に位置する液晶性分子の配向方向(一般的には内面に形成された配向膜のラビング方向)に対して、概略45°(35〜55°)で交差して、配置されている。偏光膜12a、12bは、一般的には双方の表面に、偏光膜を保護するセルロースアシレートフィルム等からなる保護膜を有するが、図1では、外側表面を保護する保護膜は省略した。
本態様では、上下偏光膜12a、12bの保護フィルムである14a、14bが、第1の位相差層であり、下記関係式(1)を満足する光学特性を有する。
−280nm < Rth(550) < 50nm (1)
さらに、下記関係式(2)を満足するのが好ましい。
−200nm ≦ Rth(550) ≦ 0nm (2)
本態様では、保護フィルム14a、14bの面内レターデーションRe(550)は、下記式(3)を満足するのが好ましく、下記式(4)を満足するのがより好ましい。
Re(550nm) < 200nm (3)
−50nm ≦ Re(550) ≦ 150nm (4)
本態様では、前記光学特性を有する位相差フィルムを偏光膜の液晶セル側の保護フィルムとして用いることで、白表示時に生じる階調反転及び色味変化(特に黄色化)を軽減している。
図1に示す液晶表示装置は、さらに、ディスコティック構造単位を有する化合物を含有する光学補償膜である第2の位相差層16a、16bを、第1の位相差層である14a、14bと液晶セル18との間に有する。第2の位相差層16a、16bを配置することによって、黒表示時の透過率を低下させることができ、その結果、黒表示時においても、広い視野角で、より高いコントラストの画像を表示することができる。ECBモードの液晶セルでは、一般的に、電圧印加時(黒表示時)にセル基板近傍に位置する液晶性分子の立ち上がりが充分でなく、レターデーションが残留する。第2の位相差層は、この残留するレターデーションを相殺するものである。したがって、例えば、駆動電圧を高くして残留レターデーションの発生を抑制した態様では、第2の位相差層16a、16bはなくてもよく、また、同様の作用を有する限り、ディスコティック構造単位を有する化合物以外の材料からなる、延伸ポリマーフィルム等や棒状液晶性分子の配向を利用した光学補償膜であってもよい。また、残留レターデーションを相殺するための第2の位相差層を、ディスコティック構造単位を有する化合物の配向を利用して作製する場合は、ディスコティック構造単位を有する化合物の分子の配向制御方向と、透明基板界面の液晶分子配向方位とが概略平行であることが好ましい。配向制御方向は、一般的には、光学補償膜等を作製する際に利用する配向膜のラビング処理方向で調整することができる。
第2の位相層16a、16bの光学特性は、上記作用を示す限り、特に制限されるものではないが、Re(550)nm
なお、図1では、第2の位相差層16a、16bが、一対の偏光膜12a、12bと液晶セル18との間に配置された構成を示したが、一対の偏光層の一方と液晶セルとの間にのみ配置されていてもよい。
図1の態様では、上下偏光板20a、20bは、保護フィルム(不図示)、偏光膜(12a、12b)、第1の位相差層(14a、14b)及び第2の位相差層(16a、16b)をこの順に有する一体型偏光板である。本態様では、第1の位相差層(図1中14a、14b)を、偏光膜の保護フィルムとして、及び第2の位相差層(図1中、16a、16b)を液晶組成物から形成する際の支持体としても利用しているので、構成部材の数を減らすことができ、薄型液晶表示装置となる。
図2は本発明の液晶表示装置の他の例の概略断面図である。図1中の部材と同一の部材については、同一の番号を付し、詳細な説明は省略する。
図2に示す液晶表示装置は、ECBモードの液晶セル18、及び液晶セルを挟んで配置された一対の上偏光板20a’及び下偏光板20b’を有する。偏光板20a’と液晶セル18、及び偏光板20b’と液晶セル18との間には、第1の位相差層である(上記式(1)を満足する)ポリマーフィルム等からなる支持体14a、14bと、その上にディスコティック液晶組成物を用いて形成した第2の位相差層16a、16bとを有する光学補償フィルム21a、21bが配置されている。
図2に示す態様は、液晶セル18に対する第1の位相差層(14a、14b)と第2の位相差層(16a、16b)との配置関係が、図1に示す態様と逆転している。図2に示す態様も、図1に示す態様と同様に、第1の位相差層14a、14bによって、白表示時に生じる、階調反転及び色味変化(特に黄色化)が軽減されているとともに、第2の位相差層16a、16bによって、黒表示時の視野角特性が改善されている。
なお、図2中、偏光板20a’、20b’の液晶セル側の保護フィルム13a、13bは、低レターデーションのフィルムが好ましく、例えば、特開2006−30937号公報等に記載の低レターデーションセルロースアシレートフィルム等が好ましい。
図2の態様は、第1の位相差層のRe(550)によらずに、上記優れた効果がもたらされるという特徴がある。その結果、第1の位相差層として用いる位相差フィルム等の選択の幅が広がるという利点がある。
本発明の液晶表示装置の駆動電圧については特に制限されず、ECBモードの液晶表示装置の一般的な駆動電圧の範囲で駆動させることができる。例えば、本発明の液晶表示装置は、電圧無印加状態で白表示、高電圧印加状態で透過率が低下して黒表示となるノーマリーホワイトモードとして駆動させることができる。黒表示は光学補償膜のRe値と電圧印加状態の液晶層のレターデーション値が一致した時に得られる。この構成では、高コントラストの広い範囲を得、かつ中間調表示の階調反転が生じないという有利な点がある。さらに、本発明では、電圧無印加時の透過率よりも低い透過率を示す印加電圧条件を、最大諧調(白表示)に用いると、さらに視野角特性を広げることができるので好ましい。
また、本発明の液晶表示装置を、一画素を複数の領域に分割するマルチドメインと呼ばれる構造にすると、輝度や色調の視野角特性がより改善されるので好ましい。具体的には、画素のそれぞれを液晶分子の初期配向状態が互いに異なる2以上(好ましくは4又は8)の領域で構成して平均化することで、視野角に依存した輝度や色調の偏りを低減することができる。また、それぞれの画素を、電圧印加状態において液晶分子の配向方向が連続的に変化する互いに異なる2以上の領域から構成しても同様の効果が得られる。
一画素内で液晶分子の配向方向が異なる領域を複数形成するには、例えば、電極にスリットを設けたり、突起を設け、電界方向を変えたり、電界密度に偏りを持たせる等の方法を利用することができる。全方向で均等な視野角を得るにはこの分割数を多くすればよいが、4分割あるいは8分割以上とすることで、ほぼ均等な視野角が得られる。特に8分割時は偏光板吸収軸を任意の角度に設定できるので好ましい。
各ドメインの領域境界では、液晶分子が応答し難い傾向があり、ECBの場合、ノーマリーホワイトモードでは白表示状態が維持されるため、正面コントラストが低下する。そこで、その領域を覆うブラックマトリックスなどの遮光層を設けるとよい。
本発明の液晶表示装置は図1〜2に示す構成に限定されず、他の部材を含んでいてもよい。例えば、液晶セルと偏光膜との間(液晶セルの内側であっても外側であってもよい)に、カラーフィルターを配置してもよい。また、液晶セルと偏光板との間に、別途他の光学補償膜を配置することもできる。また、透過型として使用する場合は、冷陰極あるいは熱陰極蛍光管、あるいは発光ダイオード、フィールドエミッション素子、エレクトロルミネッセント素子を光源とするバックライトを背面に配置することができる。また、本発明の液晶表示装置は、反射型であってもよく、かかる場合は、偏光板は観察側に1枚配置したのみでよく、液晶セル背面あるいは液晶セルの下側基板の内面に反射膜を設置する。もちろん前記光源を用いたフロントライトを液晶セル観察側に設けることも可能である。
本発明の液晶表示装置には、画像直視型、画像投影型や光変調型が含まれる。本発明は、TFTやMIMのような3端子又は2端子半導体素子を用いたアクティブマトリックス液晶表示装置に適用した態様が特に有効である。勿論、時分割駆動と呼ばれるSTN型に代表されるパッシブマトリックス液晶表示装置に適用した態様も有効である。
本発明の液晶表示装置は、斜め方向(角度 横方位極角60°)から観察した際の黄色味の程度が、L***表色系において、b*座標が28以下であるのが好ましく、20以下であるのがより好ましい。また、黒(0/7階調)と中間調(4/7)の階調反転角度が、35以上であるのが好ましく、45以上であるのがより好ましい。
次に、本発明の液晶表示装置に使用可能な種々の部材に用いられる材料、その製造方法等について、詳細に説明する。
[第1の位相差層]
本発明の液晶表示装置、下記式(1)を満足する第1の位相差層を有する。
−280nm < Rth(550) < 50nm (1)
前記第1の位相差層は、下記式(2)を満たすことが好ましい。
−200nm ≦ Rth(550) ≦ 0nm (2)。
Re(550)については、特に制限されず、液晶表示装置の構成(第1及び第2の位相差層の配置関係)、液晶セルの光学特性等に応じて決定することができる。好ましい範囲については、上記した通りである。
(第1の光学異方性層用セルロースアシレートフィルム)
第1の位相差層は、セルロースアシレートフィルムであってもよい。以下、本発明において第1の位相差層として好ましく用いられるセルロースアシレートフィルムについて詳細に説明する。
本発明において、前記第1の位相差層として好ましく用いられるセルロースアシレートフィルムは、上記式(1)を満足する。前記セルロースアシレートフィルムは、光学軸がフィルム面内に実質的にないのが好ましく、上記式(3)を満足するのが好ましい。上記式(1)を満足するセルロースアシレートフィルムは、その原料として用いるセルロースアシレートが、その構成単位であるβ−グルコース環上の3つの水酸基に連結する置換基として、分極率異方性が大きい置換基を有することが好ましい。セルロースシレートに分極率異方性が大きい置換基を導入し、かつ他の置換基及び置換度を調整することで、膜厚方向に屈折率が最大となり、上記式(1)を満足するセルロースアシレートフィルムが得られる。
(置換基の末端間距離及び分極率異方性)
セルロースアシレートの分極率異方性は下記数式(1)により定義される。
数式(1):Δα=αx−(αy+αz)/2
(式中、αx、αy、αzは分極率テンソルを対角化後に得られる固有値であり、αx≧αy≧αzである。)該分極率異方性は、フィルム延伸時の延伸直交方向への屈折率発現性と関係がある。すなわち、該分極率異方性が小さい場合には延伸方向に遅相軸が発現し、大きい場合には延伸直交方向に遅相軸が発現する。前記式(1)を満足するセルロースアシレートフィルムを作製するためには、原料であるセルロースアシレートの分極率異方性が大きいほど好ましく、好ましくは2.5×10-24cm-3以上であり、より好ましくは3.5×10-24cm-3以上であり、特に好ましくは4.5×10-24cm-3以上である。
なお、セルロースアシレートの置換基の末端間距離及び分極率異方性はGaussian03(Revision B.03、米ガウシアン社ソフトウェア)を用いて計算する。末端間距離はB3LYP/6−31G*レベルの計算で構造最適化した後、最も離れた原子間の距離として算出する。分極率異方性はB3LYP/6−31G*レベルで最適化された構造を用いて、3LYP/6−311+G**レベルで分極率を計算し、得られた分極率テンソルを対角化した後、対角成分より算出する。置換基の末端間距離および分極率異方性の計算においては、セルロースアシレートの構成単位であるβ−グルコース環上の水酸基に連結する置換基を、水酸基の酸素原子を含む部分構造にて計算して求める。
前記セルロースアシレートフィルムの作製に用いるセルロースアシレートは、脂肪酸アシル基と置換もしくは無置換の芳香族アシル基とを有する混合酸エステルであることが好ましい。ここで置換もしくは無置換の芳香族アシル基としては下記一般式(A)で表される基があげられる。
一般式(A)
Figure 2008145732
一般式(A)中、Xは置換基で、置換基の例には、ハロゲン原子、シアノ、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、カルボンアミド基、スルホンアミド基、ウレイド基、アラルキル基、ニトロ、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、カルバモイル基、スルファモイル基、アシルオキシ基、アルケニル基、アルキニル基、アルキルスルホニル基、アリールスルホニル基、アルキルオキシスルホニル基、アリールオキシスルホニル基、アルキルスルホニルオキシ基およびアリールオキシスルホニル基、−S−R、−NH−CO−OR、−PH−R、−P(−R)2、−PH−O−R、−P(−R)(−O−R)、−P(−O−R)2、−PH(=O)−R−P(=O)(−R)2、−PH(=O)−O−R、−P(=O)(−R)(−O−R)、−P(=O)(−O−R)2、−O−PH(=O)−R、−O−P(=O)(−R)2−O−PH(=O)−O−R、−O−P(=O)(−R)(−O−R)、−O−P(=O)(−O−R)2、−NH−PH(=O)−R、−NH−P(=O)(−R)(−O−R)、−NH−P(=O)(−O−R)2、−SiH2−R、−SiH(−R)2、−Si(−R)3、−O−SiH2−R、−O−SiH(−R)2および−O−Si(−R)3が含まれる。上記Rは脂肪族基、芳香族基またはヘテロ環基である。置換基の数は、一個〜五個であることが好ましく、一個〜四個であることがより好ましく、一個〜三個であることがさらに好ましく、一個または二個であることがよりさらに好ましい。置換基としては、ハロゲン原子、シアノ、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、カルボンアミド基、スルホンアミド基およびウレイド基が好ましく、ハロゲン原子、シアノ、アルキル基、アルコキシ基、アリールオキシ基、アシル基およびカルボンアミド基がより好ましく、ハロゲン原子、シアノ、アルキル基、アルコキシ基およびアリールオキシ基がさらに好ましく、ハロゲン原子、アルキル基およびアルコキシ基がよりさらに好ましい。
上記ハロゲン原子には、フッ素原子、塩素原子、臭素原子およびヨウ素原子が含まれる。上記アルキル基が最も好ましい。アルキル基の例には、メチル、エチル、プロピル、イソプロピル、ブチル、t−ブチル、ヘキシル、シクロヘキシル、オクチルおよび2−エチルヘキシルが含まれる。上記アルコキシ基は、環状構造あるいは分岐を有していてもよい。アルコキシ基の炭素原子数は、1〜20であることが好ましく、1〜12であることがより好ましく、1〜6であることがさらに好ましく、1〜4であることがよりさらに好ましい。アルコキシ基は、さらに別のアルコキシ基で置換されていてもよい。アルコキシ基の例には、メトキシ、エトキシ、2−メトキシエトキシ、2−メトキシ−2−エトキシエトキシ、ブチルオキシ、ヘキシルオキシおよびオクチルオキシが含まれる。
上記アリール基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。アリール基の例には、フェニルおよびナフチルが含まれる。上記アリールオキシ基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。アリールオキシ基の例には、フェノキシおよびナフトキシが含まれる。上記アシル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。アシル基の例には、ホルミル、アセチルおよびベンゾイルが含まれる。上記カルボンアミド基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。カルボンアミド基の例には、アセトアミドおよびベンズアミドが含まれる。上記スルホンアミド基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。スルホンアミド基の例には、メタンスルホンアミド、ベンゼンスルホンアミドおよびp−トルエンスルホンアミドが含まれる。上記ウレイド基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。ウレイド基の例には、(無置換)ウレイドが含まれる。
またアルキル基は、環状構造あるいは分岐を有していてもよい。アルキル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがより好ましく、1〜6であることがさらに好ましく、1〜4である。
上記アラルキル基の炭素原子数は、7〜20であることが好ましく、7〜12であることがさらに好ましい。アラルキル基の例には、ベンジル、フェネチルおよびナフチルメチルが含まれる。上記アルコキシカルボニル基の炭素原子数は、1〜20であることが好ましく、2〜12であることがさらに好ましい。アルコキシカルボニル基の例には、メトキシカルボニルが含まれる。上記アリールオキシカルボニル基の炭素原子数は、7〜20であることが好ましく、7〜12であることがさらに好ましい。アリールオキシカルボニル基の例には、フェノキシカルボニルが含まれる。上記アラルキルオキシカルボニル基の炭素原子数は、8〜20であることが好ましく、8〜12であることがさらに好ましい。アラルキルオキシカルボニル基の例には、ベンジルオキシカルボニルが含まれる。上記カルバモイル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。カルバモイル基の例には、(無置換)カルバモイルおよびN−メチルカルバモイルが含まれる。上記スルファモイル基の炭素原子数は、20以下であることが好ましく、12以下であることがさらに好ましい。スルファモイル基の例には、(無置換)スルファモイルおよびN−メチルスルファモイルが含まれる。上記アシルオキシ基の炭素原子数は、1〜20であることが好ましく、2〜12であることがさらに好ましい。アシルオキシ基の例には、アセトキシおよびベンゾイルオキシが含まれる。
上記アルケニル基の炭素原子数は、2〜20であることが好ましく、2〜12であることがさらに好ましい。アルケニル基の例には、ビニル、アリルおよびイソプロペニルが含まれる。上記アルキニル基の炭素原子数は、2〜20であることが好ましく、2〜12であることがさらに好ましい。アルキニル基の例には、チエニルが含まれる。上記アルキルスルホニル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。上記アリールスルホニル基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。上記アルキルオキシスルホニル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。上記アリールオキシスルホニル基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。上記アルキルオキシスルホニル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。上記アリールオキシスルホニル基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。
前記セルロース混合酸エステル中脂肪酸エステル残基において、脂肪族アシル基の炭素原子数は2〜20であるのが好ましく、具体的にはアセチル、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロイル、ヘキサノイル、オクタノイル、ラウロイル、ステアロイル等があげられる。好ましくはアセチル、プロピオニル及びブチリルであり、特に好ましいのはアセチルである。なお、脂肪族アシル基とはさらに置換基を有するものも包含する意味であり、置換基としては、例えば前記の一般式(A)のXとして例示したものがあげられる。
また、前記一般式(A)において芳香族環に置換する置換基Xの数(n)は、0または1〜5個であり、好ましくは1〜3個で、特に好ましいのは1又は2個である。
更に、芳香族環に置換する置換基の数が2個以上の時、互いに同じでも異なっていてもよいが、また、互いに連結して縮合多環化合物(例えばナフタレン、インデン、インダン、フェナントレン、キノリン、イソキノリン、クロメン、クロマン、フタラジン、アクリジン、インドール、インドリンなど)を形成してもよい。一般式(A)で表される芳香族アシル基の具体例は下記に示す通りであるが、好ましいのは、No.1、3、5、6、8、13、18、28、より好ましいのはNo.1、3、6、13である。
Figure 2008145732
Figure 2008145732
Figure 2008145732
Figure 2008145732
セルロースの水酸基を芳香族アシル基で置換する方法としては、一般的には、芳香族カルボン酸クラロイドあるいは芳香族カルボン酸から誘導される対称酸無水物及び混合酸無水物を用いる方法等が挙げられる。特に好ましいのは芳香族カルボン酸から誘導した酸無水物を用いる方法(Journal of AppliedPolymer Science、Vol.29、3981−3990(1984)記載)が挙げられる。上記の方法として本発明のセルロース混合酸エステル化合物の製造方法としては、(1)セルロース脂肪酸モノエステル又はジエステルを一旦製造したのち、残りの水酸基に前記一般式(A)で表される芳香族アシル基を導入する方法、(2)セルロースに直接に、脂肪族カルボン酸と芳香族カルボン酸の混合酸無水物を反応させる方法、などがあげられる。前者においては、セルロース脂肪酸エステル又はジエステルの製造方法自体は周知の方法であるが、これにさらに芳香族アシル基を導入する後段の反応は、該芳香族アシル基の種類によって異なるが好ましくは反応温度0〜100℃、より好ましくは20〜50℃で、反応時間は、好ましくは30分以上、より好ましくは30〜300分で行われる。また後者の混合酸無水物を用いる方法も、反応条件は混合酸無水物の種類によって変わるが、好ましくは反応温度0〜100℃、より好ましくは20〜50℃、反応時間は好ましくは30〜300分、より好ましくは60〜200分である。上記のいずれの反応も、反応を無溶媒又は溶媒中のいずれで行ってもよいが、好ましくは溶媒を用いて行われる。溶媒としてはジクロロメタン、クロロホルム、ジオキサンなどを用いることができる。
本発明における置換度は、セルロースの水酸基が100%置換されたときを3.0とする。なお、置換度はC13−NMRにおけるアシル基中のカルボニル炭素のピーク強度から求めることができる。
前記芳香族アシル基の置換度はセルロース脂肪酸モノエステルの場合、残存する水酸基に対して2.0以下、好ましくは0.1〜2.0、さらに好ましくは0.1〜1.0である。また、セルロース脂肪酸ジエステル(二酢酸セルロース)の場合、残存する水酸基に対して1.0以下、好ましくは0.1〜1.0である。また、セルロースアシレートの総置換度PAは2.4〜3であるのが好ましい。
前記セルロースアシレートは、350〜800の質量平均重合度を有することが好ましく、370〜600の質量平均重合度を有することがさらに好ましい。また本発明で用いられるセルロースアシレートは、70000〜230000の数平均分子量を有することが好ましく、75000〜230000の数平均分子量を有することがさらに好ましく、78000〜120000の数平均分子量を有することがよりさらに好ましい。
前記セルロースアシレートは、アシル化剤として酸無水物や酸塩化物を用いて合成できる。アシル化剤が酸無水物である場合は、反応溶媒として有機酸(例えば、酢酸)や塩化メチレンが使用される。触媒としては、硫酸のようなプロトン性触媒が用いられる。アシル化剤が酸塩化物である場合は、触媒として塩基性化合物が用いられる。工業的に最も一般的な合成方法では、セルロースをアセチル基および他のアシル基に対応する有機酸(酢酸、プロピオン酸、酪酸)またはそれらの酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)を含む混合有機酸成分でエステル化してセルロースエステルを合成する。
この方法において、綿花リンターや木材パルプのようなセルロースは、酢酸のような有機酸で活性化処理した後、硫酸触媒の存在下で、上記のような有機酸成分の混合液を用いてエステル化する場合が多い。有機酸無水物成分は、一般にセルロース中に存在する水酸基の量に対して過剰量で使用する。このエステル化処理では、エステル化反応に加えてセルロース主鎖β1→4−グリコシド結合)の加水分解反応(解重合反応)が進行する。主鎖の加水分解反応が進むとセルロースエステルの重合度が低下し、製造するセルロースエステルフィルムの物性が低下する。そのため、反応温度のような反応条件は、得られるセルロースエステルの重合度や分子量を考慮して決定することが好ましい。
重合度の高い(分子量の大きい)セルロースエステルを得るためには、エステル化反応工程における最高温度を50℃以下に調節することが重要である。最高温度は、好ましくは35〜50℃、さらに好ましくは37〜47℃に調節する。反応温度が35℃以上であれば、エステル化反応が円滑に進行するので好ましい。反応温度が50℃以下であれば、セルロースエステルの重合度が低下するなどの不都合が生じないので好ましい。
エステル化反応の後、温度上昇を抑制しながら反応を停止すると、さらに重合度の低下を抑制でき、高い重合度のセルロースエステルを合成できる。すなわち、反応終了後に反応停止剤(例えば、水、酢酸)を添加すると、エステル化反応に関与しなかった過剰の酸無水物は、加水分解して対応する有機酸を副成する。この加水分解反応は激しい発熱を伴い、反応装置内の温度が上昇する。反応停止剤の添加速度が大きすぎることがなければ、反応装置の冷却能力を超えて急激に発熱して、セルロース主鎖の加水分解反応が著しく進行し、得られるセルロースエステルの重合度が低下するなどの問題が生じることはない。また、エステル化の反応中に触媒の一部はセルロースと結合しており、その大部分は反応停止剤の添加中にセルロースから解離する。このとき反応停止剤の添加速度が大きすぎなければ、触媒が解離するために充分な反応時間が確保され、触媒の一部がセルロースに結合した状態で残るなどの問題は生じにくい。強酸の触媒が一部結合しているセルロースエステルは安定性が非常に悪く、製品の乾燥時の熱などで容易に分解して重合度が低下する。これらの理由により、エステル化反応の後、好ましくは4分以上、さらに好ましくは4〜30分の時間をかけて反応停止剤を添加して、反応を停止することが望ましい。なお、反応停止剤の添加時間が30分以下であれば、工業的な生産性の低下などの問題が生じないので好ましい。
反応停止剤としては、一般に酸無水物を分解する水やアルコールが用いられている。ただし、本発明では、各種有機溶媒への溶解性が低いトリエステルを析出させないために、水と有機酸との混合物が、反応停止剤として好ましく用いられる。以上のような条件でエステル化反応を実施すると、質量平均重合度が500以上である高分子量セルロースエステルを容易に合成することができる。
前記一般式(1)を満足するセルロースアシレートフィルムには、所望の厚み方向のレターデーションRthを実現するために、Rthを低下させる化合物(Rth低減剤ともいう)を用いてもよい。該Rthを低下させる化合物は、前記セルロースアシレート固形分に対して0.01〜30質量%含むことが好ましく、より好ましくは0.1〜25質量%であり、さらに好ましくは0.1〜20質量%である。
Rthを低下させる化合物はセルロースアシレートに十分に相溶し、化合物自身が棒状の構造や平面性の構造を持たないことが有利である。具体的には芳香族基のような平面性の官能基を複数持っている場合、それらの官能基を同一平面ではなく、非平面に持つような構造が有利である。
本発明に用いるセルロースアシレートフィルムを作製するにあたっては、上述のようにフィルム中のセルロースアシレートが面内および膜厚方向に配向するのを抑制して光学異方性を低下させる化合物のうち、オクタノール−水分配係数(logP値)が0ないし7である化合物が好ましい。logP値が7以下である化合物は、セルロースアシレートとの相溶性に優れ、フィルムの白濁や粉吹きを生じにくい。また、logP値が0以上である化合物は親水性が適切であり、セルロースアシレートフィルムの耐水性を向上させる。logP値としてさらに好ましい範囲は1〜6であり、特に好ましい範囲は1.5〜5である。
オクタノール−水分配係数(logP値)の測定は、JIS日本工業規格Z7260−107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール−水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen’s fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)、Viswanadhan’s fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989).)、Broto’s fragmentation法(Eur.J.Med.Chem.−Chim.Theor.,19,71(1984).)などが好ましく用いられるが、Crippen’s fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)がより好ましい。ある化合物のlogPの値が測定方法あるいは計算方法により異なる場合に、該化合物が本発明の範囲内であるかどうかは、Crippen’s fragmentation法により判断することが好ましい。
Rthを低下させる化合物は、芳香族基を含有してもよいし、含有しなくてもよい。また光学異方性を低下させる化合物は、分子量が150以上3000以下であることが好ましく、170以上2000以下であることが好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であってもよいし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でもよい。
Rthを低下させる化合物は、好ましくは、25℃で液体であるか、融点が25〜250℃の固体であり、さらに好ましくは、25℃で液体であるか、融点が25〜200℃の固体である。また光学異方性を低下させる化合物は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
Rthを低下させる化合物は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
Rthを低下させる化合物を添加する時期はドープ作製工程中のいずれであってもよく、ドープ調製工程の最後に行ってもよい。
Rthを低下させる化合物は、少なくとも一方の側の表面から全膜厚の10%までの部分における該化合物の平均含有率が、該セルロースアシレートフィルムの中央部における該化合物の平均含有率の80−99%である。本発明の化合物の存在量は、例えば、特開平8−57879号公報に記載の赤外吸収スペクトルを用いる方法などにより表面および中心部の化合物量を測定して求めることができる。
以下に前記第1の位相差層として好ましく用いられるセルロースアシレートフィルムの作製に用いられるRthを低下させる化合物の具体例を示すが、これら化合物に限定されない。
一般式(B)
Figure 2008145732
上記一般式(B)において、R11はアルキル基又はアリール基を表し、R12及びR13はそれぞれ独立に、水素原子、アルキル基又はアリール基を表す。また、R11、R12及びR13の炭素原子数の総和が10以上であることが特に好ましい。
上記のアルキル基及びアリール基は置換基を有していてもよく、置換基としてはフッ素原子、アルキル基、アリール基、アルコキシ基、スルホン基及びスルホンアミド基が好ましく、アルキル基、アリール基、アルコキシ基、スルホン基及びスルホンアミド基が特に好ましい。
アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数が1〜25のものが好ましく、6〜25のものがより好ましく、6〜20のもの(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t−ブチル、アミル、イソアミル、t−アミル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ビシクロオクチル、ノニル、アダマンチル、デシル、t−オクチル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、ジデシルなど)が特に好ましい。
アリール基としては、炭素原子数が6〜30のものが好ましく、6〜24のもの(例えば、フェニル、ビフェニル、テルフェニル、ナフチル、ビナフチル、トリフェニルフェニルなど)が特に好ましい。
以下に、一般式(B)で表される化合物の好ましい例を示すが、これらの具体例に限定されるものではない。
Figure 2008145732
Figure 2008145732
Figure 2008145732
Figure 2008145732
一般式(C)
Figure 2008145732
上記一般式(C)において、R31はアルキル基又はアリール基を表し、R32及びR33はそれぞれ独立に水素原子、アルキル基又はアリール基を表す。ここで、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数が1〜20のものが好ましく、1〜15のものがさらに好ましく、1〜12のものがよりさらに好ましい。環状のアルキル基としては、シクロヘキシル基が特に好ましい。アリール基は炭素原子数が6〜36のものが好ましく、6〜24のものがより好ましい。
上記のアルキル基及びアリール基は置換基を有していてもよく、置換基としてはハロゲン原子(例えば、塩素、臭素、フッ素及びヨウ素など)、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、ヒドロキシ基、シアノ基、アミノ基及びアシルアミノ基が好ましく、より好ましくはハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、スルホニルアミノ基及びアシルアミノ基であり、特に好ましくはアルキル基、アリール基、スルホニルアミノ基及びアシルアミノ基である。
以下に、一般式(C)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 2008145732
Figure 2008145732
Figure 2008145732
Figure 2008145732
Figure 2008145732
Figure 2008145732
前記セルロースアシレートフィルムは、所望の波長分散にするために波長分散調整剤を含有していてもよい。
前記波長分散調整剤の具体例としては、例えばベンゾトリアゾール系化合物、ベンゾフェノン系化合物、シアノ基を含む化合物、オキシベンゾフェノン系化合物、サリチル酸エステル系化合物、ニッケル錯塩系化合物などが挙げられるが、これら化合物だけに限定されるものではない。
ベンゾトリアゾール系化合物としては一般式(101)で示されるものが本発明の波長分散調整剤として好ましく用いられる。
一般式(101) Q1−Q2−OH
式中、Q1は含窒素芳香族ヘテロ環、Q2は芳香族環を表す。
1は含窒素芳香族へテロ環をあらわし、好ましくは5〜7員の含窒素芳香族ヘテロ環
であり、より好ましくは5ないし6員の含窒素芳香族ヘテロ環であり、例えば、イミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、セレナゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、ベンゾセレナゾール、チアジアゾール、オキサジアゾール、ナフトチアゾール、ナフトオキサゾール、アザベンズイミダゾール、プリン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、トリアザインデン、テトラザインデン等があげられ、更に好ましくは、5員の含窒素芳香族ヘテロ環であり、具体的にはイミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、チアジアゾール、オキサジアゾールが好ましく、特に好ましくは、ベンゾトリアゾールである。
1で表される含窒素芳香族ヘテロ環は更に置換基を有してもよく、置換基としては後述の置換基Tが適用できる。また、置換基が複数ある場合にはそれぞれが縮環して更に環を形成してもよい。
2で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)更に好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくはナフタレン環、ベンゼン環であり、特に好ましくはベンゼン環である。Q2は更に置換基を有してもよく、後述の置換基Tが好ましい。
置換基Tには、アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)が含まれる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
一般式(101)として好ましくは下記一般式(101−A)で表される化合物である。
一般式(101−A)
Figure 2008145732
式中、R1、R2、R3、R4、R5、R6、R7、およびR8はそれぞれ独立に水素原子または置換基を表す。
1、R2、R3、R4、R5、R6、R7、およびR8はそれぞれ独立に水素原子または置換基を表し、置換基としては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
1およびR3として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは炭素数1〜12のアルキル基(好ましくは炭素数4〜12)である。
2およびR4として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
5およびR8として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
6およびR7として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、ハロゲン原子であり、特に好ましくは水素原子、塩素原子である。
一般式(101)としてより好ましくは下記一般式(101−B)で表される化合物である。
一般式(101−B)
Figure 2008145732
式中、R1、R3、R6およびR7は一般式(101−A)におけるそれらと同義であり、また好ましい範囲も同様である。
以下に一般式(101)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 2008145732
Figure 2008145732
以上例にあげたベンゾトリアゾール系化合物の中でも、分子量が320以下の化合物を用いるのが好ましい。
また前記波長分散調整剤としては、一般式(102)で表されるベンゾフェノン系化合物も好ましく用いられる。
一般式(102)
Figure 2008145732
一般式(102)中、Q1およびQ2はそれぞれ独立に芳香族環を表す。XはNR(Rは水素原子または置換基を表す。)、酸素原子または硫黄原子を表す。
一般式(102)中、Q1およびQ2で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
1およびQ2で表される芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)更に好ましくはベンゼン環である。
1およびQ2で表される芳香族ヘテロ環として好ましくは酸素原子、窒素原子あるいは硫黄原子のどれかひとつを少なくとも1つ含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
1およびQ2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくは炭素数6〜10の芳香族炭化水素環であり、更に好ましくは置換または無置換のベンゼン環である。
1およびQ2は更に置換基を有してもよく、前述の置換基Tから選ばれるのが好ましいが、置換基にカルボン酸やスルホン酸、4級アンモニウム塩を含むことはない。また、可能な場合には置換基同士が連結して環構造を形成してもよい。
XはNR(Rは水素原子または置換基を表す。置換基としては後述の置換基Tが適用できる。)、酸素原子または硫黄原子を表し、Xとして好ましくは、NR(Rとして好ましくはアシル基、スルホニル基であり、これらの置換基は更に置換してもよい。)、またはOであり、特に好ましくはOである。
一般式(102)として好ましくは下記一般式(102−A)で表される化合物である。
一般式(102−A)
Figure 2008145732
一般式(102−A)中、R1、R2、R3、R4、R5、R6、R7、R8、およびR9
それぞれ独立に水素原子または置換基を表す。
一般式(102−A)中、R1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表し、置換基としては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
1、R3、R4、R5、R6、R8およびR9として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
2として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは炭素数1〜20のアルコキシ基であり、特に好ましくは炭素数1〜12のアルコキシ基である。
7として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜20のアルキル基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくはメチル基)であり、特に好ましくはメチル基、水素原子である。
一般式(102)としてより好ましくは下記一般式(102−B)で表される化合物である。
一般式(102−B)
Figure 2008145732
一般式(102−B)中、R10は水素原子、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアルキニル基、置換または無置換のアリール基を表す。
10は水素原子、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアルキニル基、置換または無置換のアリール基を表し、置換基としては前述の置換基Tが適用できる。
10として好ましくは置換または無置換のアルキル基であり、より好ましくは炭素数5〜20の置換または無置換のアルキル基であり、更に好ましくは炭素数5〜12の置換または無置換のアルキル基(n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基、などが挙げられる。)であり、特に好ましくは、炭素数6〜12の置換または無置換のアルキル基(2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基)である。
一般式(102)であらわされる化合物は特開平11−12219号公報記載の公知の方法により合成できる。
以下に一般式(102)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 2008145732
Figure 2008145732
Figure 2008145732
また、前記波長分散調整剤として、一般式(103)で表されるシアノ基を含む化合物を用いるのも好ましい。
一般式(103)
Figure 2008145732
一般式(103)中、Q1およびQ2はそれぞれ独立に芳香族環を表す。X1およびX2は水素原子または置換基を表し、少なくともどちらか1つはシアノ基であり、他方は好ましくはカルボニル基、スルホニル基、芳香族ヘテロ環を表す。)Q1およびQ2であらわされる芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)更に好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
1およびQ2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環である。
1およびQ2は更に置換基を有してもよく、前述の置換基Tから選ばれるのが好ましい。
1およびX2は水素原子または置換基を表し、少なくともどちらか1つはシアノ基であり、他方は好ましくは、カルボニル基、スルホニル基、芳香族ヘテロ環を表す。X1およびX2で表される置換基は前述の置換基Tを適用することができる。また、X1およびX2はで表される置換基は更に他の置換基によって置換されてもよく、X1およびX2はそれぞれが縮環して環構造を形成してもよい。
1およびX2として好ましくは、水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(−C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基およびこれらを組み合せたもの)である。
一般式(103)として好ましくは下記一般式(103−A)で表される化合物である。
一般式(103−A)
Figure 2008145732
一般式(103−A)中、R1、R2、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ独立に水素原子または置換基を表す。X1およびX2は一般式(103)におけるそれらと同義であり、また好ましい範囲も同様である。
1、R2、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ独立に水素原子または置換基を表し、置換基としては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
1、R2、R4、R5、R6、R7、R9、およびR10として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
3、およびR8として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜12のアルキル基、炭素数1〜12アルコキシ基であり、特に好ましくは水素原子である。
一般式(103)としてより好ましくは下記一般式(103−B)で表される化合物である。
一般式(103−B)
Figure 2008145732
一般式(103−B)中、R3およびR8は一般式(103−A)におけるそれらと同義であり、また、好ましい範囲も同様である。X3は水素原子、または置換基を表す。
3は水素原子、または置換基を表し、置換基としては前述の置換基Tが適用でき、また、可能な場合は更に他の置換基で置換されてもよい。X3として好ましくは水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(−C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基およびこれらを組み合せたもの)である。
一般式(103)として更に好ましくは一般式(103−C)で表される化合物である。
一般式(103−C)
Figure 2008145732
一般式(103−C)中、R3およびR8は一般式(103−A)におけるそれらと同義であり、また、好ましい範囲も同様である。R21は炭素数1〜20のアルキル基を表す。
21として好ましくはR3およびR8が両方水素の場合には、炭素数2〜12のアルキル基であり、より好ましくは炭素数4〜12のアルキル基であり、更に好ましくは、炭素数6〜12のアルキル基であり、特に好ましくは、n−オクチル基、tert−オクチル基、2−エチルへキシル基、n−デシル基、n−ドデシル基であり、最も好ましくは2−エチルへキシル基である。
21として好ましくはR3およびR8が水素以外の場合には、一般式(103−C)で表される化合物の分子量が300以上になり、かつ炭素数20以下の炭素数のアルキル基が好ましい。
本発明一般式(103)で表される化合物はJounal of American Chemical Society 63巻 3452頁(1941)記載の方法によって合成できる。
以下に一般式(103)で表される化合物の具体例を挙げるが、下記具体例に何ら限定されるものではない。
Figure 2008145732
Figure 2008145732
Figure 2008145732
前記セルロースアシレートフィルムは、押出し法、溶液流延法等の種々の方法を利用して長尺状に作製することができる。フィルム状に成形した後、所定の光学特性を得るために、さらに延伸処理を施すことが望ましい。溶液流延法を利用して前記フィルムを作製する場合は、ドープ中に、可塑剤(好ましい添加量はセルロースエステルに対して0.1〜20質量%、以下同様)、改質剤(0.1〜20質量%)、紫外線吸収剤(0.001〜10質量%)、平均粒径が5〜3000nmである微粒子粉体(0.001〜5質量%)、フッ素系界面活性剤(0.001〜2質量%)、剥離剤(0.0001〜2質量%)、劣化防止剤(0.0001〜2質量%)、光学異方性制御剤(0.1〜15質量%)、赤外線吸収剤(0.1〜5質量%)等の添加剤を含有させてもよい。その他、フィルムの作製方法については、公開技法2001−1745号(2001年3月15日発行、発明協会)等に詳細が記載されていて、本発明に適用することができる。
得られたセルロースアシレートフィルムには、適宜、表面処理を行うことにより、セルロースアシレート層と他の層との接着を改善することが可能となる。表面処理には、グロー放電処理、紫外線照射処理、コロナ処理、火炎処理、ケン化処理(酸ケン化処理、アルカリケン化処理)が含まれ、特にグロー放電処理およびアルカリケン化処理が好ましい。
なお、前述した様に、分極率異方性Δαが2.5×10-24cm-3以上である置換基を含むセルロースアシレートを含むフィルムのみで前記第1の位相差層に要求される光学特性を満たすこともできるが、本発明の範囲には、前記第1の位相差層が、前記セルロースアシレートフィルムとともに他の複屈折性フィルムや位相差膜を含む態様も、含まれる。
(液晶組成物から形成された第1の位相差層)
前記第1の位相差層は、液晶組成物を用いて形成された層であってもよい。例えば、重合性の材料を含有する重合性液晶組成物を重合により硬化させて形成した層であってもよい。液晶材料としては棒状液晶が好ましい。前記式(1)を満足し、面内に光軸を有さない位相差層を形成するためには、棒状液晶を層面に対して垂直配向(ホメオトロピック配向)させて、その配向状態に固定して形成するのが好ましい。棒状液晶としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。棒状液晶性化合物を重合によって配向を固定することがより好ましい。液晶分子には活性光線や電子線、熱などによって重合や架橋反応を起こしうる部分構造を有するものが好適に用いられる。その部分構造の個数は1〜6個、好ましくは1〜3個である。重合性棒状液晶性化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、および特開2001−328973号公報などに記載の化合物を用いることができる。
前記液晶組成物中には、重合開始剤、重合性モノマー、垂直配向剤、界面活性剤等の種々の剤を添加してもよい。
なお、前記第1の位相差層を液晶組成物から形成する場合は、ポリマーフィルム等の支持体の表面に該層を形成した、光学補償フィルムとして液晶表示装置に組み込んでもよい。但し、かかる場合は、支持体は、黒表示時の視野角特性の改善に寄与する第2の位相差層としての光学特性を満足しているか、もしくは位相差が小さいほど好ましい。
[第2の位相差層]
本発明の液晶表示装置は、ディスコティック構造単位を有する化合物を含む組成物から形成された第2の位相差層有しているのが好ましい。前記第2の位相差層は、上記した通り、電圧印加時に基板近傍の液晶性分子の立ち上がりが充分でないために生じる残留レターデーションを相殺するものである。第2の位相差層の光学特性については特に限定はなく、液晶セルの光学特性との関係で、決定することができる。前記第2の位相差層の作製には、ディスコティック液晶性化合物を用いる。ディスコティック液晶性化合物の分子は、層中において、層面に対して実質的に垂直(50〜90度の範囲の平均傾斜角)に配向した状態に固定されているのが好ましい。ディスコティック液晶性化合物は、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page 2655(1994))に記載されているものを採用することができる。ディスコティック液晶性化合物の重合については、特開平8−27284号公報に記載のものを採用できる。
ディスコティック液晶性化合物は、重合により固定可能なように、重合性基を有するのが好ましい。例えば、ディスコティック液晶性化合物のディスコティックコアに、置換基として重合性基を結合させた構造が考えられるが、但し、ディスコティックコアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、ディスコティックコアと重合性基との間に連結基を有する構造が好ましい。即ち、重合性基を有するディスコティック液晶性化合物は、下記式(X)で表わされる化合物であることが好ましい。
式(X) D(−L−P)n
式中、Dはディスコティックコアであり、Lは二価の連結基であり、Pは重合性基であり、nは4〜12の整数である。
前記式(X)中のディスコティックコア(D)、二価の連結基(L)及び重合性基(P)の好ましい具体例は、それぞれ、特開2001−4837号公報に記載の(D1)〜(D15)、(L1)〜(L25)、(P1)〜(P18)であり、同公報に記載の内容を好ましく用いることができる。
前記ディスコティック液晶性化合物の分子は、層中では、実質的に均一に配向していることが好ましく、実質的に均一に配向している状態で固定されていることがさらに好ましく、重合反応により液晶性化合物が固定されていることがさらに好ましい。重合性基を有するディスコティック液晶性化合物の場合は、実質的に垂直配向させることが好ましい。実質的に垂直とは、ディスコティック液晶性化合物の分子の円盤面と、層面との平均角度(平均傾斜角)が50°〜90°の範囲内であることを意味する。ディスコティック液晶性化合物の分子を斜め配向させてもよいし、傾斜角が徐々に変化するように(ハイブリッド配向)させてもよい。斜め配向又はハイブリッド配向の場合でも、平均傾斜角は50°〜90°であることが好ましい。
前記第2の位相差層は、少なくとも一種のディスコティック液晶性化合物、及び所望により下記の重合開始剤や他の添加剤を含む塗布液を、配向膜の上に塗布することで形成することが好ましい。塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライド及びケトンが好ましい。二種類以上の有機溶媒を併用してもよい。塗布液の塗布は、公知の方法(例、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。
(液晶性化合物の配向状態の固定化)
配向させた液晶性化合物の分子は、配向状態を維持して固定することが好ましい。固定化は、液晶性化合物に導入した重合性基の重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれるが、光重合反応がより好ましい。光重合開始剤の例には、α−カルボニル化合物(例えば、米国特許2367661号、同2367670号の各公報に記載のもの)、アシロインエーテル(例えば、米国特許2448828号公報に記載のもの)、α−炭化水素置換芳香族アシロイン化合物(例えば、米国特許2722512号公報に記載のもの)、多核キノン化合物(例えば、米国特許3046127号、同2951758号の各公報に記載のもの)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(例えば、米国特許3549367号公報に記載のもの)、アクリジン及びフェナジン化合物(例えば、特開昭60−105667号公報に記載のもの、米国特許4239850号公報に記載のもの)及びオキサジアゾール化合物(例えば、米国特許4212970号公報に記載のもの)が含まれる。
光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがさらに好ましい。液晶性化合物の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2〜50J/cm2であることが好ましく、100〜800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。第2の位相差層の厚さは、0.1〜10μmであることが好ましく、0.5〜5μmであることがさらに好ましい。
(配向膜)
第2の位相差層の形成に際して液晶性化合物を配向させるためには、配向膜を利用するのが好ましい。配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログループを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例えば、ω−トリコ酸、ジオクタデシルジメチルアンモニウムクロリド、ステアリル酸メチルなど)の累積のような手段で設けることができる。さらに電場の付与、磁場の付与あるいは光照射により配向機能が生じる配向膜も知られている。ポリマーのラビング処理により形成する配向膜が特に好ましい。ラビング処理はポリマー層の表面を紙や布で一定方向に数回こすることにより実施する。配向膜に使用するポリマーの種類は、液晶性化合物の配向(特に平均傾斜角)に応じて決定することができる。例えば、液晶性化合物を水平に配向させるためには配向膜の表面エネルギーを低下させないポリマー(通常の配向用ポリマー)を用いる。具体的なポリマーの種類については液晶セル又は光学補償膜について種々の文献に記載がある。いずれの配向膜においても、液晶化合物と透明支持体の密着性を改善する目的で、重合性基を有することが好ましい。重合性基は、側鎖に重合性基を有する繰り返し単位を導入するか、あるいは、環状基の置換基として導入することができる。界面で液晶性化合物と化学結合を形成する配向膜を用いることがより好ましく、かかる配向膜としては特開平9−152509号公報に記載されている。配向膜の厚さは0.01〜5μmであることが好ましく、0.05〜1μmであることがさらに好ましい。なお、配向膜を用いて液晶性化合物を配向させてから、その配向状態のまま液晶性化合物を固定して位相差層を形成し、位相差層のみをポリマーフィルム(又は透明支持体)上に転写してもよい。
第2の位相差層を支持する支持体については、特に制限されず、種々の高分子フィルム等を用いることができる。例えば、トリアセチルセルロース、ノルボルネン樹脂等が挙げられる。前記第1の位相差層が高分子フィルムからなる場合は、第1の位相差層を第2の位相差層の支持体として利用してもよい。また、第2の位相差層の支持体が、偏光板の保護膜を兼ねていてもよい。かかる態様における支持体の材料の具体例については、偏光板の保護膜の材料の具体例と同一であり、後述する。
[偏光板]
本発明の液晶表示装置に用いられる偏光板について特に制限されない。一般的には、偏光板は、偏光膜と該偏光膜を挟持する一対の保護膜とからなる。例えば、ポリビニルアルコールフィルム等からなる偏光膜をヨウ素にて染色し、延伸を行い、その両面を保護膜にて積層して得られる。上記した通り、一対の保護膜の一方又は双方が、前記第1の位相差層を兼ねていてもよいし、前記第2の位相差を有する態様では、一対の保護膜の一方又は双方が、前記第2の位相差層の支持体を兼ねていてもよく、さらに、前記第1の位相差層であり、且つ前記第2の位相差層の支持体であってもよい。
偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜があり、いずれであってもよい。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。
偏光板の保護膜としては、透明なポリマーフィルムを用いるのが好ましい。例えば、セルロースアセテート、セルロースアセテートブチレート、セルロースプロピオネート等のセルロースエステル類、ポリカーボネート、ポリオレフィン、ポリスチレン、ポリエステル等を用いることができる。市販のポリマー(ノルボルネン系ポリマーでは、アートン(JSR製)、ゼオノア(日本ゼオン製)など)を用いてもよい。
偏光板の保護膜のレターデーション値は低いことが好ましい。偏光膜の吸収軸と保護膜の遅相軸が平行でない態様では、特に保護膜の面内レターデーション値Reが一定値以上であると、偏光軸と保護膜の遅相軸とが斜めにずれているため、直線偏光が楕円偏光に変化し、好ましくないとされている。また、ECBモードの液晶表示装置では、中間調表示時に液晶性分子が基板面に傾斜配向しているために、厚さ方向のレターデーション値Rthが一定値以上あると階調反転が生じると好ましくないとされている。すなわち、保護膜のレターデーション値は、例えば632.8nmにおいて±10nm以下が好ましく、±5nm以下がさらに好ましい。レターデーション値の低い高分子フィルムとしては、セルローストリアセテート、ゼオネックス、ゼオノア(共に日本ゼオン(株)製)、ARTON(JSR(株)製)のようなポリオレフィン類が好ましく用いられる。その他、例えば特開平8−110402号公報又は特開平11−293116号公報に記載されているような非複屈折性光学樹脂材料が挙げられる。
[実施例1]
図1と同一の構成の液晶表示装置について、白表示時の階調反転及び黄色味の色づきについて測定した。
液晶セル18は、セルギャップ3.28umとし、液晶層のΔn・dは280nmである。液晶材料は誘電異方性が正で、屈折率異方性、Δn=0.0854(589nm、20°C)、Δε=+8.5程度の液晶(例えばメルク社製のMLC−9100)である。また、液晶配向はホモジニアス配向である。上下偏光板20a、20bの吸収軸は、液晶セル18の配向方向(ラビング方向)と概略45°で、かつ上下偏光板20a、20bの吸収軸の交差角は概略90°の直交ニコルである。第1の位相差層であり且つ保護フィルムである14a、14bは、セルロースアセテートフィルムを2軸延伸して形成したフィルムであり、各フィルムのRe(550)≒0、Rth(550)は、互いに異なる。第2の位相差層16a、16bは、ディスコティック構造体を有する化合物を含有する組成物から形成された層(Re(550)は28nm)である。
図3に、第1の位相差層のRth(550)に対して、白表示時の階調反転角度と斜め方向(角度 横方位極角60°)から観察した際のb*をプロットしたグラフを示す。
図3に示したグラフから、図1の構成とすると、第1の位相差層のRth(550)が、前記式(1) −280nm < Rth(550) < 50nm を満足していると、b*が小さく(28以下)、且つ階調反転角が大きい(35以上)ECBモードの液晶表示装置となることが理解できる。
[実施例2]
図2と同一の構成の液晶表示装置について、白表示時の階調反転及び黄色味の色づきについて測定した。
液晶セル18は、セルギャップ3.28umとし、液晶層のΔn・dを280nmである。液晶材料は誘電異方性が正で、屈折率異方性、Δn=0.0854(589nm、20°C)、Δε=+8.5程度の液晶(例えばメルク社製のMLC−9100)である。また、液晶配向はホモジニアス配向である。上下偏光板20a’、20b’の吸収軸は、液晶セル18の配向方向(ラビング方向)と概略45°で、かつ上下偏光板20a’、20b’の吸収軸の交差角は概略90°の直交ニコルである。保護フィルム13a、13bは、市販のセルロースアセテートフィルム「フジタック」(富士フイルム社製)である。第1の位相差層であり且つ第2の位相差層の支持体である14a、14bは、セルロースアセテートフィルムを2軸延伸して形成したフィルムであり、各フィルムのRe(550)≒0、Rth(550)は、互いに異なる。第2の位相差層16a、16bは、ディスコティック構造体を有する化合物を含有する組成物から形成された層(Re(550)は28nm)である。
図4に、第1の位相差層のRth(550)に対して、白表示時の階調反転角度と斜め方向(角度 横方位極角60°)から観察した際のb*をプロットしたグラフを示す。
図4に示したグラフから、図2の構成とすると、第1の位相差層のRth(550)が、前記式(1) −280nm < Rth(550) < 50nm を満足していると、b*が小さく(28以下)、且つ階調反転角が大きい(35以上)ECBモード液晶表示装置となることが理解できる。
また、図5に、図2の構成について、第1の位相差層14a、14bが、Rth(550)が−100nmであり、Re(550)値が互いに異なるセルロースアシレートフィルムである液晶表示装置について、第1の位相差層のRe(550)に対して、白表示時の階調反転角度と斜め方向(角度 横方位極角60°)から観察した際のb*をプロットしたグラフを示す。
図5に示したグラフから、図2の構成とすると、第1の位相差層のRe(550)によらず、b*が小さく(28以下)、且つ階調反転角が大きい(35以上)ECBモード液晶表示装置となることが理解できる。
なお、実施例1及び2において第1の位相差層に用いたセルロースアシレートフィルムの作製例としては、以下の例がある。
アルドリッチ社製セルロースアセテート(アセチル置換度2.45)を出発原料として、対応する酸クロリドとの反応により、以下の合成例に従って、セルロースアシレート1を得た。なお、出発原料として、ダイセル社製セルロースアセテート(アセチル置換度2.41(商品名:L−70)、2.14(商品名:LM−80))を用いてもよい。
・ アサロン酸クロリドの合成
メカニカルスターラー、温度計、冷却管、滴下ロートをつけた1Lの三ツ口フラスコにアサロン酸(2,4,5−トリメトキシ安息香酸)106.1g、トルエン400mlを量り取り、80℃で攪拌した。ここに40.1mLの塩化チオニルをゆっくりと滴下し、添加後さらに80℃にて2時間攪拌した。反応後、アスピレーターを用いて反応溶媒を溜去すると白色固体が得られた。得られた白色固体にヘキサン300mlを加えて激しく攪拌・分散し、吸引ろ過により白色固体をろ別し、さらに大量のヘキサンで3回洗浄を行った。得られた白色固体を60℃で4時間真空乾燥することにより目的のアサロン酸クロリドを白色粉体として得た。(115.3g、収率99%)
・ セルロースアシレート1の合成
メカニカルスターラー、温度計、冷却管、滴下ロートをつけた1Lの三ツ口フラスコにアルドリッチ社製セルロースアセテート(アセチル置換度2.45)40g、ピリジン46.0ml、塩化メチレン300mlを量り取り、室温で攪拌した。ここに、上記合成したアサロン酸クロリド84.0gを数回に分割して粉体添加し、添加後さらに室温にて6時間攪拌した。反応後、反応溶液をメタノール4Lへ激しく攪拌しながら投入すると、白桃色固体が析出した。白桃色固体を吸引ろ過によりろ別し、大量のメタノールで3回洗浄を行った。得られた白桃色固体を60℃で終夜乾燥した後、90℃で6時間真空乾燥することにより目的の化合物を白桃色粉体として得た。得られたサンプル、セルロースアシレート1、について、置換度の測定はC13−NMRにおけるアシル基中のカルボニル炭素のピーク強度から置換度を求めた。その結果、式(A) Δα=αx−(αy+αz)/2で定義される分極率異方性Δαが8.6×10-24cm-3である置換基を含むセルロースアシレート1を得たこと、及びこのセルロースアシレート1のアシル基の総置換度(PA)は2.91で、芳香族アシル基の置換度は0.46であることを確かめた。
上記で製造したセルロースアシレート1を、120℃で2時間乾燥させた後、下記に記載の組成物をミキシングタンクに投入し、加熱しながら攪拌して各成分を溶解し、セルロースアシレート溶液を調製した。
=====================================
メチレンクロライド 261質量部
メタノール 39質量部
トリフェニルホスフェート 5.9質量部
ビフェニルジフェニルホスフェート 5.9質量部
セルロースアシレート1 100質量部
2酸化ケイ素微粒子 0.25質量部
=====================================
ミキシングタンクは攪拌羽根を有し、外周を冷却水が循環する400リットルのステンレス製のものを使用した。上記溶媒、およびセルロースアシレート以外の添加剤を投入して撹拌し、分散もしくは溶解させた後、上記セルロースアシレートを徐々に添加した。投入完了後、室温にて2時間撹拌して、3時間膨潤させた後に再度撹拌を実施した。
なお、攪拌には、15m/sec(剪断応力5×104kgf/m/sec2)の周速で攪拌するディゾルバータイプの偏芯攪拌軸および中心軸にアンカー翼を有して周速1m/sec(剪断応力1×104kgf/m/sec2)で攪拌する攪拌軸を用いた。膨潤は、高速攪拌軸を停止し、アンカー翼を有する攪拌軸の周速を0.5m/secとして実施した。
このようにして得られたセルロースアシレート溶液を、絶対濾過精度0.01mmの濾紙(#63、東洋濾紙(株)製)で濾過し、さらに絶対濾過精度2.5μmの濾紙(FH025、ポール社製)にて濾過してセルロースアシレート溶液を得た。
上記セルロースアシレート溶液を30℃に加温し、流延ギーサー(特開平11−314233号公報に記載)を通して、バンド長60mの鏡面ステンレス支持体上に流延した。流延点は18℃に設定したロールの上に設定し、バンドを支持する他方のロールの温度は35℃とした。また、流延部全体の空間温度は80℃に設定した。流延速度は40m/分、塗布幅は140cmとした。
流延部から50cm手前で、流延して回転してきたセルロースアシレートフィルムをバンドから剥ぎ取り、テンターでフィルム両端を把持した。フィルム幅を徐々に狭めながら110℃のテンター部を搬送し、フィルムを把持した時の幅の98%になるようにしてテンターから離脱させた。フィルム両端のクリップ跡部分を切り取った後、複数のパスロールからなる135℃〜140℃の乾燥部にフィルムを通して残留溶媒量が0.2%以下になるように乾燥させた。このようにして長尺状で膜厚90μmのセルロースアセテートフィルムを得た。
得られたセルロースアシレートフィルムについて、自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出したところ、Rthが−100nmであり、Reが−3nmであった。
上記セルロースアシレートフィルムの作製において、延伸条件、用いるセルロースアシレートの種類を代えることによって、種々のセルロースアシレートフィルムを作製し、液晶表示装置に組み込んで、図3〜図5に示した評価結果を得た。
本発明の液晶表示装置の一例の概略断面図である。 本発明の液晶表示装置の他の例の概略断面図である。 実施例1の結果を示すグラフであり、第1の位相差層のRth(550)に対してb*及び階調反転角をプロットしたグラフである。 実施例2の結果を示すグラフであり、第1の位相差層のRth(550)に対してb*及び階調反転角をプロットしたグラフである。 実施例2の結果を示すグラフであり、第1の位相差層のRe(550)に対してb*及び階調反転角をプロットしたグラフである。
符号の説明
12a、12b 偏光膜
13a、13b 偏光膜保護層
14a、14b 第1の位相差層
16a、16b 第2の位相差層
18 液晶セル
20a、20b 偏光板
20a’、20b’ 偏光板

Claims (8)

  1. 互いに対向して配置され、且つ少なくとも一方が透明電極を有する第1及び第2の基板;前記第1及び第2の基板間に、電圧無印加状態で液晶分子が前記基板間でツイスト角45°以下で、且つ基板面に略平行に配向し、電圧印加状態で液晶分子が前記基板面の法線方向に配向する液晶層;及び該液晶層を挟んで配置され、互いに直交する偏光軸を有する第1及び第2の偏光層;及び前記第1及び第2の偏光層の少なくとも一方と前記液晶層との間に、第1の位相差層;を有する液晶表示装置であって、前記第1の位相差層が下記式(1)を満たすことを特徴とする液晶表示装置:
    −280nm < Rth(550) < 50nm (1)
    但し、Rth(λ)は、波長λnmの光に対する厚さ方向のレターデーションである。
  2. 前記第1の位相差層が、下記式(2)を満たすことを特徴とする請求項1に記載の液晶表示装置:
    −200nm ≦ Rth(550) ≦ 0nm (2)。
  3. 前記第1の位相差層が、前記第1の偏光層と前記液晶層との間に配置され、前記第1の偏光層の保護層であることを特徴とする請求項1又は2に記載の液晶表示装置。
  4. 前記第1及び第2の偏光層の少なくとも一方と前記液晶層との間に、ディスコティック構造単位を有する化合物を含む組成物から形成された第2の位相差層をさらに有することを特徴とする請求項1〜3のいずれか1項に記載の液晶表示装置。
  5. 前記第1の位相差層と前記液晶層との間に、前記第2の位相差層が配置され、且つ前記第1の位相差層が、下記式(3)を満たすことを特徴とする請求項4に記載の液晶表示装置:
    Re(550nm) < 200nm (3)
    但し、Re(λ)は、波長λnmの光に対する面内レターデーションである。
  6. 前記第1の位相差層が、下記式(4)を満たすことを特徴とする請求項5に記載の液晶表示装置:
    −50nm ≦ Re(550) ≦ 150nm (4)。
  7. 前記第1の位相差層が、下記式(A)で表される分極率異方性Δαが2.5×10-24cm-3以上である置換基を含むセルロースアシレートを含有するフィルムからなる請求項1〜6のいずれか1項に記載の液晶表示装置:
    Δα=αx−(αy+αz)/2 (A)
    式中、αx、αy及びαzは分極率テンソルを対角化後に得られる固有値であり、αx≧αy≧αzを満足する。
  8. 前記第1の位相差層が、棒状液晶構造単位を有する化合物を含有する組成物から形成された層であることを特徴とする請求項1〜6のいずれか1項に記載の液晶表示装置。
JP2006332935A 2006-12-11 2006-12-11 液晶表示装置 Abandoned JP2008145732A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006332935A JP2008145732A (ja) 2006-12-11 2006-12-11 液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006332935A JP2008145732A (ja) 2006-12-11 2006-12-11 液晶表示装置

Publications (1)

Publication Number Publication Date
JP2008145732A true JP2008145732A (ja) 2008-06-26

Family

ID=39605981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332935A Abandoned JP2008145732A (ja) 2006-12-11 2006-12-11 液晶表示装置

Country Status (1)

Country Link
JP (1) JP2008145732A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185814A (ja) * 2007-01-30 2008-08-14 Fujifilm Corp 液晶表示装置
JP2011123401A (ja) * 2009-12-14 2011-06-23 Konica Minolta Opto Inc 偏光板とそれを用いた液晶表示装置
KR20120066813A (ko) * 2010-12-15 2012-06-25 엘지디스플레이 주식회사 액정표시장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072210A (ja) * 2000-08-28 2002-03-12 Fuji Photo Film Co Ltd 液晶表示装置
JP2005042039A (ja) * 2003-07-24 2005-02-17 Konica Minolta Holdings Inc セルロースエステルフィルム、セルロースエステルフィルムの製造方法、光学補償シート、偏光板、位相差板、電子ペーパ及び表示装置
JP2006215221A (ja) * 2005-02-03 2006-08-17 Nitto Denko Corp 偏光素子、液晶パネル、液晶テレビおよび液晶表示装置、ならびに偏光素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072210A (ja) * 2000-08-28 2002-03-12 Fuji Photo Film Co Ltd 液晶表示装置
JP2005042039A (ja) * 2003-07-24 2005-02-17 Konica Minolta Holdings Inc セルロースエステルフィルム、セルロースエステルフィルムの製造方法、光学補償シート、偏光板、位相差板、電子ペーパ及び表示装置
JP2006215221A (ja) * 2005-02-03 2006-08-17 Nitto Denko Corp 偏光素子、液晶パネル、液晶テレビおよび液晶表示装置、ならびに偏光素子の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185814A (ja) * 2007-01-30 2008-08-14 Fujifilm Corp 液晶表示装置
JP2011123401A (ja) * 2009-12-14 2011-06-23 Konica Minolta Opto Inc 偏光板とそれを用いた液晶表示装置
KR20120066813A (ko) * 2010-12-15 2012-06-25 엘지디스플레이 주식회사 액정표시장치
KR101714793B1 (ko) * 2010-12-15 2017-03-09 엘지디스플레이 주식회사 액정표시장치

Similar Documents

Publication Publication Date Title
US7318951B2 (en) Retardation film, producing process thereof and liquid crystal display utilizing the same
JP2007279083A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP4909698B2 (ja) 偏光板一体型光学補償フィルム及び液晶表示装置
JP4142691B2 (ja) 液晶表示装置
JP4860333B2 (ja) 液晶表示装置
JP2007155972A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP2006195157A (ja) 光学補償フィルム、偏光板、液晶表示装置
JP2008033285A (ja) 位相差フィルム、偏光板及び液晶表示装置
JP2007034107A (ja) 光学補償フィルム、偏光板及び液晶表示装置
KR101186480B1 (ko) 셀룰로오스아실레이트 필름, 편광판 보호 필름, 편광판 및액정 표시 장치
JP2007264403A (ja) 位相差板、偏光板、輝度向上フィルム、及び液晶表示装置
JP4663285B2 (ja) 液晶表示装置
WO2006109856A1 (en) Cellulose acylate film, optically compensatory film, polarizing plate and liquid crystal display
JP4647358B2 (ja) 光学補償フィルム及び液晶表示装置
JP4619108B2 (ja) 液晶表示装置
JP4637698B2 (ja) 偏光板一体型光学補償フィルムおよび液晶表示装置
JP2008145732A (ja) 液晶表示装置
JP2006293275A (ja) 光学補償フィルム、偏光板および液晶表示装置
KR20060101346A (ko) 광학보상필름, 편광판 및 액정표시장치
JP2006053429A (ja) 光学補償フイルム及び液晶表示装置
KR101139264B1 (ko) 길이가 긴 편광판과 그 제조 방법, 및 액정 표시 장치
JP2007193276A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP5587391B2 (ja) 液晶表示装置
JP2006194923A (ja) ベンド配向モードの液晶表示装置
JP2007332188A (ja) セルロースエステルフィルムの製造方法および、その方法により得られたセルロースエステルフィルム、光学補償フィルム、偏光板および液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130128