JP2008144678A - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
JP2008144678A
JP2008144678A JP2006333259A JP2006333259A JP2008144678A JP 2008144678 A JP2008144678 A JP 2008144678A JP 2006333259 A JP2006333259 A JP 2006333259A JP 2006333259 A JP2006333259 A JP 2006333259A JP 2008144678 A JP2008144678 A JP 2008144678A
Authority
JP
Japan
Prior art keywords
scroll
thrust bearing
base plate
oscillating
swing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006333259A
Other languages
English (en)
Inventor
Tatsuya Sasaki
辰也 佐々木
Hideto Nakao
英人 中尾
Kimiaki Matsukawa
公映 松川
Tetsuzo Matsuki
哲三 松木
Masaki Sato
勝紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006333259A priority Critical patent/JP2008144678A/ja
Publication of JP2008144678A publication Critical patent/JP2008144678A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】揺動スクロールとスラスト軸受との摺動面の焼付や損傷を防止し、スクロール圧縮機の製品寿命まで信頼性を確保する。
【解決手段】台板1a,2aに突設された渦巻突起1b,2bを互いに偏心させて組合せ、圧縮室5を形成する固定スクロール1および揺動スクロール2と、電動機10の回転駆動力を主軸6を介して揺動スクロール2に伝達する揺動軸6aと、揺動スクロール2の台板2aに対向して設置され、揺動スクロール2のスラスト荷重を支持するスラスト軸受18とを備えたスクロール圧縮機において、スラスト軸受18の揺動スクロール台板2aに対向する面が、内周部に内側凹形状となる傾斜部18aを有し、外周部に揺動スクロール台板2aとスラスト軸受18との対向面が平行となる平面部18bを有する構成とする。
【選択図】図4

Description

この発明は、冷凍空調機器に使用されるスクロール圧縮機に関するものである。
従来のスクロール圧縮機では、運転中において、固定スクロールおよび揺動スクロールの中心に向かうほど冷媒の圧力および温度が高くなり、圧縮された冷媒の荷重による圧力変形と熱変形とにより、揺動スクロールの台板は揺動スクロール台板を支持するスラスト軸受方向に中凸形状に歪む。したがって、揺動スクロール台板とスラスト軸受の内周側端部とが片あたり摺動を起こし、片あたり摺動部で異常摩耗が発生することや、焼付不具合が発生するという問題点があった。
この問題に対して、例えば、スラスト軸受の揺動スクロール台板を支持する面(揺動スクロール台板に対向するスラスト軸受の摺動面)、または揺動スクロール台板のスラスト軸受に支持される面(スラスト軸受に対向する揺動スクロール台板の摺動面)を半径方向に傾斜させ、摺動面の内周側が外周側に対し軸方向に微小寸法だけ凹む中凹形状に形成したスクロール圧縮機がある(例えば、特許文献1参照。)。
特開昭62−126203号公報
このようなスクロール圧縮機にあっては、例えば、モータの回転速度が小さい条件で運転するときには、圧縮室内の冷媒が漏れることで、揺動スクロール台板に大きな圧力が作用せず変形が生じにくい。揺動スクロール台板が変形していない場合には、スラスト軸受または揺動スクロール台板の摺動面が傾斜していることで、摺動面の外周側の凸部分で片あたりが生じ、焼付が発生するという問題があった。
また、モータの回転速度が大きい条件で運転するときには、圧縮された冷媒の荷重による圧力変形と熱変形とにより揺動スクロール台板が歪んだとしても、スラスト軸受または揺動スクロール台板の摺動面が傾斜しているので、揺動スクロール台板の摺動面とスラスト軸受の摺動面とは面接触し、片あたり摺動を起こすことはない。しかしながら、揺動スクロール台板またはスラスト軸受の摺動面全体が半径方向に傾斜していると、揺動スクロールとスラスト軸受との間に介在する潤滑油にくさび効果が発生せず、十分な油膜の負荷容量が得られない可能性がある。ゆえに、摺動面で異常摩耗が発生し、焼付不具合に至ることが懸念される。
ところで、従来の冷媒を用いた圧縮機においては、冷媒中の塩素原子による塩化物保護膜により固体潤滑性が発せられ、上記のような従来構成のスラスト軸受と揺動スクロール台板との摺動面も耐摩耗性向上が期待されるが、冷媒のHFC(ハイドロフルオロカーボン)化、自然冷媒化が進められている近年では、HFCや自然冷媒には共に冷媒中に塩素原子が含まれていないため、固体潤滑効果を有する塩化物の保護膜が形成されず、摺動面の摩耗や焼付を防止することがさらに重要な課題となっている。
特に、自然冷媒の一つである二酸化炭素(CO2)冷媒においては、HFCの中で最も高圧で作動するR410A冷媒の約3倍の作動圧力となるため、摺動条件が厳しい。
したがって、CO2冷媒のような作動圧力の高い冷媒を用いたスクロール圧縮機のスラスト軸受と揺動スクロール台板との摺動面においては、片あたりや無潤滑状態での摺動により、異常摩耗が発生し、焼付不具合に至ることが懸念されている。
この発明は、上記のような問題点を解決するためになされたものであり、揺動スクロールとスラスト軸受との摺動面の焼付や損傷を防止することを目的としている。
この発明に係るスクロール圧縮機は、スラスト軸受の揺動スクロール台板に対向する面が、内周部に内側凹形状となる傾斜部を有し、外周部に上記揺動スクロール台板と上記スラスト軸受との対向面が平行となる平面部を有するものである。
この発明によれば、冷媒圧縮時に揺動スクロールの台板が圧力変形および熱変形を起こし中凸形状に歪んでも、揺動スクロールとスラスト軸受との摺動面の焼付や損傷を防止することができる。
実施の形態1.
図1は本発明の実施の形態1によるスクロール圧縮機の全体構成を示す断面構成図である。同図において、固定スクロール1は、台板1aの下面に渦巻突起1bが設けられ、揺動スクロール2は、台板2aの上面に渦巻突起2bが設けられると共に、台板2aの底面に偏心穴2cが設けられており、各台板1a、2aに突設された渦巻突起1b,2bを互いに偏心させて組合せ、圧縮室5を形成する。圧縮室5の外周側には吸入口3が形成され、台板1aの中心部には吐出口4が形成されている。また、固定スクロール1および揺動スクロール2は、底部に油溜め14を有し、側壁に冷媒吸入管15が接続された密閉容器13内の上部に配置されている。
主軸6の上端に、主軸6の中心に対して偏心して設けられた揺動軸6aは、偏心穴2c内に圧入された揺動軸受17と摺動自在に連結されている。また、揺動軸6aにはバランサ6bが突設されるとともに、主軸6の中心から偏心した位置には軸心方向に貫通して給油孔7aが形成されている。また、主軸6の下端部には、上端開口が上記下端部に嵌合され、下端開口が油溜め14の潤滑油中に浸漬されているオイルキャップ7bが設置されており、給油孔7aとオイルキャップ7bとにより給油機構7が構成されている。
さらに、上部ハウジング8aと下部ハウジング8bとによりハウジング8が構成され、上部ハウジング8aは、その上端部で固定スクロール1を固定するとともに、スラスト軸受18を介して揺動スクロール2を下方から摺動自在に支持する。また、下部ハウジング8bは密閉容器13の側壁内面に固定され、上部ハウジング8aを下方から支持するとともに、主軸受19を介して主軸6を回転自在に支持している。
上部ハウジング8aと下部ハウジング8bとの間には、バランサ6bを収容するバランサ室8cが形成されている。また、上部ハウジング8aには、ハウジング8の上方の空間21と下方の空間22とを連通する複数の通路9が形成されている。さらに、下部ハウジング8bには、ハウジング8の下方の空間22とバランサ室8cとを連通する通路9が形成されている。さらにまた、密閉容器13の側壁内面と下部ハウジング8bとの間には、冷媒吸入管15からの冷媒を上方分岐孔20a、下方分岐孔20b、および中心方向分岐孔20cの三方向に分岐する分岐室20が形成されている。
密閉容器13内にはロータ10aおよびステータ10bからなる電動機10が設置され、ロータ10aは主軸6の周面に固設されている。また、ステータ10bは下部ハウジング8bの下部にボルト(図示せず)にて固定され、ロータ10aを、ギャップ11を有して囲んでいる。
揺動スクロール2と上部ハウジング8aとの間には、揺動スクロール2の軸周りの自転を防止し、主軸周りに公転させるオルダム継手12が設けられている。
また、吐出口4には冷媒吐出管16が接続され、この冷媒吐出管16の他端は密閉容器13の外部の冷媒配管(図示せず)に接続される。
次に動作について説明する。電動機10のロータ10aとともに主軸6が回転すると、電動機10の回転駆動力が揺動軸6aに伝達され、揺動スクロール2はオルダム継手12により自転を阻止されながら主軸6の周りで公転運動を行う。これにより、渦巻突起1bと渦巻突起2bとの組合せにより形成された圧縮室5が次第に容積を減じながら中心側に移動するので、吸入口3から圧縮室5に吸入された冷媒は次第にその圧力を高め、吐出口4および冷媒吐出管16を通じて機外の冷媒配管内へ圧送される。
このようにして密閉容器13内の冷媒が外部へ吐出されるので、密閉容器13内は負圧となり、機外の冷媒配管から冷媒が冷媒吸入管15を通じて吸入される。吸入された冷媒は分岐室20に入り、その一部は上方分岐孔20aを経て吸入口3から圧縮室5に吸入される。また、吸入された冷媒の他の一部は下方分岐孔20bを経て、あるいは、中心方向分岐孔20cから電動機10のギャップ11を経て、ハウジング8の下方の空間22に至り、これら冷媒は通路9を経て吸入口3から圧縮室5に吸入される。
また、油溜め14の潤滑油は、給油機構7の遠心ポンプ作用により給油孔7aを通じて主軸6の上端部へ送られて揺動軸受17を潤滑し、さらに、スラスト軸受18およびオルダム継手12に供給されて、これら摺動部を潤滑する。また、オルダム継手12に供給された潤滑油は返油孔8dを経てバランサ室8cに至り、その一部は主軸受19に供給されてこれら摺動部を潤滑する。また、バランサ室8c内の潤滑油は通路9を経て油溜め14に戻される。
次に、図2〜図4を用いて揺動スクロール2と、揺動スクロール2の台板2aに対向して設置され、揺動スクロール2のスラスト荷重を支持するスラスト軸受18との関係について説明する。図2は、運転中における揺動軸6aの中心Aとスラスト軸受18の中心(主軸6の中心)Oとの関係を示しており、スラスト軸受18を上部より見た際の図である。揺動軸6aの中心Aは主軸6の中心Oの周りを、A1,A2,A3,A4と回転する。図3は、図2のB−B線での断面構成図であり、揺動スクロール2の揺動軸6aの中心Aが、図2のA1(またはA3)の位置にある時の図である。また、図3は、揺動スクロール2とスラスト軸受18との対向面が、揺動スクロール2とスラスト軸受18との摺動面全体に亘って平行な場合の関係を示しており(従来構成)、図3(a)は揺動スクロール2の変形が生じていない状態、図3(b)は揺動スクロール2の変形が生じている状態を示している。
前述したとおり、スクロール圧縮機の運転中には、固定スクロール1および揺動スクロール2の中心に向かうほど冷媒の圧力および温度が高くなり、圧縮された冷媒の荷重によって圧力変形と熱変形が生じ、揺動スクロール2の台板2aは、図3(b)に示すようにスラスト軸受方向に中凸形状に歪む。今、揺動スクロール2の中心部に圧力Qが作用していると仮定すると、冷媒圧力および冷媒の熱による揺動スクロール2の変形は、図3(b)に示すように表される。図3(b)に示す場合には、揺動スクロール2の変形により、揺動スクロール台板2aとスラスト軸受18とは、スラスト軸受18の内周部で局部的に片あたり摺動を起こす。
図4は本発明の実施の形態1に係る揺動スクロール2とスラスト軸受18との関係を示した断面構成図であり、図2のB−B線での断面構成図である。また、図3と同様、揺動スクロール2の揺動軸6aの中心Aが、図2のA1(またはA3)の位置にある時の図である。また、図4(a)は揺動スクロール2の変形が生じていない状態、図4(b)は揺動スクロール2の変形が生じている状態を示している。
図3、図4において、揺動スクロール2の台板2aの半径をRO、スラスト軸受18の内周端の半径をRTとする。また、台板2aの変形を計算したときに導出される台板2aの最大たわみをδmaxとすれば、揺動スクロール2が変形した場合において、δmaxはROに対して十分に小さいため、揺動スクロール2の中心からの台板2aの端までの距離は近似的にROで表される。
本実施の形態1においては、スラスト軸受18の、揺動スクロール台板2aに対向する面に傾斜部18aと平面部18bとを設けている。すなわち、内周部に、揺動スクロール台板2aの方向に、内側凹形状となる傾斜部18aを有し、外周部に揺動スクロール台板2aとスラスト軸受18との対向面が平行となる平面部18bを設ける。また、傾斜部18aの傾斜角は台板2aの最大たわみδmaxに対する角度θ以上に傾斜している。
図4の紙面上において、揺動スクロール2は左右に往復運動を行う。図4(a)に示すように、揺動スクロール2の変形が生じていない状態では、揺動スクロール台板2aとスラスト軸受18とは、スラスト軸受18の平面部18bで面接触し、局部的に片あたり摺動を起こすことはない。
一方、図4(b)に示すように、揺動スクロール2の変形が生じている状態において、スラスト軸受18を、図4の紙面上で、M1,M2,M3,M4(M1,M4:平面部18b、M2,M3:傾斜部18a)の範囲に分割すると、揺動スクロール2が紙面上を右から左に移動する場合、M1の範囲では、揺動スクロール台板2aとスラスト軸受18とのすき間に介在する油膜の厚さ方向に沿った断面積が揺動スクロール2の移動につれて小さくなるため、くさび効果により油膜圧力が発生する。M3の範囲においても、スラスト軸受18の傾斜部18aが台板2aの最大たわみδmaxに対する角度θ以上に傾斜しているため、同様にくさび効果により油膜圧力が発生する。
このように、本実施の形態においては、揺動スクロール2の揺動軸6aの中心Aに対し両側でくさび効果により油膜圧力が発生するので、揺動スクロール2の台板2aがスラスト軸受18の内周側と片あたり摺動することない。
これに対し、図3に示すような対向面全体が平面である平面スラスト軸受であれば、M2,M3の部分には傾斜が無く、M1、M2の範囲では油膜圧力が発生するが、M3の範囲では油膜圧力が発生せず、また、M4の範囲でも油膜圧力が発生しないので、揺動軸6aの中心Aに対し片側のみに油膜圧力が発生するため、揺動スクロール2の台板2aがスラスト軸受18の内周側と片あたり摺動し、油膜圧力が発生していない側の摺動部の異常摩耗や焼付不具合の懸念がある。
また、揺動スクロール2が紙面上を左から右に移動する場合には、図4の本実施の形態の構成では、M2,M4の範囲でくさび効果により油膜圧力が発生するので、揺動スクロール2の台板2aがスラスト軸受18の内周側と片あたり摺動することない。一方、図3の従来構成の平面スラスト軸受であれば、M2の範囲では油膜圧力が発生しないので、揺動スクロール2の台板2aがスラスト軸受18の内周側と片あたり摺動する。
揺動スクロール2の揺動軸6aの中心Aが、図2のA2(またはA4)の位置にある場合にも、揺動スクロール2とスラスト軸受18との関係を、図2のB−B線断面でみると、本実施の形態においては、同様に、揺動スクロール2の揺動軸6aの中心Aに対し両側でくさび効果により油膜圧力が発生する。
したがって、本実施の形態の構成とすることにより、揺動スクロール2の公転運動のいずれの状態においても、また、図2のB−B線以外の断面においても、同様に、揺動スクロール2の揺動軸6aの中心Aに対し両側で油膜圧力が発生するので、揺動スクロール2の台板2aがスラスト軸受18の内周側と片あたり摺動することない。
以上のように、本実施の形態1におけるスラスト軸受18は、その内周部に内側凹形状となる傾斜部18aを有し、その外周部に平面部18bを有することを特徴とし、冷媒圧縮時に揺動スクロールの台板が圧力変形および熱変形を起こしスラスト軸受方向に中凸形状に歪んでも、従来の平面スラスト軸受では、油膜圧力の発生しない部分に油膜圧力を発生させて、揺動スクロール台板が片あたり摺動することがないようにしている。また、回転速度が小さく、揺動スクロール台板が変形しない場合にも、平面部18bで面接触するので、局部的に片あたり摺動を起こすことはない。そのため、摺動部の異常摩耗の発生が防止でき、焼付不具合に至る危険性を軽減できるので、スクロール圧縮機の製品寿命まで信頼性を確保することが可能となる。
実施の形態2.
実施の形態2は、スラスト軸受18における傾斜部18aの形状に関するものであり、揺動スクロール2の回転時に、常に、揺動スクロール2のバランスがとれ、片あたりすることのない傾斜部18aの形状について説明する。
図5は本発明の実施の形態2によるスクロール圧縮機の主要部を示す断面構成図であり、図4(b)に対応した図である。
まず、図5に基づいて、揺動スクロール2の揺動軸6aの中心Aが、図2のA1(またはA3)の位置にある時に、図2のB−B線断面における油膜圧力が最大となる形状について述べる。
図5に示すように、スラスト軸受18の傾斜部18aの傾斜の高さをa、半径方向長さをbとし、a,bを算出する。なお、計算上必要となる、スラスト軸受18の平面部18b(揺動スクロール2の台板2aに対向している平面部分)の半径方向長さをcとする。
図6は、図5に示す揺動スクロール台板2aとスラスト軸受18との詳細な関係を示す断面構成図である。図5に示す揺動スクロール台板2aとスラスト軸受18とは左右対称形であるため、これらの右半分に関して図6に詳細を示している。
図6において、スラスト軸受18の内周端、傾斜部18aと平面部18bとの境界点、および揺動スクロール台板2aの外周端における、揺動スクロール台板2aとスラスト軸受18との間の距離を、各々h3、h1、およびh2とする。
実施の形態1で述べたように、揺動スクロール台板2aが右から左へ移動する場合、スラスト軸受18の平面部18b(M1)およびスラスト軸受18の傾斜部18a(M3)で油膜圧力が発生する。また、揺動スクロールの台板2aが左から右へ移動する場合はスラスト軸受18の平面部18b(M4)およびスラスト軸受18の傾斜部18a(M2)で油膜圧力が発生する。
ここで、流体膜に発生する油膜圧力について図7を用いて説明する。図7は平面パッド軸受を示す断面図である。図7のように、速度Uをもって走行する平面24と、これに対してわずかに傾斜する平面パッド23(パッドの幅B、パッド端部での平面からの距離h1,h2)を考える。このような2面に挟まれた流体膜を考えた時に、先狭まりの油膜くさびに流体が引き込まれて生じるくさび効果によって、流体膜には圧力が発生する。流体膜に発生する圧力pは次式(1)で表される。ただし、簡単のため平面パッド23は紙面に垂直方向に無限に長いものと仮定する。また、流体膜の粘性係数をμとする。
Figure 2008144678
各々、式(2)、(3)で表される無次元量である。
Figure 2008144678
圧力pを平面パッド23の幅Bにわたって積分すれば、平面パッド23の負荷容量(油膜圧力)が求められる。単位長さ(単位長さの方向は平面とも平面パッドの傾斜方向ともほぼ一致。)あたりの負荷容量Pは式(4)で表される。
Figure 2008144678
式(4)から、無次元負荷容量
Figure 2008144678
は式(5)で表される。
Figure 2008144678
mを平面パット23の傾斜に関する変数として、式(5)に基づき、パッド傾斜mと無次元負荷容量P*(m)との関係を図8に示す。
図8より無次元負荷容量P*はパッド傾斜mが、m=2.2付近で最大になることがわかる。また、m=1、すなわち平面24と平面パッド23とが平行の場合は、無次元負荷容量P*は極めて小さくなり、圧力は生じないことがわかる。
本実施の形態2における揺動スクロール2とスラスト軸受18との間のすき間の傾斜に関しても、上記と同様の数式が適用できる。以下、上記すき間に満たされる油膜の無次元負荷容量P*(m)が最大となる形状を算出することとする。
図6において、揺動スクロール台板2aが左から右へ移動する場合、図5のM4の部分に油膜圧力が発生する。M4の部分において、端部の油膜厚さh1、h2の比をm1とおくと、式(6)が示される。
Figure 2008144678
また、揺動スクロール台板2aの傾きが線形であるとして近似すると、h2とh1の関係は式(7)で表される。なお、ROは揺動スクロール台板2aの半径、δmaxは揺動スクロール台板2aの最大たわみである。
Figure 2008144678
式(6)、式(7)から、h1は式(8)で表される。
Figure 2008144678
一方、このとき、図5のM2の部分にも油膜圧力が発生する。揺動スクロール2とスラスト軸受18の形状は左右対称であるため、M2の部分に発生する油膜圧力に関しては、図6のM3の部分を用いて説明する。
M3の部分において、端部の油膜厚さh1、h3の比をm2とおくと、式(9)が示される。
Figure 2008144678
また、h3とh1の関係は式(10)で表される。
Figure 2008144678
式(9)、式(10)から、h1は式(11)で表される。
Figure 2008144678
式(8)、式(11)からh1を消去すると式(12)となる。
Figure 2008144678
ここで、図5より、式(13)が与えられる。
b+c=RO−RT (13)
式(12)、式(13)よりcを消去すると式(14)が与えられる。
Figure 2008144678
前述したように、パッドの傾斜がm=2.2のとき、油膜の無次元負荷容量が最大となる。M2の部分(計算上ではM3の部分)およびM4の部分において、油膜の無次元負荷容量が最大となる場合は、m1とm2とが式(15)で表される場合である。
1=m2=2.2 (15)
式(14)と式(15)とより、式(16)が得られ、aが求まる。
Figure 2008144678
また、M2の部分(計算上ではM3の部分)の油膜の負荷容量とM4の部分の油膜の負荷容量とが等しいときに、揺動スクロールは片あたりすることなく安定する。したがって、式(4)を図5、図6の場合に適用すれば、式(17)を得る。
Figure 2008144678
式(17)に式(15)を代入すると、bとcの関係が求まり、bとcとの間には式(13)が成立するので、bは、式(18)で表される。
Figure 2008144678
以上のように、揺動スクロール2の揺動軸6aの中心Aが、図2のA1(またはA3)の位置にある時に、図2のB−B線断面における油膜圧力が最大となる形状は、傾斜部18の高さa、傾斜部18aの半径方向の長さbが、式(16),式(18)で示されるような形状のスラスト軸受18としたときである。
次に、揺動スクロール2の揺動軸6aの中心Aが、図2のA2の位置にある時に、図2のB−B線断面における油膜圧力が最大となる形状について述べる。
図9は、本発明の実施の形態2によるスクロール圧縮機の主要部を示す断面構成図であり、揺動スクロール2の揺動軸6aの中心Aが、図2のA2の位置にある状態を示す。
図9の断面構成図において揺動スクロール2が最も偏心したときの、揺動スクロール2の揺動軸6aの中心Aとスラスト軸受18の中心Oとの距離をRrとする。
また、図9における油膜厚さを、以下のように、それぞれh11、h21、h31、h12、h22、h32と定義する。すなわち、スラスト軸受18が偏心している側のスラスト軸受18の内周端、傾斜部18aと平面部18bとの境界点、および揺動スクロール台板2aの外周端における揺動スクロール台板2aとスラスト軸受18との間の距離を、各々h31、h11、およびh21とし、スラスト軸受18が偏心している側と反対側のスラスト軸受18の内周端、傾斜部18aと平面部18bとの境界点、および揺動スクロール台板2aの外周端における揺動スクロール台板2aとスラスト軸受18との間の距離を、各々h32、h12、およびh22とする。また、スラスト軸受18の平面部18b(揺動スクロール2の台板2aに対向している平面部分)の半径方向長さは、M1の部分をc1、M4の部分をc2とする。
この状態におけるスラスト軸受18の最適形状(長さa,b)は以下のように算出する。
図9の状態から揺動スクロール台板2aが左から右へ移動する場合、図5の場合と同様に、M4およびM2の部分に油膜圧力が発生する。
M4の部分において、端部の油膜厚さh12,h22の比をm1とおくと、式(19)が示される。
Figure 2008144678
また、揺動スクロールの台板2aの傾きが線形であるとして近似すると、h22とh12との関係は式(20)で表される。
Figure 2008144678
式(19),式(20)から、h12は式(21)で表される。
Figure 2008144678
ここで、図6における油膜厚さh1と図9における油膜厚さh12との関係は、式(22)で表される。
Figure 2008144678
式(21)と式(22)とからh12を消去すると、式(23)が表される。
Figure 2008144678
次に、M2の部分において、端部の油膜厚さh11,h31の比をm2とおくと、式(24)が示される。
Figure 2008144678
また、h31とh11との関係は式(25)で表される。
Figure 2008144678
式(24),式(25)から、h11は式(26)で表される。
Figure 2008144678
ここで、図6における油膜厚さh1と図9における油膜厚さh11との関係は、式(27)で表される。
Figure 2008144678
式(26)と式(27)からh11を消去すると、式(28)が表される。
Figure 2008144678
式(23),式(28)からh1を消去すると、式(29)となる。
Figure 2008144678
M2の部分とM4の部分とにおいて、油膜の無次元負荷容量が最大となる場合、m1とm2とは式(30)で表される。
1=m2=2.2 (30)
また、図9より、式(31)が与えられる。
b+c2=RO−RT−Rr (31)
式(29)に式(30),式(31)を代入することで、式(32)が与えられ、aが求まる。
Figure 2008144678
また、M2の部分とM4の部分との油膜の負荷容量が等しいときに、揺動スクロールは片あたりすることなく安定する。したがって、式(4)を図9の場合に適用すれば、式(33)を得る。
Figure 2008144678
式(33)を整理すると、式(34)に示すように簡単化される。
Figure 2008144678
式(34)に式(21),式(27)を代入した後、式(30)を代入することにより式(35)が与えられる。
Figure 2008144678
式(35)に、式(28)を代入した後、式(32)を代入して、bについて整理すると式(36)を得る。
Figure 2008144678
以上のように、揺動スクロール2の揺動軸6aの中心Aが、図2のA2の位置にある時に、図2のB−B線断面における油膜圧力が最大となる形状は、傾斜部18の高さa、傾斜部18aの半径方向の長さbが、式(32),式(36)で示されるような形状のスラスト軸受18としたときである。
揺動スクロール2の揺動軸6aの中心Aが、図2のA4の位置にある時には、図9と左右対称の図となるため、図2のB−B線断面における油膜圧力が最大となる形状は、図9の場合と同様の数式が成り立つ。
圧縮機運転中の揺動スクロール2とスラスト軸受18との関係は、必ず、図5と図9、およびその間の範囲で表現することができる。したがって、スラスト軸受18における傾斜部18aの形状(a,b)を、式(16),式(18)と、式(32),式(36)との間、すなわち、傾斜部18aの高さaを式(37)、傾斜部18aの半径方向の長さbを式(38)で示される範囲に設定すれば、常に、揺動スクロール2のバランスがとれ、片あたりすることない。また、揺動スクロールとスラスト軸受とのすき間に形成される油膜の負荷容量が、揺動スクロールのバランスを保持できる程度に十分にとれるので、無潤滑状態での摺動を回避することができる。その結果、揺動スクロールとスラスト軸受との間の焼付や損傷を防止でき、スクロール圧縮機の製品寿命まで信頼性を確保することが可能となる。
Figure 2008144678
ここで、冷媒にCO2を適用した場合のスクロール圧縮機において、例えば、揺動スクロール2の材料にアルミを用いた場合、および鉄を用いた場合のそれぞれについて、バランスのとれた油膜の負荷容量が確保できるスラスト軸受18の具体的形状を計算により求めた。
アルミ製の揺動スクロール2の台板2aの半径ROが65mm、スラスト軸受18の内周面半径RTが32mm、揺動スクロール2が最も偏心したときの、揺動スクロール2の揺動軸6aの中心Aとスラスト軸受18の中心Oとの距離Rrが3.8mmであるスクロール圧縮機において、空調機の標準運転条件時(4MPaのCO2冷媒を10MPaに圧縮)には、最大たわみδmaxが47.6μmである(台板2aの厚みは14mm。)。このとき、式(16),式(18)を満たすスラスト軸受18の形状は、傾斜部18aの高さaが24.2μm、傾斜部18aの半径方向長さbが16.5mmとなる。また、式(32),式(36)を満たすスラスト軸受18の形状は、傾斜部18aの高さaが14.7μm、傾斜部18aの半径方向長さbが10.0mmとなる。したがって、傾斜部18aの高さaを14.7〜24.2μm、傾斜部18aの半径方向長さbを10.0〜16.5mmにするとよい。
鉄製の揺動スクロール2を適用した場合においては、RO、RT、Rrをアルミ製の揺動スクロールの寸法と同等にそれぞれ、65mm、32mm、3.8mmとし、同じ標準運転条件とした場合、最大たわみδmaxが26.8μmである(台板2aの厚みは14mm。)。このとき、式(16),式(18)を満たすスラスト軸受18の形状は、傾斜部18aの高さaが13.6μm、傾斜部18aの半径方向長さbが16.5mmとなる。また、式(32),式(36)を満たすスラスト軸受18の形状は、傾斜部18aの高さaが8.3μm、傾斜部18aの半径方向長さbが10.0mmとなる。したがって、傾斜部18aの高さaを8.3〜13.6μm、傾斜部18aの半径方向長さbを10.0〜16.5mmにするとよい。
なお、上記各実施の形態では、スラスト軸受18の揺動スクロール台板2aに対向する面に、傾斜部18aと平面部18bとを設けたが、図10に示すように、揺動スクロール台板2aのスラスト軸受18に対向する面に、傾斜部と平面部とを設けてもよい。
本発明の実施の形態1によるスクロール圧縮機の全体構成を示す断面構成図である。 本発明の実施の形態1によるスクロール圧縮機における運転中の揺動軸の中心とスラスト軸受の中心との関係を示す図である。 従来構成の揺動スクロールとスラスト軸受とを示す断面構成図である。 本発明の実施の形態1に係る揺動スクロールとスラスト軸受とを示す断面構成図である。 本発明の実施の形態2に係る揺動スクロールとスラスト軸受とを示す断面構成図である。 本発明の実施の形態2に係る揺動スクロール台板とスラスト軸受との詳細な関係を示す断面構成図である。 平面パッド軸受の断面構成図である。 無次元負荷容量とパッド傾斜との関係を示すグラフである。 本発明の実施の形態2に係る揺動スクロールとスラスト軸受とを示す断面構成図である。 本発明の実施の形態2に係る揺動スクロールとスラスト軸受とを示す断面構成図である。
符号の説明
1 固定スクロール、1a 固定スクロール台板、1b 固定スクロール渦巻突起、2 揺動スクロール、2a 揺動スクロール台板、2b 揺動スクロール渦巻突起、2c 偏心穴、3 吸入口、4 吐出口、5 圧縮室、6 主軸、6a 揺動軸、6b バランサ、7 給油機構、7a 給油孔、7b オイルキャップ、8 ハウジング、8a 上部ハウジング、8b 下部ハウジング、8c バランサ室、8d 返油孔、9 通路、10 電動機、10a ロータ、10b ステータ、11 ギャップ、12 オルダム継手、13 密閉容器、14 油溜め、15 冷媒吸入管、16 冷媒吐出管、17 揺動軸受、18 スラスト軸受、18a 傾斜部、18b 平面部、19 主軸受、20 分岐室、20a 上方分岐孔、20b 下方分岐孔、20c 中心方向分岐孔、21 ハウジング上方の空間、22 ハウジング下方の空間、23 平面パッド、24 平面。

Claims (2)

  1. 台板に突設された渦巻突起を互いに偏心させて組合せ、圧縮室を形成する固定スクロールおよび揺動スクロールと、電動機の回転駆動力を主軸を介して上記揺動スクロールに伝達する揺動軸と、上記揺動スクロールの台板に対向して設置され、上記揺動スクロールのスラスト荷重を支持するスラスト軸受とを備えたスクロール圧縮機において、上記スラスト軸受の上記揺動スクロール台板に対向する面は、内周部に内側凹形状となる傾斜部を有し、外周部に上記揺動スクロール台板と上記スラスト軸受との対向面が平行となる平面部を有することを特徴とするスクロール圧縮機。
  2. 揺動スクロール台板の半径をRO、スラスト軸受の内周端の半径をRT、揺動スクロールの揺動軸の中心と上記スラスト軸受の中心との距離をRr、圧縮動作により上記揺動スクロール台板が変形したときの最大たわみをδmaxとしたとき、上記スラスト軸受の傾斜部の傾斜の高さa、および上記傾斜部の半径方向の長さbは、次式で示される範囲にあることを特徴とする請求項1記載のスクロール圧縮機。
    Figure 2008144678
JP2006333259A 2006-12-11 2006-12-11 スクロール圧縮機 Pending JP2008144678A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333259A JP2008144678A (ja) 2006-12-11 2006-12-11 スクロール圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333259A JP2008144678A (ja) 2006-12-11 2006-12-11 スクロール圧縮機

Publications (1)

Publication Number Publication Date
JP2008144678A true JP2008144678A (ja) 2008-06-26

Family

ID=39605121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333259A Pending JP2008144678A (ja) 2006-12-11 2006-12-11 スクロール圧縮機

Country Status (1)

Country Link
JP (1) JP2008144678A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241530A (ja) * 2011-05-16 2012-12-10 Mitsubishi Electric Corp スクロール圧縮機
WO2015155802A1 (ja) * 2014-04-09 2015-10-15 三菱電機株式会社 スクロール圧縮機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241530A (ja) * 2011-05-16 2012-12-10 Mitsubishi Electric Corp スクロール圧縮機
WO2015155802A1 (ja) * 2014-04-09 2015-10-15 三菱電機株式会社 スクロール圧縮機
CN105917120A (zh) * 2014-04-09 2016-08-31 三菱电机株式会社 涡旋压缩机
JPWO2015155802A1 (ja) * 2014-04-09 2017-04-13 三菱電機株式会社 スクロール圧縮機

Similar Documents

Publication Publication Date Title
US7789640B2 (en) Scroll fluid machine with a pin shaft and groove for restricting rotation
KR880000225B1 (ko) 밀폐형 스크로울 압축기의 축받이 장치
JPH0372840B2 (ja)
JP3988435B2 (ja) スクロール圧縮機
JP2007162571A (ja) スクロール圧縮機
JP6057535B2 (ja) 冷媒圧縮機
JP2008144678A (ja) スクロール圧縮機
JP6184648B1 (ja) 軸受ユニット及び圧縮機
JP4288741B2 (ja) ロータリ圧縮機
WO2019171427A1 (ja) 圧縮機
JP4442633B2 (ja) スクロール圧縮機
JP6328322B2 (ja) すべり軸受を有する圧縮機
JP7010202B2 (ja) 流体機械
JP4749136B2 (ja) スクロール圧縮機
JP2003003959A (ja) 圧縮機
JP2012082714A (ja) スクロール圧縮機
JP4013992B2 (ja) スクロール型流体機械
JPH03160186A (ja) 流体圧縮機
JP3874018B2 (ja) スクロール型流体機械
JP3976070B2 (ja) スクロール型流体機械
EP3705723B1 (en) Scroll compressor
JP2012036833A (ja) スクロール型流体機械
JP3976081B2 (ja) スクロール型流体機械
WO2017149820A1 (ja) 軸受ユニット及び圧縮機
JP2007107535A5 (ja)