JP2008103345A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2008103345A
JP2008103345A JP2007286191A JP2007286191A JP2008103345A JP 2008103345 A JP2008103345 A JP 2008103345A JP 2007286191 A JP2007286191 A JP 2007286191A JP 2007286191 A JP2007286191 A JP 2007286191A JP 2008103345 A JP2008103345 A JP 2008103345A
Authority
JP
Japan
Prior art keywords
secondary battery
protective layer
negative electrode
positive electrode
nonaqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007286191A
Other languages
Japanese (ja)
Other versions
JP5071056B2 (en
Inventor
Yukio Miyaki
幸夫 宮木
Masuo Kabutomori
眞州雄 兜森
Akiyuki Inoue
礼之 井上
Hiroshi Ishizuka
弘 石塚
Toshiaki Aono
俊明 青野
Mikihiko Kato
三紀彦 加藤
Hideki Tomiyama
秀樹 富山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007286191A priority Critical patent/JP5071056B2/en
Publication of JP2008103345A publication Critical patent/JP2008103345A/en
Application granted granted Critical
Publication of JP5071056B2 publication Critical patent/JP5071056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To improve productivity of a nonaqueous secondary battery with high discharge voltage, superb charge/discharge cycle characteristics, and excellent in safety. <P>SOLUTION: In the nonaqueous secondary battery consisting of a cathode and an anode containing a material capable of reversibly storing and releasing lithium, and nonaqueous electrolyte containing lithium salt, the anode and/or the cathode are to be provided with at least one layer of protective layer having conductivity. The protective layer contains conductive particles at least as a kind selected from metal powder or carbon particles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生産性を向上させた、高放電電位で寿命、安全性に優れる非水二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery with improved productivity, high discharge potential, excellent life and safety.

特許文献1には、正極の表面を、電子電導性と、リチウムなどのイオン伝導性を合わせ持つ物質からなる保護層が記載され、電子−イオン混合導電性を有する物質としてタングステン、モリブデン、バナジウムの酸化物が好ましいと記載されている。しかしながら、これらの化合物は、内部短絡を防止する十分な効果を示すに至っていない。
又、特許文献2には、正極と対向する負極(アルカリ金属またはアルカリ金属合金)面上に、該アルカリ金属イオンを選択的に透過する高分子膜を設置することが記載されている。しかしながら、これらの多孔性高分子膜の設置は、電池容量を大幅に低下させる問題をはらんでいる。
Patent Document 1 describes a protective layer made of a material having both electron conductivity and ion conductivity such as lithium on the surface of the positive electrode. It is stated that oxides are preferred. However, these compounds have not yet exhibited a sufficient effect to prevent internal short circuit.
Patent Document 2 describes that a polymer film that selectively permeates the alkali metal ions is provided on the surface of the negative electrode (alkali metal or alkali metal alloy) facing the positive electrode. However, the installation of these porous polymer membranes has a problem of greatly reducing the battery capacity.

特開昭61−7577号公報JP-A-61-7777 特開平4−28173号公報JP-A-4-28173

従って、本発明の目的は、高い放電電圧、良好な充放電サイクル特性を持ち、更に安全性が優れた非水二次電池の生産性を向上させることである。   Accordingly, an object of the present invention is to improve the productivity of a non-aqueous secondary battery having a high discharge voltage, good charge / discharge cycle characteristics, and excellent safety.

本発明の目的は、以下の非水二次電池によって達成された
(1) リチウムを可逆的に吸蔵放出可能な材料を含む正極及び負極、リチウム塩を含む非水電解質、セパレーターから成る非水二次電池に於いて、該負極及び/又は正極が導電性を有する保護層を少なくとも1層有することを特徴とする非水二次電池
The object of the present invention has been achieved by the following non-aqueous secondary battery .
(1) In a non-aqueous secondary battery including a positive electrode and a negative electrode including a material capable of reversibly inserting and extracting lithium, a non-aqueous electrolyte including a lithium salt, and a separator, the negative electrode and / or the positive electrode have conductivity. A non-aqueous secondary battery comprising at least one protective layer .

本発明のように、リチウムを可逆的に吸蔵放出可能な材料を含む正極及び負極、リチウム塩を含む非水電解質、セパレーターから成る非水二次電池に於いて、負極及び/又は正極に導電性を有する保護層を少なくとも1層付与することによって、高い放電作動電圧、大きな放電容量で保存安定性のある非水二次電池を安定に作ることが出来る。 As in the present invention, in a non-aqueous secondary battery including a positive electrode and a negative electrode including a material capable of reversibly occluding and releasing lithium, a non-aqueous electrolyte including a lithium salt, and a separator, the negative electrode and / or the positive electrode are conductive. By providing at least one protective layer having a non-aqueous secondary battery having a high discharge operating voltage and a large discharge capacity and having storage stability, it can be stably produced.

本発明者らは、リチウムを可逆的に吸蔵放出可能な材料を含む正極及び負極、リチウム塩を含む非水電解質、セパレーターから成る非水二次電池の製造得率の悪い原因を鋭意検討したところ、電極表面の突起状の凹凸、電極の搬送から電池組立までの工程中に生じる電極表面の傷、部分的な脱落等による凹凸が原因となって、電池巻回時にセパレーターを直接破壊したり、巻回時の微妙な摺動や、圧力のむらと結びついてセパレーターを破壊することにより内部短絡が発生していることの寄与が大きいことが分かった。
これらの内部短絡を防止するためには、電極表面に保護層を設けることが有効であり、保護層の設置は製造得率を向上させると共に、安全性をも向上させていることが分った。
The present inventors have intensively studied the cause of poor production rate of a non-aqueous secondary battery comprising a positive electrode and a negative electrode containing a material capable of reversibly inserting and extracting lithium, a non-aqueous electrolyte containing a lithium salt, and a separator. , Due to protrusions on the electrode surface, scratches on the electrode surface that occur during the process from electrode transportation to battery assembly, unevenness due to partial dropout, etc., directly breaking the separator when winding the battery, It was found that the contribution of the occurrence of internal short-circuiting by breaking the separator due to subtle sliding during winding and uneven pressure was found.
In order to prevent these internal short circuits, it is effective to provide a protective layer on the electrode surface, and it has been found that the installation of the protective layer improves the manufacturing yield and also improves the safety. .

本発明の保護層としては、絶縁性保護層、導電性保護層、アルカリ金属塩、アルカリ金属土類含有保護層、有機微粒子含有保護層が挙げられる。以下これらの保護層について説明する。
また、本発明において、保護層は少なくとも1層からなり、同種又は異種の複数層により構成されていても良い。保護層の厚みは、1μm以上40μm以下が好ましく、より好ましくは2μm以上30μm以下である。
Examples of the protective layer of the present invention include an insulating protective layer, a conductive protective layer, an alkali metal salt, an alkali metal earth-containing protective layer, and an organic fine particle-containing protective layer. Hereinafter, these protective layers will be described.
Moreover, in this invention, a protective layer consists of at least 1 layer, and may be comprised by the same kind or different types of multiple layers. The thickness of the protective layer is preferably 1 μm or more and 40 μm or less, more preferably 2 μm or more and 30 μm or less.

(絶縁性保護層)
本発明において、絶縁性保護層は実質的に電子伝導性を持たない、即ち絶縁性の層である。絶縁性保護層が複数層から形成される場合は、少なくとも最外層は絶縁性である。更にこれらの粒子を含む保護層は300℃以下で融解したり、新たな皮膜を形成しないものが望ましい。これらの保護層は、絶縁性の有機或いは、無機の粒子を含むことが好ましい。これらの粒子は、0.1μm以上20μm以下が好ましく、0.2μm以上15μm以下がより好ましい。
(Insulating protective layer)
In the present invention, the insulating protective layer has substantially no electronic conductivity, that is, is an insulating layer. When the insulating protective layer is formed from a plurality of layers, at least the outermost layer is insulative. Further, it is desirable that the protective layer containing these particles does not melt at 300 ° C. or less or does not form a new film. These protective layers preferably contain insulating organic or inorganic particles. These particles are preferably 0.1 μm or more and 20 μm or less, and more preferably 0.2 μm or more and 15 μm or less.

好ましい有機物の粒子は架橋されたラテックス又はフッ素樹脂の粉状体であり、ガラス転移点は250℃以上350℃以下であり、分解したり、皮膜を形成しないものが好ましい。より好ましいのはテフロン(登録商標)の微粉末である。
無機物粒子としては、金属、非金属元素の炭化物、珪化物、窒化物、硫化物、酸化物を挙げることが出来る。
炭化物、珪化物、窒化物のなかでは、SiC、窒化アルミニウム(AlN)、BN、BPが絶縁性が高くかつ化学的に安定で好ましく、特にBeO、Be、BNを撓結助剤として用いたSiCが特に好ましい。
Preferred organic particles are cross-linked latex or fluororesin powder and have a glass transition point of 250 ° C. or higher and 350 ° C. or lower and do not decompose or form a film. More preferred is a fine powder of Teflon (registered trademark).
Examples of inorganic particles include carbides, silicides, nitrides, sulfides, and oxides of metals and nonmetallic elements.
Among carbides, silicides, and nitrides, SiC, aluminum nitride (AlN), BN, and BP are preferably highly insulating and chemically stable. In particular, SiC using BeO, Be, and BN as a bending aid. Is particularly preferred.

無機物粒子としては、無機カルコゲナイド粒子を挙げることもできる。カルコゲナイドの中では、酸化物が好ましく、酸化或いは還元されにくい酸化物が好ましく、例えば、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、ジルコニウム、アルミニウム、珪素の酸化物を少なくとも1種含有しているものが使用できる。
これらの酸化物としては、例えば、Al23 、As46、B23 、BaO、BeO、CaO、Li2O、K2O、Na2O、In23、MgO、Sb25、SiO2、SrO、ZrO2があげられる。これらの中で、Al23、BaO、BeO、CaO、K2O、Na2O、MgO、SiO2、SrO、ZrO2が特に好ましい。これらの中でも更に、Al23、SiO2、ZrO2が特に好ましい。これらの酸化物は、単独であっても、複合酸化物であっても良い。複合酸化物として好ましい化合物としては、ムライト(3Al23・2SiO2)、ステアタイト (MgO・SiO2)、フォルステライト (2MgO・SiO2)、コージェライト(2MgO・2Al23・5SiO2)等を挙げることが出来る。
また、TiO2を用いることもできる。
Inorganic particles can also include inorganic chalcogenide particles. Among chalcogenides, oxides are preferable, and oxides that are difficult to oxidize or reduce are preferable. For example, those containing at least one oxide of sodium, potassium, magnesium, calcium, strontium, zirconium, aluminum, and silicon. Can be used.
Examples of these oxides include Al 2 O 3 , As 4 O 6 , B 2 O 3 , BaO, BeO, CaO, Li 2 O, K 2 O, Na 2 O, In 2 O 3 , MgO, and Sb. 2 O 5 , SiO 2 , SrO, ZrO 2 are enumerated. Among these, Al 2 O 3 , BaO, BeO, CaO, K 2 O, Na 2 O, MgO, SiO 2 , SrO, and ZrO 2 are particularly preferable. Among these, Al 2 O 3 , SiO 2 and ZrO 2 are particularly preferable. These oxides may be single or complex oxides. Preferred compounds as the composite oxide include mullite (3Al 2 O 3 .2SiO 2 ), steatite (MgO.SiO 2 ), forsterite (2MgO.SiO 2 ), cordierite (2MgO.2Al 2 O 3 .5SiO 2). And the like.
TiO 2 can also be used.

これらの無機化合物粒子は、生成条件の制御や粉砕等の方法により、0.1μm以上20μm以下、特に好ましくは0.2μm以上15μm以下の粒子にして用いる。
本発明に用いられる粒子の含有量は1〜80g/m2、好ましくは2〜40g/m2である。
These inorganic compound particles are used as particles having a size of 0.1 μm or more and 20 μm or less, particularly preferably 0.2 μm or more and 15 μm or less, by a method such as control of production conditions or pulverization.
The content of the particles used in the present invention is 1 to 80 g / m 2 , preferably 2 to 40 g / m 2 .

絶縁性保護層は、上記の実質的に導電性を持たない電気絶縁性の粒子と結着剤を用いて形成する。結着剤は、後で述べる電極合剤を形成する時に用いる結着剤を用いることが出来る。導電性を持たない粒子と結着剤の比率は両者の総重量に対して、粒子が40重量%以上96重量%以下が好ましく、50重量%以上92重量%以下がより好ましい。   The insulating protective layer is formed using the above-described electrically insulating particles having substantially no conductivity and a binder. The binder used when forming the electrode mixture described later can be used. The ratio of the particles having no electrical conductivity to the binder is preferably 40% by weight or more and 96% by weight or less, more preferably 50% by weight or more and 92% by weight or less, based on the total weight of both.

(導電性保護層)
本発明において、導電性保護層は水不溶性の導電性粒子と結着剤から構成される。結着剤は、後で述べる電極合剤を形成する時に用いる結着剤を用いることができる。導電性保護層に含まれる導電性粒子の割合は2.5重量%以上96重量%以下が好ましく、5重量%以上95重量%以下がより好ましく、10重量%以上93重量%以下が特に好ましい。
(Conductive protective layer)
In the present invention, the conductive protective layer is composed of water-insoluble conductive particles and a binder. The binder used when forming the electrode mixture described later can be used. The proportion of the conductive particles contained in the conductive protective layer is preferably 2.5% by weight to 96% by weight, more preferably 5% by weight to 95% by weight, and particularly preferably 10% by weight to 93% by weight.

本発明の水不溶性の導電性粒子としては、金属、金属酸化物、金属繊維、炭素繊維、カーボンブラック、黒鉛等を挙げることが出来る。水への溶解度は、100PPM以下、好ましくは不溶性のものが好ましい。これらの水不溶導電性粒子の中で、アルカリ金属特にリチウムとの反応性が低いものが好ましく、金属粉末、炭素粒子がより好ましい。粒子を構成する元素の20℃における電気抵抗率としては、5×109Q・m以下が好ましい。 Examples of the water-insoluble conductive particles of the present invention include metals, metal oxides, metal fibers, carbon fibers, carbon black, and graphite. The solubility in water is 100 PPM or less, preferably insoluble. Among these water-insoluble conductive particles, those having low reactivity with alkali metals, particularly lithium, are preferable, and metal powders and carbon particles are more preferable. The electrical resistivity at 20 ° C. of the elements constituting the particles is preferably 5 × 10 9 Q · m or less.

金属粉末としては、リチウムとの反応性が低い金属、即ちリチウム合金を作りにくい金属が好ましく、具体的には、銅、ニッケル、鉄、クロム、モリブデン、チタン、タングステン、タンタルが好ましい。これらの金属粉末の形は、針状、柱状、板状、塊状のいずれでもよく、最大径が0.02μm以上、20μm以下が好ましく、0.1μm以上、10μm以下がより好ましい。これらの金属粉末は、表面が過度に酸化されていないものが好ましく、酸化されているときには還元雰囲気で熱処理することが好ましい。   The metal powder is preferably a metal having low reactivity with lithium, that is, a metal that is difficult to form a lithium alloy. Specifically, copper, nickel, iron, chromium, molybdenum, titanium, tungsten, and tantalum are preferable. The shape of these metal powders may be any of acicular, columnar, plate-like, and massive shapes, and the maximum diameter is preferably 0.02 μm or more and 20 μm or less, more preferably 0.1 μm or more and 10 μm or less. These metal powders are preferably those whose surfaces are not excessively oxidized, and when oxidized, heat treatment is preferably performed in a reducing atmosphere.

炭素粒子としては、従来電極活物質が導電性でない場合に併用する導電材料として用いられる公知の炭素材料を用いることが出来る。これらの材料としてはサーマルブラック、ファーネスブラック、チャンネルブラック、ランプブラックなどのカーボンブラック、鱗状黒鉛、鱗片状黒鉛、土状黒鉛などの天然黒鉛、人工黒鉛、炭素繊維等があげられる。これらの炭素粒子を結着剤と混合分散するためには、カーボンブラックと黒鉛を併用するのが好ましい。カーボンブラックとしては、アセチレンブラック、ケッチェンブラックが好ましい。炭素粒子は、0.01μm以上、20μm以下が好ましく、0.02μm以上、10μm以下の粒子がより好ましい。   As the carbon particles, a known carbon material used as a conductive material used in combination when the electrode active material is not conductive can be used. Examples of these materials include carbon black such as thermal black, furnace black, channel black, and lamp black, natural graphite such as scaly graphite, scaly graphite, and earthy graphite, artificial graphite, and carbon fiber. In order to mix and disperse these carbon particles with the binder, it is preferable to use carbon black and graphite in combination. As carbon black, acetylene black and ketjen black are preferable. The carbon particles are preferably 0.01 μm or more and 20 μm or less, and more preferably 0.02 μm or more and 10 μm or less.

上記の保護層には、保護層の強度の改良等の目的で、実質的に導電性を持たない粒子を混合しても良い。これらの粒子としてテフロン(登録商標)の微粉末、SiC、窒化アルミニウム、アルミナ、ジルコニア、マグネシア、ムライト、フォルステライト、ステアタイトを挙げることが出来る。これらの粒子は、導電性粒子の0.01倍以上、10倍以下で使うと好ましい。   For the purpose of improving the strength of the protective layer and the like, particles having substantially no conductivity may be mixed in the protective layer. Examples of these particles include fine powder of Teflon (registered trademark), SiC, aluminum nitride, alumina, zirconia, magnesia, mullite, forsterite, and steatite. These particles are preferably used in an amount of 0.01 to 10 times that of the conductive particles.

(アルカリ金属塩、アルカリ金属土類含有保護層)
本発明において、アルカリ金属塩、アルカリ金属土類含有保護層は水不溶性もしくは水難溶性のアルカリ金属塩、アルカリ土類金属塩粒子(カルコゲナイドを除く)と結着剤を含む。これらの粒子は、0.02μm以上20μm以下が好ましく、0.05μm以上10μm以下がより好ましい。
(Alkali metal salt, alkali metal earth-containing protective layer)
In the present invention, the alkali metal salt and alkali metal earth-containing protective layer contains a water-insoluble or hardly water-soluble alkali metal salt, alkaline earth metal salt particles (excluding chalcogenide) and a binder. These particles are preferably 0.02 μm or more and 20 μm or less, and more preferably 0.05 μm or more and 10 μm or less.

アルカリ金属として好ましいのは、リチウム、ナトリウム、カリウムであり、特に好ましいのはリチウムである。アルカリ土類金属として好ましいのはマグネシウム、カルシウム、ストロンチウム、バリウムであり、特に好ましいのはマグネシウム、カルシウムである。塩として好ましいのはフッ化塩、リン酸塩、炭酸塩、けい酸塩、ほう酸塩、シュウ酸塩、酢酸塩である。アルカリ金属塩で特に好ましいのはフッ化リチウムである。アルカリ土類金属塩で特に好ましいのフッ化マグネシウム、炭酸マグネシウム、けい酸マグネシウム、フッ化カルシウム、炭酸カルシウム、けい酸カルシウムである。   Preferred as the alkali metal are lithium, sodium and potassium, and particularly preferred is lithium. Preferred as the alkaline earth metal are magnesium, calcium, strontium and barium, and particularly preferred are magnesium and calcium. Preferred as the salt are fluoride, phosphate, carbonate, silicate, borate, oxalate and acetate. Particularly preferred as the alkali metal salt is lithium fluoride. Particularly preferred among the alkaline earth metal salts are magnesium fluoride, magnesium carbonate, magnesium silicate, calcium fluoride, calcium carbonate and calcium silicate.

(有機微粒子含有保護層)
本発明の有機微粒子含有保護層に含有する微粒子は次のような機能を発揮する。即ち、何らかの理由で短絡が起こった場合、電池内部は温度が上昇する。このとき内部温度が該有機微粒子の最低製膜温度(MFT)以上になると、該有機微粒子は部分的に熔解して、保護層内の細孔を埋め、電解液の透過を遮断する(シャットダウン:SDという)。この場合、セパレーターと併用すれば電池の安全性は一層向上するが、回有機微粒子を含む保護層自身がセパレーターの役割を果たすので、セパレーターを省くことができる。これにより安全性のアップ、コストダウン、巻き回数を上げることによる電気容量のアップが図れる。
(Organic fine particle-containing protective layer)
The fine particles contained in the organic fine particle-containing protective layer of the present invention exhibit the following functions. That is, when a short circuit occurs for some reason, the temperature inside the battery rises. At this time, when the internal temperature becomes equal to or higher than the minimum film forming temperature (MFT) of the organic fine particles, the organic fine particles are partially melted to fill the pores in the protective layer and block the permeation of the electrolytic solution (shutdown: SD). In this case, if the separator is used in combination with the separator, the safety of the battery is further improved. However, since the protective layer itself containing the recycle organic fine particles serves as a separator, the separator can be omitted. As a result, safety can be increased, costs can be reduced, and electric capacity can be increased by increasing the number of windings.

好ましい有機物の微粒子は、電解液に不溶で、MFT(最低製膜温度)が80℃〜200℃、好ましくは90℃〜180℃、特に好ましくは110℃〜170℃の微粒子である。該保護層にはこのような有機の微粒子を少なくとも1種を含む。
本発明に用いる該有機微粒子を構成する重合体の合成に用いられる単量体としては、例えば、エチレン、プロピレン、アクリロニトリル、アクリル酸エステル、メタクリル酸エステル、クロトン酸エステル、ビニルエステル、マレイン酸ジエステル、フマル酸ジエステル、イタコン酸ジエステル、アクリルアミド類、メタクリルアミド類、ビニルエーテル類、スチレン類、ジエン類等が挙げられる。
これらの単量体について更に具体例を示す。
Preferable organic fine particles are insoluble in the electrolytic solution and have an MFT (minimum film forming temperature) of 80 ° C. to 200 ° C., preferably 90 ° C. to 180 ° C., particularly preferably 110 ° C. to 170 ° C. The protective layer contains at least one kind of such organic fine particles.
Examples of the monomer used for the synthesis of the polymer constituting the organic fine particles used in the present invention include, for example, ethylene, propylene, acrylonitrile, acrylic acid ester, methacrylic acid ester, crotonic acid ester, vinyl ester, maleic acid diester, Examples thereof include fumaric acid diesters, itaconic acid diesters, acrylamides, methacrylamides, vinyl ethers, styrenes and dienes.
Specific examples of these monomers are further shown.

アクリル酸エステルとしては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、ヘキシルアクリレート、2−エチルヘキシルアクリレート、アセトキシエチルアクリレート、フェニルアクリレート、2−メトキシアクリレート、2−エトキシアクリレート、2−(2−メトキシエトキシ)エチルアクリレート等が挙げられる。   Examples of acrylic esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, acetoxyethyl acrylate, phenyl acrylate, 2- Examples include methoxy acrylate, 2-ethoxy acrylate, 2- (2-methoxyethoxy) ethyl acrylate, and the like.

メタクリル酸エステルとしては、メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、n−ブチルメタクリレート、tert−ブチルメタクリレート、シクロヘキシルメタクリレート、2−ヒドロキシエチルメタクリレート、2−エトキシエチルメタクリレート等が挙げられる。   Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, 2-hydroxyethyl methacrylate, 2-ethoxyethyl methacrylate and the like.

クロトン酸エステルとしては、クロトン酸ブチル、クロトン酸ヘキシル等が挙げられる。
ビニルエステルとしては、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニル等が挙げられる。
マレイン酸ジエステルとしては、マレイン酸ジエチル、マレイン酸ジメチル、マレイン酸ジブチル等が挙げられる。
フマル酸ジエステルとしては、フマル酸ジエチル、フマル酸ジメチル、フマル酸ジブチル等が挙げられる。
イタコン酸ジエステルとしては、イタコン酸ジエチル、イタコン酸ジメチル、イタコン酸ジブチル等が挙げられる。
Examples of the crotonic acid ester include butyl crotonic acid and hexyl crotonic acid.
Examples of the vinyl ester include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl methoxyacetate, vinyl benzoate and the like.
Examples of maleic acid diesters include diethyl maleate, dimethyl maleate, and dibutyl maleate.
Examples of the fumaric acid diester include diethyl fumarate, dimethyl fumarate, dibutyl fumarate, and the like.
Examples of the itaconic acid diester include diethyl itaconate, dimethyl itaconate, and dibutyl itaconate.

アクリルアミド類としては、アクリルアミド、メチルアクリルアミド、エチルアクリルアミド、プロピルアクリルアミド、n−ブチルアクリルアミド、tert−ブチルアクリルアミド、シクロヘキシルアクリルアミド、2−メトキシエチルアクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、フェニルアクリルアミド等が挙げられる。   Examples of acrylamides include acrylamide, methyl acrylamide, ethyl acrylamide, propyl acrylamide, n-butyl acrylamide, tert-butyl acrylamide, cyclohexyl acrylamide, 2-methoxyethyl acrylamide, dimethyl acrylamide, diethyl acrylamide, phenyl acrylamide, and the like.

メタクリルアミド類としては、メチルメタクリルアミド、エチルメタクリルアミド、n−ブチルメタクリルアミド、tert−ブチルメタクリルアミド、2−メトキシメタクリルアミド、ジメチルメタクリルアミド、ジエチルメタクリルアミド等が挙げられる。
ビニルエーテル類としては、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテル、ジメチルアミノエチルビニルエーテル等が挙げられる。
Examples of methacrylamides include methyl methacrylamide, ethyl methacrylamide, n-butyl methacrylamide, tert-butyl methacrylamide, 2-methoxy methacrylamide, dimethyl methacrylamide, diethyl methacrylamide and the like.
Examples of vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, methoxyethyl vinyl ether, dimethylaminoethyl vinyl ether and the like.

スチレン類としては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、クロロメチルスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ビニル安息香酸メチルエステル、2−メチルスチレン等が挙げられる。
ジエン類としては、ブタジエン、イソプレン、クロロプレン、シクロペンタジエン及びその誘導体、ジシクロペンタジエン及びその誘導体、シクロヘキサジエン、ノルボルナジエン等が挙げられる。
Styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropyl styrene, butyl styrene, chloromethyl styrene, methoxy styrene, butoxy styrene, acetoxy styrene, chloro styrene, dichloro styrene, bromo styrene, vinyl benzoic acid. Examples include methyl ester and 2-methylstyrene.
Examples of dienes include butadiene, isoprene, chloroprene, cyclopentadiene and derivatives thereof, dicyclopentadiene and derivatives thereof, cyclohexadiene, norbornadiene, and the like.

本発明の有機微粒子に用いられる重合体は、上記単量体の共重合体でもよい。
更に本発明の有機微粒子に用いられる重合体としては、塩化ビニル樹脂、塩化ビニリデン樹脂、フッ素樹脂(例えば、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリクロロトリフルオロエチレン及びこれらを含む共重合体等)、アセタール樹脂、ポリエステル樹脂{テレフタル酸、イソフタル酸、コハク酸等のジカルボン酸成分(これらのジカルボン酸成分にはスルホン酸基、カルボキシル基等が置換していてもよい)と、エチレングリコール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ビスフェノールA等の縮合により得られるポリエステル}、ポリカーボネート樹脂、ポリアミド樹脂(例えば、ナイロン46、6、7、11、12、66、610、612、11、22等)、ポリウレタン樹脂(トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ポリメチレンポリフェニレンポリイソシアナート、トリジンジイソシアナート、ナフタレンジイソシアナート、ヘキサメチレンジイソシアナート、キシレンジイソシアナート、ジシクロヘキシルメタンジイソシアナート等のポリイソシアナートと、ポリオキシプロピレンポリオール、ポリエーテルポリオール、ポリオキシテトラメチレングリコール、ポリアジペートポリオール、ポリカプロラクトンジオール、ポリカーボネートポリオール、ポリブタジエンポリオール、ポリアクリラートポリオール等のポリオールとの重付加反応又は重合反応に基づき合成された重合体等)、尿素樹脂、ポリスルホン樹脂、ポリカプロラクトン樹脂、スチレン 無水マレイン酸樹脂等が挙げられる。
The polymer used for the organic fine particles of the present invention may be a copolymer of the above monomers.
Further, as the polymer used in the organic fine particles of the present invention, vinyl chloride resin, vinylidene chloride resin, fluororesin (for example, polyvinylidene fluoride, polyvinyl fluoride, polychlorotrifluoroethylene and a copolymer containing these), Acetal resin, polyester resin {Dicarboxylic acid components such as terephthalic acid, isophthalic acid, and succinic acid (these dicarboxylic acid components may be substituted with sulfonic acid groups, carboxyl groups, etc.), ethylene glycol, diethylene glycol, propylene Polyester obtained by condensation of glycol, neopentyl glycol, bisphenol A, etc.}, polycarbonate resin, polyamide resin (for example, nylon 46, 6, 7, 11, 12, 66, 610, 612, 11, 22, etc.), polyurethane resin (Tolylene diisocyanate, diphenyl Polyisocyanates such as tandiisocyanate, polymethylene polyphenylene polyisocyanate, tolidine diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, xylene diisocyanate, dicyclohexylmethane diisocyanate, polyoxypropylene polyol, poly Ether polyols, polyoxytetramethylene glycols, polyadipate polyols, polycaprolactone diols, polycarbonate polyols, polybutadiene polyols, polymers synthesized based on polyaddition reactions or polymerization reactions with polyacrylate polyols, etc.), urea resins , Polysulfone resin, polycaprolactone resin, styrene maleic anhydride resin and the like.

これらの有機微粒子に用いられる重合体は、上述の重合体を形成する単量体のランダム共重合体でもよいし、ブロック又はグラフト共重合体でもよい。
これらの有機微粒子に用いられる重合体は、融点が50℃以上、好ましくは80℃〜250℃、特に100℃〜200℃で、電解液に溶解しないものであればどのような重合体でも用いることができる。
本発明の有機微粒子に用いられる重合体は、ポリオレフィン類、フッ素樹脂等が好ましく用いられる。
The polymer used for these organic fine particles may be a random copolymer of monomers forming the above-mentioned polymer, or may be a block or graft copolymer.
The polymer used for these organic fine particles should be any polymer as long as it has a melting point of 50 ° C. or higher, preferably 80 ° C. to 250 ° C., particularly 100 ° C. to 200 ° C. and does not dissolve in the electrolyte. Can do.
As the polymer used for the organic fine particles of the present invention, polyolefins, fluororesins and the like are preferably used.

無機物粒子としては、金属、非金属元素の炭化物、珪化物、窒化物、硫化物、酸化物、珪酸塩を挙げることが出来る。
炭化物、珪化物、窒化物のなかでは、SiC、窒化アルミニウム(AlN)、BN,BPが絶縁性が高くかつ化学的に安定で好ましく、特にBeO、Be、BNを撓結助剤として用いたSiCが特に好ましい。
Examples of the inorganic particles include carbides, silicides, nitrides, sulfides, oxides, and silicates of metals and nonmetallic elements.
Among carbides, silicides, and nitrides, SiC, aluminum nitride (AlN), BN, and BP are preferably highly insulating and chemically stable. In particular, SiC using BeO, Be, and BN as a bending aid. Is particularly preferred.

カルコゲナイドの中では、酸化物が好ましく、酸化或いは還元されにくい酸化物が好ましい。これらの酸化物としては、Al23、As46、B23,BaO、BeO、CaO、Li2O、K2O、Na2O、In23、MgO,Sb25、SiO2、SrO、ZrO4があげられる。これらの中で、Al23、BaO、BeO、CaO、K2O、Na2O、MgO、SiO2、SrO、ZrO4が特に好ましい。これらの酸化物は、単独であっても、複合酸化物であっても良い。複合酸化物として好ましい化合物としては、ムライト (3Al23・2SiO2)、ステアタイト (MgO・SiO2)、フォルステライト(2MgO・SiO2)、コージェライト (2MgO・2Al23・5SiO2)等、珪酸塩としては、珪酸アルミニウム、珪酸亜鉛、珪酸カルシウム、珪酸ジルコニウム等が挙げられる。 Among chalcogenides, oxides are preferable, and oxides that are not easily oxidized or reduced are preferable. These oxides include Al 2 O 3 , As 4 O 6 , B 2 O 3 , BaO, BeO, CaO, Li 2 O, K 2 O, Na 2 O, In 2 O 3 , MgO, Sb 2 O. 5 , SiO 2 , SrO, and ZrO 4 . Among these, Al 2 O 3 , BaO, BeO, CaO, K 2 O, Na 2 O, MgO, SiO 2 , SrO, and ZrO 4 are particularly preferable. These oxides may be single or complex oxides. Preferred compounds as the composite oxide include mullite (3Al 2 O 3 .2SiO 2 ), steatite (MgO.SiO 2 ), forsterite (2MgO.SiO 2 ), cordierite (2MgO.2Al 2 O 3 .5SiO 2). ) And the like include aluminum silicate, zinc silicate, calcium silicate, zirconium silicate and the like.

保護層は、少なくとも上記の有機微粒子又は有機微粒子と無機微粒子の併用系よりなる。有機微粒子が結着剤の役割も果たすので、結着剤は必ずしも必要ではないが、用いる有機微粒子やが無機微粒子の種類によっては、別途結着剤を用いることもできる。結着剤は、後で述べる電極合剤を形成する時に用いる結着剤を用いることができる。保護層に用いる全微粒子と結着剤の比率は両者の総重量に対して、微粒子が50重量%以上、好ましくは60重量%以上、特に70重量%以上がより好ましい。   The protective layer is composed of at least the above organic fine particles or a combined system of organic fine particles and inorganic fine particles. Since the organic fine particles also serve as a binder, a binder is not always necessary. However, depending on the type of organic fine particles or inorganic fine particles used, a binder can be used separately. The binder used when forming the electrode mixture described later can be used. The ratio of the total fine particles and the binder used in the protective layer is more preferably 50% by weight or more, preferably 60% by weight or more, particularly 70% by weight or more, based on the total weight of both.

保護層は、正極、負極のいずれか一方に塗設しても、正極、負極の両者に塗設してもよい。また、正極や負極が、集電体の両側に合剤を塗設して形成されている場合、保護層はその両側に塗設してもよいし、片面だけに塗設する形態であってもよい。但し、セパレーターを介して対抗する正極と負極のいずれか一方には塗設されている必要がある。
保護層の塗設方式は、集電体上に、リチウムを可逆的に吸蔵放出可能な材料を含む合剤を塗設した後に、保護層を順次塗設する逐次方式でもよいし、合剤層と保護層を同時に塗設する同時塗布方式であってもよい。
The protective layer may be applied to either the positive electrode or the negative electrode, or may be applied to both the positive electrode and the negative electrode. In addition, when the positive electrode or the negative electrode is formed by applying a mixture on both sides of the current collector, the protective layer may be applied on both sides or only on one side. Also good. However, it is necessary to coat either one of the positive electrode and the negative electrode that oppose each other via the separator.
The coating method of the protective layer may be a sequential method in which a protective layer is sequentially coated after a mixture containing a material capable of reversibly occluding and releasing lithium on the current collector, or a mixture layer And a simultaneous coating method in which a protective layer is coated simultaneously.

本発明の非水二次電池に用いられる正、負極は、正極合剤あるいは負極合剤を集電体上に塗設して作ることが出来る。正極あるいは負極合剤には、それぞれ正極活物質あるいは負極材料のほか、それぞれに導電剤、結着剤、分散剤、フィラー、イオン導電剤、圧力増強剤や各種添加剤を含むことができる。   The positive and negative electrodes used in the nonaqueous secondary battery of the present invention can be prepared by coating a positive electrode mixture or a negative electrode mixture on a current collector. In addition to the positive electrode active material or the negative electrode material, the positive electrode or the negative electrode mixture can contain a conductive agent, a binder, a dispersant, a filler, an ionic conductive agent, a pressure enhancer, and various additives, respectively.

本発明で用いられる負極材料としては、軽金属イオンを吸蔵放出できる化合物であれはよい。これらには、軽金属、軽金属合金、炭素質化合物、無機酸化物、無機カルコゲナイド、金属錯体、有機高分子化合物があるが、炭素質化合物、無機酸化物、無機カルコゲナイドが好ましい。更にこれらは、組み合わせて用いてもよい。例えば、軽金属と炭素質化合物、軽金属と無機酸化物、軽金属と炭素質化合物と無機酸化物の組み合わせなどが挙げられる。これらの負極材料は、高容量、高放電電位、高安全性、高サイクル性の効果を与えるので好ましい。軽金属イオンとしては、リチウムが好ましい。   The negative electrode material used in the present invention may be a compound that can occlude and release light metal ions. These include light metals, light metal alloys, carbonaceous compounds, inorganic oxides, inorganic chalcogenides, metal complexes and organic polymer compounds, with carbonaceous compounds, inorganic oxides and inorganic chalcogenides being preferred. Furthermore, these may be used in combination. Examples include light metals and carbonaceous compounds, light metals and inorganic oxides, and combinations of light metals, carbonaceous compounds, and inorganic oxides. These negative electrode materials are preferable because they provide high capacity, high discharge potential, high safety, and high cycle effect. The light metal ion is preferably lithium.

軽金属としてはリチウムが好ましい。軽金属合金としては、リチウムと合金を作る金属あるいはリチウムを含む合金が挙げられる。Al,Al−Mn、Al−Mg、Al−Sn、Al−In、Al−Cdが特に好ましい。
金属化合物としては、以下に述べる金属酸化物、金属カルコゲナイドの他に、特開平5−159780号に記載のFeSi、Fe2Si3、FeSi2等のような珪化物、特開平6−290782号に記載のSiC、VC、Co2C、SiN、SnN、MoN等のような炭化物、窒化物が好ましい。
Lithium is preferred as the light metal. Examples of the light metal alloy include a metal that forms an alloy with lithium or an alloy containing lithium. Al, Al—Mn, Al—Mg, Al—Sn, Al—In, and Al—Cd are particularly preferable.
As the metal compound, in addition to the metal oxide and metal chalcogenide described below, silicides such as FeSi, Fe 2 Si 3 and FeSi 2 described in JP-A-5-159780, and JP-A-6-290782 Carbides and nitrides such as the described SiC, VC, Co 2 C, SiN, SnN, MoN and the like are preferred.

炭素質化合物としては、天然黒鉛、人工黒鉛、気相成長炭素、有機物の焼成された炭素などから選ばれ、黒鉛構造を含んでいるものが好ましい。また、炭素質化合物には、炭素以外にも、異種化合物、例えばB、P、N、S、SiC、B4Cを0〜10重量%含んでもよい。 The carbonaceous compound is preferably selected from natural graphite, artificial graphite, vapor-grown carbon, baked carbon of an organic substance, and the like, and includes a graphite structure. In addition to carbon, the carbonaceous compound may contain 0 to 10% by weight of a heterogeneous compound such as B, P, N, S, SiC, or B 4 C.

酸化物叉はカルコゲナイドを形成する元素としては、遷移金属又は周期律表13から15族の金属、半金属元素が好ましい。
遷移金属化合物としては、特にV、Ti、Fe、Mn、Co、Ni、Zn、W、Moの単独あるいは複合酸化物、又はカルコゲナイドが好ましい。更に好ましい化合物として、特開平6−44,972号公報記載のLipCoq1-qr(ここでP=0.1〜2.5、q=0〜1、z=1.3〜4.5)を挙げる事が出来る。
As an element that forms oxide or chalcogenide, a transition metal, a metal from group 13 to 15 of the periodic table, or a metalloid element is preferable.
As the transition metal compound, V, Ti, Fe, Mn, Co, Ni, Zn, W, Mo alone or a composite oxide or chalcogenide is particularly preferable. Further preferred compounds of JP-A 6-44,972 JP Li p Co q V 1-q O r ( where P = 0.1~2.5, q = 0~1, z = 1.3 To 4.5).

遷移金属以外の金属、半金属の化合物としては、周期律表第13族〜15族の元素、Ga、Si、Sn、Ge、Pb、Sb、Biの単独あるいはそれらの2種以上の組み合わせからなる酸化物、カルコゲナイドが選ばれる。
例えば、Ga23、SiO、GeO、GeO2、SnO、SnO2、SnSiO3、PbO、PbO2、Pb23、Pb24、Pb34、Sb23、Sb24、Sb25、Bi23、Bi24、Bi25、SnSiO3、GeS、GeS2、SnS、SnS2、PbS、PbS2、Sb23、Sb25、SnSiS3などが好ましい。又これらは、酸化リチウムとの複合酸化物、例えばLi2GeO3、Li2SnO2であってもよい。
The metal or metalloid compound other than the transition metal includes a group 13-15 element of the periodic table, Ga, Si, Sn, Ge, Pb, Sb, Bi alone or a combination of two or more thereof. Oxides and chalcogenides are selected.
For example, Ga 2 O 3 , SiO, GeO, GeO 2 , SnO, SnO 2 , SnSiO 3 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , SnSiO 3 , GeS, GeS 2 , SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , SnSiS 3 or the like is preferable. These may also be complex oxides with lithium oxide, such as Li 2 GeO 3 and Li 2 SnO 2 .

上記の複合カルコゲン化合物、複合酸化物は電池組み込み時に主として非晶質であることが好ましい。ここで言う主として非晶質とはCuKα線を用いたX線回折法で2θ値で20°から40°に頂点を有するブロードな散乱帯を有する物てあり、結晶性の回折線を有してもよい。好ましくは2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の500倍以下であることが好ましく、さらに好ましくは100倍以下であり、特に好ましくは5倍以下であり、最も好ましくは 結晶性の回折線を有さないことである。   The complex chalcogen compound and complex oxide are preferably mainly amorphous when assembled into a battery. The term “amorphous” as used herein refers to an X-ray diffraction method using CuKα rays, which has a broad scattering band having a peak at 20 ° to 40 ° with a 2θ value, and has a crystalline diffraction line. Also good. Preferably, the strongest intensity of the crystalline diffraction lines seen at 2θ values of 40 ° or more and 70 ° or less is 500 of diffraction line intensities at the apexes of broad scattering bands seen at 20 ° or more and 40 ° or less of 2θ values. It is preferably not more than twice, more preferably not more than 100 times, particularly preferably not more than 5 times, and most preferably not having a crystalline diffraction line.

上記の複合カルコゲン化合物、複合酸化物はB、Al、Ga、In、Tl、Si、Ge、Sn、Pb、P、As、Sb、Biの中の3種以上の元素の複合カルコゲン化合物、複合酸化物であり、より好ましくは複合酸化物である。
特に好ましくはB、Al、Si、Ge、Sn、Pの中の3種以上の元素から構成される複合酸化物である。これらの複合酸化物は、主として非晶質構造を修飾するために周期律表の1族から3族の元素またはハロゲン元素を含んでもよい。
The above complex chalcogen compounds and complex oxides are complex chalcogen compounds and complex oxidations of three or more elements among B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb and Bi. More preferably, it is a complex oxide.
Particularly preferred is a complex oxide composed of three or more elements of B, Al, Si, Ge, Sn, and P. These composite oxides may contain a group 1 to group 3 element or a halogen element in the periodic table mainly for modifying the amorphous structure.

上記の負極材料の中で、錫を主体とする非晶質の複合酸化物が特に好ましく、次の一般式(1)で表される。
SnM1 at 一般式(1)
式中、M1はAl、B、P、Si、周期律表第1族元素、第2族元素、第3族元素、ハロゲン元素から選ばれる2種以上の元素を表し、aは0.2以上2以下の数を、tは1以上6以下の数を表す。
Among the above negative electrode materials, an amorphous composite oxide mainly composed of tin is particularly preferable, and is represented by the following general formula (1).
SnM 1 a O t general formula (1)
In the formula, M 1 represents two or more elements selected from Al, B, P, Si, Group 1 elements, Group 2 elements, Group 3 elements, and halogen elements in the periodic table, and a is 0.2 The number is 2 or less and t is 1 or more and 6 or less.

一般式(1)の中で、次の一般式(2)の化合物力便に好ましい。
SnM2 bt 一般式(2)
式中、M2 はAl、B、P、周期律表第1族元素、第2族元素、第3族元素、ハロゲン元素から選ばれる2種以上の元素を表し、bは0.2以上2以下の数を、tは1以上6以下の数を表す。
Of the general formula (1), the compound of the following general formula (2) is preferable.
SnM 2 b O t general formula (2)
In the formula, M 2 represents two or more elements selected from Al, B, P, Group 1 elements, Group 2 elements, Group 3 elements, and halogen elements in the periodic table, and b represents 0.2 or more and 2 In the following numbers, t represents a number from 1 to 6.

一般式(1)の中で、次の一般式(3)の化合物が更に好ましい。
SnM3 c4 dt 一般式(3)
式中、M3 はAl、B、P、Siの少なくとも2種を、M4は周期律表第1族元素、第2族元素、第3族元素、ハロゲン元素の少なくとも1種を表し、cは0.2以上2以下の数、dは0.01以上1以下の数で、0.2<c+d<2、tは1以上6以下の数を表す。
Of the general formula (1), compounds of the following general formula (3) are more preferable.
SnM 3 c M 4 d O t General formula (3)
In the formula, M 3 represents at least two of Al, B, P and Si, M 4 represents at least one of Group 1 element, Group 2 element, Group 3 element and halogen element in the periodic table, c Is a number of 0.2 or more and 2 or less, d is a number of 0.01 or more and 1 or less, 0.2 <c + d <2, and t is a number of 1 or more and 6 or less.

3とM4は一般式(3)の化合物を全体として非晶質化させるための元素であり、M3は非晶化可能な元素であり、Al、B、P、Siの2種以上を組み合わせて用いるのが好ましい。M4は非晶質の修飾が可能な元素であり、周期律表第1族元素、第2族元素、第3族元素、ハロゲン元素であり、K、Na、Cs、Mg、Ca、Ba、Y、Fが好ましい。bは0.2以上2以下の数、cは0.01以上1以下の数で、0.2<b+c<2、tは1以上6以下の数を表す。 M 3 and M 4 are elements for making the compound of general formula (3) amorphous as a whole, M 3 is an element that can be made amorphous, and two or more of Al, B, P, and Si Are preferably used in combination. M 4 is an element that can be amorphously modified, and is a group 1 element, group 2 element, group 3 element, or halogen element in the periodic table, and K, Na, Cs, Mg, Ca, Ba, Y and F are preferred. b is a number from 0.2 to 2; c is a number from 0.01 to 1; 0.2 <b + c <2; and t is a number from 1 to 6.

本発明の非晶質複合酸化物は、焼成法、溶液法のいずれの方法も採用することができるが、焼成法がより好ましい。焼成法では、一般式(1)に記載された元素の酸化物あるいは化合物をよく混合した後、焼成して非晶質複合酸化物を得るのが好ましい。   The amorphous composite oxide of the present invention can employ either a firing method or a solution method, but a firing method is more preferable. In the firing method, it is preferable to obtain an amorphous composite oxide by thoroughly mixing oxides or compounds of the elements described in the general formula (1) and then firing.

焼成条件としては、昇温速度として昇温速度毎分5℃以上200℃以下であることが好ましく、かつ焼成温度としては500℃以上1500℃以下であることが好ましく、かつ焼成時間としては1時間以上100時間以下であることが好ましい。且つ、下降温速度としては毎分2℃以上107℃以下であることが好ましい。 As firing conditions, the temperature rise rate is preferably 5 ° C. or more and 200 ° C. or less per minute, the firing temperature is preferably 500 ° C. or more and 1500 ° C. or less, and the firing time is 1 hour. It is preferable that it is 100 hours or less. Further, the rate of temperature decrease is preferably 2 ° C. or more and 10 7 ° C. or less per minute.

本発明における昇温速度とは「焼成温度(℃表示)の50%」から「焼成温度(℃表示)の80%」に達するまでの温度上昇の平均速度であり、本発明における降温速度とは「焼成温度(℃表示)の80%」から「焼成温度(℃表示)の50%」に達するまでの温度降下の平均速度である。   The rate of temperature increase in the present invention is the average rate of temperature rise from “50% of the firing temperature (indicated in ° C.)” to “80% of the firing temperature (indicated in ° C.)”. It is the average rate of temperature drop from reaching “80% of the firing temperature (indicated by ° C.)” to “50% of the firing temperature (expressed in ° C)”

降温は焼成炉中で冷却してもよくまた焼成炉外に取り出して、例えば水中に投入して冷却してもよい。またセラミックスプロセッシング(技報堂出版1987)217頁記載のgun法・Hammer−Anvil法・slap法・ガスアトマイズ法・プラズマスプレー法・遠心急冷法・melt drag法などの超急冷法を用いることもできる。またニューガラスハンドブック(丸善1991)172頁記載の単ローラー法、双ローラ法を用いて冷却してもよい。焼成中に溶融する材料の場合には、焼成中に原料を供給しつつ焼成物を連続的に取り出してもよい。焼成中に溶融する材料の場合には融液を撹拌することが好ましい。   The temperature lowering may be cooled in a firing furnace, or taken out of the firing furnace and cooled, for example, in water. In addition, a super rapid cooling method such as a gun method, a Hammer-Anvil method, a slap method, a gas atomization method, a plasma spray method, a centrifugal quenching method, or a melt drag method described on page 217 of ceramics processing (Gihodo Publishing 1987) can also be used. Moreover, you may cool using the single roller method and the double roller method of New Glass Handbook (Maruzen 1991) p.172. In the case of a material that melts during firing, the fired product may be continuously taken out while supplying raw materials during firing. In the case of a material that melts during firing, it is preferable to stir the melt.

焼成ガス雰囲気は好ましくは酸素含有率が5体積%以下の雰囲気であり、さらに好ましくは不活性ガス雰囲気である。不活性ガスとしては例えば窒素、アルゴン、ヘリウム、クリプトン、キセノン等が挙げられる。最も好ましい不活性ガスは純アルゴンである。   The firing gas atmosphere is preferably an atmosphere having an oxygen content of 5% by volume or less, and more preferably an inert gas atmosphere. Examples of the inert gas include nitrogen, argon, helium, krypton, and xenon. The most preferred inert gas is pure argon.

本発明の酸化物負極材料の焼成に当たっては雰囲気の酸素分圧を制御することが好ましい。好ましい酸素分圧は材料によって適宜選択できるが−log(PO2/atm)が1以上20以下であることが好ましい。酸素分圧は安定化ジルコニアを用いた酸素センサーによって測定できる。雰囲気としてはH2、H2O、CO、CO2、Ar、He、Kr、Xe、N2、O2等を適宜混合して用いることができる。 In firing the oxide negative electrode material of the present invention, it is preferable to control the oxygen partial pressure of the atmosphere. A preferable oxygen partial pressure can be appropriately selected depending on the material, but -log (PO 2 / atm) is preferably 1 or more and 20 or less. The oxygen partial pressure can be measured by an oxygen sensor using stabilized zirconia. As the atmosphere, H 2 , H 2 O, CO, CO 2 , Ar, He, Kr, Xe, N 2 , O 2 and the like can be mixed as appropriate.

本発明の負極材料は合成後、もしくは焼成、粉砕後に加熱処理を行うことができる。加熱温度、雰囲気としては特に限定はなく材料に応じて適宜選択できる。
温度として好ましくは100℃以上800℃以下さらに好ましくは100℃以上500℃以下である。雰囲気として好ましくは雰囲気の−Log(PO2/atm)が0以上18以下が好ましい。CO、CO2、H2、H2O、Ar、He、N2等の混合ガスを用いることができる。雰囲気の酸素分圧は安定化ジルコニアを用いた酸素センサーを用いて測定することができる。
The negative electrode material of the present invention can be heat-treated after synthesis, or after firing and pulverization. The heating temperature and atmosphere are not particularly limited and can be appropriately selected depending on the material.
The temperature is preferably 100 ° C. or higher and 800 ° C. or lower, more preferably 100 ° C. or higher and 500 ° C. or lower. The atmosphere preferably has -Log (PO 2 / atm) of 0 or more and 18 or less. A mixed gas such as CO, CO 2 , H 2 , H 2 O, Ar, He, or N 2 can be used. The oxygen partial pressure of the atmosphere can be measured using an oxygen sensor using stabilized zirconia.

本発明で示される化合物の平均粒子サイズは0.1〜60μmが好ましい。所定の粒子サイズにするには、良く知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことが出来る。所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。   As for the average particle size of the compound shown by this invention, 0.1-60 micrometers is preferable. To obtain a predetermined particle size, a well-known pulverizer or classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used. When pulverizing, wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary. In order to obtain a desired particle size, classification is preferably performed. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.

本発明の負極材料の例を以下に示すが、本発明はこれらに限定されるものではない。
SnAl0.10.30.40.22.7
SnAl0.10.30.4 Na0.22.7
SnAl0.10.30.4 Rb0.22.7
SnAl0.10.30.4 Cb0.22.7
SnAl0.10.50.5 Mg0.10.23.15
SnAl0.10.50.5 Ba0.080.083.19
SnAl0.20.40.42.9
SnAl0.30.50.22.7
SnAl0.30.72.5
SnB0.20.6 Ba0.080.082.84
SnB0.40.4 Ba0.10.12.65
SnB0.50.53
SnB0.50.5 Mg0.13.1
SnB0.50.5 Mg0.10.23
SnB0.50.5 Li0.1 Mg0.10.23.05
SnB0.50.50.1 Mg0.10.23.05
SnB0.50.50.05 Mg0.050.13.03
SnB0.50.50.05 Mg0.10.23.03
SnB0.50.5 Cs0.1 Mg0.10.23.05
SnB0.50.5 Cs0.05 Mg0.050.13.03
SnB0.50.5 Mg0.10.13.05
SnB0.50.5 Mg0.10.23
SnB0.50.5 Mg0.10.063.07
SnB0.50.5 Mg0.10.143.03
SnPBa0.083.58
SnPK0.13.55
SnPK0.05 Mg0.053.58
SnPCs0.13.55
SnPBa0.080.083.54
SnPK0.1 Mg0.10.23.55
SnPK0.05 Mg0.050.13.53
SnPCs0.1 Mg0.10.23.55
SnPCs0.05 Mg0.050.13.53
Sn1.10.20.6 Ba0.080.082.94
Sn1.10.20.6 Li0.10.1 Ba0.10.13.05
Sn1.10.40.4 Ba0.082.74
Sn1.1 PCs0.053.63
Sn1.1 PK0.053.63
Sn1.2 Al0.10.30.4 Cs0.22.9
Sn1.20.20.6 Ba0.083.08
Sn1.20.20.6 Ba0.080.083.04
Sn1.20.20.6 Mg0.04 Ba0.043.08
Sn1.20.30.5 Ba0.082.98
Sn1.3 Al0.10.30.4 Na0.23
Sn1.30.40.4 Ca0.23.1
Sn1.30.40.4 Ba0.23.1
Sn1.4 PK0.24
Sn1.4 Ba0.1 PK0.24.15
Sn1.4 Ba0.2 PK0.24.3
Sn1.4 Ba0.2 PK0.2 Ba0.10.24.3
Sn1.4 PK0.34.05、Sn1.5 PK0.24.1
Sn1.5 PK0.14.05
Sn1.5 PCs0.054.03
Sn1.5 PCs0.05 Mg0.10.24.03
Sn227
SnSi0.5 Al0.10.20.1 Ca0.43.1
SnSi0.4 Al0.20.42.7
SnSi0.5 Al0.20.10.1 Mg0.12.8
SnSi0.6 Al0.20.22.8
SnSi0.5 Al0.30.40.23.55
SnSi0.5 Al0.30.40.54.30
SnSi0.6 Al0.10.10.33.25
SnSi0.6 Al0.10.10.1 Ba0.22.95
SnSi0.6 Al0.10.10.1 Ca0.22.95
SnSi0.6 Al0.10.2 Mg0.22.85
SnSi0.6 Al0.10.30.13.05
SnSi0.6 Al0.2 Mg0.22.7
SnSi0.6 Al0.2 Ca0.22.7
SnSi0.6 Al0.20.23
SnSi0.60.20.23
SnSi0.8 Al0.22.9
SnSi0.8 Al0.30.20.23.85
SnSi0.80.22.
SnSi0.8 Ba0.22.8
SnSi0.8 Mg0.22.8
SnSi0.8 Ca0.22.8
SnSi0.80.23.1
Sn0.9 Mn0.30.40.4 Ca0.1 Rb0.12.95
Sn0.9 Fe0.30.40.4 Ca0.1 Rb0.12.95
Sn0.8 Pb0.2 Ca0.10.93.35
Sn0.3 Ge0.7 Ba0.10.93.35
Sn0.9 Mn0.1 Mg0.10.93.35
Sn0.2 Mn0.8 Mg0.10.93.35
Sn0.7 Pb0.3 Ca0.10.93.35
Sn0.2 Ge0.8 Ba0.10.93.35
Sn1.0 Al0.480.520.52 Cs0.103.85
Sn1.0 Al0.380.50.5 Mg0.090.1 Ge0.093.89
Sn1.0 Al0.480.520.52 Cs0.10 Ge0.104.05
SnB0.50.53
SnAl0.30.50.22.7
SnAl0.30.72.5
SnSi0.80.23.1
SnSi0.80.22.9
SnSi0.8 Al0.22.9
SnSi0.6 Al0.20.22.8
SnSi0.6 Al0.20.23
SnSi0.60.20.23
SnSi0.4 Al0.20.42.7
SnSi0.6 Al0.10.10.33.25
SnSi0.6 Al0.10.30.13.05
SnSi0.5 Al0.30.40.23.55
SnSi0.5 Al0.30.40.54.30
SnSi0.8 Al0.30.20.23.85
SnAl0.10.50.5 Mg0.10.23.15
SnSi0.8 Mg0.22.8
SnSi0.6 Al0.2 Mg0.22.7
SnSi0.6 Al0.10.2 Mg0.22.85
SnSi0.8 Ca0.22.8
SnSi0.6 Al0.2 Ca0.22.7
SnSi0.6 Al0.10.10.1 Ca0.22.95
SnSi0.5 Al0.20.10.1 Mg0.12.8
SnSi0.5 Al0.10.20.1 Ca0.43.1
SnSi0.8 Ba0.22.8
SnSi0.6 Al0.10.10.1 Ba0.22.95
Sn0.9 Mn0.30.40.4 Ca0.1 Rb0.12.95
Sn0.9 Fe0.30.40.4 Ca0.1 Rb0.12.95
Sn0.8 Pb0.2 Ca0.10.93.35
Sn0.3 Ge0.7 Ba0.10.93.35
Sn0.9 Mn0.1 Mg0.10.93.35
Sn0.2 Mn0.8 Mg0.10.93.35
Sn0.7 Pb0.3 Ca0.10.93.35
Sn0.2 Ge0.8 Ba0.10.93.35
Sn1.60.40.4 Ca0.23.4
Sn1.30.40.4 Ca0.23.1
Sn1.640.4 Ba0.23.4
Sn1.30.40.4 Ba0.23.1
Sn1.60.40.4 Mg0.23.4
Sn1.6 Al0.10.30.4 Ca0.23.4
Sn1.3 Al0.10.30.40.23
Sn1.0 Al0.10.30.40.22.7
Sn1.6 Al0.10.30.4 Na0.23.3
Sn1.3 Al0.10.30.4 Na0.23
Sn1.0 Al0.10.30.4 Na0.22.7
Sn1.6 Al0.10.30.4 Rb0.23.3
Sn1.3 Al0.10.30.4 Rb0.23
Sn1.0 Al0.10.30.4 Rb0.22.7
Sn1.6 Al0.10.30.4 Cs0.23.3
Sn1.2 Al0.10.30.4 Cs0.22.9
Sn1.0 Al0.10.30.4 Cs0.22.7
Sn1.3 Al0.10.30.4 Ba0.10.13.05
SnAl0.40.50.50.13.65
SnAl0.40.50.5 Na0.23.7
SnAl0.40.30.5 Rb0.23.4
SnAl0.40.50.5 Cs0.13.65
SnAl0.40.50.5O.1 Ge0.053.65
SnAl0.40.50.50.1 Mg0.1 Ge0.023.83
SnAl0.40.40.43.2、SnAl0.30.50.22.7
SnAl0.30.50.22.7
SnAl0,40.50.3 Ba0.08 Mg0.083.26
SnAl0.40.40.4 Ba0.083.28
SnAl0.40.50.53.6
SnAl0.40.50.5 Mg0.13.7
SnAl0.50.40.5 Mg0.10.23.65
SnB0.50.5 Li0.1 Mg0.10.23.05
SnB0.50.50.1 Mg0.10.23.05
SnB0.50.50.05 Mg0.050.13.03
SnB0.50.50.05 Mg0.10.23.03
SnAl0.40.50.5 Cs0.1 Mg0.10.23.65
SnB0.50.5 Cs0.05 Mg0.050.13.03
SnB0.50.5 Mg0.10.13.05
SnB0.50.5 Mg0.10.23
SnB0.50.5 Mg0.10.063.07
SnB0.50.5 Mg0.10.143.03
SnPBa0.063.58
SnPK0.13.55
SnPK0.05 Mg0.053.58
SnPCs0.13.55
SnPBa0.060.033.54
SnPK0.1 Mg0.10.23.55
SnPK0.05 Mg0.050.13.53
SnPCs0.1 Mg0.10.23.55
SnPCs0.05 Mg0.050.13.53
Sn1.1 Al0.40.20.6 Ba0.080.083.54
Sn1.1 Al0.40.20.6 Li0.10.1 Ba0.10.13.65
Sn1.1 Al0.40.40.4 Ba0.083.34
Sn1.1 Al0.4 PCs0.054.23
Sn1.1 Al0.4 PK0.054.23
Sn1.2 Al0.50.30.4 Cs0.23.5
Sn1.2 Al0.40.20.5 Ba0.083.68
Sn1.2 Al0.40.20.5 Ba0.080.083.54
Sn1.2 Al0.40.20.6 Mg0.04 Ba0.043.68
Sn1.2 Al0.40.30.5 Ba0.083.58
Sn1.3 Al0.30.30.4 Na0.23.3
Sn1.3 Al0.20.40.4 Ca0.23.4
Sn1.3 Al0.40.40.4 Ba0.23.6
Sn1.4 Al0.4 PK0.24.6
Sn1.4 Al0.2 Ba0.1 PK0.24.45
Sn1.4 Al0.2 Ba0.2 PK0.24.6
Sn1.4 Al0.4 Ba0.2 PK0.2 Ba0.10.24.9
Sn1.4 Al0.4 PK0.34.65
Sn1.5 Al0.2 PK0.24.4
Sn1.5 Al0.4 PK0.14.65
Sn1.5 Al0.4 PCs0.054.63
Sn1.5 Al0.4 PCs0.05 Mg0.10.24.63
SnSi0.5 Al0.10.20.1 Ca0.43.1
SnSi0.4 Al0.20.42.7
SnSi0.5 AlO.20.10.1 Mg0.12.8
SnSi0.6 Al0.20.22.8
SnSi0.5 Al0.30.4 OP0.23.55
SnSi0.5 Al0.30.40.54.30
SnSi0.6 Al0.10.1 OP0.33.25
SnSi0.6 Al0.10.10.1 Ba0.22.95
SnSi0.6 Al0.10.10.1 Ca0.22.95
SnSi0.6 AlO.40.2 Mg0.13.2
SnSi0.6 Al0.10.30.13.05
SnSi0.6 Al0.2 Mg0.22.7
SnSi0.6 Al0.2 Ca0.22.7
SnSi0.6 Al0.20.23
SnSi0.60.20.23
SnSi0.8 Al0.22.9
SnSi0.8 Al0.30.20.23.85
SnSi0.80.22.9
SnSi0.8 Ba0.22.8
SnSi0.8 Mg0.22.8
SnSi0.8 Ca0.22.8
SnSi0.80.23.1
Sn0.9 Mn0.30.40.4 Ca0.1 Rb0.12.95
Sn0.9 Fe0.30.40.4 Ca0.1 Rb0.12.95
Sn0.8 Pb0.2 Ca0.10.93.35
Sn0.3 Ge0.7 Ba0.10.93.35
Sn0.9 Mn0.1 Mg0.10.93.35
Sn0.2 Mn0.8 Mg0.10.93.35
Sn0.7 Pb0.3 Ca0.10.93.35
Sn0.2 Ge0.8 Ba0.10.93.35
SnGe0.0010.10.10.51.65
SnGe0.020.30.11.84
SnGe0.020.150.150.11.69
SnGe0.050.30.40.12.5
SnGe0.050.80.13.15
SnGe0.050.60.3 Mg0.10.13.8
SnGe0.050.50.5 Cs0.050.053.15
SnGe0.10.90.13.5
SnGe0.10.70.20.1 Mg0.13.3
SnGe0.10.50.5 Ba0.050.12.3
SnGe0.10.50.5 Pb0.050.12.3
SnGe0.10.50.5 Mg0.050.153.325
SnGe0.10.50.5 Mg0.20.053.425
SnGe0.10.50.5 Mg0.013.201
SnGe0.10.50.5 Al0.05 Mg0.10.13.425
SnGe0.10.50.5 Mg0.1 Li0.13.25
SnGe0.10.50.5 Na0.13.205
SnGe0.10.50.50.1 Ca0.053.275
SnGe0.10.50.5 Mg0.10.10.13.25
SnGe0.10.50.50.1 Sc0.023.28
SnGe0.10.50.5 Mg0.10.10.013.365
SnGe0.10.50.5 Al0.10.13.4
SnGe0.10.50.5 Cs0.13.25
SnGe0.10.50.5 Rb0.13.25
SnGe0.10.50.5 Mg0.10.1 Al0.053.425
SnGe0.10.350.35 Mg0.20.12.85
SnGe0.10.450.45 Mg0.10.13.05
SnGe0.20.450.45 Mg0.10.13.35
SnGe0.010.450.45 Mg0.10.12.97
SnGe0.0010.450.45 Mg0.10.12.952
SnGe0.020.450.45 Mg0.10.13.09
SnGe0.1l.0 Mg0.20.13.95
SnGe0.50.70.80.2 Mg0.25.25
SnGe0.80.90.90.1 Mg0.16.65
SnGe1.01.01.0 Cs0.17.05
SnGe1.31.01.00.28.7
SnGe0.10.40.6 Cs0.13.05
SnGe0.10.50.5 Cs0.050.053.25
SnGe0.20.70.20.1 Mg0.13.5
SnGe0.21.10.14.2
SnGe0.20.70.40.1 Mg0.13.9
SnGe0.50.70.80.2 Mg0.25.25
SnGe0.60.80.8 Cs0.15.45
SnGe0.71.80.27
SnGe0.80.90.90.2 Mg0.46.7
SnGe10.4 As0.10.10.1 Mg0.14.45
SnGe0.11.2、SnGe0.31.6
SnGe0.52.0
SnGe0.82.6、SnGeO3
SnGe1.33.6
SnGe0.001 SiP0.10.53.65
SnGe0.02 Si0.30.70.33.24
SnGe0.05 Si0.30.30.4O.13.1
SnGe0.05 Si0.10.60. 3Mg0.10.14.0
SnGe0.05 Si0.10.50.5 Cs0.050.053.35
SnGe0.1 Si0.30.90.14.1
SnGe0.1 Si0.10.50.5 Mg0.10.13.55
SnGe0.1 Si0.30.50.5 Al0.10.13.0
SnGe0.1 Si0.050.50.5 Pb0.050.12.4
SnGe0.1 Si0.10.50.5 Mg0.050.153.525
SnGe0.1 Si0.30.50.5 Mg0.20.054.025
SnGe0.1 Si0.10.50.5 Mg0.013.401
SnGe0.1 Si0.050.50.5 Al0.05 Mg0.10.13.425
SnGe0.1 Si0.10.50.5 Cs0.13.405
SnGe0.1 Si0.50.50.5 Mg0.1 Li0.14.35
SnGe0.1 Si0.30.50.5 Na0.13.805
SnGe0.1 Si0.10.50.5 Rb0.13.40
SnGe0.1 Si0.20.50.50.1 Ca0.053.675
SnGe0.1 Si0.010.50.5 Mg0.10.10.13.27
SnGe0.1 Si0.020.50.50.1 Sc0.023.32
SnGe0.1 Si0.20.50.5 Mg0.10.10.013.765
SnGe0.1 Si0.50.20.3 Al0.13.3
SnGe0.1 Si0.50.2 Mg0.1 Al0.12.75
SnGe0.1 Si0.10.5 Al0.10.13.6
SnGe0.1 Si0.20.50.5 Ba0.050.13.3
SnGe0.1 Si0.050.50.5 Cs0.13.26
SnGe0.1 Si0.20.50.5 Mg0.013.25
SnGe0.2 Si0.30.10.1 Mg0.50.53.15
SnGe0.1 Si0.70.10.10.53.25
SnGe0.1 Si0.40.350.35 Mg0.20.13.65
SnGe0.2 Si0.30.450.45 Mg0.10.13.95
SnGe0.01 Si0.20.450.45 Mg0.10.12.77
SnGe0.001 Si0.30.450.45 Mg0.10.13.552
SnGe0.1 Si0.51.0 Mg0.20.14.95
SnGe0.1 Si0.010.60.60.1 Mg0.013.68
SnGe0.5 Si0.20.70.80.2 Mg0.25.65
SnGe1.0 Si0.0011.01.0 Cs0.17.052
SnGe0.1 Si0.10.40.6 Cs0.13.25
SnGe0.1 Si0.20.50.5 Cs0.050.053.65
SnGe0.2 Si0.30.70.20.1 Mg0.14.1
SnGe0.2 Si0.10.50.5 Mg0.10.13.75
SnGe0.2 Si0.51.10.15.2
SnGe0.5 Si0.30.70.80.2 Mg0.25.85
SnGe1 Si1.20.4 As0.10.10.1 Mg0.16.85
SnGe0.1 Si1.74.6
SnGe0.3 Si2.05.8
SnGe0.5 Si1.55
SnGe0.8 Si1.24.0
SnGeSi27
SnGe1.3 Si1.87.2
SnGeSiO5
Although the example of the negative electrode material of this invention is shown below, this invention is not limited to these.
SnAl 0.1 B 0.3 P 0.4 K 0.2 O 2.7 ,
SnAl 0.1 B 0.3 P 0.4 Na 0.2 O 2.7 ,
SnAl 0.1 B 0.3 P 0.4 Rb 0.2 O 2.7 ,
SnAl 0.1 B 0.3 P 0.4 Cb 0.2 O 2.7 ,
SnAl 0.1 B 0.5 P 0.5 Mg 0.1 F 0.2 O 3.15
SnAl 0.1 B 0.5 P 0.5 Ba 0.08 F 0.08 O 3.19 ,
SnAl 0.2 B 0.4 P 0.4 O 2.9
SnAl 0.3 B 0.5 P 0.2 O 2.7 ,
SnAl 0.3 B 0.7 O 2.5 ,
SnB 0.2 P 0.6 Ba 0.08 F 0.08 O 2.84
SnB 0.4 P 0.4 Ba 0.1 F 0.1 O 2.65 ,
SnB 0.5 P 0.5 O 3 ,
SnB 0.5 P 0.5 Mg 0.1 O 3.1
SnB 0.5 P 0.5 Mg 0.1 F 0.2 O 3 ,
SnB 0.5 P 0.5 Li 0.1 Mg 0.1 F 0.2 O 3.05
SnB 0.5 P 0.5 K 0.1 Mg 0.1 F 0.2 O 3.05
SnB 0.5 P 0.5 K 0.05 Mg 0.05 F 0.1 O 3.03
SnB 0.5 P 0.5 K 0.05 Mg 0.1 F 0.2 O 3.03
SnB 0.5 P 0.5 Cs 0.1 Mg 0.1 F 0.2 O 3.05
SnB 0.5 P 0.5 Cs 0.05 Mg 0.05 F 0.1 O 3.03
SnB 0.5 P 0.5 Mg 0.1 F 0.1 O 3.05
SnB 0.5 P 0.5 Mg 0.1 F 0.2 O 3 ,
SnB 0.5 P 0.5 Mg 0.1 F 0.06 O 3.07 ,
SnB 0.5 P 0.5 Mg 0.1 F 0.14 O 3.03 ,
SnPBa 0.08 O 3.58 ,
SnPK 0.1 O 3.55 ,
SnPK 0.05 Mg 0.05 O 3.58 ,
SnPCs 0.1 O 3.55 ,
SnPBa 0.08 F 0.08 O 3.54 ,
SnPK 0.1 Mg 0.1 F 0.2 O 3.55 ,
SnPK 0.05 Mg 0.05 F 0.1 O 3.53 ,
SnPCs 0.1 Mg 0.1 F 0.2 O 3.55
SnPCs 0.05 Mg 0.05 F 0.1 O 3.53 ,
Sn 1.1 B 0.2 P 0.6 Ba 0.08 F 0.08 O 2.94
Sn 1.1 B 0.2 P 0.6 Li 0.1 K 0.1 Ba 0.1 F 0.1 O 3.05 ,
Sn 1.1 B 0.4 P 0.4 Ba 0.08 O 2.74 ,
Sn 1.1 PCs 0.05 O 3.63 ,
Sn 1.1 PK 0.05 O 3.63 ,
Sn 1.2 Al 0.1 B 0.3 P 0.4 Cs 0.2 O 2.9 ,
Sn 1.2 B 0.2 P 0.6 Ba 0.08 O 3.08 ,
Sn 1.2 B 0.2 P 0.6 Ba 0.08 F 0.08 O 3.04 ,
Sn 1.2 B 0.2 P 0.6 Mg 0.04 Ba 0.04 O 3.08 ,
Sn 1.2 B 0.3 P 0.5 Ba 0.08 O 2.98 ,
Sn 1.3 Al 0.1 B 0.3 P 0.4 Na 0.2 O 3 ,
Sn 1.3 B 0.4 P 0.4 Ca 0.2 O 3.1 ,
Sn 1.3 B 0.4 P 0.4 Ba 0.2 O 3.1 ,
Sn 1.4 PK 0.2 O 4 ,
Sn 1.4 Ba 0.1 PK 0.2 O 4.15 ,
Sn 1.4 Ba 0.2 PK 0.2 O 4.3
Sn 1.4 Ba 0.2 PK 0.2 Ba 0.1 F 0.2 O 4.3
Sn 1.4 PK 0.3 O 4.05 , Sn 1.5 PK 0.2 O 4.1 ,
Sn 1.5 PK 0.1 O 4.05 ,
Sn 1.5 PCs 0.05 O 4.03 ,
Sn 1.5 PCs 0.05 Mg 0.1 F 0.2 O 4.03
Sn 2 P 2 O 7 ,
SnSi 0.5 Al 0.1 B 0.2 P 0.1 Ca 0.4 O 3.1 ,
SnSi 0.4 Al 0.2 B 0.4 O 2.7 ,
SnSi 0.5 Al 0.2 B 0.1 P 0.1 Mg 0.1 O 2.8 ,
SnSi 0.6 Al 0.2 B 0.2 O 2.8 ,
SnSi 0.5 Al 0.3 B 0.4 P 0.2 O 3.55
SnSi 0.5 Al 0.3 B 0.4 P 0.5 O 4.30 ,
SnSi 0.6 Al 0.1 B 0.1 P 0.3 O 3.25 ,
SnSi 0.6 Al 0.1 B 0.1 P 0.1 Ba 0.2 O 2.95
SnSi 0.6 Al 0.1 B 0.1 P 0.1 Ca 0.2 O 2.95
SnSi 0.6 Al 0.1 B 0.2 Mg 0.2 O 2.85
SnSi 0.6 Al 0.1 B 0.3 P 0.1 O 3.05 ,
SnSi 0.6 Al 0.2 Mg 0.2 O 2.7 ,
SnSi 0.6 Al 0.2 Ca 0.2 O 2.7 ,
SnSi 0.6 Al 0.2 P 0.2 O 3 ,
SnSi 0.6 B 0.2 P 0.2 O 3 ,
SnSi 0.8 Al 0.2 O 2.9 ,
SnSi 0.8 Al 0.3 B 0.2 P 0.2 O 3.85
SnSi 0.8 B 0.2 O 2. ,
SnSi 0.8 Ba 0.2 O 2.8 ,
SnSi 0.8 Mg 0.2 O 2.8 ,
SnSi 0.8 Ca 0.2 O 2.8 ,
SnSi 0.8 P 0.2 O 3.1 ,
Sn 0.9 Mn 0.3 B 0.4 P 0.4 Ca 0.1 Rb 0.1 O 2.95 ,
Sn 0.9 Fe 0.3 B 0.4 P 0.4 Ca 0.1 Rb 0.1 O 2.95 ,
Sn 0.8 Pb 0.2 Ca 0.1 P 0.9 O 3.35 ,
Sn 0.3 Ge 0.7 Ba 0.1 P 0.9 O 3.35 ,
Sn 0.9 Mn 0.1 Mg 0.1 P 0.9 O 3.35 ,
Sn 0.2 Mn 0.8 Mg 0.1 P 0.9 O 3.35 ,
Sn 0.7 Pb 0.3 Ca 0.1 P 0.9 O 3.35 ,
Sn 0.2 Ge 0.8 Ba 0.1 P 0.9 O 3.35 ,
Sn 1.0 Al 0.48 B 0.52 P 0.52 Cs 0.10 O 3.85 ,
Sn 1.0 Al 0.38 B 0.5 P 0.5 Mg 0.09 K 0.1 Ge 0.09 O 3.89 ,
Sn 1.0 Al 0.48 B 0.52 P 0.52 Cs 0.10 Ge 0.10 O 4.05 ,
SnB 0.5 P 0.5 O 3 ,
SnAl 0.3 B 0.5 P 0.2 O 2.7 ,
SnAl 0.3 B 0.7 O 2.5 ,
SnSi 0.8 P 0.2 O 3.1 ,
SnSi 0.8 B 0.2 O 2.9 ,
SnSi 0.8 Al 0.2 O 2.9 ,
SnSi 0.6 Al 0.2 B 0.2 O 2.8 ,
SnSi 0.6 Al 0.2 P 0.2 O 3 ,
SnSi 0.6 B 0.2 P 0.2 O 3 ,
SnSi 0.4 Al 0.2 B 0.4 O 2.7 ,
SnSi 0.6 Al 0.1 B 0.1 P 0.3 O 3.25 ,
SnSi 0.6 Al 0.1 B 0.3 P 0.1 O 3.05 ,
SnSi 0.5 Al 0.3 B 0.4 P 0.2 O 3.55
SnSi 0.5 Al 0.3 B 0.4 P 0.5 O 4.30 ,
SnSi 0.8 Al 0.3 B 0.2 P 0.2 O 3.85
SnAl 0.1 B 0.5 P 0.5 Mg 0.1 F 0.2 O 3.15
SnSi 0.8 Mg 0.2 O 2.8 ,
SnSi 0.6 Al 0.2 Mg 0.2 O 2.7 ,
SnSi 0.6 Al 0.1 B 0.2 Mg 0.2 O 2.85
SnSi 0.8 Ca 0.2 O 2.8 ,
SnSi 0.6 Al 0.2 Ca 0.2 O 2.7 ,
SnSi 0.6 Al 0.1 B 0.1 P 0.1 Ca 0.2 O 2.95
SnSi 0.5 Al 0.2 B 0.1 P 0.1 Mg 0.1 O 2.8 ,
SnSi 0.5 Al 0.1 B 0.2 P 0.1 Ca 0.4 O 3.1 ,
SnSi 0.8 Ba 0.2 O 2.8 ,
SnSi 0.6 Al 0.1 B 0.1 P 0.1 Ba 0.2 O 2.95
Sn 0.9 Mn 0.3 B 0.4 P 0.4 Ca 0.1 Rb 0.1 O 2.95 ,
Sn 0.9 Fe 0.3 B 0.4 P 0.4 Ca 0.1 Rb 0.1 O 2.95 ,
Sn 0.8 Pb 0.2 Ca 0.1 P 0.9 O 3.35 ,
Sn 0.3 Ge 0.7 Ba 0.1 P 0.9 O 3.35 ,
Sn 0.9 Mn 0.1 Mg 0.1 P 0.9 O 3.35 ,
Sn 0.2 Mn 0.8 Mg 0.1 P 0.9 O 3.35 ,
Sn 0.7 Pb 0.3 Ca 0.1 P 0.9 O 3.35 ,
Sn 0.2 Ge 0.8 Ba 0.1 P 0.9 O 3.35 ,
Sn 1.6 B 0.4 P 0.4 Ca 0.2 O 3.4
Sn 1.3 B 0.4 P 0.4 Ca 0.2 O 3.1 ,
Sn 1.6 B 4 P 0.4 Ba 0.2 O 3.4
Sn 1.3 B 0.4 P 0.4 Ba 0.2 O 3.1 ,
Sn 1.6 B 0.4 P 0.4 Mg 0.2 O 3.4
Sn 1.6 Al 0.1 B 0.3 P 0.4 Ca 0.2 O 3.4
Sn 1.3 Al 0.1 B 0.3 P 0.4 K 0.2 O 3 ,
Sn 1.0 Al 0.1 B 0.3 P 0.4 K 0.2 O 2.7 ,
Sn 1.6 Al 0.1 B 0.3 P 0.4 Na 0.2 O 3.3
Sn 1.3 Al 0.1 B 0.3 P 0.4 Na 0.2 O 3 ,
Sn 1.0 Al 0.1 B 0.3 P 0.4 Na 0.2 O 2.7 ,
Sn 1.6 Al 0.1 B 0.3 P 0.4 Rb 0.2 O 3.3
Sn 1.3 Al 0.1 B 0.3 P 0.4 Rb 0.2 O 3 ,
Sn 1.0 Al 0.1 B 0.3 P 0.4 Rb 0.2 O 2.7 ,
Sn 1.6 Al 0.1 B 0.3 P 0.4 Cs 0.2 O 3.3
Sn 1.2 Al 0.1 B 0.3 P 0.4 Cs 0.2 O 2.9 ,
Sn 1.0 Al 0.1 B 0.3 P 0.4 Cs 0.2 O 2.7 ,
Sn 1.3 Al 0.1 B 0.3 P 0.4 Ba 0.1 K 0.1 O 3.05 ,
SnAl 0.4 B 0.5 P 0.5 K 0.1 O 3.65
SnAl 0.4 B 0.5 P 0.5 Na 0.2 O 3.7 ,
SnAl 0.4 B 0.3 P 0.5 Rb 0.2 O 3.4
SnAl 0.4 B 0.5 P 0.5 Cs 0.1 O 3.65
SnAl 0.4 B 0.5 P 0.5 K O.1 Ge 0.05 O 3.65
SnAl 0.4 B 0.5 P 0.5 K 0.1 Mg 0.1 Ge 0.02 O 3.83
SnAl 0.4 B 0.4 P 0.4 P 3.2 , SnAl 0.3 B 0.5 P 0.2 O 2.7,
SnAl 0.3 B 0.5 P 0.2 O 2.7 ,
SnAl 0,4 B 0.5 P 0.3 Ba 0.08 Mg 0.08 O 3.26 ,
SnAl 0.4 B 0.4 P 0.4 Ba 0.08 O 3.28 ,
SnAl 0.4 B 0.5 P 0.5 O 3.6
SnAl 0.4 B 0.5 P 0.5 Mg 0.1 O 3.7
SnAl 0.5 B 0.4 P 0.5 Mg 0.1 F 0.2 O 3.65
SnB 0.5 P 0.5 Li 0.1 Mg 0.1 F 0.2 O 3.05
SnB 0.5 P 0.5 K 0.1 Mg 0.1 F 0.2 O 3.05
SnB 0.5 P 0.5 K 0.05 Mg 0.05 F 0.1 O 3.03
SnB 0.5 P 0.5 K 0.05 Mg 0.1 F 0.2 O 3.03
SnAl 0.4 B 0.5 P 0.5 Cs 0.1 Mg 0.1 F 0.2 O 3.65
SnB 0.5 P 0.5 Cs 0.05 Mg 0.05 F 0.1 O 3.03
SnB 0.5 P 0.5 Mg 0.1 P 0.1 O 3.05 ,
SnB 0.5 P 0.5 Mg 0.1 F 0.2 O 3 ,
SnB 0.5 P 0.5 Mg 0.1 F 0.06 O 3.07 ,
SnB 0.5 P 0.5 Mg 0.1 F 0.14 O 3.03 ,
SnPBa 0.06 O 3.58 ,
SnPK 0.1 O 3.55 ,
SnPK 0.05 Mg 0.05 O 3.58 ,
SnPCs 0.1 O 3.55 ,
SnPBa 0.06 F 0.03 O 3.54 ,
SnPK 0.1 Mg 0.1 F 0.2 O 3.55 ,
SnPK 0.05 Mg 0.05 F 0.1 O 3.53 ,
SnPCs 0.1 Mg 0.1 F 0.2 O 3.55
SnPCs 0.05 Mg 0.05 F 0.1 O 3.53 ,
Sn 1.1 Al 0.4 B 0.2 P 0.6 Ba 0.08 F 0.08 O 3.54 ,
Sn 1.1 Al 0.4 B 0.2 P 0.6 Li 0.1 K 0.1 Ba 0.1 F 0.1 O 3.65
Sn 1.1 Al 0.4 B 0.4 P 0.4 Ba 0.08 O 3.34 ,
Sn 1.1 Al 0.4 PCs 0.05 O 4.23
Sn 1.1 Al 0.4 PK 0.05 O 4.23
Sn 1.2 Al 0.5 B 0.3 P 0.4 Cs 0.2 O 3.5
Sn 1.2 Al 0.4 B 0.2 P 0.5 Ba 0.08 O 3.68
Sn 1.2 Al 0.4 B 0.2 P 0.5 Ba 0.08 F 0.08 O 3.54 ,
Sn 1.2 Al 0.4 B 0.2 P 0.6 Mg 0.04 Ba 0.04 O 3.68 ,
Sn 1.2 Al 0.4 B 0.3 P 0.5 Ba 0.08 O 3.58 ,
Sn 1.3 Al 0.3 B 0.3 P 0.4 Na 0.2 O 3.3
Sn 1.3 Al 0.2 B 0.4 P 0.4 Ca 0.2 O 3.4
Sn 1.3 Al 0.4 B 0.4 P 0.4 Ba 0.2 O 3.6
Sn 1.4 Al 0.4 PK 0.2 O 4.6 ,
Sn 1.4 Al 0.2 Ba 0.1 PK 0.2 O 4.45
Sn 1.4 Al 0.2 Ba 0.2 PK 0.2 O 4.6
Sn 1.4 Al 0.4 Ba 0.2 PK 0.2 Ba 0.1 F 0.2 O 4.9 ,
Sn 1.4 Al 0.4 PK 0.3 O 4.65 ,
Sn 1.5 Al 0.2 PK 0.2 O 4.4 ,
Sn 1.5 Al 0.4 PK 0.1 O 4.65 ,
Sn 1.5 Al 0.4 PCs 0.05 O 4.63 ,
Sn 1.5 Al 0.4 PCs 0.05 Mg 0.1 F 0.2 O 4.63
SnSi 0.5 Al 0.1 B 0.2 P 0.1 Ca 0.4 O 3.1 ,
SnSi 0.4 Al 0.2 B 0.4 O 2.7 ,
SnSi 0.5 Al O.2 B 0.1 P 0.1 Mg 0.1 O 2.8 ,
SnSi 0.6 Al 0.2 B 0.2 O 2.8 ,
SnSi 0.5 Al 0.3 B 0.4 OP 0.2 O 3.55
SnSi 0.5 Al 0.3 B 0.4 P 0.5 O 4.30 ,
SnSi 0.6 Al 0.1 B 0.1 OP 0.3 O 3.25
SnSi 0.6 Al 0.1 B 0.1 P 0.1 Ba 0.2 O 2.95
SnSi 0.6 Al 0.1 B 0.1 P 0.1 Ca 0.2 O 2.95
SnSi 0.6 Al O.4 B 0.2 Mg 0.1 O 3.2
SnSi 0.6 Al 0.1 B 0.3 P 0.1 O 3.05 ,
SnSi 0.6 Al 0.2 Mg 0.2 O 2.7 ,
SnSi 0.6 Al 0.2 Ca 0.2 O 2.7 ,
SnSi 0.6 Al 0.2 P 0.2 O 3 ,
SnSi 0.6 B 0.2 P 0.2 O 3 ,
SnSi 0.8 Al 0.2 O 2.9 ,
SnSi 0.8 Al 0.3 B 0.2 P 0.2 O 3.85
SnSi 0.8 B 0.2 O 2.9 ,
SnSi 0.8 Ba 0.2 O 2.8 ,
SnSi 0.8 Mg 0.2 O 2.8 ,
SnSi 0.8 Ca 0.2 O 2.8 ,
SnSi 0.8 P 0.2 O 3.1 ,
Sn 0.9 Mn 0.3 B 0.4 P 0.4 Ca 0.1 Rb 0.1 O 2.95 ,
Sn 0.9 Fe 0.3 B 0.4 P 0.4 Ca 0.1 Rb 0.1 O 2.95 ,
Sn 0.8 Pb 0.2 Ca 0.1 P 0.9 O 3.35 ,
Sn 0.3 Ge 0.7 Ba 0.1 P 0.9 O 3.35 ,
Sn 0.9 Mn 0.1 Mg 0.1 P 0.9 O 3.35 ,
Sn 0.2 Mn 0.8 Mg 0.1 P 0.9 O 3.35 ,
Sn 0.7 Pb 0.3 Ca 0.1 P 0.9 O 3.35 ,
Sn 0.2 Ge 0.8 Ba 0.1 P 0.9 O 3.35 ,
SnGe 0.001 P 0.1 B 0.1 K 0.5 O 1.65 ,
SnGe 0.02 P 0.3 K 0.1 O 1.84
SnGe 0.02 P 0.15 B 0.15 K 0.1 O 1.69 ,
SnGe 0.05 P 0.3 B 0.4 K 0.1 O 2.5 ,
SnGe 0.05 P 0.8 K 0.1 O 3.15 ,
SnGe 0.05 P 0.6 B 0.3 Mg 0.1 K 0.1 O 3.8 ,
SnGe 0.05 P 0.5 B 0.5 Cs 0.05 K 0.05 O 3.15
SnGe 0.1 P 0.9 K 0.1 O 3.5
SnGe 0.1 P 0.7 B 0.2 K 0.1 Mg 0.1 O 3.3
SnGe 0.1 P 0.5 B 0.5 Ba 0.05 K 0.1 O 2.3,
SnGe 0.1 P 0.5 B 0.5 Pb 0.05 K 0.1 O 2.3 ,
SnGe 0.1 P 0.5 B 0.5 Mg 0.05 K 0.15 O 3.325
SnGe 0.1 P 0.5 B 0.5 Mg 0.2 K 0.05 O 3.425
SnGe 0.1 P 0.5 B 0.5 Mg 0.01 O 3.201,
SnGe 0.1 P 0.5 B 0.5 Al 0.05 Mg 0.1 K 0.1 O 3.425
SnGe 0.1 P 0.5 B 0.5 Mg 0.1 Li 0.1 O 3.25
SnGe 0.1 P 0.5 B 0.5 Na 0.1 O 3.205 ,
SnGe 0.1 P 0.5 B 0.5 K 0.1 Ca 0.05 O 3.275 ,
SnGe 0.1 P 0.5 B 0.5 Mg 0.1 K 0.1 F 0.1 O 3.25
SnGe 0.1 P 0.5 B 0.5 K 0.1 Sc 0.02 O 3.28 ,
SnGe 0.1 P 0.5 B 0.5 Mg 0.1 K 0.1 Y 0.01 O 3.365 ,
SnGe 0.1 P 0.5 B 0.5 Al 0.1 K 0.1 O 3.4 ,
SnGe 0.1 P 0.5 B 0.5 Cs 0.1 O 3.25,
SnGe 0.1 P 0.5 B 0.5 Rb 0.1 O 3.25,
SnGe 0.1 P 0.5 B 0.5 Mg 0.1 K 0.1 Al 0.05 O 3.425
SnGe 0.1 P 0.35 B 0.35 Mg 0.2 K 0.1 O 2.85
SnGe 0.1 P 0.45 B 0.45 Mg 0.1 K 0.1 O 3.05
SnGe 0.2 P 0.45 B 0.45 Mg 0.1 K 0.1 O 3.35
SnGe 0.01 P 0.45 B 0.45 Mg 0.1 K 0.1 O 2.97
SnGe 0.001 P 0.45 B 0.45 Mg 0.1 K 0.1 O 2.952 ,
SnGe 0.02 P 0.45 B 0.45 Mg 0.1 K 0.1 O 3.09 ,
SnGe 0.1 P 1 .0 Mg 0.2 K 0.1 O 3.95 ,
SnGe 0.5 P 0.7 B 0.8 K 0.2 Mg 0.2 O 5.25
SnGe 0.8 P 0.9 B 0.9 K 0.1 Mg 0.1 O 6.65 ,
SnGe 1.0 P 1.0 B 1.0 Cs 0.1 O 7.05 ,
SnGe 1.3 P 1.0 B 1.0 K 0.2 O 8.7 ,
SnGe 0.1 P 0.4 B 0.6 Cs 0.1 O 3.05 ,
SnGe 0.1 P 0.5 B 0.5 Cs 0.05 K 0.05 O 3.25
SnGe 0.2 P 0.7 B 0.2 K 0.1 Mg 0.1 O 3.5 ,
SnGe 0.2 P 1.1 K 0.1 O 4.2 ,
SnGe 0.2 P 0.7 B 0.4 K 0.1 Mg 0.1 O 3.9 ,
SnGe 0.5 P 0.7 B 0.8 K 0.2 Mg 0.2 O 5.25
SnGe 0.6 P 0.8 B 0.8 Cs 0.1 O 5.45
SnGe 0.7 P 1.8 K 0.2 O 7 ,
SnGe 0.8 P 0.9 B 0.9 K 0.2 Mg 0.4 O 6.7 ,
SnGe 1 P 0.4 As 0.1 B 0.1 K 0.1 Mg 0.1 O 4.45
SnGe 0.1 O 1.2 , SnGe 0.3 O 1.6 ,
SnGe 0.5 O 2.0 ,
SnGe 0.8 O 2.6 , SnGeO 3 ,
SnGe 1.3 O 3.6 ,
SnGe 0.001 SiP 0.1 K 0.5 O 3.65 ,
SnGe 0.02 Si 0.3 K 0.7 P 0.3 O 3.24
SnGe 0.05 Si 0.3 P 0.3 B 0.4 0 O.1 O 3.1,
SnGe 0.05 Si 0.1 P 0.6 B 0. 3 Mg 0.1 K 0.1 O 4.0,
SnGe 0.05 Si 0.1 P 0.5 B 0.5 Cs 0.05 K 0.05 O 3.35
SnGe 0.1 Si 0.3 P 0.9 K 0.1 O 4.1 ,
SnGe 0.1 Si 0.1 P 0.5 B 0.5 Mg 0.1 K 0.1 O 3.55
SnGe 0.1 Si 0.3 P 0.5 B 0.5 Al 0.1 K 0.1 O 3.0,
SnGe 0.1 Si 0.05 P 0.5 P 0.5 Pb 0.05 K 0.1 O 2.4
SnGe 0.1 Si 0.1 P 0.5 B 0.5 Mg 0.05 K 0.15 O 3.525
SnGe 0.1 Si 0.3 P 0.5 B 0.5 Mg 0.2 K 0.05 O 4.025
SnGe 0.1 Si 0.1 P 0.5 B 0.5 Mg 0.01 O 3.401
SnGe 0.1 Si 0.05 P 0.5 B 0.5 Al 0.05 Mg 0.1 K 0.1 O 3.425
SnGe 0.1 Si 0.1 P 0.5 B 0.5 Cs 0.1 O 3.405
SnGe 0.1 Si 0.5 P 0.5 B 0.5 Mg 0.1 Li 0.1 O 4.35,
SnGe 0.1 Si 0.3 P 0.5 B 0.5 Na 0.1 O 3.805 ,
SnGe 0.1 Si 0.1 P 0.5 B 0.5 Rb 0.1 O 3.40,
SnGe 0.1 Si 0.2 P 0.5 B 0.5 K 0.1 Ca 0.05 O 3.675 ,
SnGe 0.1 Si 0.01 P 0.5 B 0.5 Mg 0.1 K 0.1 F 0.1 O 3.27 ,
SnGe 0.1 Si 0.02 P 0.5 B 0.5 K 0.1 Sc 0.02 O 3.32
SnGe 0.1 Si 0.2 P 0.5 B 0.5 Mg 0.1 K 0.1 Y 0.01 O 3.765 ,
SnGe 0.1 Si 0.5 P 0.2 B 0.3 Al 0.1 O 3.3
SnGe 0.1 Si 0.5 B 0.2 Mg 0.1 Al 0.1 O 2.75
SnGe 0.1 Si 0.1 B 0.5 Al 0.1 K 0.1 O 3.6
SnGe 0.1 Si 0.2 P 0.5 B 0.5 Ba 0.05 K 0.1 O 3.3,
SnGe 0.1 Si 0.05 P 0.5 B 0.5 Cs 0.1 O 3.26
SnGe 0.1 Si 0.2 P 0.5 B 0.5 Mg 0.01 O 3.25
SnGe 0.2 Si 0.3 P 0.1 B 0.1 Mg 0.5 K 0.5 O 3.15 ,
SnGe 0.1 Si 0.7 P 0.1 B 0.1 K 0.5 O 3.25
SnGe 0.1 Si 0.4 P 0.35 B 0.35 Mg 0.2 K 0.1 O 3.65 ,
SnGe 0.2 Si 0.3 P 0.45 B 0.45 Mg 0.1 K 0.1 O 3.95 ,
SnGe 0.01 Si 0.2 P 0.45 B 0.45 Mg 0.1 K 0.1 O 2.77 ,
SnGe 0.001 Si 0.3 P 0.45 B 0.45 Mg 0.1 K 0.1 O 3.552
SnGe 0.1 Si 0.5 P 1.0 Mg 0.2 K 0.1 O 4.95
SnGe 0.1 Si 0.01 P 0.6 B 0.6 K 0.1 Mg 0.01 O 3.68 ,
SnGe 0.5 Si 0.2 P 0.7 B 0.8 K 0.2 Mg 0.2 O 5.65
SnGe 1.0 Si 0.001 P 1.0 B 1.0 Cs 0.1 O 7.052
SnGe 0.1 Si 0.1 P 0.4 B 0.6 Cs 0.1 O 3.25
SnGe 0.1 Si 0.2 P 0.5 B 0.5 Cs 0.05 K 0.05 O 3.65 ,
SnGe 0.2 Si 0.3 P 0.7 B 0.2 K 0.1 Mg 0.1 O 4.1,
SnGe 0.2 Si 0.1 P 0.5 B 0.5 Mg 0.1 K 0.1 O 3.75
SnGe 0.2 Si 0.5 P 1.1 K 0.1 O 5.2 ,
SnGe 0.5 Si 0.3 P 0.7 B 0.8 K 0.2 Mg 0.2 O 5.85
SnGe 1 Si 1.2 P 0.4 As 0.1 B 0.1 K 0.1 Mg 0.1 O 6.85
SnGe 0.1 Si 1.7 O 4.6 ,
SnGe 0.3 Si 2.0 O 5.8 ,
SnGe 0.5 Si 1.5 O 5 ,
SnGe 0.8 Si 1.2 O 4.0 ,
SnGeSi 2 O 7 ,
SnGe 1.3 Si 1.8 O 7.2 ,
SnGeSiO 5 .

上記焼成されて得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の重量差から算出できる。   The chemical formula of the compound obtained by firing can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method and a weight difference between powders before and after firing as a simple method.

本発明の負極材料への軽金属挿入量は、その軽金属の析出電位に近似するまででよいが、例えば、負極材料当たり50〜700モル%が好ましいが、特に、100〜600モル%が好ましい。その放出量は挿入量に対して多いほど好ましい。軽金属の挿入方法は、電気化学的、化学的、熱的方法が好ましい。電気化学的方法は、正極活物質に含まれる軽金属を電気化学的に挿入する方法や軽金属あるいはその合金から直接電気化学的に挿入する方法が好ましい。化学的方法は、軽金属との混合、接触あるいは、有機金属、例えば、ブチルリチウム等と反応させる方法がある。電気化学的方法、化学的方法が好ましい。該軽金属はリチウムあるいはリチウムイオンが特に好ましい。   The amount of light metal inserted into the negative electrode material of the present invention may be close to the precipitation potential of the light metal, but for example, it is preferably 50 to 700 mol%, particularly preferably 100 to 600 mol% per negative electrode material. It is preferable that the release amount be larger than the insertion amount. The light metal insertion method is preferably an electrochemical, chemical or thermal method. The electrochemical method is preferably a method in which a light metal contained in the positive electrode active material is inserted electrochemically or a method in which the light metal or an alloy thereof is directly inserted electrochemically. Chemical methods include mixing with light metals, contact, or reacting with organic metals such as butyllithium. Electrochemical methods and chemical methods are preferred. The light metal is particularly preferably lithium or lithium ion.

本発明の負極材料には各種元素を含ませることができる。例えば、ランタノイド系金属(Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg)や、電子伝導性をあげる各種化合物(例えば、Sb、In、Nbの化合物)のドーパントを含んでもよい。添加する化合物の量は0〜5モル%が好ましい。   The negative electrode material of the present invention can contain various elements. For example, it may contain dopants of lanthanoid metals (Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg) and various compounds that increase electron conductivity (for example, compounds of Sb, In, and Nb). . The amount of the compound to be added is preferably 0 to 5 mol%.

本発明で用いられる酸化物の正極活物質あるいは負極材料の表面を、用いられる正極活物質や負極材料と異なる化学式を持つ酸化物で被覆することができる。
この表面酸化物は、酸性にもアルカリ性にも溶解する化合物を含む酸化物が好ましい。さらに電子伝導性の高い金属酸化物が好ましい。例えば、PbO2、Fe23、SnO2、In23、ZnOなどやまたはこれらの酸化物にドーパント(例えば、酸化物では原子価の異なる金属、ハロゲン元素など)を含ませることが好ましい。特に好ましくは、SiO2、SnO2、Fe23、ZnO、PbOである。これらの表面処理に使用される金属酸化物の量は、該正極活物質・負極材料当たり、0.1〜10重量%が好ましく、0.2〜5重量%が特に好ましく、0.3〜3重量%が最も好ましい。
The surface of the positive electrode active material or negative electrode material of the oxide used in the present invention can be coated with an oxide having a chemical formula different from that of the positive electrode active material or negative electrode material used.
The surface oxide is preferably an oxide containing a compound that dissolves both acidic and alkaline. Furthermore, a metal oxide with high electron conductivity is preferable. For example, PbO 2 , Fe 2 O 3 , SnO 2 , In 2 O 3 , ZnO, or the like or a dopant (for example, a metal having a different valence in the oxide, a halogen element, or the like) is preferably included in these oxides. . Particularly preferred are SiO 2 , SnO 2 , Fe 2 O 3 , ZnO and PbO. The amount of the metal oxide used for these surface treatments is preferably 0.1 to 10% by weight, particularly preferably 0.2 to 5% by weight, and preferably 0.3 to 3% per positive electrode active material / negative electrode material. Weight percent is most preferred.

また、このほかに、正極活物質や負極材料の表面を改質することができる。例えば、金属酸化物の表面をエステル化剤により処理、キレート化剤で処理、導電性高分子、ポリエチレンオキサイドなどにより処理することが挙げられる。   In addition, the surface of the positive electrode active material or the negative electrode material can be modified. For example, the surface of the metal oxide may be treated with an esterifying agent, treated with a chelating agent, treated with a conductive polymer, polyethylene oxide, or the like.

本発明で用いられる正極活物質は可逆的にリチウムイオンを挿入放出できる遷移金属酸化物でも良いが、特にリチウム含有遷移金属酸化物が好ましい。本発明で用いられる好ましいリチウム含有遷移金属酸化物正極活物質としては、リチウム含有Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Wを含む酸化物があげられる。またリチウム以外のアルカリ金属(周期律表の第IA、第IIAの元素)、及びまたはAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを混合してもよい。混合量は遷移金属に対して0〜30モル%が好ましい。   The positive electrode active material used in the present invention may be a transition metal oxide capable of reversibly inserting and releasing lithium ions, but a lithium-containing transition metal oxide is particularly preferable. Preferred lithium-containing transition metal oxide positive electrode active materials used in the present invention include oxides containing lithium-containing Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, and W. Further, alkali metals other than lithium (elements IA and IIA in the periodic table) and / or Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B, etc. may be mixed. . The mixing amount is preferably 0 to 30 mol% with respect to the transition metal.

本発明で用いられるより好ましいリチウム含有遷移金属酸化物正極活物質としては、リチウム化合物/遷移金属化合物(ここで遷移金属とは、Ti、V、Cr、Mn、Fe、Co、Ni、Mo、Wから選ばれる少なくとも1種)の合計のモル比が0.3〜2.2になるように混合して合成することが好ましい。
本発明で用いられるとくに好ましいリチウム含有遷移金属酸化物正極活物質としては、リチウム化合物/遷移金属化合物(ここで遷移金属とは、V、Cr、Mn、Fe、Co、Niから選ばれる少なくとも1種)の合計のモル比が0.3〜2.2になるように混合して合成することが好ましい。
More preferable lithium-containing transition metal oxide positive electrode active materials used in the present invention include lithium compounds / transition metal compounds (wherein transition metals are Ti, V, Cr, Mn, Fe, Co, Ni, Mo, W) It is preferable to synthesize by mixing so that the total molar ratio of at least one selected from (1) is 0.3 to 2.2.
A particularly preferable lithium-containing transition metal oxide positive electrode active material used in the present invention is a lithium compound / transition metal compound (where the transition metal is at least one selected from V, Cr, Mn, Fe, Co, Ni). It is preferable to synthesize by mixing so that the total molar ratio of

本発明で用いられるとくに好ましいリチウム含有遷移金属酸化物正極活物質とは、LixQOy(ここでQは主として、その少なくとも一種がCo、Mn、Ni、V、Feを含む遷移金属)、x=0.2〜1.2、y=1.4〜3)であることが好ましい。Qとしては遷移金属以外にAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを混合してもよい。混合量は遷移金属に対して0〜30モル%が好ましい。 A particularly preferable lithium-containing transition metal oxide positive electrode active material used in the present invention is Li x QO y (where Q is a transition metal mainly containing at least one of Co, Mn, Ni, V, and Fe), x = 0.2 to 1.2, y = 1.4 to 3). As Q, in addition to the transition metal, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B, or the like may be mixed. The mixing amount is preferably 0 to 30 mol% with respect to the transition metal.

本発明で用いられるさらに好ましいリチウム含有金属酸化物正極活物質としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LizCob1-bz、LixCobFel-b2、LixMn24、LixMncCo2-c4、LixMncNi2-c4、LixMnc2-cz、LixMncFe2-c4、LixCobBl-b2、LixCobSil-b2、LixMn24とMnO2の混合物、Li2xMnO3とMnO2の混合物、LixMn24、Li2xMnO3とMnO2の混合物(ここでx=0.2〜1.2、a=0.1〜0.9、b=0.8〜0.98、c=1.6〜1.96、z=2.01〜5)をあげられる。 More preferable lithium-containing metal oxide positive electrode active materials used in the present invention include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co a Ni 1-a O 2 , and Li z Co b V 1. -b O z, Li x Co b Fel- b O 2, Li x Mn 2 O 4, Li x Mn c Co 2-c O 4, Li x Mn c Ni 2-c O 4, Li x Mn c V 2 -c O z, Li x Mn c Fe 2-c O 4, Li x Co b Bl- b O 2, Li x Co b Sil- b O 2, a mixture of Li x Mn 2 O 4 and MnO 2, Li 2x A mixture of MnO 3 and MnO 2 , Li x Mn 2 O 4 , Li 2x A mixture of MnO 3 and MnO 2 (where x = 0.2 to 1.2, a = 0.1 to 0.9, b = 0 0.8 to 0.98, c = 1.6 to 1.96, z = 2.01 to 5).

本発明で用いられるさらに好ましいリチウム含有金属酸化物正極活物質としては、LixCoO2、LixNiO2、LixMnO2、LixCOaNi1-a2、LixCob1-bz、LixCobFe1-b2、LixMn24、LixMncCo2-c4、LixMncNi2-c4、LixMnc2-c4、LixMncFe2-c4(ここでx=0.7〜1.2、a=0.1〜0.9、b=0.8〜0.98、c=1.6〜1.96、z=2.01〜2.3)があげられる。 More preferable lithium-containing metal oxide positive electrode active materials used in the present invention include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x CO a Ni 1-a O 2 , and Li x Co b V 1. -b O z, Li x Co b Fe 1-b O 2, Li x Mn 2 O 4, Li x Mn c Co 2-c O 4, Li x Mn c Ni 2-c O 4, Li x Mn c V 2-c O 4 , Li x Mn c Fe 2-c O 4 (where x = 0.7 to 1.2, a = 0.1 to 0.9, b = 0.8 to 0.98, c = 1.6 to 1.96, z = 2.01 to 2.3).

本発明で用いられる最も好ましいリチウム含有遷移金属酸化物正極活物質としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixMn24、LixCob1-b2(ここでx=0.7〜1.2、a=0.1〜0.9、b=0.9〜0.98、z=2.02〜2.3)があげられる。ここで、上記のx値は、充放電開始前の値であり、充放電により増減する。 The most preferable lithium-containing transition metal oxide positive electrode active material used in the present invention includes Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co a Ni 1-a O 2 , and Li x Mn 2 O. 4 , Li x Co b V 1-b O 2 (where x = 0.7 to 1.2, a = 0.1 to 0.9, b = 0.9 to 0.98, z = 2.02) To 2.3). Here, said x value is a value before the start of charging / discharging, and it increases / decreases by charging / discharging.

正極活物質は、リチウム化合物と遷移金属化合物を混合、焼成する方法や溶液反応により合成することができるが、特に焼成法が好ましい。本発明で用いられる焼成温度は、本発明で用いられる混合された化合物の一部が分解、溶融する温度であればよく、例えば250〜2000℃が好ましく、特に350〜1500℃が好ましい。焼成に際しては250〜900℃で仮焼する事が好ましい。焼成時間としては1〜72時間が好ましく、更に好ましくは2〜20時間である。また、原料の混合法は乾式でも湿式でもよい。また、焼成後に200℃〜900℃でアニールしてもよい。
焼成ガス雰囲気は特に限定されず酸化雰囲気、還元雰囲気いずれもとることができる。たとえば空気中、あるいは酸素濃度を任意の割合に調製したガス、あるいは水素、一酸化炭素、窒素、アルゴン、ヘリウム、クリプトン、キセノン、二酸化炭素等が挙げられる。
The positive electrode active material can be synthesized by a method in which a lithium compound and a transition metal compound are mixed and fired, or by a solution reaction, and the firing method is particularly preferable. The firing temperature used in the present invention may be a temperature at which a part of the mixed compound used in the present invention is decomposed and melted, and is preferably 250 to 2000 ° C, particularly preferably 350 to 1500 ° C. In firing, it is preferably calcined at 250 to 900 ° C. The firing time is preferably 1 to 72 hours, more preferably 2 to 20 hours. The raw material mixing method may be dry or wet. Moreover, you may anneal at 200 to 900 degreeC after baking.
The firing gas atmosphere is not particularly limited and can be either an oxidizing atmosphere or a reducing atmosphere. For example, in the air or a gas whose oxygen concentration is adjusted to an arbitrary ratio, hydrogen, carbon monoxide, nitrogen, argon, helium, krypton, xenon, carbon dioxide, or the like can be given.

本発明の正極活物質の合成に際し、遷移金属酸化物に化学的にリチウムイオンを挿入する方法としては、リチウム金属、リチウム合金やブチルリチウムと遷移金属酸化物と反応させることにより合成する方法が好ましい。   In synthesizing the positive electrode active material of the present invention, a method of chemically inserting lithium ions into the transition metal oxide is preferably a method of synthesizing lithium metal, a lithium alloy or butyl lithium by reacting with the transition metal oxide. .

本発明で用いる正極活物質の平均粒子サイズは特に限定されないが、0.1〜50μmが好ましい。比表面積としては特に限定されないが、BET法で0.01〜50m2/gが好ましい。また正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては7以上12以下が好ましい。 The average particle size of the positive electrode active material used in the present invention is not particularly limited, but is preferably 0.1 to 50 μm. Although it does not specifically limit as a specific surface area, 0.01-50 m < 2 > / g is preferable by BET method. The pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.

所定の粒子サイズにするには、良く知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、振動ボールミル、振動ミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが用いられる。
焼成によって得られた正極活物質は水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
To obtain a predetermined particle size, a well-known pulverizer or classifier is used. For example, a mortar, a ball mill, a vibrating ball mill, a vibrating mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used.
The positive electrode active material obtained by firing may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.

本発明に用いられる負極材料と正極活物質との組み合わせは、好ましくは一般式(1)で示される化合物とLixCoO2、LixNiO2、LixCOaNi1-a2、LixMnO2、LixMn24、またはLixCob1-bz(ここでx=0.7〜1.2、a=0.1〜0.9、b=0.9〜0.98、z=2.02〜2.3)の組み合わせであり、高い放電電圧、高容量で充放電サイクル特性の優れた非水二次電池を得ることができる。 The combination of the negative electrode material and the positive electrode active material used in the present invention is preferably a compound represented by the general formula (1), Li x CoO 2 , Li x NiO 2 , Li x CO a Ni 1-a O 2 , Li x MnO 2, Li x Mn 2 O 4 or Li x Co b V 1-b O z ( wherein x = 0.7~1.2,, a = 0.1~0.9 , b = 0.9 ˜0.98, z = 2.02 to 2.3), and a non-aqueous secondary battery having high discharge voltage, high capacity and excellent charge / discharge cycle characteristics can be obtained.

本発明の負極材料へのリチウム挿入の当量は3〜10当量になっており、この当量に合わせて正極活物質との使用量比率を決める。この当量に基づいた使用量比率に、0.5〜2倍の係数をかけて用いることが好ましい。リチウム供給源が正極活物質以外では(例えば、リチウム金属や合金、ブチルリチウムなど)、負極材料のリチウム放出当量に合わせて正極活物質の使用量を決める。このときも、この当量に基づいた使用量比率に、0.5〜2倍の係数をかけて用いることが好ましい。   The equivalent amount of lithium inserted into the negative electrode material of the present invention is 3 to 10 equivalents, and the usage ratio with the positive electrode active material is determined according to this equivalent amount. It is preferable to use a ratio of 0.5 to 2 times the usage ratio based on this equivalent. When the lithium supply source is other than the positive electrode active material (for example, lithium metal, alloy, butyl lithium, etc.), the usage amount of the positive electrode active material is determined in accordance with the lithium release equivalent of the negative electrode material. Also at this time, it is preferable to use the ratio of the amount used based on this equivalent by multiplying the coefficient by 0.5 to 2 times.

予め、正極以外のリチウム供給源から負極にリチウムを挿入しておく場合、リチウム供給源としては、リチウム金属、リチウム合金(Al、Al−Mn、Al−Mg、Al−Sn、Al−In、Al−Cdとリチウムの合金)の箔や金属粉を利用するのが好ましい。これらの金属箔等は、負極合剤の上に直接或いは本発明の保護層を介して位置させても良い。また負極合剤のない集電体上に位置させても良い。箔は、20μm程度の薄いものを均一に付与しても良いし、より厚いものを部分的に配置しても良い。箔の厚みは、電池形成後自然に負極に挿入される量から決めることが出来る。   When lithium is inserted into the negative electrode from a lithium supply source other than the positive electrode in advance, the lithium supply source includes lithium metal, lithium alloy (Al, Al—Mn, Al—Mg, Al—Sn, Al—In, Al It is preferable to use a foil or metal powder of an alloy of -Cd and lithium. These metal foils and the like may be positioned directly on the negative electrode mixture or via the protective layer of the present invention. Moreover, you may locate on the electrical power collector without a negative mix. A thin foil of about 20 μm may be uniformly applied, or a thicker foil may be partially arranged. The thickness of the foil can be determined from the amount that is naturally inserted into the negative electrode after the battery is formed.

電極合剤には、導電剤や結着剤やフィラーなどを添加することができる。導電剤は、構成された電池において、化学変化を起こさない電子伝導性材料であれば何でもよい。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属(銅、ニッケル、アルミニウム、銀など)粉、金属繊維あるいはポリフェニレン誘導体などの導電性材料を1種またはこれらの混合物として含ませることができる。黒鉛とアセチレンブラックの併用がとくに好ましい。その添加量は、1〜50重量%が好ましく、特に2〜30重量%が好ましい。カーボンや黒鉛では、2〜15重量%が特に好ましい。   A conductive agent, a binder, a filler, or the like can be added to the electrode mixture. The conductive agent may be anything as long as it is an electron conductive material that does not cause a chemical change in the constructed battery. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber or metal (copper, nickel, aluminum, silver, etc.) powder, metal fiber or A conductive material such as a polyphenylene derivative may be included as one type or a mixture thereof. The combined use of graphite and acetylene black is particularly preferred. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight. In the case of carbon or graphite, 2 to 15% by weight is particularly preferable.

結着剤には、通常、でんぷん、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルクロリド、ポリビニルピロリドン、テトラフルオロエチレン、ポリ弗化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレンジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマーなどが1種またはこれらの混合物として用いられる。また、多糖類のようにリチウムと反応するような官能基を含む化合物を用いるときは、例えば、イソシアネート基のような化合物を添加してその官能基を失活させることが好ましい。その結着剤の添加量は、1〜50重量%が好ましく、特に2〜30重量%が好ましい。   The binder is usually starch, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene dienter. Polymers (EPDM), sulfonated EPDM, styrene butadiene rubber, polybutadiene, fluoro rubber, polyethylene oxide and other polysaccharides, thermoplastic resins, rubber elastic polymers, and the like are used as one kind or a mixture thereof. Moreover, when using the compound containing a functional group which reacts with lithium like a polysaccharide, it is preferable to add the compound like an isocyanate group and to deactivate the functional group, for example. The amount of the binder added is preferably 1 to 50% by weight, and particularly preferably 2 to 30% by weight.

フィラーは、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、0〜30重量%が好ましい。   Any filler can be used as long as it is a fibrous material that does not cause a chemical change in the constructed battery. Usually, olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0 to 30 weight% is preferable.

本発明の負極材料を非水二次電池系において使用するに当たっては、本発明の化合物を含む水分散合剤ペーストを集電体上に塗布・乾燥し、かつ該水分散合剤ペーストのpHが5以上10未満、さらには6以上9未満であることが好ましい。また、該水分散ペーストの温度を5℃以上80℃未満に保ち、かつペーストの調製後7日以内に集電体上への塗布を行うことが好ましい。   In using the negative electrode material of the present invention in a non-aqueous secondary battery system, an aqueous dispersion mixture paste containing the compound of the present invention is applied and dried on a current collector, and the pH of the aqueous dispersion mixture paste is It is preferably 5 or more and less than 10, more preferably 6 or more and less than 9. In addition, it is preferable that the temperature of the water-dispersed paste is kept at 5 ° C. or higher and lower than 80 ° C., and is applied onto the current collector within 7 days after the paste is prepared.

セパレーターとしては、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性の微多孔または隙間のある材料が用いられる。更に安全性向上のためには、80℃以上で上記の隙間を閉塞して抵抗をあげ、電流を遮断する機能を持つことが必要である。これらの隙間の閉塞温度は90℃以上180℃以下、より好ましくは110℃以上170℃以下である。   As the separator, a material having a high ion permeability, a predetermined mechanical strength, and an insulating microporous or gap is used. Furthermore, in order to improve safety, it is necessary to have a function of blocking the current by closing the gap above 80 ° C. to increase resistance. The closing temperature of these gaps is 90 ° C. or higher and 180 ° C. or lower, more preferably 110 ° C. or higher and 170 ° C. or lower.

隙間の作り方は、材料によって異なるが公知のいずれの方法であっても良い。
多孔質フィルムの場合には、孔の形状は通常円形や楕円形で、大きさは0.05μmから30μmであり、0.1μmから20μmが好ましい。更に、延伸法、相分離法で作った場合のように、棒状や不定形の孔であっても良い。布の場合は、隙間は繊維間の空隙であり、織布、不織布の作り方に依存する。これらの隙間のしめる比率すなわち気孔率は20%から90%であり、35%から80%が好ましい。
The method of creating the gap differs depending on the material, but any known method may be used.
In the case of a porous film, the shape of the hole is usually circular or elliptical, and the size is 0.05 μm to 30 μm, preferably 0.1 μm to 20 μm. Furthermore, it may be a rod-like or irregular-shaped hole as in the case where it is made by a stretching method or a phase separation method. In the case of cloth, the gap is a gap between fibers and depends on how to make a woven fabric or a non-woven fabric. The proportion of these gaps, that is, the porosity, is 20% to 90%, preferably 35% to 80%.

本発明のセパレーターは、5μm以上100μm以下、より好ましくは10μm以上80μm以下の微多孔性のフィルム、織布、不織布などの布である。
本発明のセパレーターは、エチレン成分を少なくとも20重量%含むものが好ましく、特に好ましいのは30%以上含むものである。エチレン以外の成分としては、プロピレン、ブテン、ヘキセン、フッ化エチレン、塩化ビニル、酢酸ビニル、アセタール化ビニルアルコールがあげられ、プロピレン、フッ化エチレンが特に好ましい。
The separator of the present invention is a cloth such as a microporous film, a woven cloth or a non-woven cloth having a thickness of 5 μm to 100 μm, more preferably 10 μm to 80 μm.
The separator of the present invention preferably contains at least 20% by weight of an ethylene component, and particularly preferably contains 30% or more. Examples of components other than ethylene include propylene, butene, hexene, ethylene fluoride, vinyl chloride, vinyl acetate, and acetalized vinyl alcohol, with propylene and ethylene fluoride being particularly preferred.

微多孔性のフィルムは、ポリエチレン、エチレン−プロピレン共重合ポリマーやエチレン−ブテン共重合ポリマーからなるものが好ましい。さらに、ポリエチレンとポリプロピレン、ポリエチレンとポリ4フッ化エチレンを混合溶解して作ったものも好ましい。
不織布や織布は、糸の径が0.1μmから5μmで、ポリエチレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン1共重合ポリマー、エチレン−メチルブテン共重合ポリマー、エチレン−メチルペンテン共重合ポリマー、ポリプロピレン、ポリ4フッ化エチレン繊維糸からなるものが好ましい。
The microporous film is preferably made of polyethylene, ethylene-propylene copolymer or ethylene-butene copolymer. Further, those prepared by mixing and dissolving polyethylene and polypropylene, or polyethylene and polytetrafluoroethylene are also preferred.
Nonwoven fabrics and woven fabrics have a thread diameter of 0.1 to 5 μm, polyethylene, ethylene-propylene copolymer, ethylene-butene 1 copolymer, ethylene-methylbutene copolymer, ethylene-methylpentene copolymer, polypropylene Those made of polytetrafluoroethylene fiber yarn are preferred.

これらのセパレーターは、単一の材料であっても、複合材料であっても良い。
特に、孔径、気孔率や孔の閉塞温度などを変えた2種以上の微多孔フィルムを積層したもの、微多孔フィルムと不織布、微多孔フィルムと織布、不織布と紙など異なる形態の材料を複合したものが特に好ましい。
These separators may be a single material or a composite material.
In particular, a composite of two or more types of microporous films with different pore sizes, porosity, pore closing temperature, etc., microporous film and nonwoven fabric, microporous film and woven fabric, nonwoven fabric and paper, etc. That is particularly preferred.

本発明のセパレーターは、ガラス繊維、炭素繊維などの無機繊維や、二酸化珪素、ゼオライト、アルミナやタルクなどの無機物の粒子を含んでいても良い。更に空隙や表面を界面活性剤で処理して親水化したものでも良い。   The separator of the present invention may contain inorganic fibers such as glass fibers and carbon fibers, and inorganic particles such as silicon dioxide, zeolite, alumina and talc. Further, the voids and the surface may be hydrophilized by treatment with a surfactant.

電解質としては、有機溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒の少なくとも1種以上を混合した溶媒とその溶媒に溶けるリチウム塩、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiAlCl4、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムなどの1種以上の塩から構成されている。なかでも、プロピレンカーボネートあるいはエチレンカボートと1,2−ジメトキシエタンおよび/あるいはジエチルカーボネートの混合液にLiCF3SO3、LiClO4、LiBF4および/あるいはLiPF6を含む電解液が好ましい。エチレンカボートとジエチルカーボネートの混合液にLiBF4および/あるいはLiPF6を含む電解液が特に好ましい。
これら電解質を電池内に添加する量は、特に限定されないが、正極活物質や負極材料の量や電池のサイズによって必要量用いることができる。支持電解質の濃度は、電解液1リットル当たり0.2〜3モルが好ましい。
As an electrolyte, as an organic solvent, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3- Dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, methyl propionate, ethyl propionate, phosphate triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene Less aprotic organic solvents such as carbonate derivatives, tetrahydrofuran derivatives, diethyl ether, 1,3-propane sultone With a lithium salt soluble solvent obtained by mixing one or more and in the solvent, for example, LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, lower aliphatic lithium family carboxylic acids, LiAlCl 4, LiCl, LiBr, LiI, chloroborane lithium, and a one or more salts, such as lithium tetraphenylborate. Among them, an electrolytic solution containing LiCF 3 SO 3 , LiClO 4 , LiBF 4 and / or LiPF 6 in a mixed solution of propylene carbonate or ethylene carbonate and 1,2-dimethoxyethane and / or diethyl carbonate is preferable. An electrolyte containing LiBF 4 and / or LiPF 6 in a mixed solution of ethylene carbonate and diethyl carbonate is particularly preferable.
The amount of these electrolytes added to the battery is not particularly limited, but a necessary amount can be used depending on the amount of the positive electrode active material and the negative electrode material and the size of the battery. The concentration of the supporting electrolyte is preferably 0.2 to 3 mol per liter of the electrolytic solution.

また、電解液の他に次の様な固体電解質も用いることができる。固体電解質としては、無機固体電解質と有機固体電解質に分けられる。無機固体電解質には、Liの窒化物、ハロゲン化物、酸素酸塩などがよく知られている。なかでも、Li3N、LiI、Li5NI2、Li3N−LiI−LiOH、LiSiO4、LiSiO4−LiI−LiOH、xLi3PO4−(1-x)Li4SiO4、Li2SiS3、硫化リン化合物などが有効である。
有機固体電解質では、ポリエチレンオキサイド誘導体か該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体か該誘導体を含むポリマー、イオン解離基を含むポリマー、イオン解離基を含むポリマーと上記非プロトン性電解液の混合物、リン酸エステルポリマーが有効である。
さらに、ポリアクリロニトリルを電解液に添加する方法もある。また、無機と有機固体電解質を併用する方法も知られている。
In addition to the electrolytic solution, the following solid electrolyte can also be used. The solid electrolyte is classified into an inorganic solid electrolyte and an organic solid electrolyte. Well-known inorganic solid electrolytes include Li nitrides, halides, oxyacid salts, and the like. Among these, Li 3 N, LiI, Li 5 NI 2 , Li 3 N—LiI—LiOH, LiSiO 4 , LiSiO 4 —LiI—LiOH, xLi 3 PO 4 — (1-x) Li 4 SiO 4 , Li 2 SiS 3. Phosphorus sulfide compounds are effective.
In the organic solid electrolyte, a polyethylene oxide derivative or a polymer containing the derivative, a polypropylene oxide derivative or a polymer containing the derivative, a polymer containing an ion dissociation group, a mixture of a polymer containing an ion dissociation group and the above aprotic electrolyte, phosphoric acid Ester polymers are effective.
Furthermore, there is a method of adding polyacrylonitrile to the electrolytic solution. A method of using an inorganic and organic solid electrolyte in combination is also known.

セパレーターとしては、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性の薄膜が用いられる。耐有機溶剤性と疎水性からポリプレピレンなどのオレフィン系ポリマーあるいはガラス繊維あるいはポリエチレンなどからつくられたシートや不織布が用いられる。セパレーターの孔径は、一般に電池用として用いられる範囲が用いられる。例えば、0.01〜10μmが用いられる。セパレターの厚みは、一般に電池用の範囲で用いられる。例えば、5〜300μmが用いられる。   As the separator, an insulating thin film having a large ion permeability and a predetermined mechanical strength is used. Sheets and non-woven fabrics made from olefin polymers such as polypropylene, glass fibers or polyethylene are used because of their organic solvent resistance and hydrophobicity. As the pore diameter of the separator, a range generally used for batteries is used. For example, 0.01 to 10 μm is used. The thickness of the separator is generally used in the battery range. For example, 5 to 300 μm is used.

また、放電や充放電特性を改良する目的で、以下で示す化合物を電解質に添加することが知られている。例えば、ピリジン、トリエチルフォスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノンとN,N′−置換イミダゾリジノン、エチレングリコールジアルキルエーテル、四級アンモニウム塩、ポリエチレングリコール、ピロール、2−メトキシエタノール、AlCl3、導電性ポリマー電極活物質のモノマー、トリエチレンホスホルアミド、トリアルキルホスフィン、モルフォリン、カルボニル基を持つアリール化合物、ヘキサメチルホスホリックトリアミドと4−アルキルモルフォリン、二環性の三級アミン、オイル(特開昭62−287,580)、四級ホスホニウム塩、三級スルホニウム塩などが挙げられる。 It is also known to add the following compounds to the electrolyte for the purpose of improving the discharge and charge / discharge characteristics. For example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone and N, N'-substituted imidazolidinone, ethylene glycol Dialkyl ether, quaternary ammonium salt, polyethylene glycol, pyrrole, 2-methoxyethanol, AlCl 3 , monomer of conductive polymer electrode active material, triethylenephosphoramide, trialkylphosphine, morpholine, aryl compound having carbonyl group, Hexamethylphosphoric triamide and 4-alkylmorpholine, bicyclic tertiary amine, oil (Japanese Patent Laid-Open No. 62-287,580), quaternary phosphonium salt, tertiary sulfonium salt, etc. And the like.

また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化塩化エチレンを電解液に含ませることができる。また、高温保存に適性をもたせるために電解液に炭酸ガスを含ませることができる。また、正極や負極の合剤には電解液あるいは電解質を含ませることができる。例えば、前記イオン導電性ポリマーやニトロメタン、電解液を含ませる方法が知られている。   In order to make the electrolyte nonflammable, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride chloride can be contained in the electrolyte. In addition, carbon dioxide gas can be included in the electrolyte in order to make it suitable for high-temperature storage. Further, the mixture of the positive electrode and the negative electrode can contain an electrolytic solution or an electrolyte. For example, a method in which the ion conductive polymer, nitromethane, or an electrolytic solution is included is known.

正負極の集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば何でもよい。例えば、正極には、材料としてステンレス鋼、ニッケル、アルミニウム、チタン、炭素などの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが用いられる。
特に、アルミニウムあるいはアルミニウム合金が好ましい。負極には、材料としてステンレス鋼、ニッケル、銅、チタン、アルミニウム、炭素などの他に、銅やステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの、Al−Cd合金などが用いられる。特に、銅あるいは銅合金が好ましい。これらの材料の表面を酸化することも用いられる。また、表面処理により集電体表面に凹凸を付けることが望ましい。形状は、フォイルの他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが用いられる。厚みは、特に限定されないが、1〜500μmのものが用いられる。
The positive and negative electrode current collectors may be anything as long as they are electronic conductors that do not cause a chemical change in the constructed battery. For example, a material obtained by treating the surface of aluminum or stainless steel with carbon, nickel, titanium, or silver in addition to stainless steel, nickel, aluminum, titanium, carbon, or the like as a material is used for the positive electrode.
In particular, aluminum or an aluminum alloy is preferable. For the negative electrode, in addition to stainless steel, nickel, copper, titanium, aluminum, carbon, etc., the surface of copper or stainless steel treated with carbon, nickel, titanium or silver, Al-Cd alloy, etc. are used. It is done. In particular, copper or a copper alloy is preferable. Oxidizing the surface of these materials is also used. Further, it is desirable to make the current collector surface uneven by surface treatment. As the shape, a film, a sheet, a net, a punched product, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like are used in addition to the foil. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.

電池の形状はコイン、ボタン、シート、シリンダー、偏平、角などいずれにも適用できる。電池の形状がコインやボタンのときは、正極活物質や負極材料の合剤はペレットの形状に圧縮されて主に用いられる。そのペレットの厚みや直径は電池の大きさにより決められる。また、電池の形状がシート、シリンダー、角のとき、正極活物質や負極材料の合剤は、集電体の上に塗布(コート)、乾燥、圧縮されて、主に用いられる。塗布方法は、一般的な方法を用いることができる。   The battery shape can be applied to any of coins, buttons, sheets, cylinders, flats, corners, and the like. When the shape of the battery is a coin or button, the positive electrode active material or the negative electrode material mixture is mainly used after being compressed into a pellet shape. The thickness and diameter of the pellet are determined by the size of the battery. Moreover, when the shape of the battery is a sheet, cylinder, or corner, the positive electrode active material or the negative electrode material mixture is mainly used after being applied (coated), dried and compressed on the current collector. As a coating method, a general method can be used.

例えば、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法及びスクイーズ法を挙げることができる。そのなかでもブレード法、ナイフ法及びエクストルージョン法が好ましい。塗布は、0.1〜100m/分の速度で実施されることが好ましい。この際、合剤の溶液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることができる。塗布は、片面ずつ逐時でも両面同時でもよい。また、塗布は連続でも間欠でもストライプでもよい。その塗布層の厚み、長さや巾は、電池の大きさにより決められるが、片面の塗布層の厚みは、ドライ後の圧縮された状態で、1〜2000μmが特に好ましい。   Examples thereof include a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze method. Of these, blade method, knife method and extrusion method are preferred. The application is preferably performed at a speed of 0.1 to 100 m / min. Under the present circumstances, the surface state of a favorable coating layer can be obtained by selecting the said application | coating method according to the solution physical property and dryness of a mixture. The application may be performed one side at a time or simultaneously on both sides. The application may be continuous, intermittent, or striped. Although the thickness, length, and width of the coating layer are determined by the size of the battery, the thickness of the coating layer on one side is particularly preferably 1 to 2000 μm in a compressed state after drying.

ペレットやシートの乾燥又は脱水方法としては、一般に採用されている方法を利用することができる。特に、熱風、真空、赤外線、遠赤外線、電子線及び低湿風を単独あるいは組み合わせて用いることが好ましい。温度は80〜350℃の範囲が好ましく、特に100〜250℃の範囲が好ましい。含水量は、電池全体で2000ppm以下が好ましく、正極合剤、負極合剤や電解質ではそれぞれ500ppm以下にすることがサイクル性の点で好ましい。ペレットやシートのプレス法は、一般に採用されている方法を用いることができるが、特に金型プレス法やカレンダープレス法が好ましい。プレス圧は、特に限定されないが、0.2〜3t/cm2が好ましい。カレンダープレス法のプレス速度は0.1〜50m/分が好ましく、プレス温度は室温〜200℃が好ましい。正極シートに対する負極シート幅の比は、0.9〜1.1が好ましく、0.95〜1.0が特に好ましい。正極活物質と負極材料の含有量比は、化合物種類や合剤処方により異なるため、限定できないが、容量、サイクル性、安全性の観点で最適な値に設定できる。 As a method for drying or dehydrating pellets and sheets, a generally adopted method can be used. In particular, it is preferable to use hot air, vacuum, infrared rays, far infrared rays, electron beams and low-humidity air alone or in combination. The temperature is preferably in the range of 80 to 350 ° C, particularly preferably in the range of 100 to 250 ° C. The water content is preferably 2000 ppm or less for the entire battery, and preferably 500 ppm or less for each of the positive electrode mixture, the negative electrode mixture, and the electrolyte in terms of cycleability. As a pressing method for pellets and sheets, a generally adopted method can be used, and a die pressing method and a calendar pressing method are particularly preferable. Although a press pressure is not specifically limited, 0.2-3 t / cm < 2 > is preferable. The press speed of the calendar press method is preferably 0.1 to 50 m / min, and the press temperature is preferably room temperature to 200 ° C. The ratio of the negative electrode sheet width to the positive electrode sheet is preferably 0.9 to 1.1, particularly preferably 0.95 to 1.0. The content ratio of the positive electrode active material and the negative electrode material varies depending on the compound type and the mixture formulation, and thus cannot be limited.

該合剤シートとセパレーターを介して重ね合わせた後、それらのシートは、巻いたり、折ったりして缶に挿入し、缶とシートを電気的に接続した後、電解液を注入し、封口板を用いて電池缶を形成する。この時、安全弁を封口板として用いることができる。安全弁の他、従来から知られている種々の安全素子を備えつけても良い。例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子などが用いられる。また、安全弁のほかに電池缶の内圧上昇の対策として、電池缶に切込を入れる方法、ガスケット亀裂方法あるいは封口板亀裂方法あるいはリード板との切断方法を利用することができる。また、充電器に過充電や過放電対策を組み込んだ保護回路を具備させるか、あるいは独立に接続させてもよい。   After the mixture sheet and the separator are overlapped with each other, the sheets are rolled, folded, inserted into the can, the can and the sheet are electrically connected, the electrolyte is injected, and the sealing plate Is used to form a battery can. At this time, the safety valve can be used as a sealing plate. In addition to the safety valve, various conventionally known safety elements may be provided. For example, a fuse, bimetal, PTC element, or the like is used as the overcurrent prevention element. In addition to the safety valve, as a countermeasure against the increase in internal pressure of the battery can, a method of cutting the battery can, a method of cracking the gasket, a method of cracking the sealing plate, or a method of cutting the lead plate can be used. Further, the charger may be provided with a protection circuit incorporating measures against overcharge and overdischarge, or may be connected independently.

また、過充電対策として、電池内圧の上昇により電流を遮断する方式を具備することができる。このとき、内圧を上げる化合物を合剤あるいは電解質に含ませることができる。内圧を上げる為に用いられる化合物の例としては、Li2CO3、LiHCO3、Na2CO3、NaHCO3、CaCO3、MgCO3などの炭酸塩などを挙げることが出来る。 In addition, as a measure against overcharging, a method of cutting off current by increasing the battery internal pressure can be provided. At this time, a compound that increases the internal pressure can be included in the mixture or the electrolyte. Examples of compounds used to increase the internal pressure, Li 2 CO 3, LiHCO 3 , Na 2 CO 3, NaHCO 3, CaCO 3, MgCO and carbonates, such as 3 can be cited.

缶やリード板は、電気伝導性をもつ金属や合金を用いることができる。例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウムなどの金属あるいはそれらの合金が用いられる。キャップ、缶、シート、リード板の溶接法は、公知の方法(例、直流又は交流の電気溶接、レーザー溶接、超音波溶接)を用いることができる。封口用シール剤は、アスファルトなどの従来から知られている化合物や混合物を用いることができる。   For the can and the lead plate, a metal or alloy having electrical conductivity can be used. For example, metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum, or alloys thereof are used. A known method (eg, direct current or alternating current electric welding, laser welding, ultrasonic welding) can be used for welding the cap, can, sheet, and lead plate. As the sealing agent for sealing, a conventionally known compound or mixture such as asphalt can be used.

本発明の非水二次電池の用途には、特に限定されないが、例えば、電子機器に搭載する場合、カラーノートパソコン、白黒ノートパソコン、ペン入力パソコン、ポケット(パームトップ)パソコン、ノート型ワープロ、ポケットワープロ、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、電子翻訳機、自動車電話、トランシーバー、電動工具、電子手帳、電卓、メモリーカード、テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、アイロン、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。   The use of the non-aqueous secondary battery of the present invention is not particularly limited. For example, when mounted on an electronic device, a color notebook computer, a monochrome notebook computer, a pen input computer, a pocket (palmtop) computer, a notebook word processor, Pocket word processor, e-book player, mobile phone, cordless phone, pager, handy terminal, mobile fax, mobile copy, mobile printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, mini-disc, electric shaver, Electronic translators, car phones, transceivers, power tools, electronic notebooks, calculators, memory cards, tape recorders, radios, backup power supplies, memory cards, etc. Others for consumer use include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, irons, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.

本発明の好ましい組合せは、上記の化学材料や電池構成部品の好ましいものを組み合わすことが好ましいが、特に正極活物質として、LixCoO2、LixMn24(ここで0≦x≦1)を含み、導電剤としてアセチレンブラックも共に含む。正極集電体はステンレス鋼かアルミニウムから作られている、ネット、シート、箔、ラスなどの形状をしている。負極材料として、リチウム金属、リチウム合金(Li−An、炭素質化合物、酸化物(LiCoVO4、SnO2、SnO、SiO、GeO2、GeO、SnSiO3、SnSi0.3 Al0.10.P0.33.)、硫化物(TiS2、SnS2、SnS、GeS2、GeS)、Sn1.0 Al0.480.520.52 Cs0.103.85、Sn1.0 Al0.380.50.5 Mg0.090.10 Ge0.093.89などを含む少なくとも1極の化合物を用いることが好ましい。負極集電体はステンレス鋼か銅から作られている、ネット、シート、箔、ラスなどの形状をしている。正極活物質あるいは負極材料とともに用いる合剤には、電子伝導剤としてアセチレンブラック、黒鉛などの炭素材料を混合してもよい。結着剤はポリフッ化ビニリデン、ポリプルオロエチレンなどの含フッ素熱可塑性化合物、アクリル酸を含むポリマー、スチレンブタジエンゴム、エチレンプロピレンターポリマーなどのエラストマーを単独あるいは混合して用いることができる。また、電解液として、エチレンカーボネート、さらに、ジエチルカーボネート、ジメチルカルボネートなどの環状、非環状カーボネートあるいは酢酸エチルなどのエステル化合物の組合せ、支持電解質として、LiPF6を含み、さらに、LiBF4、LiCF3SO3などのリチウム塩を混合して用いることが好ましい。さらに、セパレーターとして、ポリプロピレンあるいはポリエチレンの単独またはそれらの組合せが好ましい。電池の形態は、シリンダー、偏平、角型のいづれでもよい。電池には、誤動作にも安全を確保できる手段(例、内圧開放型安全弁、電流遮断型安全弁、高温で抵抗を上げるセパレーター)を備えることが好ましい。 The preferred combination of the present invention is preferably a combination of the above-described chemical materials and preferred battery components. In particular, as the positive electrode active material, Li x CoO 2 , Li x Mn 2 O 4 (where 0 ≦ x ≦ 1) and acetylene black as a conductive agent. The positive electrode current collector is made of stainless steel or aluminum and has a net, sheet, foil, or lath shape. As a negative electrode material, lithium metal, lithium alloy (Li-An, carbonaceous compounds, oxides (LiCoVO 4, SnO 2, SnO , SiO, GeO 2, GeO, SnSiO 3, SnSi 0.3 Al 0.1 B 0. 2 P0.3 O 3.) , sulfide (TiS 2 , SnS 2 , SnS, GeS 2 , GeS), Sn 1.0 Al 0.48 B 0.52 P 0.52 Cs 0.10 O 3.85 , Sn 1.0 Al 0.38 B 0.5 P 0.5 Mg 0.09 K 0.10 Ge 0.09 O It is preferable to use a compound having at least one electrode including 3.89, etc. The negative electrode current collector is made of stainless steel or copper, and has a net, sheet, foil, lath, etc. Positive electrode active material or negative electrode A carbon material such as acetylene black or graphite may be mixed as an electron conductive agent in the mixture used together with the materials, and the binder may be polyvinylidene fluoride, polyfluoroethylene, or the like. Elastomers such as fluorine-containing thermoplastic compounds, polymers containing acrylic acid, styrene butadiene rubber, ethylene propylene terpolymer, etc. can be used singly or in combination, and as the electrolyte, ethylene carbonate, diethyl carbonate, dimethyl carbo It is preferable to use LiPF 6 as a supporting electrolyte in combination with a cyclic or non-cyclic carbonate such as nate or an ester compound such as ethyl acetate, and further use a mixture of lithium salts such as LiBF 4 and LiCF 3 SO 3 . As the separator, polypropylene or polyethylene alone or a combination thereof may be used, and the battery may be in the form of a cylinder, a flat shape, or a square shape. Cheap Valve, a current blocking type safety valve is preferably provided with a separator) to raise the resistance at high temperatures.

以下に具体例をあげ、本発明をさらに詳しく説明するが、発明の主旨を越えない限り、本発明は実施例に限定されるものではない。以下の実施例において、実施例1−1〜1−4、実施例3−1〜3−5、実施例4−1〜4−5、及び実施例5−1〜5−2は参考例である。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples unless it exceeds the gist of the invention. In the following examples, Examples 1-1 to 1-4, Examples 3-1 to 3-5, Examples 4-1 to 4-5, and Examples 5-1 to 5-2 are reference examples. is there.

合成例−1
一酸化錫13.5g、二酸化珪素3.6g、酸化マグネシウム0.64g、酸化ほう素0.69gを乾式混合し、アルミナ製るつぼに入れ、アルゴン雰囲気下15℃/分で1000℃まで昇温した。1200℃で10時間焼成した後、10℃/分で室温にまで降温し、焼成炉より取り出して、これを粗粉砕し、さらにジェットミルで粉砕し、平均粒径4.5μmのSnSi0.6 Mg0.20.22.7(化合物1−A)を得た。また、CuKα線を用いたX線回折法において2θ値で28°付近に頂点を有するブロードなピークを有する物であり、2θ値で40°以上70°以下には結晶性の回折線は見られなかった。
同様の方法で、それぞれ化学量論量の原料を混合、焼成、粉砕し、下記の化合物を得た。
SnSi0.8 Mg0.22.8(1−B)、
SnSi0.6 Al0.2 Mg0.22.7(1−C)、
SnSi0.60.2 Mg0.22. (1−D)、
SnSi0.6 Al0.10.2 Mg0.12.75(1−E)、
SnSi0.50.10.1 Mg0.32.7(1−F)。
Synthesis Example-1
13.5 g of tin monoxide, 3.6 g of silicon dioxide, 0.64 g of magnesium oxide, and 0.69 g of boron oxide were dry-mixed, placed in an alumina crucible, and heated to 1000 ° C. at 15 ° C./min in an argon atmosphere. . After firing at 1200 ° C. for 10 hours, the temperature is lowered to room temperature at 10 ° C./minute, taken out from the firing furnace, coarsely pulverized, further pulverized by a jet mill, and SnSi 0.6 Mg 0.2 having an average particle size of 4.5 μm. B 0.2 O 2.7 (Compound 1-A) was obtained. In addition, in the X-ray diffraction method using CuKα ray, it has a broad peak having a peak at around 28 ° at 2θ value, and crystalline diffraction lines are seen at 2θ value from 40 ° to 70 °. There wasn't.
In the same manner, stoichiometric amounts of raw materials were mixed, baked and pulverized to obtain the following compounds.
SnSi 0.8 Mg 0.2 O 2.8 (1-B),
SnSi 0.6 Al 0.2 Mg 0.2 O 2.7 (1-C),
SnSi 0.6 P 0.2 Mg 0.2 O 2. (1-D),
SnSi 0.6 Al 0.1 B 0.2 Mg 0.1 O 2.75 (1-E),
SnSi 0.5 P 0.1 B 0.1 Mg 0.3 O 2.7 (1-F).

実施例−1−1
負極材料として、合成例−1で合成した化合物1−Aを用いて、それを88重量%、鱗片状黒鉛6重量%の割合で混合し、更に結着剤としてポリフッ化ビリニデンの水分散物を4重量%、カルボキシメチルセルロース1重量%および酢酸リチウム1重量%を加え、水を媒体として混練してスラリーを作製した。該スラリーを厚さ18μmの銅箔の両面に、エクストルージョン法により塗布し、負極aを作った。
負極bは、負極aの上に、α−Al23(平均粒径1μm)94.5重量%、ポリフッ化ビニリデン4.5重量%、カルボキシメチルセルロース1重量%の割合で混合し、水を媒体として混練してスラリー化したものを塗布して作成した。
これらの負極、a、bを乾燥後カレンダープレス機により圧縮成型し、所定の幅、長さに切断して帯状のそれぞれ負極シート、a、bを作製した。負極シートの厚みは、負極シートaが78μm、負極シートbが100μmであった。
正極材料として、LiCoO2を87重量%、鱗片状黒鉛6重量%、アセチレンブラック3重量%、さらに結着剤としてポリテトラフルオロエチレン水分散物3重量%とポリアクリル酸ナトリウム1重量%を加え、水を媒体として混練して得られたスラリーを厚さ20μmのアルミニウム箔の両面に上記と同じ方法で塗布し、正極aを作った。
正極bは、正極aの上に、α−Al23(平均粒径1μm)94.5重量%、ポリフッ化ビニリデン4.5重量%、カルボキシメチルセルロース1重量%の割合で混合し、水を媒体として混練してスラリー化したものを塗布して作成した。
Example 1-1
As a negative electrode material, the compound 1-A synthesized in Synthesis Example 1 was mixed at a ratio of 88 wt% and scaly graphite 6 wt%, and an aqueous dispersion of polyvinylidene fluoride as a binder was further mixed. 4% by weight, 1% by weight of carboxymethylcellulose and 1% by weight of lithium acetate were added and kneaded using water as a medium to prepare a slurry. The slurry was applied to both sides of a copper foil having a thickness of 18 μm by an extrusion method to produce a negative electrode a.
The negative electrode b was mixed on the negative electrode a in a proportion of 94.5% by weight of α-Al 2 O 3 (average particle size 1 μm), 4.5% by weight of polyvinylidene fluoride and 1% by weight of carboxymethyl cellulose, and water was added. A kneaded slurry was applied as a medium.
These negative electrodes a and b were dried and then compression-molded with a calendar press, and cut into predetermined widths and lengths to produce strip-shaped negative electrode sheets a and b, respectively. The thickness of the negative electrode sheet was 78 μm for the negative electrode sheet a and 100 μm for the negative electrode sheet b.
As a positive electrode material, 87% by weight of LiCoO 2 , 6% by weight of flaky graphite, 3% by weight of acetylene black, and 3% by weight of an aqueous dispersion of polytetrafluoroethylene and 1% by weight of sodium polyacrylate were added as binders, A slurry obtained by kneading with water as a medium was applied to both surfaces of an aluminum foil having a thickness of 20 μm by the same method as described above to produce a positive electrode a.
The positive electrode b was mixed on the positive electrode a in a proportion of 94.5% by weight of α-Al 2 O 3 (average particle size 1 μm), 4.5% by weight of polyvinylidene fluoride, and 1% by weight of carboxymethyl cellulose, and water was added. A kneaded slurry was applied as a medium.

これらの正極、a、bを乾燥、プレス、切断し正極シート、a、bを作った。
正極シートの厚みは、正極シートaが250μm、正極シートbが265μmであった。
負極シートaと正極シートa、負極シートbと正極シートbを組み合わせ、以下に述べる方法により、電池A(比較用)と電池B(本発明)を作った。負極シートおよび正極シートのそれぞれ端部にそれぞれニッケル、アルミニウムのリード板をスポット溶接した後、露点−40℃以下の乾燥空気中で150℃2時間脱水乾燥した。
さらに、脱水乾燥済み正極シート(8)、微多孔性ポリプロピレンフィルムセパレーター(セルガード2400)、脱水乾燥済み負極シート(9)およびセパレーター(10)の順で積層し、これを巻き込み機で渦巻き状に巻回した。
この巻回体を負極端子を兼ねる、ニッケルメッキを施した鉄製の有底円筒型電池缶(11)に収納した。1L当たりLiPF6とLiBF4を各々0.95、0.05mol含有し、溶媒がエチレンカーボネートとジエチルカーボネート2:8容量混合液からなる電解質を電池缶に注入した。正極端子を有する電池蓋(12)をガスケット(13)を介してかしめて円筒型電池を作製した。なお、正極端子(12)は正極シート(8)と、電池缶(11)は負極シート(9)とあらかじめリード端子により接続した。第1図に円筒型電池の断面を示した。なお、(14)は安全弁である。
電池A(比較用)と電池B(本発明)はそれぞれ10個づつ作成し、1mA/cm2で4.15Vまで充電した後、60℃にて3週間保存した。3週間後にそれぞれの電池の開路電圧を測定し、次の結果を得た。
These positive electrodes a and b were dried, pressed and cut to produce positive electrode sheets a and b.
The thickness of the positive electrode sheet was 250 μm for the positive electrode sheet a and 265 μm for the positive electrode sheet b.
A negative electrode sheet a and a positive electrode sheet a, a negative electrode sheet b and a positive electrode sheet b were combined, and a battery A (for comparison) and a battery B (present invention) were produced by the method described below. Nickel and aluminum lead plates were spot welded to the respective ends of the negative electrode sheet and the positive electrode sheet, and then dehydrated and dried at 150 ° C. for 2 hours in dry air having a dew point of −40 ° C. or lower.
Furthermore, a dehydrated and dried positive electrode sheet (8), a microporous polypropylene film separator (Celgard 2400), a dehydrated and dried negative electrode sheet (9), and a separator (10) were laminated in this order, and this was wound in a spiral shape with a winding machine. Turned.
The wound body was housed in a nickel-plated iron-bottomed cylindrical battery can (11) that also serves as a negative electrode terminal. An electrolyte containing 0.95 and 0.05 mol of LiPF 6 and LiBF 4 per liter and a solvent mixture of ethylene carbonate and diethyl carbonate 2: 8 was injected into the battery can. A battery lid (12) having a positive electrode terminal was caulked through a gasket (13) to produce a cylindrical battery. The positive electrode terminal (12) was connected to the positive electrode sheet (8) and the battery can (11) was previously connected to the negative electrode sheet (9) by a lead terminal. FIG. 1 shows a cross section of a cylindrical battery. (14) is a safety valve.
10 batteries A (for comparison) and 10 batteries B (invention) were prepared, charged to 4.15 V at 1 mA / cm 2 , and stored at 60 ° C. for 3 weeks. Three weeks later, the open circuit voltage of each battery was measured, and the following results were obtained.

Figure 2008103345
Figure 2008103345

以上の結果から、本発明の電池は明らかに保存中の電圧降下が少なく、性能が安定していることがわかる。   From the above results, it can be seen that the battery of the present invention clearly has little voltage drop during storage and has stable performance.

実施例−1−2
実施例−1−1の電池A、Bと同じ電池をそれぞれ300個づつ作製し、4.15Vまで充電した。充電不良の電池の個数を求めたところ、比較用の電池Aでは6個、本発明の電池Bでは0個であり、明らかに不良品発生率が改良されていることがわかった。
Example 1-2
300 pieces of each of the same batteries as the batteries A and B of Example-1-1 were produced and charged to 4.15V. When the number of poorly charged batteries was determined, it was 6 for the comparative battery A and 0 for the battery B of the present invention, and it was found that the defective product occurrence rate was clearly improved.

実施例−1−3
実施例−1−1で用いた負極材料1−Aのかわりに、1−Bから1−Fを用い実施例−1−1と同様な実験を行ったところ、ほぼ実施例−1−1と同様な結果が得られた。
Example 1-3
An experiment similar to Example 1-1 was performed using 1-B to 1-F instead of the negative electrode material 1-A used in Example 1-1. Similar results were obtained.

実施例−1−4
実施例−1−1の負極シートbと正極シートaを組み合わせて電池Cを作った。正極シートbのかわりに、保護層の厚みを変えてシート厚280μmとした正極シートcと負極シートaとを組み合わせて電池Dを作った。これらの電池C、Dを用いて、実施例−1−1と同様な実験を行ったところ、電池B同様に保存後の電圧降下が少なく性能の安定なことがわかった。但し、開路電圧はC、Dとも電池Bよりわずかに低下していた。
Example 1-4
A battery C was prepared by combining the negative electrode sheet b and the positive electrode sheet a of Example-1-1. Instead of the positive electrode sheet b, a battery D was prepared by combining the positive electrode sheet c and the negative electrode sheet a with a sheet thickness of 280 μm by changing the thickness of the protective layer. When these batteries C and D were used, the same experiment as in Example 1-1 was performed. As with the battery B, it was found that the voltage drop after storage was small and the performance was stable. However, the open circuit voltage was slightly lower than that of the battery B for both C and D.

実施例−2−1
負極材料として、合成例−1で合成した化合物1−Aを用いて、それを88重量%、鱗片状黒鉛6重量%の割合で混合し、更に結着剤としてポリフッ化ビリニデンの水分散物を4重量%、カルボキシメチルセルロース1重量%および酢酸リチウム1重量%を加え、水を媒体として混練してスラリーを作製した。該スラリーを厚さ18μmの銅箔の両面に、エクストルージョン法により塗布し、負極aを作った。
負極b−1からb−4は、負極aの上に、導電性粒子等を表2に示す割合で混合し、水を媒体として混練してスラリー化したものを塗布して作成した。
これらの負極a,b−1からb−4を乾燥後カレンダープレス機により圧縮成型し、所定の幅、長さに切断して帯状のそれぞれ負極シートa,b−1からb−4を作製した。負極シートの厚みは、負極シートaが78μm、負極シートb−1からb−4が100μmであった。
正極材料として、LiCoO2を87重量%、鱗片状黒鉛6重量%、アセチレンブラック3重量%、さらに結着剤としてポリテトラフルオロエチレン水分散物3重量%とポリアクリル酸ナトリウム1重量%を加え、水を媒体として混練して得られたスラリーを厚さ20μmのアルミニウム箔の両面に上記と同じ方法で塗布し、正極aを作った。
正極b−1からb−4は、正極aの上に、負極と同様に、表2に示した導電性粒子等の組成物のスラリーを塗布して作成した。
これらの正極a,b−1からb−4を乾燥、プレス、切断し正極シートa,b−1からb−4を作った。正極シートの厚みは、正極シートaが250μm、正極シートb−1からb−4が265μmであった。
Example 2-1
As a negative electrode material, the compound 1-A synthesized in Synthesis Example 1 was mixed at a ratio of 88 wt% and scaly graphite 6 wt%, and an aqueous dispersion of polyvinylidene fluoride as a binder was further mixed. 4% by weight, 1% by weight of carboxymethylcellulose and 1% by weight of lithium acetate were added and kneaded using water as a medium to prepare a slurry. The slurry was applied to both sides of a copper foil having a thickness of 18 μm by an extrusion method to produce a negative electrode a.
The negative electrodes b-1 to b-4 were prepared by mixing conductive particles and the like on the negative electrode a at a ratio shown in Table 2, and kneading and slurrying water as a medium.
These negative electrodes a, b-1 to b-4 were dried and then compression molded by a calendar press, and cut into predetermined widths and lengths to produce strip-shaped negative electrode sheets a, b-1 to b-4, respectively. . The thickness of the negative electrode sheet was 78 μm for the negative electrode sheet a, and 100 μm for the negative electrode sheets b-1 to b-4.
As a positive electrode material, 87% by weight of LiCoO 2 , 6% by weight of flaky graphite, 3% by weight of acetylene black, and 3% by weight of an aqueous dispersion of polytetrafluoroethylene and 1% by weight of sodium polyacrylate were added as binders, A slurry obtained by kneading with water as a medium was applied to both surfaces of an aluminum foil having a thickness of 20 μm by the same method as described above to produce a positive electrode a.
The positive electrodes b-1 to b-4 were prepared by applying a slurry of a composition such as conductive particles shown in Table 2 on the positive electrode a in the same manner as the negative electrode.
These positive electrodes a, b-1 to b-4 were dried, pressed and cut to prepare positive electrode sheets a, b-1 to b-4. The thickness of the positive electrode sheet was 250 μm for the positive electrode sheet a, and 265 μm for the positive electrode sheets b-1 to b-4.

Figure 2008103345
Figure 2008103345

上記の各負極シートと正極シートを表3に示したように組み合わせ、実施例−1−1と同様な方法により、電池A(比較用)と電池B(本発明)を作った。
電池A(比較用)と電池B−1からB−8(本発明)はそれぞれ10個づつ作成し、1mA/cm2で4.15Vまで充電した後、60℃にて3週間保存した。3週間後にそれぞれの
電池の開路電圧を測定し、表3に示す結果を得た。
The above-described negative electrode sheet and positive electrode sheet were combined as shown in Table 3, and a battery A (for comparison) and a battery B (invention) were produced in the same manner as in Example 1-1-1.
10 batteries A (for comparison) and 10 batteries B-1 to B-8 (invention) were prepared and charged to 4.15 V at 1 mA / cm 2 and stored at 60 ° C. for 3 weeks. Three weeks later, the open circuit voltage of each battery was measured, and the results shown in Table 3 were obtained.

Figure 2008103345
Figure 2008103345

以上の結果から、本発明の電池は明らかに保存中の電圧降下が少なく、性能が安定していることがわかる。   From the above results, it can be seen that the battery of the present invention clearly has little voltage drop during storage and has stable performance.

実施例−2−2
実施例−2−1の電池A,B−1からB−8と同じ電池をそれぞれ300個づつ作製し、4.15Vまで充電した。充電不良の電池の個数を求めたところ、比較用の電池Aでは6個、本発明の電池B−1からB−8では0個であり、明らかに不良品発生率が改良されていることがわかった。
Example-2-2
300 pieces of the same batteries as the batteries A and B-1 to B-8 of Example-2-1 were prepared and charged to 4.15V. When the number of poorly charged batteries was determined, it was 6 for the comparative battery A and 0 for the batteries B-1 to B-8 of the present invention, and clearly the defective product occurrence rate was improved. all right.

実施例−2−3
実施例−2−1で用いた負極材料1−Aのかわりに、1−Bから1−Fを用い実施例−1と同様な実験を行ったところ、ほぼ実施例−2−1と同様な結果が得られた。
Example-2-3
An experiment similar to Example-1 was performed using 1-B to 1-F instead of the negative electrode material 1-A used in Example-2-1. Results were obtained.

実施例−2−4
実施例−2−1の負極シートb−2とb−3の保護層の厚みを85μmに変更する以外はb−2、b−3と全く同様にして負極シートc−1,c−2を作った。この負極シートと正極シートaを組み合わせて電池C−1,C−2を作った。
この電池C−1,C−2を用いて、実施例−2−1と同様な実験を行ったところ、電池B同様に保存後の電圧降下が少なく性能の安定なことがわかった。
Example-2-4
Except for changing the thickness of the protective layer of the negative electrode sheets b-2 and b-3 of Example-2-1 to 85 μm, the negative electrode sheets c-1 and c-2 were made in exactly the same manner as b-2 and b-3. Had made. Batteries C-1 and C-2 were made by combining this negative electrode sheet and positive electrode sheet a.
When the same experiment as in Example 2-1 was performed using the batteries C-1 and C-2, it was found that, like the battery B, the voltage drop after storage was small and the performance was stable.

実施例−3−1
負極材料として、合成例−1で合成した化合物1−Aを用いて、それを88重量%、鱗片状黒鉛6重量%の割合で混合し、更に結着剤としてポリフッ化ビリニデンの水分散物を4重量%、カルボキシメチルセルロース1重量%および酢酸リチウム1重量%を加え、水を媒体として混練してスラリーを作製した。該スラリーを厚さ18μmの銅箔の両面に、エクストルージョン法により塗布し、負極aを作った。
負極bは、負極aの上に、フッ化リチウム94.5重量%、ポリフッ化ビニリデン4.5重量%、カルボキシメチルセルロース1重量%の割合で混合し、水を媒体として混練してスラリー化したものを塗布して作成した。
これらの負極a,bを乾燥後カレンダープレス機により圧縮成型し、所定の幅、長さに切断して帯状のそれぞれ負極シートa,bを作製した。負極シートの厚みは、負極シートaが78μm、負極シートbが100μmであった。
正極材料として、LiCoO2を87重量%、鱗片状黒鉛6重量%、アセチレンブラッ
ク3重量%、さらに結着剤としてポリテトラフルオロエチレン水分散物3重量%とポリアクリル酸ナトリウム1重量%を加え、水を媒体として混練して得られたスラリーを厚さ20μmのアルミニウム箔の両面に上記と同じ方法で塗布し、正極aを作った。
正極bは、正極aの上に、フッ化リチウム94.5重量%、ポリフッ化ビニリデン4.5重量%、カルボキシメチルセルロース1重量%の割合で混合し、水を媒体として混練してスラリー化したものを塗布して作成した。
これらの正極a,bを乾燥、プレス、切断し正極シートa,bを作った。正極シートの厚みは、正極シートaが250μm、正極シートbが265μmであった。
負極シートaと正極シートa、負極シートbと正極シートbを組み合わせ、実施例−1−1と同様な方法により、電池A(比較用)と電池B(本発明)を作った。
電池A(比較用)と電池B(本発明)はそれぞれ10個づつ作成し、1mA/cm2で4.
15Vまで充電した後、60℃にて4週間保存した。4週間後にそれぞれの電池の開路電圧を測定し、次の結果を得た。
Example-3-1
As a negative electrode material, the compound 1-A synthesized in Synthesis Example 1 was mixed at a ratio of 88 wt% and scaly graphite 6 wt%, and an aqueous dispersion of polyvinylidene fluoride as a binder was further mixed. 4% by weight, 1% by weight of carboxymethylcellulose and 1% by weight of lithium acetate were added and kneaded using water as a medium to prepare a slurry. The slurry was applied to both sides of a copper foil having a thickness of 18 μm by an extrusion method to produce a negative electrode a.
The negative electrode b is a mixture of 94.5% by weight of lithium fluoride, 4.5% by weight of polyvinylidene fluoride and 1% by weight of carboxymethyl cellulose on the negative electrode a and kneaded into a slurry using water as a medium. It was created by coating.
These negative electrodes a and b were dried and then compression molded by a calendar press, and cut into a predetermined width and length to produce strip-shaped negative electrode sheets a and b, respectively. The thickness of the negative electrode sheet was 78 μm for the negative electrode sheet a and 100 μm for the negative electrode sheet b.
As a positive electrode material, 87% by weight of LiCoO 2 , 6% by weight of flaky graphite, 3% by weight of acetylene black, and 3% by weight of an aqueous dispersion of polytetrafluoroethylene and 1% by weight of sodium polyacrylate were added as binders, A slurry obtained by kneading with water as a medium was applied to both surfaces of an aluminum foil having a thickness of 20 μm by the same method as described above to produce a positive electrode a.
The positive electrode b is a mixture obtained by mixing 94.5% by weight of lithium fluoride, 4.5% by weight of polyvinylidene fluoride and 1% by weight of carboxymethyl cellulose on the positive electrode a, and kneading it into a slurry using water as a medium. It was created by coating.
These positive electrodes a and b were dried, pressed and cut to prepare positive electrode sheets a and b. The thickness of the positive electrode sheet was 250 μm for the positive electrode sheet a and 265 μm for the positive electrode sheet b.
A negative electrode sheet a and a positive electrode sheet a, a negative electrode sheet b and a positive electrode sheet b were combined, and a battery A (for comparison) and a battery B (the present invention) were produced in the same manner as in Example 1-1.
10 batteries A (for comparison) and 10 batteries B (invention) were prepared, and 1 mA / cm 2 .
After charging to 15V, it was stored at 60 ° C. for 4 weeks. Four weeks later, the open circuit voltage of each battery was measured, and the following results were obtained.

Figure 2008103345
Figure 2008103345

以上の結果から、本発明の電池は明らかに保存中の電圧降下が少なく、性能が安定していることがわかる。   From the above results, it can be seen that the battery of the present invention clearly has little voltage drop during storage and has stable performance.

実施例−3−2
実施例−3−1の電池A,Bと同じ電池をそれぞれ300個づつ作製し、4.15Vまで充電した。充電不良の電池の個数を求めたところ、比較用の電池Aでは9個、本発明の電池Bでは0個であり、明らかに不良品発生率が改良されていることがわかった。
Example-3-2
300 pieces of each of the same batteries as the batteries A and B of Example-3-1 were produced and charged to 4.15V. When the number of batteries with poor charging was determined, it was 9 for the comparative battery A and 0 for the battery B of the present invention, and it was found that the defective product occurrence rate was clearly improved.

実施例−3−3
実施例−3−1で用いた負極材料1−Aのかわりに、1−Bから1−Fを用い実施例−3−1と同様な実験を行ったところ、ほぼ実施例−3−1と同様な結果が得られた。
Example 3-3
When an experiment similar to that of Example-3-1 was performed using 1-B to 1-F instead of the negative electrode material 1-A used in Example-3-1, Similar results were obtained.

実施例−3−4
実施例−3−1の負極シートbと正極シートaを組み合わせて電池Cを作った。正極シートbのかわりに、保護層の厚みを変えてシート厚280μmとした正極シートcと負極シートaとを組み合わせて電池Dを作った。これらの電池C、Dを用いて、実施例−3−1と同様な実験を行ったところ、電池B同様に保存後の電圧降下が少なく性能の安定なことがわかった。但し、開路電圧はC,Dとも電池Bよりわずかに低下していた。
Example-3-4
A battery C was prepared by combining the negative electrode sheet b and the positive electrode sheet a of Example-3-1. Instead of the positive electrode sheet b, a battery D was prepared by combining the positive electrode sheet c and the negative electrode sheet a with a sheet thickness of 280 μm by changing the thickness of the protective layer. When these batteries C and D were used, an experiment similar to that of Example-3-1 was conducted. As with the battery B, it was found that the voltage drop after storage was small and the performance was stable. However, the open circuit voltage was slightly lower than that of battery B for both C and D.

実施例−3−5
一酸化錫、アルミナ、酸化ほう素、ピロリン酸錫、フッ化マグネシウムの所定量を乾式混合し、アルミナ製坩堝にいれ、アルゴン雰囲気下15℃/分で1000℃まで昇温した。10時間焼成した後10℃/分で室温にまで降温し、焼成炉より取り出した。この試料を粗粉砕し、更にジェットミルで粉砕し、平均粒径6.5μmの粉末を得た。これはCuKα線を用いたX線回折法に於いて2θ値で28度付近に頂点を有するブロードなピークを有するものであり、2θ値で40度以上70度以下には結晶性の回折線は見られなかった。この化合物は元素分析により、SnAl0.10.50.5 Mg0.10.23.15(化合物G)であることがわかった。
実施例−3−1の化合物1−Aの替わりに化合物Gを用いる以外は実施例−3−1の負極シートaと全く同様にして負極シート5aを作った。また補助層を有する負極シートbと同様にして5bを作った。これらの負極シート5a,5bと実施例−3−1の正極シートとを組み合わせて電池5a,5bを作り、実施例−3−1と同様な実験を行い、下表の結果を得た。
Example-3-5
Predetermined amounts of tin monoxide, alumina, boron oxide, tin pyrophosphate, and magnesium fluoride were dry-mixed, placed in an alumina crucible, and heated to 1000 ° C. at 15 ° C./min in an argon atmosphere. After firing for 10 hours, the temperature was lowered to room temperature at 10 ° C./min, and the product was taken out from the firing furnace. This sample was coarsely pulverized and further pulverized by a jet mill to obtain a powder having an average particle size of 6.5 μm. In the X-ray diffraction method using CuKα rays, this has a broad peak having a peak at around 28 degrees with a 2θ value, and a crystalline diffraction line is not more than 40 degrees and less than 70 degrees with a 2θ value. I couldn't see it. This compound by elemental analysis and found to be SnAl 0.1 B 0.5 P 0.5 Mg 0.1 F 0.2 O 3.15 ( compound G).
A negative electrode sheet 5a was produced in exactly the same manner as the negative electrode sheet a of Example-3-1 except that compound G was used instead of compound 1-A of Example-3-1. Moreover, 5b was made like the negative electrode sheet b which has an auxiliary layer. Batteries 5a and 5b were produced by combining these negative electrode sheets 5a and 5b and the positive electrode sheet of Example-3-1. The same experiment as in Example-3-1 was performed, and the results shown in the table below were obtained.

Figure 2008103345
Figure 2008103345

以上の結果から、本発明の電池は明らかに保存中の電圧降下が少なく、性能が安定していることがわかる。   From the above results, it can be seen that the battery of the present invention clearly has little voltage drop during storage and has stable performance.

実施例−4−1
負極材料として、合成例−1で合成した化合物1−Aを用いて、それを88重量%、鱗片状黒鉛6重量%の割合で混合し、更に結着剤としてポリフッ化ビリニデンの水分散物を4重量%、カルボキシメチルセルロース1重量%および酢酸リチウム1重量%を加え、水を媒体として混練してスラリーを作製した。該スラリーを厚さ18μmの銅箔の両面に、エクストルージョン法により乾膜厚90μm になるように塗布し、負極aを作った。
負極bは、負極aの両面に、ケミパールW700(三井石油化学株製;ポリエチレン微粒子、平均粒径1μm、MFT115℃)乾膜厚7μmとなるように塗布して作製した。
負極cは、負極aの両面に、ケミパールW700を75重量%、ZrO2を25重量%含有する塗布液を乾膜厚7μmとなるように塗布して作製した。
これらの負極a、b及びcを乾燥後カレンダープレス機により圧縮成型し、所定の幅、長さに切断して帯状のそれぞれ負極シートa、b及びcを作製した。
正極材料として、LiCoO2を87重量%、鱗片状黒鉛6重量%、アセチレンブラック3重量%、さらに結着剤としてポリテトラフルオロエチレン水分散物3重量%とポリアクリル酸ナトリウム1重量%を加え、水を媒体として混練して得られたスラリーを厚さ20μmのアルミニウム箔の両面に上記と同じ方法で乾膜厚290μmになるように塗布し、正極aを作った。
正極bは、正極aの両面に、ケミパールW700を乾膜厚7μmとなるように塗布して作製した。
正極cは、正極aの両面に、ケミパールW700を75重量%、ZrO2を25重量%含有する塗布液を乾膜厚7μmとなるように塗布して作製した。
これらの正極a、b及びcを乾燥、プレス、切断し正極シートa、b及びcを作製した。
負極シートaと正極シートa、負極シートbと正極シートb及び負極シートcと正極シートcを組み合わせ、実施例−1−1と同様の方法により、電池AS(比較用)と電池BS(本発明)及び電池CS(本発明)を作製した。
更に上記の様に作製した電池BS及びCSにおいて、セパレーターを除去する以外同様にしてそれぞれ電池B及びCを作製した。
比較用電池ASと本発明の電池BS、CS、B及びCはそれぞれ10個づつ作製し、1mA/cm2で4.15Vまで充電した後、60℃にて3週間保存した。3週間後にそれぞれ
の電池の開路電圧を測定し、次の結果を得た。
Example-4-1
As a negative electrode material, the compound 1-A synthesized in Synthesis Example 1 was mixed at a ratio of 88 wt% and scaly graphite 6 wt%, and an aqueous dispersion of polyvinylidene fluoride as a binder was further mixed. 4% by weight, 1% by weight of carboxymethylcellulose and 1% by weight of lithium acetate were added and kneaded using water as a medium to prepare a slurry. The slurry was applied to both sides of a copper foil having a thickness of 18 μm by an extrusion method so as to have a dry film thickness of 90 μm, thereby preparing a negative electrode a.
The negative electrode b was prepared by applying Chemipearl W700 (manufactured by Mitsui Petrochemical Co., Ltd .; polyethylene fine particles, average particle size 1 μm, MFT 115 ° C.) to a dry film thickness of 7 μm on both surfaces of the negative electrode a.
The negative electrode c was prepared by applying a coating solution containing 75% by weight of Chemipearl W700 and 25% by weight of ZrO 2 so as to have a dry film thickness of 7 μm on both surfaces of the negative electrode a.
These negative electrodes a, b, and c were dried and then compression molded by a calendar press, and cut into predetermined widths and lengths to produce strip-shaped negative electrode sheets a, b, and c, respectively.
As a positive electrode material, 87% by weight of LiCoO 2 , 6% by weight of flaky graphite, 3% by weight of acetylene black, and 3% by weight of an aqueous dispersion of polytetrafluoroethylene and 1% by weight of sodium polyacrylate were added as binders, A slurry obtained by kneading using water as a medium was applied to both surfaces of an aluminum foil having a thickness of 20 μm so as to have a dry film thickness of 290 μm by the same method as described above, to produce a positive electrode a.
The positive electrode b was produced by applying Chemipearl W700 on both surfaces of the positive electrode a so as to have a dry film thickness of 7 μm.
The positive electrode c was prepared by applying a coating solution containing 75% by weight of Chemipearl W700 and 25% by weight of ZrO 2 to a dry film thickness of 7 μm on both surfaces of the positive electrode a.
These positive electrodes a, b, and c were dried, pressed, and cut to prepare positive electrode sheets a, b, and c.
By combining the negative electrode sheet a and the positive electrode sheet a, the negative electrode sheet b and the positive electrode sheet b, and the negative electrode sheet c and the positive electrode sheet c in the same manner as in Example 1-1, the battery AS (for comparison) and the battery BS (present invention) ) And battery CS (present invention).
Further, in the batteries BS and CS produced as described above, batteries B and C were produced in the same manner except that the separator was removed.
Ten comparative batteries AS and ten batteries BS, CS, B, and C of the present invention were prepared, charged to 4.15 V at 1 mA / cm 2 , and stored at 60 ° C. for 3 weeks. Three weeks later, the open circuit voltage of each battery was measured, and the following results were obtained.

Figure 2008103345
Figure 2008103345

以上の結果から、本発明の電池は明らかに保存中の電圧降下が少なく、性能が安定していることがわかる。   From the above results, it can be seen that the battery of the present invention clearly has little voltage drop during storage and has stable performance.

実施例−4−2
実施例−4−1の電池AS、BS、CS、B及びCと同じ電池をそれぞれ100個づつ作製し、4.15Vまで充電した。充電不良の電池の個数を求めたところ、比較用の電池ASでは3個、本発明の電池BS、CS、B及びCでは0個であり、明らかに不良品発生率が改良されていることがわかった。
Example 4-2
100 batteries same as batteries AS, BS, CS, B, and C of Example-4-1 were prepared and charged to 4.15V. When the number of poorly charged batteries was determined, it was 3 for the battery AS for comparison and 0 for the batteries BS, CS, B, and C of the present invention. all right.

実施例−4−3
実施例−4−1で作製した電池AS、BS及びBおいて、用いた負極材料1−Aのかわりに、1−Bから1−Fを用い実施例−4−1と同様な実験を行ったところ、ほぼ実施例−4−1と同様な結果が得られた。
Example-4-3
In the batteries AS, BS, and B produced in Example-4-1, the same experiment as in Example-4-1 was performed using 1-B to 1-F instead of the negative electrode material 1-A used. As a result, almost the same result as in Example-4-1 was obtained.

実施例−4−4
実施例−4−1の電池BS及びBにおいて、負極シートbの代わりに負極シートaを用いる以外同様にして電池DS及びDを作製した。更に電池Cにおいて、正極シートcのかわりに、保護層の厚みを変えてシート厚280μmとした正極シートdを用いる以外同様にして電池Fを作製した。これらの電池DS、D及びFを用いて、実施例−4−1と同様な実験を行ったところ、電池B同様に保存後の電圧降下が少なく性能の安定なことがわかった。
Example-4-4
In the batteries BS and B of Example-4-1, batteries DS and D were produced in the same manner except that the negative electrode sheet a was used instead of the negative electrode sheet b. Further, in the battery C, a battery F was produced in the same manner except that a positive electrode sheet d having a sheet thickness of 280 μm was used by changing the thickness of the protective layer instead of the positive electrode sheet c. When these batteries DS, D, and F were used, the same experiment as in Example 4-1 was performed. As with the battery B, it was found that the voltage drop after storage was small and the performance was stable.

実施例−4−5
実施例−4−1及び4−4で作製した電池AS、BS、CS、DS、B、C、D及びFのうちで正常に充放電する電池をそれぞれ5個づつ4.4Vまで充電した。このように充電された電池を外部短絡させたところ、比較用の電池ASは5個とも電池の蓋部より電解液がガスとともに吹き出した。ところが本発明の電池BS、CS、DS、B、C、D及びFはいずれもそのようなことは発生しなかった。
Example-4-5
Of the batteries AS, BS, CS, DS, B, C, D, and F produced in Examples 4-1 and 4-4, 5 batteries that were normally charged and discharged were charged to 4.4 V each. When the batteries charged in this way were externally short-circuited, the five electrolyte batteries AS for comparison were blown out of the electrolyte together with the gas from the battery lid. However, none of this occurred in the batteries BS, CS, DS, B, C, D and F of the present invention.

合成例−2
ピロリン酸錫10.3g、一酸化錫6.7g、三酸化二硼素1.7g、炭酸セシウム1.6g、二酸化ゲルマニウム0.7gを乾式混合し、アルミナ製るつぼに入れ、アルゴンガスで希釈したH2O/H2(80/1vol比)混合ガスを流入した。この雰囲気下で15℃/分で1000℃まで昇温した。この時、−1og(PO2/atm)で示される酸素分圧の値は11.2であった。この温度で12時間焼成した後、10℃/分で室温にまで降温し、焼成炉より取り出した。
該化合物は均一で黄色透明であった。該化合物を粗粉砕し、さらにジェットミルで粉砕し、平均粒径り7.0μmの粉末を得た(化合物2−A)。これはCuKα線を用いたX線回折法において2θ値で28°付近に頂点を有するブロードなピークを有する物であり、2θ値で40°以上70°以下には結晶性の回折線は見られなかった。
Synthesis Example-2
H3 diluted with 10.3 g of tin pyrophosphate, 6.7 g of tin monoxide, 1.7 g of diboron trioxide, 1.6 g of cesium carbonate, and 0.7 g of germanium dioxide, put in an alumina crucible, and diluted with argon gas 2 O / H 2 (80/1 vol ratio) mixed gas was introduced. In this atmosphere, the temperature was raised to 1000 ° C. at 15 ° C./min. At this time, the value of the oxygen partial pressure indicated by −1 og (PO 2 / atm) was 11.2. After firing at this temperature for 12 hours, the temperature was lowered to room temperature at 10 ° C./min, and the product was taken out from the firing furnace.
The compound was uniform and transparent in yellow. The compound was coarsely pulverized and further pulverized by a jet mill to obtain a powder having an average particle size of 7.0 μm (Compound 2-A). This is an X-ray diffraction method using CuKα rays, which has a broad peak having a peak at around 28 ° with a 2θ value. Crystalline diffraction lines are observed when the 2θ value is between 40 ° and 70 °. There wasn't.

実施例−5−1
負極材料として合成例2で得た化合物2−A86重量部を用いて、導電剤としてアセチレンブラック3重量部とグラファイト6重量部の割合で混合し、さらに結着剤としてポリ弗化ビニリデンを4重量部およびカルボキシメチルセルロース1重量部を加え、水を媒体として混練し、負極合剤スラリーを得た。該スラリーを厚さ10μmの銅箔の両面にエクストルージョン式塗布機を使って塗設し、乾燥して負極合剤シートを得た。
次にα−アルミナ88重量部、グラファイト9重量部、カルボキシメチルセルロース3重量部に水を媒体として加えて混練し、保護層スラリーを得た。該スラリーを上記負極合剤シート上に塗設・乾燥後カレンダープレス機により圧縮成形して帯状負極シートbを作成した。また保護層のスラリーを塗設しない負極合剤シートをカレンダープレスにより圧縮成形し負極シートaを得た。
この負極シート前駆体にニッケルリード板をスポット溶接した後、露点−40℃以下の空気中で230℃で30分脱水乾燥した。
この負極合剤シート全面に4mm×5mmに裁断した厚さ35μmのリチウム箔(純度99.8%)をシートの長さ方向に対して直角に10mm間隔で貼りつけした。
正極活性物質としてLiCoO2を85重量部、導電剤としてアセチレンブラック3重量部とグラファイト5重量部の割合で混合し、さらに結着剤としてNipo1820B(日本ゼオン製)3重量部とカルボキシメチルセルロース1重量部とポリビニリデンフルオライド2重量部、炭酸水素ナトリウム1重量部を加え、水を媒体として混練して正極合剤スラリーを得た。該スラリーを厚さ20μmのアルミニウム箔の両面にエクストルージョン式塗布機を使って塗設し、乾燥後カレンダープレス機により圧縮成形して帯状の正極シートaを作成した。
また、α−アルミナ49重量部、酸化チタン50重量部、カルボキシメチルセルロース1重量部に水を媒体として混練し、保護層スラリーを得た。該スラリーをプレス前の正極シート上に塗設し、乾燥後カレンダープレス機により圧縮成形して正極シートbを得た。この正極シートの端部にアルミニウム製のリード板を溶接した後、露点−40℃以下の乾燥空気中で230℃で30分脱水乾燥した。
実施例−1−1と同様な方法により、負極シートaと正極シートaの組み合わせで電池A(比較例)、負極シートbと正極シートbの組み合わせで電池B(実施例)を作成した。
作成した電池を0.2Aで開路電圧3.0Vまで定電流定電圧充電した後、50℃の恒温槽で2週間保存した。
保存終了後、4.1Vまで充電し、60℃にて3週間保存した。3週間後にそれぞれの開路電圧を測定し、次の値を得た。
Example-5-1
Using 86 parts by weight of the compound 2-A obtained in Synthesis Example 2 as a negative electrode material, 3 parts by weight of acetylene black and 6 parts by weight of graphite are mixed as a conductive agent, and 4 parts by weight of polyvinylidene fluoride is used as a binder. Part and 1 part by weight of carboxymethylcellulose were added and kneaded using water as a medium to obtain a negative electrode mixture slurry. The slurry was coated on both sides of a 10 μm thick copper foil using an extrusion coater and dried to obtain a negative electrode mixture sheet.
Next, water was added as a medium to 88 parts by weight of α-alumina, 9 parts by weight of graphite, and 3 parts by weight of carboxymethylcellulose, and kneaded to obtain a protective layer slurry. The slurry was coated on the negative electrode mixture sheet, dried, and then compression molded by a calendar press to prepare a strip-shaped negative electrode sheet b. Further, a negative electrode mixture sheet on which no protective layer slurry was applied was compression-molded by a calendar press to obtain a negative electrode sheet a.
After spot-welding a nickel lead plate to this negative electrode sheet precursor, it was dehydrated and dried at 230 ° C. for 30 minutes in air having a dew point of −40 ° C. or lower.
A 35 μm-thick lithium foil (purity 99.8%) cut to 4 mm × 5 mm was pasted on the entire surface of the negative electrode mixture sheet at intervals of 10 mm perpendicular to the length direction of the sheet.
85 parts by weight of LiCoO 2 as a positive electrode active material, 3 parts by weight of acetylene black and 5 parts by weight of graphite as a conductive agent, and 3 parts by weight of Nipo1820B (manufactured by Nippon Zeon) as a binder and 1 part by weight of carboxymethylcellulose And 2 parts by weight of polyvinylidene fluoride and 1 part by weight of sodium bicarbonate were added and kneaded with water as a medium to obtain a positive electrode mixture slurry. The slurry was coated on both sides of an aluminum foil having a thickness of 20 μm using an extrusion coater, dried, and then compression-molded by a calendar press to prepare a strip-shaped positive electrode sheet a.
Further, 49 parts by weight of α-alumina, 50 parts by weight of titanium oxide, and 1 part by weight of carboxymethyl cellulose were kneaded using water as a medium to obtain a protective layer slurry. The slurry was coated on the positive electrode sheet before pressing, dried, and then compression molded by a calendar press to obtain a positive electrode sheet b. After welding an aluminum lead plate to the end of the positive electrode sheet, it was dehydrated and dried at 230 ° C. for 30 minutes in dry air having a dew point of −40 ° C. or lower.
By the same method as in Example 1-1, a battery A (comparative example) was formed by combining the negative electrode sheet a and the positive electrode sheet a, and a battery B (example) was formed by combining the negative electrode sheet b and the positive electrode sheet b.
The prepared battery was charged with a constant current and a constant voltage at 0.2 A to an open circuit voltage of 3.0 V, and then stored in a thermostat at 50 ° C. for 2 weeks.
After storage, the battery was charged to 4.1 V and stored at 60 ° C. for 3 weeks. Each open circuit voltage was measured after 3 weeks, and the following values were obtained.

Figure 2008103345
Figure 2008103345

以上の結果から、本発明の電池は明らかに保存中の電圧降下が少なく、性能が安定していることがわかる。   From the above results, it can be seen that the battery of the present invention clearly has little voltage drop during storage and has stable performance.

実施例−5−2
実施例−5−1の電池A、Bをそれぞれ300個ずつ作製し、4.1Vまで充電した。充電不良電池の個数は電池Aでは13個、電池Bでは0個であり、明らかに不良品発生率が改良されていることがわかる。
Example-5-2
300 batteries A and B of Example-5-1 were each prepared and charged to 4.1V. The number of poorly charged batteries is 13 for battery A and 0 for battery B, clearly showing that the defective product generation rate is improved.

図1は、実施例に使用した円筒形電池の断面図を示したものである。FIG. 1 is a sectional view of a cylindrical battery used in the examples.

符号の説明Explanation of symbols

8 正極シート
9 負極シート
10 セパレーター
11 電池缶
12 電池蓋
13 ガスケット
14 安全弁
8 Positive electrode sheet 9 Negative electrode sheet 10 Separator 11 Battery can 12 Battery cover 13 Gasket 14 Safety valve

Claims (32)

リチウムを可逆的に吸蔵放出可能な材料を含む正極及び負極、リチウム塩を含む非水電解質から成る非水二次電池に於いて、該負極及び/又は正極が保護層を少なくとも1層有することを特徴とする非水二次電池。   In a nonaqueous secondary battery comprising a positive electrode and a negative electrode containing a material capable of reversibly occluding and releasing lithium, and a nonaqueous electrolyte containing a lithium salt, the negative electrode and / or the positive electrode has at least one protective layer. Non-aqueous secondary battery characterized. リチウムを可逆的に吸蔵放出可能な材料を含む正極及び負極、リチウム塩を含む非水電解質、セパレーターから成る非水二次電池に於いて、該負極及び/又は正極が保護層を少なくとも1層有することを特徴とする非水二次電池。   In a non-aqueous secondary battery including a positive electrode and a negative electrode including a material capable of reversibly inserting and extracting lithium, a non-aqueous electrolyte including a lithium salt, and a separator, the negative electrode and / or the positive electrode have at least one protective layer. A non-aqueous secondary battery characterized by the above. リチウムを可逆的に吸蔵放出可能な材料を含む正極、金属や半金族酸化物を主体とする負極、リチウム塩を含む非水電解質及びセパレーターからなる非水二次電池に於いて、該正極及び/又は負極が保護層を少なくとも1層有することを特徴とする非水二次電池。   In a non-aqueous secondary battery comprising a positive electrode including a material capable of reversibly inserting and extracting lithium, a negative electrode mainly composed of a metal or a semi-metal oxide, a non-aqueous electrolyte including a lithium salt, and a separator, the positive electrode and The nonaqueous secondary battery, wherein the negative electrode has at least one protective layer. 該保護層が正極上と負極上の両方に形成されていることを特徴とする請求の範囲第1から3項のいずれか1項に記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 1 to 3, wherein the protective layer is formed on both the positive electrode and the negative electrode. 該保護層が負極上に形成されていることを特徴とする請求の範囲第1から3項のいずれか1項に記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 1 to 3, wherein the protective layer is formed on the negative electrode. 該保護層が正極上に形成されていることを特徴とする請求の範囲第1から3項のいずれか1項に記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 1 to 3, wherein the protective layer is formed on the positive electrode. 該保護層が水不溶性の粒子と結着剤からなることを特徴とする請求の範囲第4から6項のいずれか1項に記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 4 to 6, wherein the protective layer comprises water-insoluble particles and a binder. 該保護層が水不溶性もしくは水難溶性のアルカリ金属塩もしくはアルカリ土類金属塩の粒子と結着剤からなることを特徴とする請求の範囲第4から6項のいずれか1項に記載の非水二次電池。   The non-water according to any one of claims 4 to 6, wherein the protective layer comprises particles of a water-insoluble or hardly water-soluble alkali metal salt or alkaline earth metal salt and a binder. Secondary battery. 該保護層が有機微粒子を含有することを特徴とする請求の範囲第4から6項のいずれか1項に記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 4 to 6, wherein the protective layer contains organic fine particles. 該保護層が有機微粒子及び無機微粒子を含有することを特徴とする請求の範囲第4から6項のいずれか1項に記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 4 to 6, wherein the protective layer contains organic fine particles and inorganic fine particles. 該保護層が実質的に導電性を持たないことを特徴とする請求の範囲第4から10項のいずれか1項に記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 4 to 10, wherein the protective layer has substantially no conductivity. 該保護層が導電性であることを特徴とする請求の範囲第4から10項のいずれか1項に記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 4 to 10, wherein the protective layer is conductive. 該保護層が実質的に導電性を持たない粒子を含むことを特徴とする請求の範囲第11項に記載の非水二次電池。   The nonaqueous secondary battery according to claim 11, wherein the protective layer includes particles having substantially no conductivity. 該保護層に含まれる粒子が導電性粒子であることを特徴とする請求の範囲第11又は12項に記載の非水二次電池。   The non-aqueous secondary battery according to claim 11 or 12, wherein particles contained in the protective layer are conductive particles. 該保護層に含まれる粒子が無機カルコゲナイド粒子であることを特徴とする請求の範囲第7から10項のいずれか1項に記載の非水二次電池。   The non-aqueous secondary battery according to any one of claims 7 to 10, wherein the particles contained in the protective layer are inorganic chalcogenide particles. 請求の範囲第15項の無機カルコゲナイド粒子がナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、ジルコニウム、アルミニウム、珪素の酸化物を少なくとも1種含有していることを特徴とする非水二次電池。   A non-aqueous secondary battery, wherein the inorganic chalcogenide particles according to claim 15 contain at least one oxide of sodium, potassium, magnesium, calcium, strontium, zirconium, aluminum, and silicon. 請求の範囲第16項の無機酸化物がアルミナ、二酸化珪素、ジルコニアであることを特徴とする非水二次電池。   A non-aqueous secondary battery, wherein the inorganic oxide according to claim 16 is alumina, silicon dioxide, or zirconia. 該導電性粒子が、金属粉末、炭素粒子から選ばれる少なくとも1種であることを特徴とする請求の範囲第7から10項のいずれか1項に記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 7 to 10, wherein the conductive particles are at least one selected from metal powder and carbon particles. 該導電性粒子が炭素粒子であることを特徴とする請求の範囲第18項に記載の非水二次電池。   The nonaqueous secondary battery according to claim 18, wherein the conductive particles are carbon particles. 該保護層に含まれる水不溶性もしくは水難溶性の粒子がアルカリ金属塩であることを特徴とする請求の範囲第7から10項のいずれか1項に記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 7 to 10, wherein the water-insoluble or hardly water-soluble particles contained in the protective layer are alkali metal salts. 該保護層に含まれる水不溶性もしくは水難溶性の粒子がアルカリ土類金属塩であることを特徴とする請求の範囲第7から10項のいずれか1項に記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 7 to 10, wherein the water-insoluble or hardly water-soluble particles contained in the protective layer are alkaline earth metal salts. 該粒子がリチウム塩であることを特徴する請求の範囲第20項に記載の非水二次電池。   21. The nonaqueous secondary battery according to claim 20, wherein the particles are a lithium salt. 請求の範囲第9または10項記載の有機微粒子が最低製膜温度(MFT)が80〜200℃であることを特徴とする非水二次電池。   A non-aqueous secondary battery, wherein the organic fine particles according to claim 9 or 10 have a minimum film-forming temperature (MFT) of 80 to 200 ° C. 請求の範囲第9または10項記載の保護層に含まれる有機粒子がポリエチレン微粒子であることを特徴とする非水二次電池。   The non-aqueous secondary battery, wherein the organic particles contained in the protective layer according to claim 9 or 10 are polyethylene fine particles. 請求の範囲第9または10項に記載される保護層に含まれる無機微粒子がフッ化リチウム、炭化珪素、窒化硼素から選ばれた無機微粒子であることを特徴とする非水二次電池。   A nonaqueous secondary battery, wherein the inorganic fine particles contained in the protective layer according to claim 9 or 10 are inorganic fine particles selected from lithium fluoride, silicon carbide, and boron nitride. 該保護層の厚みが1μm以上40μm以下であることを特徴とする請求の範囲第1から25項のいずれか1項に記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 1 to 25, wherein the protective layer has a thickness of 1 µm to 40 µm. 該保護層に含まれる導電性粒子の割合が2.5重量%以上96重量%以下であることを特徴とする請求の範囲第26項に記載の非水二次電池。   27. The nonaqueous secondary battery according to claim 26, wherein the proportion of the conductive particles contained in the protective layer is 2.5 wt% or more and 96 wt% or less. リチウムを可逆的に吸蔵放出可能な負極材料が、周期律表13から15の金属、半金族元素の酸化物を少なくとも1種含むことを特徴とする請求の範囲第1から27項のいずれか1項に記載の非水二次電池。   28. The negative electrode material capable of reversibly inserting and extracting lithium contains at least one metal of the periodic table 13 to 15 and an oxide of a semi-metal group element. The nonaqueous secondary battery according to item 1. 該負極が錫を含む複合酸化物であることを特徴とする請求の範囲第28項に記載の非水二次電池。   29. The nonaqueous secondary battery according to claim 28, wherein the negative electrode is a complex oxide containing tin. 該錫を含む複合酸化物が次の一般式(1)の複合酸化物であることを特徴とする請求の範囲第29項に記載の非水二次電池。
SnM1 at 一般式(1)
式中、M1 はAl、B、P、Si、周期律表第1族元素、第2族元素、第3族元素、ハロゲン元素から選ばれる2種以上の元素を表し、aは0.2以上2以下の数を、tは1以上6以下の数を表す。
30. The nonaqueous secondary battery according to claim 29, wherein the composite oxide containing tin is a composite oxide of the following general formula (1).
SnM 1 a O t general formula (1)
In the formula, M 1 represents two or more elements selected from Al, B, P, Si, Group 1 elements, Group 2 elements, Group 3 elements, and halogen elements in the periodic table, and a is 0.2 The number is 2 or less and t is 1 or more and 6 or less.
該錫を含む複合酸化物が次の一般式(3)の複合酸化物であることを特徴とする請求の範囲第30項に記載の非水二次電池。
SnM3 c4 dt 一般式(3)
式中、M3 はAl、B、P、Siの少なくとも2種を、M4 は周期律表第1族元素、第2族元素、第3族元素、ハロゲン元素の少なくとも1種を表し、cは0.2以上2以下の数、dは0.01以上1以下の数で、0.2<c+d<2、tは1以上6以下の数を表す。
31. The nonaqueous secondary battery according to claim 30, wherein the composite oxide containing tin is a composite oxide of the following general formula (3).
SnM 3 c M 4 d O t General formula (3)
In the formula, M 3 represents at least two of Al, B, P and Si, M 4 represents at least one of Group 1 element, Group 2 element, Group 3 element and halogen element in the periodic table, c Is a number of 0.2 or more and 2 or less, d is a number of 0.01 or more and 1 or less, 0.2 <c + d <2, and t is a number of 1 or more and 6 or less.
該非水電解質が、少なくとも1種の炭酸エステルを含有すること特徴とする請求の範囲第1から31項のいずれか1項に記載の非水二次電池。   32. The nonaqueous secondary battery according to any one of claims 1 to 31, wherein the nonaqueous electrolyte contains at least one carbonate ester.
JP2007286191A 1995-06-28 2007-11-02 Non-aqueous secondary battery Expired - Lifetime JP5071056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286191A JP5071056B2 (en) 1995-06-28 2007-11-02 Non-aqueous secondary battery

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP18323395 1995-06-28
JP1995183233 1995-06-28
JP17486195 1995-07-11
JP1995174861 1995-07-11
JP1995189190 1995-07-25
JP18919095 1995-07-25
JP2765896 1996-02-15
JP1996027658 1996-02-15
JP2007286191A JP5071056B2 (en) 1995-06-28 2007-11-02 Non-aqueous secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50431497A Division JP4253853B2 (en) 1995-06-28 1996-06-27 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2008103345A true JP2008103345A (en) 2008-05-01
JP5071056B2 JP5071056B2 (en) 2012-11-14

Family

ID=39437479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286191A Expired - Lifetime JP5071056B2 (en) 1995-06-28 2007-11-02 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP5071056B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098434A1 (en) * 2009-02-27 2010-09-02 日本ゼオン株式会社 Electrode for lithium-ion secondary battery
JP2013080655A (en) * 2011-10-05 2013-05-02 Toyota Motor Corp Secondary battery
JP2014075183A (en) * 2012-10-02 2014-04-24 Hitachi Chemical Co Ltd Nonaqueous electrolyte secondary battery
JP2014107263A (en) * 2012-11-26 2014-06-09 Industrial Technology Research Institute Electrode powder and electrode plate for lithium ion battery
US9023537B2 (en) 2010-04-09 2015-05-05 Sony Corporation Battery
JP2017168442A (en) * 2016-03-15 2017-09-21 株式会社東芝 Nonaqueous electrolyte battery, battery pack and vehicle
US9793539B2 (en) 2012-04-30 2017-10-17 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, rechargeable lithium battery including same and method of preparing rechargeable lithium battery
US9893362B2 (en) 2012-11-21 2018-02-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and negative electrode for same
JP2018098172A (en) * 2016-12-07 2018-06-21 パナソニックIpマネジメント株式会社 Secondary battery
JP2019121529A (en) * 2018-01-09 2019-07-22 トヨタ自動車株式会社 Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing positive electrode plate for lithium ion secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI620373B (en) 2013-01-07 2018-04-01 由尼帝佳股份有限公司 Lithium secondary battery electrode and manufacturing method thereof
JP7342904B2 (en) 2021-03-18 2023-09-12 Jfeスチール株式会社 Hanging equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562672A (en) * 1978-10-31 1980-05-12 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary cell
JPH02215043A (en) * 1989-02-16 1990-08-28 Toshiba Corp Nonaqueous solvent secondary battery
JPH03285259A (en) * 1990-03-30 1991-12-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH04229562A (en) * 1990-12-27 1992-08-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH0636759A (en) * 1992-07-17 1994-02-10 Mitsubishi Cable Ind Ltd Lithium secondary battery
JPH06283157A (en) * 1992-09-14 1994-10-07 Canon Inc Secondary battery
JPH07220759A (en) * 1994-01-31 1995-08-18 Sony Corp Nonaqueous electrolyte secondary battery
JPH0864203A (en) * 1994-08-25 1996-03-08 Ricoh Co Ltd Electrode, manufacture thereof, and secondary battery using it
JPH08279357A (en) * 1995-04-05 1996-10-22 Sanyo Electric Co Ltd Lithium secondary battery and its manufacture

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562672A (en) * 1978-10-31 1980-05-12 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary cell
JPH02215043A (en) * 1989-02-16 1990-08-28 Toshiba Corp Nonaqueous solvent secondary battery
JPH03285259A (en) * 1990-03-30 1991-12-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH04229562A (en) * 1990-12-27 1992-08-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH0636759A (en) * 1992-07-17 1994-02-10 Mitsubishi Cable Ind Ltd Lithium secondary battery
JPH06283157A (en) * 1992-09-14 1994-10-07 Canon Inc Secondary battery
JPH07220759A (en) * 1994-01-31 1995-08-18 Sony Corp Nonaqueous electrolyte secondary battery
JPH0864203A (en) * 1994-08-25 1996-03-08 Ricoh Co Ltd Electrode, manufacture thereof, and secondary battery using it
JPH08279357A (en) * 1995-04-05 1996-10-22 Sanyo Electric Co Ltd Lithium secondary battery and its manufacture

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101508808B1 (en) 2009-02-27 2015-04-06 제온 코포레이션 Electrode for lithium-ion secondary battery
JP4645778B2 (en) * 2009-02-27 2011-03-09 日本ゼオン株式会社 Electrode for lithium ion secondary battery
JPWO2010098434A1 (en) * 2009-02-27 2012-09-06 日本ゼオン株式会社 Electrode for lithium ion secondary battery
WO2010098434A1 (en) * 2009-02-27 2010-09-02 日本ゼオン株式会社 Electrode for lithium-ion secondary battery
US8822074B2 (en) 2009-02-27 2014-09-02 Zeon Corporation Electrode for lithium-ion secondary battery
US9023537B2 (en) 2010-04-09 2015-05-05 Sony Corporation Battery
JP2013080655A (en) * 2011-10-05 2013-05-02 Toyota Motor Corp Secondary battery
US9793539B2 (en) 2012-04-30 2017-10-17 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, rechargeable lithium battery including same and method of preparing rechargeable lithium battery
JP2014075183A (en) * 2012-10-02 2014-04-24 Hitachi Chemical Co Ltd Nonaqueous electrolyte secondary battery
US9893362B2 (en) 2012-11-21 2018-02-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and negative electrode for same
US8900751B2 (en) 2012-11-26 2014-12-02 Industrial Technology Research Institute Electrode powder and electrode plate for lithium ion battery
JP2014107263A (en) * 2012-11-26 2014-06-09 Industrial Technology Research Institute Electrode powder and electrode plate for lithium ion battery
JP2017168442A (en) * 2016-03-15 2017-09-21 株式会社東芝 Nonaqueous electrolyte battery, battery pack and vehicle
JP2018098172A (en) * 2016-12-07 2018-06-21 パナソニックIpマネジメント株式会社 Secondary battery
JP7018562B2 (en) 2016-12-07 2022-02-14 パナソニックIpマネジメント株式会社 Secondary battery
JP2019121529A (en) * 2018-01-09 2019-07-22 トヨタ自動車株式会社 Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing positive electrode plate for lithium ion secondary battery
JP7013876B2 (en) 2018-01-09 2022-02-01 トヨタ自動車株式会社 A method for manufacturing a positive electrode plate for a lithium ion secondary battery, a lithium ion secondary battery, and a positive electrode plate for a lithium ion secondary battery.
US11387448B2 (en) 2018-01-09 2022-07-12 Toyota Jidosha Kabushiki Kaisha Positive electrode plate of lithium ion secondary battery, lithium ion secondary battery, and method of producing positive electrode plate of lithium ion secondary battery

Also Published As

Publication number Publication date
JP5071056B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5158273B2 (en) Non-aqueous secondary battery
JP5071055B2 (en) Non-aqueous secondary battery
JP5071056B2 (en) Non-aqueous secondary battery
JP3719277B2 (en) Non-aqueous secondary battery
JP3809662B2 (en) Non-aqueous secondary battery
JP4016427B2 (en) Non-aqueous secondary battery
JP3921691B2 (en) Non-aqueous secondary battery
JP4380579B2 (en) Non-aqueous secondary battery
US6053953A (en) Nonaqueous secondary battery and process for preparation thereof
JP4045600B2 (en) Non-aqueous secondary battery
JPH09180758A (en) Nonaqueous secondary battery
JPH09167618A (en) Nonaqueous secondary battery
JPH1040921A (en) Nonaqueous secondary battery
JPH10289733A (en) Nonaqueous secondary battery and manufacture therefor
JP4893495B2 (en) Non-aqueous secondary battery
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
JP3644106B2 (en) Non-aqueous secondary battery
JP3937515B2 (en) Non-aqueous secondary battery
JP3579989B2 (en) Non-aqueous secondary battery
JPH09283179A (en) Nonaqueous secondary battery
JP5035281B2 (en) Non-aqueous secondary battery
JP4207932B2 (en) Non-aqueous secondary battery
JP3692656B2 (en) Non-aqueous secondary battery
JPH10172605A (en) Nonaqueous secondary battery
JPH0927324A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term