JP2008100610A - 走行路面状態検出システム及びそのセンサユニット - Google Patents

走行路面状態検出システム及びそのセンサユニット Download PDF

Info

Publication number
JP2008100610A
JP2008100610A JP2006284772A JP2006284772A JP2008100610A JP 2008100610 A JP2008100610 A JP 2008100610A JP 2006284772 A JP2006284772 A JP 2006284772A JP 2006284772 A JP2006284772 A JP 2006284772A JP 2008100610 A JP2008100610 A JP 2008100610A
Authority
JP
Japan
Prior art keywords
unit
road surface
information
wheel
sensor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006284772A
Other languages
English (en)
Inventor
Yasushi Hattori
泰 服部
Daisuke Kanari
大輔 金成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2006284772A priority Critical patent/JP2008100610A/ja
Publication of JP2008100610A publication Critical patent/JP2008100610A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

【課題】低速から高速までのあらゆる速度での車両走行時における走行路面状態を迅速且つ的確に検出できる走行路面状態検出システム及びそのセンサユニットを提供する。
【解決手段】タイヤ2に設けられたセンサユニット100によって、タイヤ2の回転方向の加速度信号に重畳する微小振動を検出し、この微小振動信号を所定時間積分した積分値をディジタル情報としてモニタ装置200に送信する。モニタ装置200は、積分値が小さいときに走行路面とタイヤ2との間の摩擦が大きく、積分値が大きいときに走行路面とタイヤ2との間の摩擦が小さいとして、積分値と摩擦の大小を対応づけた路面状態情報をスタビリティ制御ユニット700に出力する。スタビリティ制御ユニット700は路面状態情報に基づいて制動制御等を行う。
【選択図】図5

Description

本発明は、車両走行時に車輪に発生する微小振動を検出して路面状態を検出する走行路面状態検出システム及びそのセンサユニットに関するものである。
従来、車両において安全走行を行うために注意しなければならない事項として、車両のタイヤ内空気圧を適度な状態に設定することや、タイヤの摩耗状態に注意を払いタイヤの点検を行うことなどがあげられる。
しかしながら、タイヤの点検を行い、タイヤの状態を良好な状態に保っていても、雨天候時に路面が濡れている場合など、路面とタイヤとの間の摩擦力が低下すると、ブレーキをかけたときにスリップして、思わぬ方向に車両が移動してしまい、事故を引き起こすことがあった。
このようなスリップや急発進などによって発生する事故を防止するために、アンチロック・ブレーキ・システム(Anti-Lock Brake System、以下、ABSと称する)、トラクション・コントロール・システム、さらには、これらに加えてYAWセンサを設けたスタビリティー制御システムなどが開発された。
例えば、ABSは、各タイヤの回転状態を検出し、この検出結果に基づいて各タイヤがロック状態に入るのを防止するように制動力を制御するシステムである。
タイヤの回転状態として、各タイヤの回転数や、空気圧、歪み等の状態を検出して、この検出結果を制御に用いることが可能である。
このような制御システムの一例としては、例えば、特開平05-338528号公報に開示される自動車のブレーキ装置(以下、特許文献1と称する)、特開2001-018775号公報に開示されるブレーキ制御装置(以下、特許文献2と称する)、特開2001-182578号公報に開示される車両の制御方法および装置(以下、特許文献3と称する)、特開2002-137721号公報に開示される車両運動制御装置(以下、特許文献4と称する)、特開2002-160616号公報に開示されるブレーキ装置(以下、特許文献5と称する)などが知られている。
特許文献1には、ブレーキペダルと連結されるバキュームブースタにバキュームタンクから負圧が供給され、このバキュームタンクにバキュームポンプから負圧が供給され、このバキュームポンプがポンプモータにより駆動されることにより、加速度センサ14により自動車の減速加速度が所定値に達した状態が検出されたときにバキュームポンプが作動する用のポンプモータを制御して、急激なブレーキ操作時及びその直後のブレーキ操作時における操作フィーリングの変化を防止するブレーキ装置が開示されている。
特許文献2には、ABS制御を実行する制御手段を備えたブレーキ制御装置において、制御手段に、車両に発生している横方向加速度を推定する横加速度推定手段と、この横加速度推定手段による推定横加速度と、車両挙動検出手段による推定横加速度と、車両挙動検出手段に含まれる横加速度センサが検出する検出横加速度とを比較し、両者の差が所定値未満であれば舵角に見合った正常旋回中と判定し、前記差が所定値以上であれば非正常旋回中と判定する比較判定手段とを設け、前記制御手段をABS制御中に、正常旋回判定時と非正常旋回判定時とで制御を切り替えるようにしたブレーキ制御装置が開示されている。
特許文献3には、車両の減速度および/または加速度を調節するための制御信号が対応の設定値により形成される車両の制御方法および装置において、走行路面傾斜により発生する車両加速度または車両減速度を表わす補正係数が形成され、この補正係数が設定値に重ね合わされて、車両の減速度および/または加速度の設定を改善する車両の制御方法および装置が開示されている。
特許文献4には、複数の車輪を有する車両の実ヨーイング運動状態量として重心点の横すべり角変化速度β’を取得し、その変化速度β’の絶対値が設定値β0’以上で有れば、ブレーキ液圧ΔPを左右後輪の何れかのブレーキに作用させることにより、変化速度β’の絶対値が大きいほど値が大きいほど値が大きく且つ変化速度β’の絶対値を減少させる向きのヨーイングモーメントを発生させ、このヨーイングモーメント制御中にも、ブレーキ液圧ΔPが作用させられた車輪においてスリップ制御が必要か否かの判定を継続し、スリップ制御が必要になれば、ブレーキ液圧ΔPを抑制することによりスリップ率を適正範囲に保つスリップ制御を行う車両運動制御装置が開示されている。
特許文献5には、車両前後方向の加速度を検出する加速度センサと、各車輪の車輪速度の検出を行う車輪速度センサと、ブレーキ圧を検出するブレーキ圧センサとのうち、少なくとも2つを備え、少なくとも2つのセンサからのフィードバックによって目標ブレーキ圧を演算し、この演算結果に基づいて、指示電流演算部で指示電流を演算し、その指示電流をブレーキ駆動用アクチュエータに流し、指示電流の大きさに応じた制動力を発生させることにより、外乱が生じたり、1つのセンサが故障したりしても出力異常を抑制することができるブレーキ装置が開示されている。
さらに、特許第3787608号公報(特許文献6)に開示されるようにABSを利用して車輪がロックしたときの走行路面と車輪との間の摩擦を推定し、この推定した摩擦に基づいてABSの制御パラメータを変更する技術が開示されている。
特許文献6には、車両の車輪と走行路面との間に作用する路面摩擦力Fに応じた路面摩擦力情報と、車両の車輪とブレーキ装置との間に作用するブレーキトルク力Tに応じたブレーキトルク情報とを得ることができる任意数の第1のセンサを有するABS装置であって、第1のセンサからの路面摩擦力情報とブレーキトルク情報との差に応じた差分パラメータMを演算する差分パラメータ演算手段と、差分パラメータ演算手段により演算された差分パラメータMを補正して積分することにより、車輪のロック時に0になるように車輪速度パラメータMωを演算する車輪速度パラメータ演算手段と、車輪速度パラメータ演算手段により演算された車輪速度パラメータMωを用いてブレーキ装置の液圧を制御するブレーキ液圧制御手段とを備えたことを特徴とするABS装置が開示されている。
また、特許第3448995号公報(特許文献7)に開示されるように、加速時において草稿路面を車輪がスリップときの摩擦を推定し、推定した摩擦に基づいてスロットル開度を制御する技術が知られている。
特許文献7には、エンジンの吸気通路にスロットル弁と直列に配設され、全開位置と所定開度の全閉位置との2段階に切換制御される第2スロットル弁と、車両の駆動輪のスリップ状態を検出するスリップ状態検出手段と、検出されたスリップ状態に応じて第2スロットル弁を全閉位置に制御して車両の駆動力を減少させる第1の駆動力減少制御手段と、車両走行路面の摩擦係数の状態を検出する路面状態検出手段と、第1の駆動力減少制御手段より応答性良く車両の駆動力を減少制御する第2の駆動力減少制御手段と、第1の駆動力減少制御手段の作動を制限する駆動力減少制御制限手段とを備え、摩擦係数の高い路面状態では、駆動力減少制御制限手段により第1の駆動力減少制御手段の作動を制限し、必要な駆動力減少制御を第2の駆動力減少制御手段で賄うことを特徴とする車両の駆動力制御装置が開示されている。
また、近年では最新鋭のハイテク技術を駆使した安全装備を搭載する乗用車が増えている。例えばミリ波レーダーや赤外線カメラを用い、前方の車両を検知して自動的に減速・停止して追突を防止する機能や、暗い夜道で歩行者を感知して運転手に警告したり或いは減速・停止する機能などの事故回避技術も実用化され始めた。このような技術を用いることにより、車両の追突事故や路肩を歩く人をはねるといった重大事故の発生を回避できるように努めている。
特開平05-338528号公報 特開2001-018775号公報 特開2001-182578号公報 特開2002-137721号公報 特開2002-160616号公報 特許第3787608号公報 特許第3448995号公報
上記のようなアンチロック・ブレーキ・システムを必要とする理由の一つとしては、車両走行する路面の状態変化が挙げられる。天候や環境によって路面状態が変化することにより、車体の振動や安定性の低下、さらにはブレーキの効き具合の変化やブレーキ操作時の車輪のスリップなどが生ずる。このため、路面状態を迅速且つ的確に検出する技術開発が行われている。
しかしながら、例えば、ABSは開発段階で自動車メーカーが選んだ基準の新車装着用タイヤでパラメータが決定されているが、実用上はタイヤの摩耗、履き替え、乗車人数、天候、路面等の状態によって変化するため、単一のパラメータでは最適な制御を望むことは極めて難しい。
さらに、ミリ波レーダーや赤外線カメラを用いた検知結果に基づいて車両の制動制御を行い、追突事故等を防止する場合も、タイヤの摩耗、履き替え、乗車人数、天候、路面が乾燥している、濡れている、凍っている等の路面の状態によって、制動を開始してから車両が停止するまでの走行距離が異なるため、適切な制動制御を行うことが難しかった。
また、特許文献6,7に開示される技術では、いずれも制御パラメータを変更できるのは走行開始時或いは低速走行時であり、車両走行中、特に高速走行時にパラメータを変更することは極めて困難なことである。
本発明の目的は上記の問題点に鑑み、低速から高速までのあらゆる速度での車両走行時における走行路面状態を迅速且つ的確に検出できる走行路面状態検出システム及びそのセンサユニットを提供することである。
本発明は上記の目的を達成するために、車輌が走行する路面の状態を検出するシステムであって、車両の車体に設けられ車輪を固定して該車輪を回転させる回転体と前記車輪とを含む回転機構部に設けられ、車両走行時の回転に伴って前記回転機構部に発生する微小振動を検出して電気信号に変換し、該電気信号を微小振動信号として出力する振動検出部と、前記振動検出部から出力される微小振動信号を所定時間積分して積分値を出力する積分手段と、前記積分値を入力し、前記積分値が小さいときに走行路面と前記車輪との間の摩擦が大きいとし且つ前記積分値が大きいときに走行路面と前記車輪との間の摩擦が小さいとして、前記積分値と前記摩擦の大小とを対応づけた路面状態情報を出力する路面状態情報出力手段とを有する走行路面状態検出システムを提案する。
本発明の走行路面状態検出システムによれば、車両走行時の回転に伴ってタイヤ等の車輪を含む回転機構部に発生する微小振動が検出されて、該微小振動に対応した電気信号である微小振動信号として振動検出部から出力される。
さらに、上記微小振動信号は積分手段によって所定時間の間積分され、該積分結果の積分値が出力され、路面状態情報出力手段によって、前記積分値が小さいときに走行路面と前記車輪との間の摩擦が大きく且つ前記積分値が大きいときに走行路面と前記車輪との間の摩擦が小さいとして、前記積分値と前記摩擦の大小を対応づけた路面状態情報が出力される。
また、本発明は上記の目的を達成するために、前記回転機構部に装着されるセンサユニットとして、前記微小振動信号の強度の値を送信情報として電波によって送信するセンサユニット、前記積分値を送信情報として電波によって送信するセンサユニット、さらに、前記路面状態情報を送信情報として電波によって送信するセンサユニットを提案する。
本発明の走行路面状態検出システムによれば、検出した車両走行時における回転機構部の微小振動の強度値を積分した値は走行路面と車輪との間の摩擦に応じて大きさが変動するため、走行路面の状態すなわち走行路面と車輪との間の摩擦を検出することが可能になる。この検出した走行路面と車輪との間の摩擦の情報を用いることにより、適切な制動開始時期、制動開始から車両停止までの走行距離、制動時のスリップの発生等を把握することができる。これにより、タイヤの摩耗、履き替え、乗車人数、天候、路面が乾燥している、濡れている、凍っている等の路面の状態が変化しても適切な制動制御を行うことができる。
さらに、本発明のセンサユニットによれば、リム及びホイール並びにタイヤ本体等の車輪や車軸等の回転体の所定位置に装着するだけで、車輪の回転によって生ずる微小振動或いはその積分値または路面状態情報を容易に検出することができるので、上記本発明の走行路面状態検出システムを容易に構成することができる。
以下、図面に基づいて本発明の一実施形態を説明する。
図1は本発明の第1実施形態におけるモニタ装置及びセンサユニットの配置を示す外観図、図2は本発明の第1実施形態におけるモニタ装置及びセンサユニットの配置を示す平面図、図3は本発明の第1実施形態におけるタイヤへのセンサユニットの設置場所を説明する図、図4は本発明の第1実施形態のタイヤハウス内のタイヤを示す図、図5は本発明の第1実施形態における車両駆動制御システムを示す構成図である。本実施形態では4輪車両の駆動制御システムを一例として説明する。
図1及び図2において、1は車両、2はタイヤ(車輪)、100はセンサユニット、200はモニタ装置である。本実施形態では、センサユニット100及びモニタ装置200のそれぞれにおいて、それぞれの電気系回路を絶縁性及び電磁波透過性を有する小型の筐体内に収納し、4つのセンサユニット100のそれぞれを車両1のタイヤ2に装着し、4つのモニタユニット200のそれぞれを各タイヤハウス4に配置し、センサユニット100とモニタ装置200が1対1の対応をなすようにしている。
また、図3及び図4に示すように、タイヤ2は、例えば、周知のチューブレスラジアルタイヤであり、本実施形態においてはホイール及びリムを含むものである。タイヤ2は、タイヤ本体305とリム306及びホイール(図示せず)から構成され、タイヤ本体305は周知のキャップトレッド301、アンダートレッド302、ベルト303A,303B、カーカス304等から構成され、タイヤハウス4に収納されている。さらに、各タイヤハウス4にはモニタ装置200が設けられている。また、本実施形態では図3に示すように、タイヤ2はセンサユニット100を備え、このセンサユニット100がリム306に固定されている。尚、本実施形態ではタイヤ2の回転方向をX軸方向、タイヤ2の回転軸方向をY軸方向、タイヤ2の回転軸を中心とした半径方向をZ軸方向として以下の説明を行う。
図5において、2はタイヤ、3は車軸、100はセンサユニット、200はモニタ装置、410はエンジン、411はアクセルペダル、412はサブスロットルアクチュエータ、413はメインスロットルポジションセンサ、414はサブスロットルポジションセンサ、421はハンドル、422は舵角センサ、510,520はタイヤの回転数を検知するセンサ、610はブレーキペダル、620はブレーキ用のマスターシリンダ、630はブレーキ用の油圧を制御する圧力制御弁、640はブレーキ駆動用のアクチュエータ、700はスタビリティ制御ユニットである。
また、スタビリティ制御ユニット700は、周知のCPUを備えた制御回路からなり、車両1に装着されている各タイヤ2の回転数を検知するセンサ510,520から出力される検知結果と、スロットルポジションセンサ413,414、舵角センサ422及びモニタ装置200から出力される検知結果を取り込んでスタビリティ制御を行っている。
即ち、加速時には、アクセルペダル411を踏み込むことによってメインスロットルを開いてエンジン410に燃料を送り込み、エンジン410の回転数を増加させる。
また、制動時には、ブレーキペダル610を踏み込む等によってマスターシリンダ620内の油圧が上昇し、この油圧が圧力制御弁を介して各タイヤ2のブレーキ駆動用アクチュエータ640に伝達され、これによって各タイヤ2の回転に制動力が加えられる。
上記スタビリティ制御ユニット700は、各タイヤ2の回転数を検知するセンサ510,520から出力される検知結果と舵角センサ422の検知結果及びモニタ装置200から出力される検知結果とに基づいて、サブスロットルアクチュエータ412の動作状態を電気的に制御すると共に、各圧力制御弁630の動作状態を電気的に制御することによって、車体の安定性を保つと共に適切な制動を行ったりタイヤ2がロックしてスリップが生じたりしないように自動的に制御する。
センサユニット100は、前述したようにタイヤ2のリム306の所定位置に固定されており、このセンサユニット100内に設けられている後述する加速度センサによって各タイヤ2におけるX,Y,Z軸方向の加速度を検出し、これらのうちのX軸方向の加速度のアナログ信号から重力加速度成分を除去して微小振動成分のみを抽出し、この微小振動成分を積分した積分値をディジタル値に変換する。また、X,Y,Z軸方向の加速度信号の値をディジタル値に変換する。さらに、センサユニット100は、微小振動成分の所定時間の積分値のディジタル値及びX,Y,Z軸方向の加速度のディジタル値を含むディジタル情報を生成して所定時間おきに送信する。このディジタル情報には、上記積分値および加速度のディジタル値の他に各センサユニット100に固有の識別情報が含まれる。
センサユニット100の電気系回路の一具体例としては、図6に示す回路が挙げられる。すなわち、図6に示す一具体例では、センサユニット100は、アンテナ110と、アンテナ切替器120、整流回路130、中央処理部140、発信部150、センサ部160から構成されている。
アンテナ110は、モニタ装置200との間で電磁波を用いて通信するためのもので、例えば2.4GHz帯の所定の周波数(第1周波数)に整合されている。
アンテナ切替器120は、例えば電子スイッチ等から構成され、中央処理部140の制御によってアンテナ110と整流回路130との接続と、アンテナ110と発信部150との接続とを切り替える。
整流回路130は、ダイオード131,132と、コンデンサ133、抵抗器134から構成され、周知の全波整流回路を形成している。この整流回路130の入力側にはアンテナ切替器120を介してアンテナ110が接続されている。整流回路130は、アンテナ110に誘起した高周波電流を整流して直流電流に変換し、これを中央処理部140、発信部150、センサ部160の駆動電源として出力するものである。尚、コンデンサ133としては大容量コンデンサとして知られている周知のスーパーキャパシタを使用している。
中央処理部140は、周知のCPU141と、記憶部142から構成されている。
CPU141は、記憶部142の半導体メモリに格納されているプログラムに基づいて動作し、電気エネルギーが供給されて駆動すると、センサ部160から取得した上記積分値と加速度検出結果のディジタル値及び後述する識別情報を含むディジタル情報を生成して、このディジタル情報をモニタ装置200に対して送信する処理を行う。また、記憶部142にはセンサユニット100に固有の上記識別情報が予め記憶されている。尚、本実施形態では、中央処理部140は、1秒間の積分値を10秒間隔で上記ディジタル情報に含めて送信すると共にモニタ装置200から送信命令を受信したときに上記ディジタル情報をモニタ装置200に送信するようにプログラムされているが、これらの積分時間及び送信間隔はシステムの構成に応じて適宜設定することが好ましいが、送信間隔に関しては車両の走行速度や走行距離を考慮して1秒から5分の間に設定することが好ましい。
記憶部142は、CPU141を動作させるプログラムが記録されたROMと、例えばEEPROM(electrically erasable programmable read-only memory)等の電気的に書き換え可能な不揮発性の半導体メモリとからなり、個々のセンサユニット100に固有の上記識別情報が、製造時に記憶部142内の書き換え不可に指定された領域に予め記憶されている。
発信部150は、発振回路151、変調回路152及び高周波増幅回路153から構成され、周知のPLL回路などを用いて構成され発振回路151によって発振された2.45GHz帯の周波数の搬送波を、中央処理部140から入力した情報信号に基づいて変調回路152で変調し、これを高周波増幅回路153及びアンテナ切替器120を介して前記第1周波数とは異なる2.45GHz帯の周波数(第2周波数)の高周波電流としてアンテナ110に供給する。尚、本実施形態では前記第1周波数と第2周波数とを異なる周波数に設定しているが、第1周波数と第2周波数を同じ周波数に設定し、センサユニット100とモニタ装置200との間の送受信のタイミングを同期させるようにしても良い。
また搬送波の周波数も、2.45GHz帯に限定されることなく、小電力での使用が許可されている周波数帯であれば用いることができる。例えば13MHz帯、315MHz帯、400MHz帯、900MHz帯、1200MHz帯などの周波数を使用しても良い。
センサ部160は、加速度センサ10と、ハイパスフィルタ(HPF)161、積分回路162、A/D変換回路163から構成されている。
加速度センサ10は、図7乃至図10に示すような半導体加速度センサによって構成されている。
図7は本発明の第1実施形態における半導体加速度センサを示す外観斜視図、図8は図7におけるB−B線矢視方向断面図、図9は図7におけるC−C線矢視方向断面図、図10は分解斜視図である。
図において、10は半導体加速度センサで、台座11と、シリコン基板12、支持体19A,19Bとから構成されている。
台座11は矩形の枠型をなし、台座11の一開口面上にシリコン基板(シリコンウェハ)12が取り付けられている。また、台座11の外周部には支持体19a,19Bの外枠部191が固定されている。
台座11の開口部にシリコン基板12が設けられ、ウェハ外周枠部12a内の中央部には十字形状をなす薄膜のダイアフラム13が形成されており、各ダイアフラム片13a〜13dの上面にピエゾ抵抗体(拡散抵抗体)Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4が形成されている。
詳細には、一直線上に配置されたダイアフラム片13a,13bのうちの一方のダイアフラム片13aにはピエゾ抵抗体Rx1,Rx2,Rz1,Rz2が形成され、他方のダイアフラム片13bにはピエゾ抵抗体Rx3,Rx4,Rz3,Rz4が形成されている。また、ダイアフラム片13a,13bに直交する一直線上に配置されたダイアフラム片13c,13dのうちの一方のダイアフラム片13cにはピエゾ抵抗体Ry1,Ry2が形成され、他方のダイアフラム片13dにはピエゾ抵抗体Ry3,Ry4が形成されている。さらに、これらのピエゾ抵抗体Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4は、互いに直交するX軸、Y軸、Z軸方向の加速度を検出するための抵抗ブリッジ回路を構成できるように、図11に示すように接続され、シリコン基板12の外周部表面に設けられた接続用の電極191に接続されている。
さらに、ダイアフラム片13a〜13dの交差部には、ダイアフラム13の中央部の一方の面側に厚膜部14が形成され、この厚膜部14の表面には例えばガラス等からなる直方体形状の重錘15が取り付けられている。
一方、上記支持体18A,18Bは、矩形の枠型をなした外枠部181と、固定部の4隅に立設された4つの支柱182、各支柱の先端部を連結するように設けられた十字形状の梁部183、梁部183の中央交差部分に設けられた円錐形状をなす突起部184とから構成されている。
外枠部181は、突起部184がダイアフラム13の他面側すなわち重錘15が存在しない側に位置するように、台座11の外周部に嵌合して固定されている。ここで、突起部184の先端184aがダイアフラム13或いは重錘15の表面から距離D1の位置になるように設定されている。この距離D1は、ダイアフラム13の面に垂直な方向に加速度が生じ、この加速度によりダイアフラム13の双方の面の側に所定値以上の力が加わった場合においても、各ダイアフラム片13a〜13dが伸びきらないように、その変位が突起部184によって制限できる値に設定されている。
上記構成の半導体加速度センサ10を用いる場合は、図12乃至図14に示すように3つの抵抗ブリッジ回路を構成する。即ち、X軸方向の加速度を検出するためのブリッジ回路としては、図12に示すように、ピエゾ抵抗体Rx1の一端とピエゾ抵抗体Rx2の一端との接続点に直流電源32Aの正極を接続し、ピエゾ抵抗体Rx3の一端とピエゾ抵抗体Rx4の一端との接続点に直流電源32Aの負極を接続する。さらに、ピエゾ抵抗体Rx1の他端とピエゾ抵抗体Rx4の他端との接続点に電圧検出器31Aの一端を接続し、ピエゾ抵抗体Rx2の他端とピエゾ抵抗体Rx3の他端との接続点に電圧検出器31Aの他端を接続する。
また、Y軸方向の加速度を検出するためのブリッジ回路としては、図13に示すように、ピエゾ抵抗体Ry1の一端とピエゾ抵抗体Ry2の一端との接続点に直流電源32Bの正極を接続し、ピエゾ抵抗体Ry3の一端とピエゾ抵抗体Ry4の一端との接続点に直流電源32Bの負極を接続する。さらに、ピエゾ抵抗体Ry1の他端とピエゾ抵抗体Ry4の他端との接続点に電圧検出器31Bの一端を接続し、ピエゾ抵抗体Ry2の他端とピエゾ抵抗体Ry3の他端との接続点に電圧検出器31Bの他端を接続する。
また、Z軸方向の加速度を検出するためのブリッジ回路としては、図14に示すように、ピエゾ抵抗体Rz1の一端とピエゾ抵抗体Rz2の一端との接続点に直流電源32Cの正極を接続し、ピエゾ抵抗体Rz3の一端とピエゾ抵抗体Rz4の一端との接続点に直流電源32Cの負極を接続する。さらに、ピエゾ抵抗体Rz1の他端とピエゾ抵抗体Rz3の他端との接続点に電圧検出器31Cの一端を接続し、ピエゾ抵抗体Rz2の他端とピエゾ抵抗体Rz4の他端との接続点に電圧検出器31Cの他端を接続する。
上記構成の半導体加速度センサ10によれば、センサ10に加わる加速度に伴って発生する力が重錘15に加わると、各ダイアフラム片13a〜13dに歪みが生じ、これによってピエゾ抵抗体Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4の抵抗値が変化する。従って、各ダイアフラム片13a〜13dに設けられたピエゾ抵抗体Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4によって抵抗ブリッジ回路を形成することにより、互いに直交するX軸、Y軸、Z軸方向の加速度を検出することができる。
さらに、図15及び図16に示すように、ダイアフラム13の面に垂直な方向の力成分を含む力41,42が働くような加速度が加わった場合、ダイアフラム13の他方の面の側に所定値以上の力が加わったとき、ダイアフラム13は力41,42の働く方向に歪んで伸びるが、その変位は突起部184の頂点184aによって支持されて制限されるため、各ダイアフラム片13a〜13dが最大限に伸びきることがない。これにより、ダイアフラム13の他方の面の側に所定値以上の力が加わった場合も、突起部184の頂点184aが支点となって重錘15の位置が変位するので、ダイアフラム13の面に平行な方向の加速度を検出することができる。
上記の半導体加速度センサ10によって、図2に示すように、車両が走行している際に、車両の4つのタイヤ2のそれぞれに発生する互いに直交するX,Y,Z軸方向の加速度を検出することができる。また、X軸方向の加速度からタイヤ2のグリップを推定することが可能である。
ハイパスフィルタ(HPF)161は、X軸方向の加速度のアナログ信号から重力加速度成分を除去して微小振動成分のみを抽出して出力する。
積分回路162は、ハイパスフィルタ161から出力された微小振動成分のアナログ信号を積分して、この積分値のアナログ信号を出力する。本実施形態では積分回路として抵抗器とコンデンサとからなる周知のRC積分回路を用いて微小振動成分のアナログ信号の電圧を積分している。また、積分回路のコンデンサと並列にスイッチ素子が接続され、中央処理部140が積分結果を取得した後、次の積分開始時に中央処理部140によってスイッチ素子がオン状態とされてコンデンサの両端が短絡されて積分値がリセットされるようになっている。
尚、本実施形態では、積分回路162として、1段のRC積分回路を用いているが、2段以上のラダー型のRC積分回路を用い、入力側のインピーダンスを高く設定したり、RC積分回路の入力側に高インピーダンス入力の増幅器を設けて加速度センサ10の出力側の負荷を軽減するようにしても良い。また、本実施形態では最も簡単な構成のRC積分回路を用いたが、これに限定されることはなく、演算増幅器などを用いた積分回路を用いても良い。
一方、A/D変換回路163は、積分回路162から出力されたアナログ電気信号及び加速度センサ10から出力されたアナログ電気信号をディジタル信号に変換してCPU141に出力する。このディジタル信号は上記積分値および上記X,Y,Z軸方向の加速度の値に対応する。
尚、各X,Y,Z軸方向に生ずる加速度としては、正方向の加速度と負方向の加速度とが存在するが、本実施形態では双方の加速度を検出することができる。
また、本実施形態では、前述したように2.45GHz帯の周波数を上記第1及び第2周波数として用いることによって金属の影響を受け難くしている。このように金属の影響を受け難くするためには、1GHz以上の周波数を上記第1及び第2周波数として用いることが好ましい。
モニタ装置200はケーブルによってスタビリティ制御ユニット700に接続され、スタビリティ制御ユニット700から送られる電気エネルギーによって動作する。
モニタ装置200の電気系回路は、図17に示すように、輻射ユニット210と、受波ユニット220、制御部230、演算部240によって構成されている。ここで、制御部230及び演算部240は、周知のCPUと、このCPUを動作させるプログラムが記憶されているROM及び演算処理を行うために必要なRAMなどからなるメモリ回路から構成されている。
輻射ユニット210は、2.45GHz帯の所定周波数(上記第1周波数)の電磁波信号を輻射するためのアンテナ211と発信部212とから構成され、制御部230からの指示に基づいて、アンテナ211から上記第1周波数の電磁波を輻射する。
発信部212の一例としては、センサユニット100の発信部150と同様に、発振回路151と変調回路152、高周波増幅回路153から構成を挙げることができる。これにより、アンテナ211から2.45GHzの電磁波が輻射される。尚、発信部212から出力される高周波電力は、モニタ装置200の電磁波輻射用のアンテナ211からセンサユニット100に対して電気エネルギーを供給できる程度の値に設定されている。
受波ユニット220は、2.45GHz帯の所定周波数(上記第2周波数)の電磁波を受波するためのアンテナ221と検波部222とから構成され、制御部230からの指示に基づいて、アンテナ221によって受波した上記第2周波数の電磁波を検波し、検波して得られたディジタル信号を演算部250に出力する。検波部222の一例としては、ダイオードと、このダイオードによって検波された信号をディジタルデータに変換するアナログ・ディジタル変換器等からなる回路が挙げられる。
制御部230は、スタビリティ制御ユニット700から電気エネルギーが供給されて動作を開始すると、常時、検波部222を駆動し、検波部222から演算部240にディジタル信号を出力させる。また、制御部230は、演算部240からの指示を受けたときに情報送信命令を発信部212を介してセンサユニット100に送信する。
演算部240は、検波部222から出力されたディジタル信号に基づいて上記X,Y,Z軸方向の加速度を算出してスタビリティ制御ユニット700に出力すると共に、前記積分値に基づいて走行路面とタイヤとの間の摩擦の値に対応した摩擦評価値を求め、これをスタビリティ制御ユニット700に出力する。この摩擦評価値は、後述するように前記積分値が大きいときに小さな値となり、積分値が小さいときに大きな値となるもので、予め実験によって求められ演算部240内に積分値に対応付けて記憶されている。さらに、演算部240はスタビリティ制御ユニット700から受信する情報によって運転操作の変更を検出したとき、例えば、運転者がアクセルペダルを踏むのをゆるめた、ブレーキペダルを踏んだ、ステアリングを一定角度以上切ったなどの運転操作の変更を検出したときに、制御部230に対して情報送信命令を発振部212を介してセンサユニット100に送信するように指示する。これにより、運転操作の変更によって走行路面とタイヤとの間の摩擦が変化したときに、これを迅速に検出することができる。
次に、図を参照して上記構成よりなるシステムの動作を説明する。図18乃至図20はZ軸方向の加速度の実測結果、図21乃至図23はX軸方向の加速度の実測結果、図24及び図25はY軸方向の加速度の実測結果、図26はブレーキをかけたときのX軸方向の加速度の実測結果、図27はブレーキをかけたときのZ軸方向の加速度の実測結果をそれぞれ表している。尚、各図の信号波形には走行路面とタイヤ2との間の摩擦によって発生する微小振動成分が重畳している。
図18乃至図20において、図18は時速2.5kmでの走行時のZ軸方向の加速度の実測値、図19は時速20kmでの走行時のZ軸方向の加速度の実測値、図20は時速40kmでの走行時のZ軸方向の加速度の実測値である。このように、走行速度が増すにつれて車輪の遠心力が増加するので、Z軸方向の加速度も増加する。従って、Z軸方向の加速度から走行速度を求めることが可能である。
尚、図中において、実測値がサイン波形状になるのは重力加速度の影響を受けているためである。すなわち、センサユニット100がタイヤ2の前部(車両進行方向側90度の位置)に位置するときはX軸方向の加速度は回転による加速度から重力加速度を減算したものになり、タイヤ2の後部(車両進行方向と反対方向90度の位置)に位置するときはX軸方向の加速度は回転による加速度に重力加速度を加算したものになる。
本実施形態では、輻射ユニット210から電磁波を輻射することにより、センサユニット100を常時駆動するのに十分な電気エネルギーとして3V以上の電圧をコンデンサ133に蓄電することができる。
図21乃至図23において、図21は時速2.5kmでの走行時のX軸方向の加速度の実測値、図22は時速20kmでの走行時のX軸方向の加速度の実測値、図23は時速40kmでの走行時のX軸方向の加速度の実測値である。このように、走行速度が増すにつれて車輪の回転数が増加するので、X軸方向の加速度が変化する周期が短くなる。従って、X軸方向の加速度から車輪の回転数を求めることが可能である。尚、図中において、実測値がサイン波形状になるのは上記と同様に重力加速度の影響を受けているためである。
図24は走行時にハンドルを右に切ったときのY軸方向の加速度の実測値、図25は走行時にハンドルを左に切ったときのY軸方向の加速度の実測値である。このようにハンドルを切ってタイヤ2(車輪)を左右に振ったときY軸方向の加速度が顕著に現れる。また、車体が横滑りしたときにも同様にY軸方向の加速度が発生することはいうまでもない。尚、上記Y軸方向の加速度のそれぞれの実測値において逆方向の加速度が生じるのは、運転者が無意識のうちに逆方向にハンドルを少し切ってしまうためである。
また、図26及び図27に示すように、ブレーキをかけたとき(ブレーキON時:ブレーキペダルを踏み込んだ時)からタイヤ2(車輪)の回転が停止するまでの時間が約0.2秒であることも正確に検出することができた。
このようにブレーキペダル610を踏み込んだときに発生する加速度を検出することにより、この加速度によって生ずるタイヤ300の歪み量や車体の横滑り状態、タイヤの空転状態などを推定することができ、これらに基づいて車両制動時の圧力制御弁を制御することができる。
また、車両走行時の路面の状態によってX軸方向の加速度(車輪回転方向の加速度)信号の状態が変化する。すなわち、走行路面の状態によって前述した各加速度検出信号に重畳している微小振動成分が変化する。例えば、図28乃至30はいずれも車両走行速度60km/hで走行したときのX軸方向(車輪の回転方向)の加速度検出信号に重畳している微小振動成分の変化のみを抽出してこれを記録したものである。ただし、図28は晴天時の乾燥した舗装道路における加速度信号の変化を記録したもの、図29は雨天時の2〜3mm深さの水膜に路面が覆われた舗装道路における加速度信号の変化を記録したもの、図30は路面の表面一面が凍っている舗装道路(圧雪路を含む)における加速度信号の変化を記録したものである。
図28に示すように、晴天時の乾燥した舗装道路では、X軸方向の加速度信号に重畳している微小振動成分の振幅及び周期はほぼ一定である。また、図29に示すように、雨天時の2〜3mm深さの水膜に路面が覆われた舗装道路では、水膜によってタイヤがスリップすることもあるのでX軸方向の加速度信号に重畳している微小振動成分の振幅及び周期に乱れが生ずる。また、図30に示すように、表面一面が凍っている舗装道路(圧雪路を含む)では、常時タイヤがスリップしているので、X軸方向の加速度信号に重畳している微小振動成分の振幅は晴天時の乾燥した舗装道路に比べて小さくなり、周期も大きくなっている。
このように路面の状態によってX軸方向の加速度信号に重畳している微小振動成分の状態が明確に変化する。この微小振動成分のPP(peak to peak)値を所定時間積分すると、その積分値は走行路面とタイヤとの間の摩擦に対応して変化する。すなわち、走行路面とタイヤとの間の摩擦が大きくなると積分値が小さくなり、走行路面とタイヤとの間の摩擦が小さくなると積分値が大きくなる。これは、走行路面とタイヤとの間の摩擦が大きいときはタイヤのトレッドゴムと路面の滑りが小さいので、タイヤの接地と蹴り出しの瞬間の規則的な振動が支配的で振動レベルも小さいが、走行路面とタイヤとの間の摩擦が小さくなると、トレッドゴムと路面に滑りが生じ、タイヤに不規則な微振動が付加されるためである。
従って、モニタ装置200の演算部240は、センサユニット100から受信した情報と演算部240に記憶されている情報に基づいて摩擦評価値を特定し、この特定された摩擦評価値(路面状態情報)を出力することができる。これにより、スタビリティ制御ユニット700は、この摩擦評価値を用いることにより、適切な制動開始時期、制動開始から車両停止までの走行距離、制動時のスリップの発生等を把握することが可能になるので、タイヤの摩耗、履き替え、乗車人数、天候、路面が乾燥している、濡れている、凍っている等の路面の状態が変化しても適切な制動制御を行うことができる。
さらに、本実施形態のセンサユニット100を用いることにより、リム及びホイール並びにタイヤ本体等の車輪や車軸等の回転体の所定位置にセンサユニット100を装着するだけで、車輪の回転によって生ずる微小振動或いはその積分値または摩擦評価値(路面状態情報)を容易に検出することができるので、本実施形態の走行路面状態検出システムを容易に構成することができる。
尚、本実施形態ではセンサユニット100において微小振動成分の積分値を求め、この積分値をモニタ装置200に送信し、モニタ装置200において積分値から摩擦評価値を求めるように構成したが、これに限定されることはない。例えば、センサユニット100内において摩擦評価値を求めるようにしても良いし、センサユニット100から微小振動成分のデータをモニタ装置200に送信し、モニタ装置200において積分値および摩擦評価値を求めるようにしても良い。
また、本実施形態では、センサユニット100の駆動電力をモニタ装置200から受信した電波の電気エネルギーによって賄ったが、センサユニット100に電池を設けておき、この電池から供給される電力によってセンサユニット100を駆動するようにしても良い。
次に、本発明の第2実施形態を説明する。
第2実施形態におけるセンサユニット100及びモニタ装置200の構成は前述した第1実施形態とほぼ同様である。第2実施形態では、センサユニット100の中央処理部140は、X軸方向の加速度の変化或いはZ軸方向の加速度の変化から車両走行速度を検出して走行速度が時速20km/h以下のときは送信処理を行わないようにした。このようにすることにより、スタビリティ制御ユニット700において摩擦評価値を用いた制動制御の必要性が低い間、センサユニット100の電力消費を抑えることができる。また、本実施形態の構成においても、前述した第1実施形態と同様の効果を得ることができる。
次に、本発明の第3実施形態を説明する。
第3実施形態におけるセンサユニット100及びモニタ装置200の構成は前述した第1実施形態とほぼ同様であるが、第3実施形態では、センサユニット100における情報送信間隔を、時間ではなく、車輪の回転数によって設定した。即ち、本実施形態では、中央制御部140のCPU141はX軸方向或いはZ軸方向の加速信号によってタイヤの回転数を計数し、この計数値が100になったときに計数値を0にリセットすると共に、微小振動成分の所定時間の積分値のディジタル値及びX,Y,Z軸方向の加速度のディジタル値並びに識別情報を含むディジタル情報を生成して送信する。このように、タイヤが100回転する毎に情報送信を行うと、一定走行距離毎に等距離間隔で情報送信を行うことになる。尚、情報の送信間隔は、車両の走行速度を考慮して、タイヤの回転数が10回転から1000回転の間の回転数に設定することが好ましい。本実施形態の構成においても、前述した第1実施形態と同様の効果を得ることができる。
次に、本発明の第4実施形態を説明する。
図31は第4実施形態におけるセンサユニット100Aの電気系回路の構成を示すブロック図である。図において、前述した第1実施形態と同一構成部分は同一符号をもって表しその説明を省略する。また、第4実施形態と第1実施形態との相違点は、第4実施形態ではX軸方向の加速度信号に重畳している微小振動成分の積分を中央処理部140の演算処理によって行うようにしたことである。
すなわち、第4実施形態におけるセンサ部160は加速度センサ10とA/D変換回路163とから構成され、センサ部160から中央処理部140へはX,Y,Z軸方向の加速度信号のディジタル値のみが入力される。
中央処理部140のCPU141は、記憶部142の半導体メモリに格納されているプログラムに基づいて動作し、電気エネルギーが供給されて駆動すると、センサ部160から取得したX軸方向の加速度信号から重力加速度成分を除去して微小振動成分のみを抽出して10秒間隔でこの微小振動成分を1秒間積分して積分値を得る。さらに、CPU141は算出した積分値と加速度検出結果のディジタル値及び識別情報を含むディジタル情報を生成して、このディジタル情報をモニタ装置200に対して送信する処理を行う。また、CPU141は、1秒間の積分値を10秒間隔で上記ディジタル情報に含めて送信すると共にモニタ装置200から送信命令を受信したときに上記ディジタル情報をモニタ装置200に送信するようにプログラムされている。尚、これらの積分時間及び送信間隔はシステムの構成に応じて適宜設定することが好ましいが、送信間隔に関しては1秒から5分の間に設定することが好ましい。
本実施形態においても、モニタ装置200の演算部240は、センサユニット100から受信した情報と演算部240に記憶されている情報に基づいて摩擦評価値を特定し、この特定された摩擦評価値(路面状態情報)を出力することができる。これにより、スタビリティ制御ユニット700は、この摩擦評価値を用いることにより、適切な制動開始時期、制動開始から車両停止までの走行距離、制動時のスリップの発生等を把握することが可能になるので、タイヤの摩耗、履き替え、乗車人数、天候、路面が乾燥している、濡れている、凍っている等の路面の状態が変化しても適切な制動制御を行うことができる。
尚、本実施形態ではセンサユニット100において微小振動成分の積分値を求め、この積分値をモニタ装置200に送信し、モニタ装置200において積分値から摩擦評価値を求めるように構成したが、これに限定されることはない。例えば、センサユニット100内において摩擦評価値を求めるようにしても良いし、センサユニット100から微小振動成分のデータをモニタ装置200に送信し、モニタ装置200において積分値および摩擦評価値を求めるようにしても良い。
また、本実施形態では、センサユニット100の駆動電力をモニタ装置200から受信した電波の電気エネルギーによって賄ったが、センサユニット100に電池を設けておき、この電池から供給される電力によってセンサユニット100を駆動するようにしても良い。
上記各実施形態は本発明の一具体例であって、本発明が上記実施形態の構成のみに限定されることはなく、例えばこれら実施形態の構成を組合せるなどしても良い。
本発明の第1実施形態におけるモニタ装置及びセンサユニットの配置を示す外観図 本発明の第1実施形態におけるモニタ装置及びセンサユニットの配置を示す平面図 本発明の第1実施形態におけるタイヤへのセンサユニットの設置場所を説明する図 本発明の第1実施形態のタイヤハウス内のタイヤを示す図 本発明の第1実施形態における車両駆動制御システムを示す構成図 本発明の第1実施形態におけるセンサユニットの電気系回路を示すブロック図 本発明の第1実施形態における半導体加速度センサを示す外観斜視図 図7におけるB−B線矢視方向断面図 図7におけるC−C線矢視方向断面図 本発明の第1実施形態における半導体加速度センサを示す分解斜視図 本発明の第1実施形態における半導体加速度センサの電気系回路を示す構成図 本発明の第1実施形態における半導体加速度センサを用いたX軸方向の加速度を検出するブリッジ回路を示す図 本発明の第1実施形態における半導体加速度センサを用いたY軸方向の加速度を検出するブリッジ回路を示す図 本発明の第1実施形態における半導体加速度センサを用いたZ軸方向の加速度を検出するブリッジ回路を示す図 本発明の第1実施形態における半導体加速度センサの動作を説明する図 本発明の第1実施形態における半導体加速度センサの動作を説明する図 本発明の第1実施形態におけるモニタ装置の電気系回路を示す構成図 本発明の第1実施形態におけるZ軸方向の加速度の実測結果を示す図 本発明の第1実施形態におけるZ軸方向の加速度の実測結果を示す図 本発明の第1実施形態におけるZ軸方向の加速度の実測結果を示す図 本発明の第1実施形態におけるX軸方向の加速度の実測結果を示す図 本発明の第1実施形態におけるX軸方向の加速度の実測結果を示す図 本発明の第1実施形態におけるX軸方向の加速度の実測結果を示す図 本発明の第1実施形態におけるY軸方向の加速度の実測結果を示す図 本発明の第1実施形態におけるY軸方向の加速度の実測結果を示す図 本発明の第1実施形態においてブレーキをかけたときのX軸方向の加速度の実測結果を示す図 本発明の第1実施形態においてブレーキをかけたときのZ軸方向の加速度の実測結果を示す図 本発明の第1実施形態において晴天時の乾燥した舗装道路における車輪回転方向の加速度の実測結果を示す図 本発明の第1実施形態において雨天時の2〜3mm深さの水膜に路面が覆われた舗装道路における車輪回転方向の加速度の実測結果を示す図 本発明の第1実施形態において表面一面が凍っている舗装道路における車輪回転方向の加速度の実測結果を示す図 本発明の第4実施形態におけるセンサユニットの電気系回路を示すブロック図
符号の説明
1…車両、2…タイヤ、3…車軸、4…タイヤハウス、100,100A…センサユニット、110…アンテナ、120…アンテナ切替器、130…整流回路、131,132…ダイオード、133…コンデンサ、134…抵抗器、140…中央処理部、141…CPU、142…記憶部、150……発信部、151…発振回路、152…変調回路、153…高周波増幅回路、160…センサ部、161…ハイパスフィルタ(HPF)、162…積分回路、163…A/D変換回路、200…モニタ装置、210…輻射ユニット、211…アンテナ、212…発信部、220…受波ユニット、221…アンテナ、222…検波部、223…強度検出部、230…制御部、240…演算部、410…エンジン、411…アクセルペダル、412…サブスロットルアクチュエータ、413…メインスロットルポジションセンサ、414…サブスロットルポジションセンサ、421…ハンドル、422…舵角センサ、510,520…回転数センサ、610…ブレーキペダル、620…マスターシリンダ、630…圧力制御弁、640…ブレーキ駆動用アクチュエータ、700…スタビリティ制御ユニット、10…半導体加速度センサ、11…台座、12…シリコン基板、13…ダイアフラム、13a〜13d…ダイアフラム片、14…厚膜部、15…重錘、18A,18B…支持体、181…外枠部、182…支柱、183…梁部、184…突起部、184a…突起部先端、31A〜31C…電圧検出器、32A〜32C…直流電源、Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4…ピエゾ抵抗体(拡散抵抗体)。

Claims (22)

  1. 車輌が走行する路面の状態を検出するシステムであって、
    車両の車体に設けられ車輪を固定して該車輪を回転させる回転体と前記車輪とを含む回転機構部に設けられ、車両走行時の車輪の回転に伴って前記回転機構部に発生する微小振動を検出して電気信号に変換し、該電気信号を微小振動信号として出力する振動検出部と、
    前記振動検出部から出力される微小振動信号を所定時間積分して積分値を出力する積分手段と、
    前記積分値を入力し、前記積分値が小さいときに走行路面と前記車輪との間の摩擦が大きいとし且つ前記積分値が大きいときに走行路面と前記車輪との間の摩擦が小さいとして、前記積分値と前記摩擦の大小とを対応づけた路面状態情報を出力する路面状態情報出力手段とを有する
    ことを特徴とする走行路面状態検出システム。
  2. 前記回転機構部に設けられたセンサユニットと、前記回転機構部を除く前記車体側に設けられたモニタ装置とを備え、
    前記センサユニットは、前記振動検出部と、前記振動検出部から出力された微小振動信号の強度値の情報を送信情報として所定時間毎に所定周波数の電波によって送信する送信手段とを有し、
    前記モニタ装置は、前記センサユニットの送信手段から送信された情報を受信する受信手段と、該受信手段によって受信した情報から前記微小振動信号の強度値を取得して該強度値を所定時間積分して積分値を出力する前記積分手段と、該積分手段によって取得した積分値を入力して前記路面状態情報を出力する前記路面状態情報出力手段とを有する
    ことを特徴とする請求項1に記載の走行路面状態検出システム。
  3. 前記回転機構部に設けられたセンサユニットと、前記回転機構部を除く前記車体側に設けられたモニタ装置とを備え、
    前記センサユニットは、前記振動検出部と、前記積分手段と、前記積分手段から出力された積分値の情報を送信情報として所定時間毎に所定周波数の電波によって送信する送信手段とを有し、
    前記モニタ装置は、前記センサユニットの送信手段から送信された情報を受信する受信手段と、該受信手段によって受信した情報から前記積分値を取得する積分値取得手段と、該積分値取得手段によって取得した積分値を入力して前記路面状態情報を出力する前記路面状態情報出力手段とを有する
    ことを特徴とする請求項1に記載の走行路面状態検出システム。
  4. 前記回転機構部に設けられたセンサユニットと、前記回転機構部を除く前記車体側に設けられたモニタ装置とを備え、
    前記センサユニットは、前記振動検出部と、前記積分手段と、前記路面状態情報出力手段と、前記路面状態情報出力手段から出力された路面状態情報を送信情報として所定時間毎に所定周波数の電波によって送信する送信手段とを有し、
    前記モニタ装置は、前記センサユニットの送信手段から送信された路面状態情報を受信して出力する受信手段を有する
    ことを特徴とする請求項1に記載の走行路面状態検出システム。
  5. 前記送信手段における情報送信間隔が1秒から5分の間の所定時間に設定されている
    ことを特徴とする請求項3または請求項4に記載の走行路面状態検出システム。
  6. 前記回転機構部に設けられたセンサユニットと、前記回転機構部を除く前記車体側に設けられたモニタ装置とを備え、
    前記センサユニットは、前記振動検出部と、前記積分手段と、
    前記車輪の回転数を検出する手段と、
    前記積分手段から出力された積分値の情報を送信情報として前記車輪の所定回転数毎に所定周波数の電波によって送信する送信手段とを有し、
    前記モニタ装置は、前記センサユニットの送信手段から送信された情報を受信する受信手段と、該受信手段によって受信した情報から前記積分値を取得する積分値取得手段と、該積分値取得手段によって取得した積分値を入力して前記路面状態情報を出力する前記路面状態情報出力手段とを有する
    ことを特徴とする請求項1に記載の走行路面状態検出システム。
  7. 前記回転機構部に設けられたセンサユニットと、前記回転機構部を除く前記車体側に設けられたモニタ装置とを備え、
    前記センサユニットは、前記振動検出部と、前記積分手段と、
    前記車輪の回転数を検出する手段と、
    前記路面状態情報出力手段と、前記路面状態情報出力手段から出力された路面状態情報を送信情報として前記車輪の所定回転数毎に所定周波数の電波によって送信する送信手段とを有し、
    前記モニタ装置は、前記センサユニットの送信手段から送信された路面状態情報を受信して出力する受信手段を有する
    ことを特徴とする請求項1に記載の走行路面状態検出システム。
  8. 前記送信手段における情報送信間隔が前記車輪の10回転から1000回転の間の所定回転数に設定されている
    ことを特徴とする請求項6または請求項7に記載の走行路面状態検出システム。
  9. 前記センサユニットは、前記車輪の回転方向に生じる加速度を検出する加速度検出手段と、該加速度検出手段によって検出した加速度の値が車両走行速度20km/h以下の加速度値であるときに、前記送信手段による前記送信情報の送信を停止する手段とを備えている
    ことを特徴とする請求項2乃至請求項8の何れかに記載の走行路面状態検出システム。
  10. 前記モニタ装置は、
    運転者が運転操作を変更したことを表す運転操作変更情報を取得する手段と、
    前記運転操作変更情報を取得したときに前記センサユニットに対して所定周波数の電波によって情報送信命令を送信する送信手段とを備え、
    前記センサユニットは、
    前記モニタ装置から送信された情報送信命令を受信する受信手段と、
    前記受信手段によって前記情報送信命令を受信したときに前記送信情報の送信を行う手段とを備えている
    ことを特徴とする請求項2乃至請求項8の何れかに記載の走行路面状態検出システム。
  11. 車両の車体に設けられ車輪を固定して該車輪を回転させる回転体と前記車輪とを含む回転機構部に設けられるセンサユニットであって、
    、車両走行時の回転に伴って前記回転機構部に発生する微小振動を検出して電気信号に変換し、該電気信号を微小振動信号として出力する振動検出部と、
    前記振動検出部から出力された微小振動信号の強度値の情報を送信情報として所定時間毎に所定周波数の電波によって送信する送信手段とを備えている、
    ことを特徴とするセンサユニット。
  12. 車両の車体に設けられ車輪を固定して該車輪を回転させる回転体と前記車輪とを含む回転機構部に設けられるセンサユニットであって、
    、車両走行時の回転に伴って前記回転機構部に発生する微小振動を検出して電気信号に変換し、該電気信号を微小振動信号として出力する振動検出部と、
    前記振動検出部から出力される微小振動信号を所定時間積分して積分値を出力する積分手段と、
    前記積分手段から出力された積分値の情報を送信情報として所定時間毎に所定周波数の電波によって送信する送信手段とを備えている
    ことを特徴とするセンサユニット。
  13. 車両の車体に設けられ車輪を固定して該車輪を回転させる回転体と前記車輪とを含む回転機構部に設けられるセンサユニットであって、
    、車両走行時の回転に伴って前記回転機構部に発生する微小振動を検出して電気信号に変換し、該電気信号を微小振動信号として出力する振動検出部と、
    前記振動検出部から出力される微小振動信号を所定時間積分して積分値を出力する積分手段と、
    前記積分値を入力し、前記積分値が小さいときに走行路面と前記車輪との間の摩擦が大きいとし且つ前記積分値が大きいときに走行路面と前記車輪との間の摩擦が小さいとして、前記積分値と前記摩擦の大小とを対応づけた路面状態情報を出力する路面状態情報出力手段と
    前記路面状態情報出力手段から出力された路面状態情報を送信情報として所定時間毎に所定周波数の電波によって送信する送信手段とを備えている
    ことを特徴とするセンサユニット。
  14. 前記送信手段における情報送信間隔が1秒から5分の間の所定時間に設定されている
    ことを特徴とする請求項12または請求項13に記載のセンサユニット。
  15. 車両の車体に設けられ車輪を固定して該車輪を回転させる回転体と前記車輪とを含む回転機構部に設けられるセンサユニットであって、
    、車両走行時の回転に伴って前記回転機構部に発生する微小振動を検出して電気信号に変換し、該電気信号を微小振動信号として出力する振動検出部と、
    前記振動検出部から出力される微小振動信号を所定時間積分して積分値を出力する積分手段と、
    前記積分手段から出力された積分値の情報を送信情報として前記車輪の所定回転数毎に所定周波数の電波によって送信する送信手段とを備えている
    ことを特徴とするセンサユニット。
  16. 車両の車体に設けられ車輪を固定して該車輪を回転させる回転体と前記車輪とを含む回転機構部に設けられるセンサユニットであって、
    、車両走行時の回転に伴って前記回転機構部に発生する微小振動を検出して電気信号に変換し、該電気信号を微小振動信号として出力する振動検出部と、
    前記振動検出部から出力される微小振動信号を所定時間積分して積分値を出力する積分手段と、
    前記積分値を入力し、前記積分値が小さいときに走行路面と前記車輪との間の摩擦が大きいとし且つ前記積分値が大きいときに走行路面と前記車輪との間の摩擦が小さいとして、前記積分値と前記摩擦の大小とを対応づけた路面状態情報を出力する路面状態情報出力手段と
    前記路面状態情報出力手段から出力された路面状態情報を送信情報として前記車輪の所定回転数毎に所定周波数の電波によって送信する送信手段とを備えている
    ことを特徴とするセンサユニット。
  17. 前記送信手段における情報送信間隔が前記車輪の10回転から1000回転の間の所定回転数に設定されている
    ことを特徴とする請求項15または請求項16に記載のセンサユニット。
  18. 前記車輪の回転方向に生じる加速度を検出する加速度検出手段と、
    前記加速度検出手段によって検出した加速度の値が車両走行速度20km/h以下の加速度値であるときに、前記送信手段による前記送信情報の送信を停止する手段とを備えている
    ことを特徴とする請求項11乃至請求項17の何れかに記載のセンサユニット。
  19. 情報送信命令を受信する受信手段と、
    前記受信手段によって前記情報送信命令を受信したときに前記送信情報の送信を行う手段とを備えている
    ことを特徴とする請求項11乃至請求項17の何れかに記載のセンサユニット。
  20. 自己に固有の識別情報が格納されている記憶手段と、
    前記記憶手段に記憶されている前記識別情報を前記送信情報に含めて送信する手段とを有する
    ことを特徴とする請求項11乃至請求項17の何れかに記載のセンサユニット。
  21. 前記微小振動を検出するためにシリコンピエゾ型のダイアフラムを有する半導体加速度センサを備えている
    ことを特徴とする請求項11乃至請求項17の何れかに記載のセンサユニット。
  22. 前記回転方向の加速度を検出するためにシリコンピエゾ型のダイアフラムを有する半導体加速度センサを備えている
    ことを特徴とする請求項18に記載のセンサユニット。
JP2006284772A 2006-10-19 2006-10-19 走行路面状態検出システム及びそのセンサユニット Pending JP2008100610A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284772A JP2008100610A (ja) 2006-10-19 2006-10-19 走行路面状態検出システム及びそのセンサユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284772A JP2008100610A (ja) 2006-10-19 2006-10-19 走行路面状態検出システム及びそのセンサユニット

Publications (1)

Publication Number Publication Date
JP2008100610A true JP2008100610A (ja) 2008-05-01

Family

ID=39435274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284772A Pending JP2008100610A (ja) 2006-10-19 2006-10-19 走行路面状態検出システム及びそのセンサユニット

Country Status (1)

Country Link
JP (1) JP2008100610A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141199A1 (ja) * 2014-03-18 2015-09-24 株式会社デンソー 路面状況推定装置
JP2015229433A (ja) * 2014-06-05 2015-12-21 太平洋工業株式会社 路面状態検出装置及び路面状態検出システム
JP2017149219A (ja) * 2016-02-23 2017-08-31 株式会社Soken 路面状況推定装置
WO2018003693A1 (ja) * 2016-07-01 2018-01-04 株式会社デンソー タイヤマウントセンサおよびそれを含む路面状態推定装置
JP2018009974A (ja) * 2016-07-01 2018-01-18 株式会社デンソー タイヤマウントセンサおよびそれを含む路面状態推定装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238175A (ja) * 1988-07-29 1990-02-07 Aisin Seiki Co Ltd ブレーキ圧制御装置
JPH09243345A (ja) * 1996-03-12 1997-09-19 Unisia Jecs Corp 路面状態検出装置
JPH1029519A (ja) * 1996-07-15 1998-02-03 Aisin Seiki Co Ltd 四輪駆動車のアンチスキッド制御装置
JP2005247068A (ja) * 2004-03-02 2005-09-15 Yokohama Rubber Co Ltd:The 路面状態検出システム及びアクティブ・サスペンション・システム及びアンチロック・ブレーキ・システム並びにそのセンサユニット
JP2005256798A (ja) * 2004-03-15 2005-09-22 Yokohama Rubber Co Ltd:The トラクション・コントロール・システム及びそのセンサユニット
WO2006049241A1 (ja) * 2004-11-05 2006-05-11 The Yokohama Rubber Co., Ltd. 車両駆動制御システム及びセンサユニット並びにタイヤ
WO2006095429A1 (ja) * 2005-03-10 2006-09-14 The Yokohama Rubber Co., Ltd. 路面状態検出システム及びアクティブ・サスペンション・システム及びアンチロック・ブレーキ・システム並びにそのセンサユニット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238175A (ja) * 1988-07-29 1990-02-07 Aisin Seiki Co Ltd ブレーキ圧制御装置
JPH09243345A (ja) * 1996-03-12 1997-09-19 Unisia Jecs Corp 路面状態検出装置
JPH1029519A (ja) * 1996-07-15 1998-02-03 Aisin Seiki Co Ltd 四輪駆動車のアンチスキッド制御装置
JP2005247068A (ja) * 2004-03-02 2005-09-15 Yokohama Rubber Co Ltd:The 路面状態検出システム及びアクティブ・サスペンション・システム及びアンチロック・ブレーキ・システム並びにそのセンサユニット
JP2005256798A (ja) * 2004-03-15 2005-09-22 Yokohama Rubber Co Ltd:The トラクション・コントロール・システム及びそのセンサユニット
WO2006049241A1 (ja) * 2004-11-05 2006-05-11 The Yokohama Rubber Co., Ltd. 車両駆動制御システム及びセンサユニット並びにタイヤ
WO2006095429A1 (ja) * 2005-03-10 2006-09-14 The Yokohama Rubber Co., Ltd. 路面状態検出システム及びアクティブ・サスペンション・システム及びアンチロック・ブレーキ・システム並びにそのセンサユニット

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141199A1 (ja) * 2014-03-18 2015-09-24 株式会社デンソー 路面状況推定装置
JP2015174637A (ja) * 2014-03-18 2015-10-05 株式会社日本自動車部品総合研究所 路面状況推定装置
US10099699B2 (en) 2014-03-18 2018-10-16 Denso Corporation Road surface condition estimation device
JP2015229433A (ja) * 2014-06-05 2015-12-21 太平洋工業株式会社 路面状態検出装置及び路面状態検出システム
JP2017149219A (ja) * 2016-02-23 2017-08-31 株式会社Soken 路面状況推定装置
WO2018003693A1 (ja) * 2016-07-01 2018-01-04 株式会社デンソー タイヤマウントセンサおよびそれを含む路面状態推定装置
JP2018009974A (ja) * 2016-07-01 2018-01-18 株式会社デンソー タイヤマウントセンサおよびそれを含む路面状態推定装置

Similar Documents

Publication Publication Date Title
EP1857325A1 (en) Road surface condition detection system, active suspension system, anti-lock brake system, and sensor unit for the road surface condition detection system
KR101675586B1 (ko) 타이어의 프로파일의 프로파일 깊이를 결정하기 위한 방법, 제어 장치 및 시스템
EP2955078B1 (en) Tire classfication
EP1818237B1 (en) Vehicle drive control system, sensor unit and tire
JP5339121B2 (ja) スリップ率推定装置及びその方法と、スリップ率制御装置及びその方法
JP4170994B2 (ja) タイヤ接地パターン特定方法及びその装置
KR20060130255A (ko) 트랙션 컨트롤 시스템 및 그 센서 유닛
JP2008100610A (ja) 走行路面状態検出システム及びそのセンサユニット
CN107161271A (zh) 基于加速度检测的电动助力车制动防滑方法
JP4952444B2 (ja) 車両走行路面状態推定システム
CN112248988A (zh) 机动车制动及驱动控制方法、***、智能终端及存储介质
JP2005029142A (ja) アンチロック・ブレーキ・システム及びそのセンサユニット
JP2005035523A (ja) 車両駆動制御システム及びそのセンサユニット
KR20070120524A (ko) 노면 상태 검출 시스템, 액티브 서스펜션 시스템,안티-로크 브레이크 시스템, 및 노면 상태 검출 시스템용센서 유닛
JP5749106B2 (ja) 路面状態推定方法、及び路面状態推定装置
JP2005247068A (ja) 路面状態検出システム及びアクティブ・サスペンション・システム及びアンチロック・ブレーキ・システム並びにそのセンサユニット
JP4133144B2 (ja) タイヤの状態検出装置、そのセンサユニット及びタイヤ、並びに車両の制動制御装置
JP4543376B2 (ja) 電力供給システム
JP2006321298A (ja) 車両駆動制御システム
JP2010076700A (ja) タイヤの輪荷重推定方法及び装置、並びにタイヤの輪荷重推定プログラム
JP2009014586A (ja) タイヤ内圧低下検出方法及び装置、並びにタイヤ内圧低下検出プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120302