JP2008072865A - 電力供給回路 - Google Patents

電力供給回路 Download PDF

Info

Publication number
JP2008072865A
JP2008072865A JP2006250833A JP2006250833A JP2008072865A JP 2008072865 A JP2008072865 A JP 2008072865A JP 2006250833 A JP2006250833 A JP 2006250833A JP 2006250833 A JP2006250833 A JP 2006250833A JP 2008072865 A JP2008072865 A JP 2008072865A
Authority
JP
Japan
Prior art keywords
current
semiconductor switch
semiconductor
turned
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006250833A
Other languages
English (en)
Inventor
Giichi Tsunoda
義一 角田
Susumu Kimura
享 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006250833A priority Critical patent/JP2008072865A/ja
Publication of JP2008072865A publication Critical patent/JP2008072865A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】サージ電圧を低減して半導体スイッチにより交流電力線路を遮断することのできる電力供給回路を提案する。
【解決手段】交流電力線路に配置された少なくとも1つの半導体スイッチを、電流モニタのモニタ出力に基づき、交流電流がほぼゼロとなったタイミングでオフ状態とする。また、第1極性の電流を流す第1半導体スイッチと、第2極性の電流を流す第2半導体スイッチを備え、電流モニタまたは電圧モニタのモニタ出力に基づき、第1、第2の半導体スイッチの一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した後で、その一方の半導体スイッチをオフ状態とする。
【選択図】図3

Description

この発明は、例えば電気駆動自動車などに使用される電力供給回路、とくに直流電源に直流電力線路を通じて電力変換装置を接続し、この電力変換装置に交流電力線路を通じて交流負荷を接続した電力供給回路に関するものである。
近年、少なくとも一部の駆動源として電力を用いる電気駆動自動車、例えばハイブリッド自動車および電気自動車の開発が進んでいる。ハイブリッド自動車は、電力で駆動されるモータと内燃機関とを併用して、自動車を駆動する。電気自動車は、電力で駆動されるモータだけで自動車を駆動する。これらのハイブリッド自動車および電気自動車を総称して電気駆動自動車という。この電気駆動自動車は、直流電源に直流電力線路を通じて電力変換装置を接続し、この電力変換装置に交流電力線路を通じて交流負荷、例えばモータを接続した電力供給回路を使用する。
この種の電力供給回路として、特開2005−260613号公報(特許文献1)には、ハイブリッド自動車または電気自動車のバッテリなどの電源と、負荷との間の電力回路に、回路遮断装置を配設するものが開示されている。この回路遮断装置では、電力回路を直接遮断する窒化物半導体デバイスが用いられる。
また、特開平8−182105号公報(特許文献2)には、複数の半導体スイッチにより構成された電力変換装置を使用する電気車制御装置が開示されている。この電気車制御装置では、パンタグラフと電力変換装置との間の直流電力線路に、電流の入切を行なう断流器が設けられる。また、電力変換装置を構成する1つの半導体デバイスが導通故障したときに、電動機の発電動作により発電された電圧が、導通故障した半導体スイッチを通じて相間短絡するのを防止するために、電力変換装置と負荷である電動機との間の交流電力線路を開放する開放手段が設けられる。この開放手段には、接触器、過電流ヒューズ、または半導体素子を用いた無接点式の回路遮断器が用いられる。
特開2005−260613号公報 特開平8―182105号公報
特許文献1では、窒化物半導体により構成される窒化物半導体スイッチを使用することにより、その耐圧を高くすることができ、電力供給回路の電力線路に窒化物半導体スイッチを接続し、この窒化物半導体スイッチにより電力線路を直接遮断することができるが、この特許文献1の電力供給回路では、電力線路の遮断時における電流と負荷および配線のインダクタンスによるサージ電圧に対する配慮がなされていない。このため、特許文献1の電力供給回路をそのまま使用すると、負荷および配線のインダクタンスにより発生するサージ電圧に耐えられず、窒化物半導体デバイスを破壊する不都合がある。とくに、モータやトランスなどのインダクタンスが大きい負荷への電力供給、または発電機やトランスなどのインダクタンスが大きい電源からの電力を遮断する場合には、発生するサージ電圧が大きくなるため、半導体スイッチが過電圧により破壊する可能性が高い。
特許文献2では、電力変換装置に対する直流電力線路とともに、電力変換装置と負荷との間の交流電力線路も遮断することができるが、交流電力線路に設けられる開放手段に用いられる接触器は、接点開放時にアークを発生するため、安全を確保するための構成が複雑になり、さらに接点を動作させるために比較的大きなコイルが必要になるなど、低コスト化および小型化、軽量化が困難である。また、開放手段に用いられる過電流ヒューズは、電力変換装置を構成する半導体スイッチの導通故障時に、その溶断電流以下の電流が流れ続ける場合には作動しないため、電力変換装置の半導体デバイスの導通故障時に確実に電力線路を遮断する用途には不向きである。また、開放手段に用いられる半導体素子を用いた無接点式の回路遮断器については、詳細な記述がなされていない。
この発明は、例えば電力変換装置の半導体スイッチに導通故障などの異常が発生したときに、サージ電圧の発生を抑えながら、半導体スイッチにより確実に交流電力線路を遮断することのできる電力供給回路を提案するものである。
この発明の第1の観点による電力供給回路は、直流電源に直流電力線路を通じて電力変換装置を接続し、この電力変換装置に交流電力線路を通じて交流負荷を接続した電力供給回路であって、前記交流電力線路を遮断する回路遮断装置、および前記交流電力線路に流れる交流電流をモニタする電流モニタを備え、前記回路遮断装置は、前記電力線路に配設された少なくとも1つの半導体スイッチと、前記電流モニタのモニタ出力に基づいて前記半導体スイッチを遮断する制御部とを含み、前記交流電流がほぼゼロとなるタイミングで、前記半導体スイッチがオフ状態とされることを特徴とする。
この発明の第2の観点による電力供給回路は、直流電源に直流電力線路を通じて電力変換装置を接続し、この電力変換装置に交流電力線路を通じて交流負荷を接続した電力供給回路であって、前記交流電力線路を遮断する回路遮断装置、および前記交流電力線路に流れる交流電流をモニタする電流モニタを備え、前記回路遮断装置は、前記交流電力線路に第1極性の電流を流す第1半導体スイッチと、前記交流電力線路に前記第1極性と逆極性の第2極性の電流を流す第2半導体スイッチと、前記電流モニタのモニタ出力に基づいて前記第1、第2半導体スイッチを遮断する制御部とを含み、前記第1、第2半導体スイッチの一方を通じて前記交流電力線路に電流が流れている状態で、その他方がオフ状態とされ、またその他方がオフ状態とされた後、その一方を通じて前記交流電力線路に流れていた電流が消滅した状態で、その一方がオフ状態とされることを特徴とする。
この発明の第3の観点による電力供給回路は、直流電源に直流電力線路を通じて電力変換装置を接続し、この電力変換装置に交流電力線路を通じて交流負荷を接続した電力供給回路であって、前記交流電力線路を遮断する回路遮断装置を備え、前記回路遮断装置は、前記交流電力線路に第1極性の電流を流す第1半導体スイッチと、前記交流電力線路に前記第1極性と逆極性の第2極性の電流を流す第2半導体スイッチと、前記第1、第2半導体スイッチの電圧をモニタする電圧モニタ部と、この電圧モニタ部のモニタ出力に基づいて前記第1、第2半導体スイッチを遮断する制御部とを含み、前記第1、第2半導体スイッチの一方を通じて前記交流電力線路に電流が流れている状態で、その他方がオフ状態とされ、またその他方がオフ状態とされた後、その一方を通じて流れていた電流が消滅した状態で、その一方がオフ状態とされることを特徴とする。
この発明の第1の観点による電力変換回路では、回路遮断装置が、交流電力線路に配設された少なくとも1つの半導体スイッチと、電流モニタのモニタ出力に基づいて半導体スイッチを遮断する制御部とを含み、交流電流がほぼゼロとなるタイミングで、半導体スイッチがオフ状態とされるので、半導体スイッチがオフ状態とされたときのサージ電圧を小さくし、半導体スイッチの破壊を防止しながら、半導体スイッチにより確実に交流電力線路を遮断することができる。
この発明の第2の観点による電力供給回路では、回路遮断装置が、交流電力線路に第1極性の電流を流す第1半導体スイッチと、交流電力線路に前記第1極性と逆極性の第2極性の電流を流す第2半導体スイッチと、電流モニタのモニタ出力に基づいて第1、第2半導体スイッチを遮断する制御部とを含み、前記第1、第2半導体スイッチの一方を通じて前記交流電力線路に電流が流れている状態で、その他方がオフ状態とされ、またその他方がオフ状態とされた後、その一方を通じて前記交流電力線路に流れていた電流が消滅した状態で、その一方がオフ状態にされるので、第1、第2半導体スイッチがオフ状態にされたときのサージ電圧を解消し、第1、第2半導体スイッチの破壊を防止しながら、第1、第2半導体スイッチにより確実に交流電力線路を遮断することができる。
この発明の第3の観点による電力供給回路では、回路遮断装置が、交流電力線路に第1極性の電流を流す第1半導体スイッチと、交流電力線路に第1極性と逆極性の第2極性の電流を流す第2半導体スイッチと、第1、第2半導体スイッチの電圧をモニタする電圧モニタと、この電圧モニタのモニタ出力に基づいて第1、第2半導体スイッチを遮断する制御部とを含み、前記第1、第2半導体スイッチの一方を通じて前記交流電力線路に電流が流れている状態で、その他方がオフ状態とされ、またその他方がオフ状態とされた後、その一方を通じて流れていた電流が消滅した状態で、その一方がオフ状態とされるので、第1、第2半導体スイッチがオフ状態とされたときのサージ電圧を解消し、第1、第2半導体スイッチの破壊を防止しながら、第1、第2半導体スイッチにより確実に交流電力線路を遮断することができる。
以下この発明のいくつかの実施の形態について、図面を参照して説明する。
実施の形態1.
図1は、この発明による電力供給回路の全体を示す電気回路図、図2は、実施の形態1の電力供給回路に使用される回路遮断装置を示す電気回路図である。
まず、図1を参照してこの発明による電力供給回路10の全体構成について説明する。図1の電力供給回路10は、実施の形態1の電力供給回路であるが、実施の形態1に限らず、他の実施の形態2〜15の電力供給回路も同じに構成される。
図1に示す電力供給回路10は、電気駆動自動車の駆動モータへの給電に使用される電力供給回路である。この電力供給回路10は、直流電源11と、交流負荷13と、電力変換装置20と、直流遮断器25と、2つの回路遮断装置30を備えている。直流電源11は、例えば車載バッテリである。交流負荷13は、例えば電気駆動自動車の駆動モータである。電力変換装置20は、直流電力線路15を通じて直流電源11に接続され、また交流電力線路17を通じて交流負荷13に接続される。この電力変換装置20は、直流電源11からの直流電圧を交流電圧に変換して交流負荷13に給電して、交流負荷13を駆動するだけでなく、交流負荷13が発生した交流電圧を直流電圧に変換して直流電源11に供給し、直流電源11の車載バッテリを充電する。
交流負荷13は、例えば3相の交流駆動モータである。電力変換装置20は、直流電源11から交流負荷13への給電時には、直流電源11の直流電圧を3相交流電圧に変換し、交流負荷13に給電する。また交流負荷13から直流電源11への給電時には、電力変換装置20は、交流負荷13に発生する3相交流電圧を直流電圧に変換し、直流電源11に給電する。直流電力線路15は、2本の直流線路15P、15Nを含み、交流電力線路17は、3本の交流線路17U、17V、17Wを含む。直流電力線路15の1本の直流線路15Pには、直流遮断器25が設けられる。交流電力線路17の少なくとも2本の交流線路17U、17Wには、それぞれ回路遮断装置30が設けられる。回路遮断装置30は、一対の主端子301、302を有し、主端子301は電力変換装置20に、また主端子302は、交流負荷13に接続される。
電力変換装置20は、直流線路15P、15Nの間に接続されたスイッチ回路21U、21V、21Wと、電力コンデンサ23を含む。スイッチ回路21U、21V、21Wは、それぞれ正極側の半導体スイッチ211と負極側の半導体スイッチ212を直列に接続して構成される。各半導体スイッチ211、212には、逆電流をバイパスするダイオード213が接続される。スイッチ回路21Uの半導体スイッチ211、212の間に交流線路17Uが接続され、スイッチ回路21Vの半導体スイッチ211、212の間の交流線路17Uが接続され、またスイッチ回路21Wの半導体スイッチ211、212の間に交流線路17Wが接続される。電力コンデンサ23は、交流負荷13から直流電源11への給電時に電力変換装置20の直流出力電圧を平滑する。
回路遮断装置30は、交流電力線路17の2つの交流線路17U、17Wのそれぞれに配置され、電力変換装置20における半導体スイッチ211、212に導通故障などの異常が発生した場合に、交流線路17U、17Wを遮断する。例えば、スイッチ回路21Uの半導体スイッチ211に導通故障が発生すると、このスイッチ回路21Uの半導体スイッチ211と、スイッチ回路21U、21Wのダイオード213と、交流負荷13を通じて相間短絡などの異常交流電流が流れる。スイッチ回路21Uの半導体スイッチ212に導通故障が発生した場合にも、また他のスイッチ回路21V、21Wの半導体スイッチ211、212に導通故障が発生した場合にも、同様にダイオード231と交流負荷13を通じて異常交流電流が流れる。回路遮断装置30は、交流線路17U、17Wを遮断し、この異常交流電流を遮断する。この発明では、この回路遮断装置30が、サージ電圧を発生することなく、交流線路17U、17Wを半導体スイッチにより確実に遮断するように改良されている。なお、直流遮断器25は、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生した場合に、直流電力線路15を遮断する。
さて、実施の形態1では、回路遮断装置30として、図2に示す回路遮断装置30Aを使用する。図2を参照して、この回路遮断装置30Aについて説明する。回路遮断装置30Aは、図2に示すように、回路遮断部31と、電流モニタ37と、制御部39を含む。回路遮断部31は、1つの半導体スイッチ32を有し、この半導体スイッチ32は、交流電力線路17の交流線路17U、17Wにそれぞれ配置され、この交流線路17U、17Wを直接遮断する。回路遮断部31と電流モニタ37は、主端子301、302の間に接続される。
実施の形態1では、半導体スイッチ32はJFET、すなわち接合型電界効果トランジスタで構成される。この接合型電界効果トランジスタで構成された半導体スイッチ32は、交流線路17U、17Wに接続されるソースS、ドレインDおよびゲートGを有し、ゲートGの電位を制御することにより、ソースSとドレインDとの間の導通、遮断を制御する。接合型電界効果トランスタで構成された半導体スイッチ32は、双方向の交流電流iの導通、遮断を制御することができ、その交流電流iの通電、遮断を制御できる。交流線路17U、17Wを流れる交流電流iは、第1極性の電流i1と、この第1極性と逆極性の第2極性の電流i2を含む。第1極性の電流i1は、半導体スイッチ32のドレインDからソースSへ流れ、第2極性の電流i2は、そのソースSからドレインDへ流れる。
電流モニタ37は、電流センサ371と、モニタ回路372を含む。電流センサ371は、交流線路17U、17Wに結合し、交流線路17U、17Wに流れる交流電流iを検出して、センス出力を発生する。モニタ回路372は、電流センサ371からのセンス出力を受けてそれを増幅し、モニタ出力Smiを発生する。このモニタ出力Smiは、交流電流iの変化をモニタした信号である。
制御部39は、半導体スイッチ32のゲートGにゲート制御信号SGを供給し、半導体スイッチ32の通電、遮断を制御する。この制御部39は、電力変換装置20から導通故障などの異常検出出力Sfを受け、また電流モニタ37からモニタ出力Smiを受ける。回路遮断部31が交流線路17U、17Wを遮断する場合には、交流負荷13および交流線路17U、17WのインダクタンスLに起因してサージ電圧Vsが発生するおそれがある。このサージ電圧Vsは、Vs=L×di/dtで表わされる。di/dtは、遮断時の交流電流iの変化率である。
制御部39は、異常検出出力Sfを受けたときに、モニタ出力Smiをリアルタイムに参照し、交流線路17U、17Wを流れる交流電流iが最初にほぼゼロとなるタイミングで半導体スイッチ32をオフ状態とし、交流線路17U、17Wを遮断する。具体的には、半導体スイッチ32に第1極性の電流i1が流れている状態において、タイミングt1で異常検出出力Sfを受けると、モニタ出力Smiをリアルタイムで参照し、タイミングt1の後で、最初に電流i1がほぼゼロとなるタイミングt2で、半導体スイッチ32をオフ状態とし、交流線路17U、17Wを遮断する。また、半導体スイッチ32に第2極性の電流i2が流れている状態において、タイミングt1で異常検出出力Sfを受けると、モニタ出力Smiをリアルタイムで参照し、タイミングt1の後で、最初に電流i2がほぼゼロとなるタイミングt2で、半導体スイッチ32をオフ状態とし、交流線路17U、17Wを遮断する。電流i1、i2がほぼゼロとなるタイミングは、電流i1,i2が交流電流iの定格値の1%以下の値になったタイミングとされる。
図3は、回路遮断装置30の動作説明用波形図である。図3(a)は、交流電流iを示し、図3(b)は、異常検出出力Sfを示し、図3(c)は、ゲート制御信号SGを示す。例えば図3(a)に示すように第2極性の電流i2が半導体スイッチ32に流れている状態において、タイミングt1で、図3(b)に示す異常検出出力Sfが高レベルから低レベルに変化し、遮断指示Ioffが発令された場合、制御部39は、遮断待機Woffを与え、図3(c)に示すように、第2極性の電流i2が、遮断指示Ioffの後で、最初にほぼゼロとなるタイミングt2で、半導体スイッチ32をオフ状態とし、交流線路17U、17Wを遮断する。
このように実施の形態1の回路遮断装置30では、交流電流iがほぼゼロとなるタイミングで半導体スイッチ32をオフ状態とするので、半導体スイッチ32がオフ状態とされたときのdi/dtを小さくすることができ、サージ電圧Vsを小さくすることができる。したがって、サージ電圧Vsにより、半導体スイッチ32が破壊するのを防止することができ、電気駆動自動車で交流負荷13がインダクタンスの大きな駆動モータとされても、電力変換装置の半導体スイッチ211、212の導通故障時などに流れる異常交流電流を半導体スイッチ32により確実に遮断することができる。
実施の形態2.
図4は、この発明による電力供給回路の実施の形態2において使用される回路遮断装置30Bを示す電気回路図である。この図4に示す回路遮断装置30Bも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Bも、交流電力線路17の交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生した場合に、交流線路17U、17Wを遮断する。
図4に示す回路遮断装置30Bでは、回路遮断部31に、IGBT、すなわち絶縁ゲート型バイポーラトランジスタで構成された第1、第2半導体スイッチ331、332が使用される。IGBTで構成されたこれらの半導体スイッチ331、332は、それぞれコレクタCと、エミッタEと、ゲートGを有し、ゲートGの電位を制御することにより、コレクタCとエミッタEとの間の通電、遮断を制御する。第1、第2半導体スイッチ331、332は、交流線路17U、17Wに、互いに直列に接続され、それぞれのエミッタEは互いに直接接続される。IGBTで構成された半導体スイッチ331、332は、接合型電界効果トランジスタと異なり、単一方向、すなわちコレクタCからエミッタEに向かう方向にしか通電することができず、この通電方向の電流を遮断する場合の耐圧は高いが、逆方向の耐圧は低いという特徴を持つ。
このIGBTで構成された第1、第2半導体スイッチ331、332の特徴に関連して、第1半導体スイッチ331には、電流方向設定素子333が並列に接続され、また第2半導体スイッチ332には、電流方向設定素子334が並列に接続される。電流方向設定素子333、334はダイオードであり、それぞれアノードAと、カソードKを有し、電流方向設定素子333のアノードAは第1半導体スイッチ331のエミッタEに、また電流方向設定素子333のカソードKは第1半導体スイッチ331のコレクタCに直接接続される。電流方向設定素子334のアノードAは第2半導体スイッチ332のエミッタEに、また電流方向設定素子334のカソードKは第2半導体スイッチ332のコレクタCに直接接続される。
交流線路17U、17Wに流れる交流電流iは、第1極性の電流i1と、この第1極性と逆極性の第2極性の電流i2を含む。第1極性の電流i1は、第1半導体スイッチ331のコレクタC、そのエミッタE、電流方向設定素子334のアノードA、そのカソードKを経由して流れる。第2極性の電流i2は、第2半導体スイッチ332のコレクタC、そのエミッタE、電流方向設定素子333のアノードA、そのカソードKを経由して流れる。このようにIGBTで構成された第1、第2半導体スイッチ331、332を互いに直列に接続し、各半導体スイッチ331、332に電流方向設定素子333、334を並列に接続することにより、回路遮断部31により、交流電流iを双方向に流すことができる。電流方向設定素子333、334は、半導体スイッチ331、332に、その通電方向と逆方向に印加される電圧に対して、半導体スイッチ331、332を保護する。
図4に示す回路遮断装置30Bでは、電流モニタ37は図2に示す電流モニタ37と同じに構成され、モニタ出力Smiを発生する。制御部39は、第1、第2半導体スイッチ331、332の各ゲートGに同じゲート制御信号SGを供給し、第1、第2半導体スイッチ331、332を制御する。制御部39は、図2に示す制御部39と同様に、電力変換装置20からの異常検出出力Sfと、電流モニタ37からのモニタ出力Smiに基づき、交流線路17U、17Wを遮断する。
制御部39は、実施の形態1と同様にして、第1、第2半導体スイッチ331、332をオフ状態に制御する。具体的には、第1半導体スイッチ331がオンとなり、第1極性の電流i1が流れている状態において、タイミングt1で遮断指令Ioffを受けると、モニタ出力Smiをリアルタイムで参照し、遮断待機Woffを与え、タイミングt1の後で、電流i1が最初にほぼゼロとなるタイミングt2で、第1、第2半導体スイッチ331、332をオフ状態とし、交流線路17U、17Wを遮断する。また、第2半導体スイッチ332がオンとなり、第2極性の電流i2が流れている状態において、タイミングt1で遮断指令Ioffを受けると、モニタ出力Smiをリアルタイムで参照し、遮断待機Woffを与え、図3に示すと同様に、タイミングt1の後で、この電流i2が最初にほぼゼロとなるタイミングt2で、第1、第2半導体スイッチ331、332をオフ状態とし、交流線路17U、17Wを遮断する。電流i1,i2がほぼゼロとなるタイミングは、電流i1,i2が交流電流iの定格値の1%以下の値になったタイミングとされる。
このように実施の形態2の回路遮断装置30Bでは、交流線路17U、17Wに流れる電流i1、i2がほぼゼロとなるタイミングで第1、第2半導体スイッチ331、332をオフ状態とするので、第1、第2半導体スイッチ331、332がオフ状態とされるときのdi/dtを小さくすることができ、サージ電圧Vsを小さくすることができる。したがって、サージ電圧Vsにより、第1、第2半導体スイッチ331、332が破壊するのを防止することができ、電気駆動自動車で交流負荷13がインダクタンスの大きな駆動モータとされても、電力変換装置の半導体スイッチ211、212の導通故障時などに流れる異常交流電流を半導体スイッチ331、332により確実に遮断することができる。
実施の形態3.
図5は、この発明による電力供給回路の実施の形態3において使用される回路遮断装置30Cを示す電気回路図である。この図5に示す回路遮断装置30Cも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Cも、交流電力線路17の交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生した場合に、交流線路17U、17Wを遮断する。
図5に示す回路遮断装置30Cでは、回路遮断部31に、MOSFET、すなわちMOS型電界効果トランジスタで構成された第1、第2半導体スイッチ341、342が使用される。MOSFETで構成されたこれらの半導体スイッチ341、342は、それぞれソースSと、ドレインDと、ゲートGを有し、ゲートGの電位を制御することにより、ソースSとドレインDとの間の通電、遮断を制御する。第1、第2半導体スイッチ341、342は、交流線路17U、17Wのそれぞれに、互いに直列に接続され、それぞれのソースSは互いに直接接続される。なお、半導体スイッチ341、342を構成するMOSFETには、例えばNチャネルMOSFETが使用される。MOSFETで構成された半導体スイッチ341、342は、その構成上、寄生ダイオードが形成されるので、単一方向、すなわちドレインDからソースSに向かう方向にしか通電することができない。
このMOSFETで構成された第1、第2半導体スイッチ341、342の特徴に関連して、第1半導体スイッチ341には、寄生ダイオード343が並列に接続され、また第2半導体スイッチ342には、寄生ダイオード344が並列に接続されることとなり、これらの寄生ダイオード343、344が、電流方向設定素子として機能する。電流方向設定素子(寄生ダイオード)343、344は、それぞれアノードAと、カソードKを有し、電流方向設定素子(寄生ダイオード)343のアノードAは第1半導体スイッチ341のソースSに、電流方向設定素子(寄生ダイオード)343のカソードKは第1半導体スイッチ341のドレインDに直接接続され、また電流方向設定素子(寄生ダイオード)344のアノードAは第2半導体スイッチ342のソースSに、また電流方向設定素子(寄生ダイオード)344のカソードKは第2半導体スイッチ342のドレインDに直接接続されることとなり、電流方向設定素子としての機能を果たす。なお、MOSFETの寄生ダイオード343、344を補助する目的で、電流方向設定素子(寄生ダイオード)343、344のそれぞれと並列に、かつそれと同一極性で、別途ダイオードを接続することもある。これらのダイオードも、電流方向設定素子としての機能を果たす。
交流線路17U、17Wに流れる交流電流iは、第1極性の電流i1と、この第1極性と逆極性の第2極性の電流i2を含む。第1極性の電流i1は、第1半導体スイッチ341のドレインD、そのソースS、電流方向設定素子344のアノードA、そのカソードKを経由して流れる。第2極性の電流i2は、第2半導体スイッチ342のドレインD、そのソースS、電流方向設定素子343のアノードA、そのカソードKを経由して流れる。このようにMOSFETで構成された第1、第2半導体スイッチ341、342を互いに直列に接続し、各半導体スイッチ341、342に電流方向設定素子343、344を並列に接続することにより、回路遮断部31により、交流電流iを双方向に流すことができる。電流方向設定素子343、344は、半導体スイッチ341、342に、その通電方向と逆方向に印加される電圧に対して、半導体スイッチ341、342を保護する。
図5に示す回路遮断装置30Cでは、電流モニタ37は図2に示す電流モニタ37と同じに構成され、モニタ出力Smiを発生する。制御部39は、第1、第2半導体スイッチ341、342の各ゲートGに同じゲート制御信号SGを供給し、第1、第2半導体スイッチ341、342を制御するように構成され、電力変換装置20からの異常検出出力Sfと、電流モニタ37からのモニタ出力Smiに基づき、交流線路17U、17Wを遮断する。
制御部39は、実施の形態1と同様にして、第1、第2半導体スイッチ341、342を制御する。具体的には、第1半導体スイッチ341がオンとなり、第1極性の電流i1が流れている状態において、タイミングt1で遮断指令Ioffを受けると、モニタ出力Smiをリアルタイムで参照し、遮断待機Woffを与え、この電流i1が、タイミングt1後に最初にほぼゼロとなるタイミングt2で、第1半導体スイッチ341、342をオフ状態とし、交流線路17U、17Wを遮断する。また、第2半導体スイッチ342がオンとなり、第2極性の電流i2が流れている状態において、タイミングt1で遮断指令Ioffを受けると、図3に示すと同様に、モニタ出力Smiをリアルタイムで参照し、遮断待機Woffを与え、タイミングt1後に電流i2が最初にほぼゼロとなるタイミングt2で、第2半導体スイッチ341、342をオフ状態とし、交流線路17U、17Wを遮断する。電流i1,i2がほぼゼロとなるタイミングは、電流i1,i2が交流電流iの定格値の1%以下の値になったタイミングとされる。
このように実施の形態3の回路遮断装置30Cでは、電流i1、i2がほぼゼロとなるタイミングで第1、第2半導体スイッチ341、342をオフ状態とするので、第1、第2半導体スイッチ341、342がオフ状態とされるときのdi/dtを小さくすることができ、サージ電圧Vsを小さくすることができる。したがって、サージ電圧Vsにより、半導体スイッチ341、342が破壊するのを防止することができ、電気駆動自動車で交流負荷13がインダクタンスの大きな駆動モータとされても、電力変換装置の半導体スイッチ211、212の導通故障時などに流れる異常交流電流を半導体スイッチ341、342により確実に遮断することができる。
以上説明した実施の形態1〜3は、すべて、電流i1、i2がほぼゼロとなるタイミングで半導体スイッチ32、331、332、341、342をオフ状態とするタイプであり、各半導体スイッチがオフ状態となるときのdi/dtを小さくすることができ、サージ電圧Vsを小さくすることができる。
実施の形態1〜3における半導体スイッチ32、331、332、341、342は、各種の半導体材料を用いて構成される。これらの半導体スイッチは、例えば一般的なシリコンSi、窒化ガリウムGaN、窒化アルミニウムAlN、窒化アルミニウムガリウムAlGaNなどの窒化物半導体、またはシリコンカーバイドSiC半導体を用いて構成することができ、それぞれの半導体材料の特徴を考慮して半導体スイッチを構成する半導体材料が選定される。窒化物半導体またはシリコンカーバイドSiCは、一般にバンドギャップエネルギーが大きく、これらの半導体材料で構成された半導体スイッチは、一般に耐圧が数百ボルトと高く、また200℃程度の高温雰囲気下でも安定して動作するので、半導体スイッチの放熱構造を簡略化または省略することが可能となり、回路遮断部31を小型化、軽量化することができる。またシリコンSiで構成される半導体スイッチは、窒化物半導体またはシリコンカーバイドSiCで構成された半導体スイッチと比較して、製造が容易で非常に安価であり、回路遮断装置30A、30B、30Cの低コスト化を容易に実現できる。
なお、実施の形態1〜3では、電流モニタ37は、電力変換装置20に内蔵される場合もある。この場合には、回路遮断装置30A、30B、30Cには、電流モニタ37を配置せずに、電力変換装置20に内蔵された電流モニタ37を使用する。
実施の形態4.
図6は、この発明による電力供給回路の実施の形態4で使用される回路遮断装置30Dを示す電気回路図である。この回路遮断装置30Dも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Dは、交流電力線路17の2つの交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生したときに、交流線路17U、17Wを遮断する。
図6に示す回路遮断装置30Dでは、回路遮断部31に、JFET、すなわち接合型電界効果トランジスタで構成された第1、第2半導体スイッチ321、322が使用される。JFETで構成されたこれらの半導体スイッチ321、322は、それぞれソースSと、ドレインDと、ゲートGを有し、ゲートGの電位を制御することにより、ソースSとドレインDとの間の通電、遮断を制御する。第1、第2半導体スイッチ321、322は、交流線路17U、17Wのそれぞれに、互いに直列に接続され、それぞれのソースSは互いに直接接続される。
JFETで構成された第1、第2半導体スイッチ321、322は、実施の形態1における半導体スイッチ32と同様に、それぞれ双方向に通電できるが、この実施の形態4では、回路遮断部31において、第1、第2半導体スイッチ321、322を互いに直列に接続し、各半導体スイッチ321、322と並列にそれぞれ電流方向設定素子323、324を接続する。電流方向設定素子323、324はダイオードであり、電流方向設定素子323、324は、それぞれアノードAと、カソードKを有し、電流方向設定素子323のアノードAは第1半導体スイッチ321のソースSに、また電流方向設定素子323のカソードKは第1半導体スイッチ321のドレインDに直接接続される。電流方向設定素子324のアノードAは第2半導体スイッチ322のソースSに、また電流方向設定素子324のカソードKは第2半導体スイッチ322のドレインDに直接接続される。
半導体スイッチ321、322は、半導体スイッチ32と同様に、各種の半導体材料を用いて構成される。この半導体スイッチ321、322は、例えば一般的なシリコンSi、窒化ガリウムGaN、窒化アルミニウムAlN、窒化アルミニウムガリウムAlGaNなどの窒化物半導体、またはシリコンカーバイドSiC半導体を用いて構成することができ、それぞれの半導体材料の特徴を考慮して半導体スイッチ321、322を構成する半導体材料が選定される。窒化物半導体またはシリコンカーバイドSiCは、一般にバンドギャップエネルギーが大きく、これらの半導体材料で構成された半導体スイッチ321、322は、一般に耐圧が数百ボルトと高く、また200℃程度の高温雰囲気下でも安定して動作するので、半導体スイッチ321、322の放熱構造を簡略化または省略することが可能となり、回路遮断部31を小型化、軽量化することができる。またシリコンSiで構成した半導体スイッチ321、322は、窒化物半導体またはシリコンカーバイドSiCで構成された半導体スイッチ321、322と比較して、製造が容易で非常に安価であり、回路遮断装置30Cの低コスト化を容易に実現できる。
交流線路17U、17Wに流れる交流電流iは、第1極性の電流i1と、この第1極性と逆極性の第2極性の電流i2を含む。第1極性の電流i1は、第1半導体スイッチ321のドレインD、そのソースS、電流方向設定素子324のアノードA、そのカソードKを経由して流れる。第2極性の電流i2は、第2半導体スイッチ322のドレインD、そのソース、電流方向設定素子323のアノードA、そのカソードKを経由して流れる。
図6に示す回路遮断装置30Dでは、電流モニタ37は図2に示す電流モニタ37と同じに構成され、モニタ信号Smiを発生する。制御部39Aは、第1、第2半導体スイッチ321、322の各ゲートGにそれぞれゲート制御信号SG1、SG2を供給して、第1、第2半導体スイッチ321、322を制御するように構成され、電力変換装置20からの異常検出出力Sfと、電流モニタ37からのモニタ出力Smiに基づき、交流線路17U、17Wを遮断する。
図7は、回路遮断装置30Dの動作説明用波形図であり、図7(a)は交流線路17U、17Wに流れる交流電流iを示し、図7(b)は異常検出信号Sfを示し、図7(c)は半導体スイッチ321のゲートGに供給されるゲート制御信号SG1を示し、図7(d)は半導体スイッチ322のゲートGに供給されるゲート制御信号SG2を示す。
図7(a)に示すように、第2半導体スイッチ322に第2極性の電流i2が流れている状態において、図7(b)に示すタイミングt1で異常検出出力Sfが高レベルから低レベルに変化し、電流遮断指令Ioffが発生すると、制御部39Aは、モニタ出力Smiを参照し、タイミングt1では第2極性の電流i2が流れていることを確認した上で、図7(c)に示すように、ゲート制御信号SG1を高レベルから低レベルに変化させ、第1半導体スイッチ321を即時オフ状態toする。タイミングt1では、第2半導体スイッチ322のドレインDとソースSおよび電流方向設定素子323を通じて第2極性の電流i2が流れており、第1半導体スイッチ321には、第1極性の電流i1は流れておらず、i1=0である。第1半導体スイッチ321は、i1=0となっているタイミングt1で、電流遮断指令Ioffにより即時オフ状態とされるので、半導体スイッチ321がオフ状態とされても、サージ電圧Vsは発生しない。
第1半導体スイッチ321がタイミングt1で即時オフ状態とされた後も、制御部39Aは、図7(d)に示すように、第2半導体スイッチ322のゲートGに供給されるゲート制御信号SG2に遮断待機Woffを与え、このゲート制御信号SG2を高レベルに維持する。このため、第2極性の電流i2は、第2半導体スイッチ322のドレインDとソースSおよび電流方向設定素子323を通じて流れ続ける。制御部39Aは、モニタ出力Smiを参照し、第2極性の電流i2が消滅した後のタイミングt3において、ゲート制御信号SG2を高レベルから低レベルに変化させ、このタイミングt3で第2半導体スイッチ322をオフ状態に制御する。このタイミングt3では、第2半導体スイッチ322に流れていた第2極性の電流i2は消滅し、I2=0となっており、第2半導体スイッチ322がオフ状態に制御されても、サージ電圧Vsは発生しない。また、タイミングt3では、第1半導体スイッチ321が既にオフ状態とされているので、第1極性の電流i1も流れない。
なお、第1極性の電流i1が、第1半導体スイッチ321を通じて流れている状態において、タイミングt1で遮断指示Ioffが与えられる場合には、タイミングt1で第2半導体スイッチ322が即時オフ状態とされ、第1半導体スイッチ321は、タイミングt1の後、第1半導体スイッチ321に流れていた第1極性の電流i1が消滅した後のタイミングt3で、オフ状態とされる。
このように実施の形態4の回路遮断装置30Dでは、第1、第2の半導体スイッチ321、322の一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した状態で、その一方の半導体スイッチをオフ状態とするので、半導体スイッチ321、322をオフ状態にしたときにサージ電圧Vsが発生せず、半導体スイッチ321、322の破壊を防止しながら、交流線路17U、17Wを遮断することができる。したがって、電圧電気駆動自動車で交流負荷13がインダクタンスの大きな駆動モータとされても、電力変換装置の半導体スイッチ211、212の導通故障時などに流れる異常交流電流を半導体スイッチ321、322により確実に遮断することができる。
なお、実施の形態4でも、電流モニタ37は、電力変換装置20に内蔵される場合もある。この場合には、回路遮断装置30Aには、電流モニタ37を配置せずに、電力変換装置20に内蔵された電流モニタ37を使用する。
実施の形態5.
図8は、この発明による電力供給回路の実施の形態5で使用される回路遮断装置Eを示す電気回路図である。この回路遮断装置30Eも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Eは、交流電力線路17の2つの交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生したときに、交流線路17U、17Wを遮断する。
図8に示す回路遮断装置30Eは、図4に示す実施の形態2で使用された回路遮断装置30Bにおいて、制御部39を制御部39Aに代え、第1、第2半導体スイッチ331、332のそれぞれに、ゲート制御信号SG1、SG2を供給するように変更し、第1、第2半導体スイッチ331、332を図7と同様に制御する。その他は、実施の形態2で使用された回路遮断装置30Bと同じに構成される。
この実施の形態5でも、半導体スイッチ331、332は、図7と同様に制御される。具体的には、図7(a)に示すように、半導体スイッチ332に第2極性の電流i2が流れている状態において、図7(b)に示すタイミングt1で異常検出出力Sfが高レベルから低レベルに変化し、電流遮断指令Ioffが発生すると、制御部39Aは、モニタ出力Smiを参照し、タイミングt1では第2極性の電流i2が流れていることを確認した上で、図7(c)に示すように、ゲート制御信号SG1を高レベルから低レベルに変化させ、半導体スイッチ331を即時オフ状態とする。タイミングt1では、半導体スイッチ332のドレインDとソースSおよび電流方向設定素子333を通じて第2極性の電流i2が流れており、半導体スイッチ331には、第1極性の電流i1は流れておらず、i1=0である。半導体スイッチ331は、i1=0となっているタイミングt1で、電流遮断指令Ioffにより即時オフ状態とされるので、半導体スイッチ331がオフ状態とされても、サージ電圧Vsは発生しない。
半導体スイッチ331がタイミングt1で即時オフ状態とされた後も、制御部39Aは、図7(d)に示すように、半導体スイッチ332のゲートGに供給されるゲート制御信号SG2に遮断待機Woffを与え、このゲート制御信号SG2を高レベルに維持する。このため、第2極性の電流i2は、半導体スイッチ332のドレインDとソースSおよび電流方向設定素子323を通じて流れ続ける。制御部39Aは、モニタ出力Smiを参照し、第2極性の電流i2が消滅した後のタイミングt3において、ゲート制御信号SG2を高レベルから低レベルに変化させ、このタイミングt3で半導体スイッチ332をオフ状態に制御する。このタイミングt3では、半導体スイッチ332に流れていた第2極性の電流i2は消滅し、i2=0となっており、半導体スイッチ332がオフ状態に制御されても、サージ電圧Vsは発生しない。また、タイミングt3では、半導体スイッチ331が既にオフ状態とされているので、第1極性の電流i1も流れない。
なお、第1極性の電流i1が、第1半導体スイッチ331を通じて流れている状態において、タイミングt1で遮断指示Ioffが与えられる場合には、タイミングt1で第2半導体スイッチ332が即時オフ状態とされ、第1半導体スイッチ331は、タイミングt1の後、第1半導体スイッチ331に流れていた第1極性の電流i1が消滅した後のタイミングt3で、オフ状態とされる。
このように実施の形態5でも、第1、第2の半導体スイッチ331、332の一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した状態で、その一方の半導体スイッチをオフ状態とするので、半導体スイッチ331、332をオフ状態にしたときにサージ電圧Vsが発生せず、半導体スイッチ331、332の破壊を防止しながら、交流線路17U、17Wを遮断することができる。したがって、サージ電圧電気駆動自動車で交流負荷13がインダクタンスの大きな駆動モータとされても、電力変換装置の半導体スイッチ211、212の導通故障時などに流れる異常交流電流を半導体スイッチ331、332により確実に遮断することができる。
実施の形態6.
図9は、この発明による電力供給回路の実施の形態5で使用される回路遮断装置Fを示す電気回路図である。この回路遮断装置30Fも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Fは、交流電力線路17の2つの交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などが発生したときに、交流線路17U、17Wを遮断する。
図9に示す回路遮断装置30Fは、図5に示す実施の形態3で使用された回路遮断装置30Cにおいて、制御部39を制御部39Aに代え、第1、第2半導体スイッチ341、342のそれぞれに、ゲート制御信号SG1、SG2を供給するように変更し、第1、第2半導体スイッチ341、342を図7と同様に制御する。その他は、実施の形態3で使用された回路遮断装置30Cと同じに構成される。
この実施の形態6でも、半導体スイッチ341、342は、図7と同様に制御される。具体的には、図7(a)に示すように、半導体スイッチ342に第2極性の電流i2が流れている状態において、図7(b)に示すタイミングt1で異常検出出力Sfが高レベルから低レベルに変化し、電流遮断指令Ioffが発生すると、制御部39Aは、モニタ出力Smをi参照し、タイミングt1では第2極性の電流i2が流れていることを確認した上で、図7(c)に示すように、ゲート制御信号SG1を高レベルから低レベルに変化させ、半導体スイッチ341を即時オフ状態とする。タイミングt1では、半導体スイッチ342のドレインDとソースSおよび電流方向設定素子343を通じて第2極性の電流i2が流れており、半導体スイッチ341には、第1極性の電流i1は流れておらず、i1=0である。半導体スイッチ341は、i1=0となっているタイミングt1で、電流遮断指令Ioffにより即時オフ状態とされるので、半導体スイッチ341がオフ状態とされても、サージ電圧Vsは発生しない。
半導体スイッチ341がタイミングt1で即時オフ状態とされた後も、制御部39Aは、図7(d)に示すように、半導体スイッチ342のゲートGに供給されるゲート制御信号SG2に遮断待機Woffを与え、このゲート制御信号SG2を高レベルに維持する。このため、第2極性の電流i2は、半導体スイッチ342のドレインDとソースSおよび電流方向設定素子343を通じて流れ続ける。制御部39Aは、モニタ出力Smiを参照し、第2極性の電流i2が消滅した後のタイミングt3において、ゲート制御信号SG2を高レベルから低レベルに変化させ、このタイミングt3で半導体スイッチ342をオフ状態に制御する。このタイミングt3では、半導体スイッチ342に流れていた第2極性の電流i2は消滅し、i2=0となっており、半導体スイッチ342がオフ状態に制御されても、サージ電圧Vsは発生しない。また、タイミングt3では、半導体スイッチ341が既にオフ状態とされているので、第1極性の電流i1も流れない。
なお、第1極性の電流i1が、第1半導体スイッチ341を通じて流れている状態において、タイミングt1で遮断指示Ioffが与えられる場合には、タイミングt1で第2半導体スイッチ342が即時オフ状態とされ、第1半導体スイッチ341は、タイミングt1の後、第1半導体スイッチ341に流れていた第1極性の電流i1が消滅した後のタイミングt3で、オフ状態とされる。
このように実施の形態6でも、第1、第2の半導体スイッチ341、342の一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した状態で、その一方の半導体スイッチをオフ状態とするので、半導体スイッチ341、342をオフ状態としたときにサージ電圧Vsが発生せず、半導体スイッチ341、342の破壊を防止しながら、交流線路17U、17Wを遮断することができる。したがって、サージ電圧電気駆動自動車で交流負荷13がインダクタンスの大きな駆動モータとされても、電力変換装置の半導体スイッチ211、212の導通故障時などに流れる異常交流電流を半導体スイッチ341、342により確実に遮断することができる。
実施の形態7.
図10は、この発明による電力供給回路の実施の形態7で使用される回路遮断装置30Gを示す電気回路図である。この回路遮断装置30Gも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Gは、交流電力線路17の2つの交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生したときに、交流線路17U、17Wを遮断する。
図10に示す回路遮断装置30Gは、図6に示す回路遮断装置30Dについて、互いに直列に接続された第1、第2半導体スイッチ321、322を互いに並列に接続するように変更し、また電流方向設定素子323、324を、それぞれ第1、第2半導体スイッチ321、322と直列に接続したものである。第1半導体スイッチ321のドレインDは電流方向設定素子323を通じて電流モニタ37の電流センサ371に接続され、そのソースSは、主端子302に接続される。第2半導体スイッチ322のドレインDは、電流方向設定素子324を通じて主端子302に接続され、そのソースSは、電流センサ371に接続される。
電流方向設定素子323は、第1半導体スイッチ321のドレインD側に接続され、そのアノードAは電流センサ371に接続されるとともに、第2半導体スイッチ322のソースSにも接続される。電流方向設定素子323のカソードKは、第1半導体スイッチ321のドレインDに接続される。電流方向設定素子324は、第2半導体スイッチ322のドレインD側に接続され、そのアノードAは主端子302に接続されるとともに、第1半導体スイッチ321のソースSに接続される。電流方向設定素子324のカソードKは、第2半導体スイッチ322のドレインDに接続される。
交流電流iの第1極性の電流i1は、電流方向設定素子323のアノードAと、そのカソードKと、第1半導体スイッチ321のドレインDと、そのソースSを経由して流れる。交流電流iの第2極性の電流i2は、電流方向設定素子324のアノードAと、そのカソードKと、第2半導体スイッチ322のドレインDと、そのソースSを経由して流れる。その他は、図6に示す回路遮断装置30Dと同じに構成される。
この実施の形態7においても、図6に示す回路遮断装置30Dと同様に、第1、第2の半導体スイッチ321、322の一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した状態で、その一方の半導体スイッチをオフ状態とするので、半導体スイッチ321、322をオフ状態にしたときにサージ電圧Vsが発生せず、半導体スイッチ321、322の破壊を防止しながら、交流線路17U、17Wを遮断することができる。
実施の形態8.
図11は、この発明による電力供給回路の実施の形態8で使用される回路遮断装置30Hを示す電気回路図である。この回路遮断装置30Hも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Hは、交流電力線路17の2つの交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生したときに、交流線路17U、17Wを遮断する。
図11に示す回路遮断装置30Hは、図8に示す回路遮断装置30Eにおいて、互いに直列に接続された第1、第2半導体スイッチ331、332を互いに並列に接続するように変更し、また電流方向設定素子333、334を、それぞれ第1、第2半導体スイッチ331、332と直列に接続したものである。第1半導体スイッチ331のコレクタCは電流方向設定素子333を通じて電流モニタ37の電流センサ371に接続され、そのエミッタEは、主端子302に接続される。第2半導体スイッチ332のコレクタCは、電流方向設定素子334を通じて主端子302に接続され、そのエミッタEは、電流センサ371に接続される。第1、第2半導体スイッチ331、332には、それぞれと並列に、保護ダイオード335、336が接続される。保護ダイオード335、336の各アノードAは第1、第2半導体スイッチ331、332の各エミッタEに、また保護ダイオード335、336の各カソードKは、それらの各コレクタCに接続される。
電流方向設定素子333は、第1半導体スイッチ331のコレクタC側に接続され、そのアノードAは電流センサ371に接続されるとともに、第2半導体スイッチ332のエミッタEにも接続される。電流方向設定素子333のカソードKは、第1半導体スイッチ331のコレクタCに接続される。電流方向設定素子334は、第2半導体スイッチ332のコレクタC側に接続され、そのアノードAは主端子302に接続されるとともに、第1半導体スイッチ331のエミッタEに接続される。電流方向設定素子334のカソードKは、第2半導体スイッチ332のコレクタCに接続される。
交流電流iの第1極性の電流i1は、電流方向設定素子333のアノードAと、そのカソードKと、第1半導体スイッチ331のコレクタCと、そのエミッタEを経由して流れる。交流電流iの第2極性の電流i2は、電流方向設定素子334のアノードAと、そのカソードKと、第2半導体スイッチ332のコレクタCと、そのエミッタEを経由して流れる。その他は、図8に示す回路遮断装置30Eと同じに構成される。
この実施の形態8においても、図8に示す回路遮断装置30Eと同様に、第1、第2の半導体スイッチ331、332の一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した状態で、その一方の半導体スイッチをオフ状態とするので、半導体スイッチ331、332をオフ状態にしたときにサージ電圧Vsが発生せず、半導体スイッチ331、332の破壊を防止しながら、交流線路17U、17Wを遮断することができる。
実施の形態9.
図12は、この発明による電力供給回路の実施の形態9で使用される回路遮断装置30Iを示す電気回路図である。この回路遮断装置30Iも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Iは、交流電力線路17の2つの交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生したときに、交流線路17U、17Wを遮断する。
図12に示す回路遮断装置30Iは、図9に示す回路遮断装置30Fにおいて、互いに直列に接続された第1、第2半導体スイッチ341、342を互いに並列に接続するように変更し、また電流方向設定素子343、344を、それぞれ第1、第2半導体スイッチ341、342と直列に接続したものである。第1半導体スイッチ341のドレインDは電流方向設定素子343を通じて電流モニタ37の電流センサ371に接続され、そのソースSは、主端子302に接続される。第2半導体スイッチ342のドレインDは、電流方向設定素子344を通じて主端子302に接続され、そのソースSは、電流センサ371に接続される。第1、第2半導体スイッチ341、342には、それぞれと並列に、寄生ダイオード345、346が接続される。寄生ダイオード345、346の各アノードAは第1、第2半導体スイッチ341、332の各ドレインDに、また保護ダイオード345、346の各カソードKは、それらの各ソースSに接続される。
電流方向設定素子343は、第1半導体スイッチ341のドレインD側に接続され、そのアノードAは電流センサ371に接続されるとともに、第2半導体スイッチ342のソースSにも接続される。電流方向設定素子343のカソードKは、第1半導体スイッチ341のドレインDに接続される。電流方向設定素子344は、第2半導体スイッチ342のドレインD側に接続され、そのアノードAは主端子302に接続されるとともに、第1半導体スイッチ341のソースSに接続される。電流方向設定素子344のカソードKは、第2半導体スイッチ342のソースSに接続される。
交流電流iの第1極性の電流i1は、電流方向設定素子343のアノードAと、そのカソードKと、第1半導体スイッチ341のドレインDと、そのソースSを経由して流れる。交流電流iの第2極性の電流i2は、電流方向設定素子344のアノードAと、そのカソードKと、第2半導体スイッチ342のドレインDと、そのソースSを経由して流れる。その他は、図9に示す回路遮断装置30Fと同じに構成される。
この実施の形態9においても、図9に示す回路遮断装置30Fと同様に、第1、第2の半導体スイッチ341、342の一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した状態で、その一方の半導体スイッチをオフ状態とするので、半導体スイッチ341、342をオフ状態にしたときにサージ電圧Vsが発生せず、半導体スイッチ341、342の破壊を防止しながら、交流線路17U、17Wを遮断することができる。
実施の形態10.
図13は、この発明による電力供給回路の実施の形態10で使用される回路遮断装置30Jを示す電気回路図である。この回路遮断装置30Jも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Jは、交流電力線路17の2つの交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生したときに、交流線路17U、17Wを遮断する。
図13に示す回路遮断装置30Jは、図6に示す回路遮断装置30Dにおいて、電流モニタ37を電圧モニタ38に代え、制御部39Aを制御部39Bに代えたものである。電圧モニタ38は、回路遮断装置30Jに内蔵され、第1、第2半導体スイッチ321、322のそれぞれの両端における電圧をモニタしたモニタ出力Smvを出力する。制御部39Bは、電力変換装置20からの異常検出出力Sfと、電圧モニタ38からのモニタ出力Smvに基づき、第1、第2半導体スイッチ321、322のゲートGに、それぞれゲート信号SG1、SG2を供給し、第1、第2半導体スイッチ321、322を制御する。その他は、図6に示す回路遮断装置30Dと同じに構成される。
図14は、回路遮断装置30Jの動作説明用波形図である。図14(a)は交流電流iを示し、図14(b)は電圧モニタ38のモニタ出力Smvを示し、図14(c)は異常検出出力Sfを示し、図14(d)は第1半導体スイッチ321に対するゲート制御信号SG1を示し、また図14(e)は第2半導体スイッチ322に対するゲート制御信号SG2を示す。電圧モニタ38のモニタ出力Smvは、図14(b)に示すように第1極性の電流i1が第1半導体スイッチ321に流れるときに高レベルとなり、第2極性の電流i2が第2半導体スイッチ322に流れるときに低レベルとなる。
図14(a)に示すように、第2半導体スイッチ322に第2極性の電流i2が流れ、図14(b)に示すようにモニタ出力Smvが低レベルとなっている状態において、図14(c)に示すタイミングt1で異常検出出力Sfが高レベルから低レベルに変化し、電流遮断指令Ioffが発生すると、制御部39Bは、モニタ出力Smvを参照し、タイミングt1では第2極性の電流i2が流れていることを確認した上で、図14(d)に示すように、ゲート制御信号SG1を高レベルから低レベルに変化させ、第1半導体スイッチ321を即時オフ状態とする。タイミングt1では、第2半導体スイッチ322のドレインDとソースSおよび電流方向設定素子323を通じて第2極性の電流i2が流れており、第1半導体スイッチ321には、第1極性の電流i1は流れておらず、i1=0である。第1半導体スイッチ321は、i1=0となっているタイミングt1で、電流遮断指令Ioffにより即時オフ状態とされるので、半導体スイッチ321がオフ状態とされても、サージ電圧Vsは発生しない。
第1半導体スイッチ321がタイミングt1で即時オフ状態とされた後も、制御部39Bは、図14(e)に示すように、第2半導体スイッチ322のゲートGに供給されるゲート制御信号SG2に遮断待機Woffを与え、このゲート制御信号SG2を高レベルに維持する。このため、第2極性の電流i2は、第2半導体スイッチ322のドレインDとソースSおよび電流方向設定素子323を通じて流れ続ける。制御部39Bは、モニタ出力Smvを参照し、第2極性の電流i2が消滅した後のタイミングt3において、ゲート制御信号SG2を高レベルから低レベルに変化させ、このタイミングt3で第2半導体スイッチ322をオフ状態に制御する。このタイミングt3では、第2半導体スイッチ322に流れていた第2極性の電流i2は消滅し、I2=0となっており、第2半導体スイッチ322がオフ状態に制御されても、サージ電圧Vsは発生しない。また、タイミングt3では、第1半導体スイッチ321が既にオフ状態とされているので、第1極性の電流i1も流れない。
なお、第1極性の電流i1が、第1半導体スイッチ321を通じて流れ、モニタ出力Smvが高レベルとなっている状態において、タイミングt1で遮断指示Ioffが与えられる場合には、タイミングt1で第2半導体スイッチ322が即時オフ状態とされ、第1半導体スイッチ321は、タイミングt1の後、第1半導体スイッチ321に流れていた第1極性の電流i1が消滅し、モニタ出力Smvが高レベルから低レベルへ変化した後のタイミングt3で、オフ状態とされる。
このように実施の形態10の回路遮断装置30Jでは、第1、第2の半導体スイッチ321、322の一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した状態で、その一方の半導体スイッチをオフ状態とするので、半導体スイッチ321、322をオフ状態にしたときにサージ電圧Vsが発生せず、半導体スイッチ321、322の破壊を防止しながら、交流線路17U、17Wを遮断することができる。
実施の形態11.
図15は、この発明による電力供給回路の実施の形態11で使用される回路遮断装置30Kを示す電気回路図である。この回路遮断装置30Kも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Kは、交流電力線路17の2つの交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生したときに、交流電力線路17U、17Wを遮断する。
図15に示す回路遮断装置30Kは、図8に示す回路遮断装置30Eにおいて、電流モニタ37を電圧モニタ38に代え、制御部39Aを制御部39Bに代えたものである。電圧モニタ38は、回路遮断装置30Kに内蔵され、第1、第2半導体スイッチ331、332のそれぞれの両端における電圧をモニタしたモニタ出力Smvを出力する。制御部39Bは、電力変換装置20からの異常検出出力Sfと、電圧モニタ38からのモニタ出力Smvに基づき、第1、第2半導体スイッチ331、332のゲートGに、それぞれゲート信号SG1、SG2を供給し、第1、第2半導体スイッチ331、332を制御する。その他は、図8に示す回路遮断装置30Eと同じに構成される。
この回路遮断装置30Kにおいても、第1、第2半導体スイッチ331、332は、図14と同様に制御される。具体的には、図14(a)に示すように、第2半導体スイッチ322に第2極性の電流i2が流れ、図14(b)に示すようにモニタ出力Smvが低レベルとなっている状態において、図14(c)に示すタイミングt1で異常検出出力Sfが高レベルから低レベルに変化し、電流遮断指令Ioffが発生すると、制御部39Bは、モニタ出力Smvを参照し、タイミングt1では第2極性の電流i2が流れていることを確認した上で、図14(d)に示すように、ゲート制御信号SG1を高レベルから低レベルに変化させ、第1半導体スイッチ331を即時オフ状態とする。タイミングt1では、第2半導体スイッチ332のコレクタCとエミッタEおよび電流方向設定素子333を通じて第2極性の電流i2が流れており、第1半導体スイッチ331には、第1極性の電流i1は流れておらず、i1=0である。第1半導体スイッチ331は、i1=0となっているタイミングt1で、電流遮断指令Ioffにより即時オフ状態とされるので、半導体スイッチ331がオフ状態とされても、サージ電圧Vsは発生しない。
第1半導体スイッチ331がタイミングt1で即時オフ状態とされた後も、制御部39Bは、図14(e)に示すように、第2半導体スイッチ332のゲートGに供給されるゲート制御信号SG2に遮断待機Woffを与え、このゲート制御信号SG2を高レベルに維持する。このため、第2極性の電流i2は、第2半導体スイッチ332のコレクタCドとエミッタEおよび電流方向設定素子333を通じて流れ続ける。制御部39Bは、モニタ出力Smvを参照し、第2極性の電流i2が消滅した後のタイミングt3において、ゲート制御信号SG2を高レベルから低レベルに変化させ、このタイミングt3で第2半導体スイッチ332をオフ状態に制御する。このタイミングt3では、第2半導体スイッチ332に流れていた第2極性の電流i2は消滅し、I2=0となっており、第2半導体スイッチ332がオフ状態に制御されても、サージ電圧Vsは発生しない。また、タイミングt3では、第1半導体スイッチ331が既にオフ状態とされているので、第1極性の電流i1も流れない。
なお、第1極性の電流i1が、第1半導体スイッチ331を通じて流れ、モニタ出力Smvが高レベルとなっている状態において、タイミングt1で遮断指示Ioffが与えられる場合には、タイミングt1で第2半導体スイッチ332が即時オフ状態とされ、第1半導体スイッチ331は、タイミングt1の後、第1半導体スイッチ331に流れていた第1極性の電流i1が消滅し、モニタ出力Smvが高レベルから低レベルへ変化した後のタイミングt3で、オフ状態とされる。
このように実施の形態11の回路遮断装置30Kでは、第1、第2の半導体スイッチ331、332の一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した状態で、その一方の半導体スイッチをオフ状態とするので、半導体スイッチ331、332をオフ状態にしたときにサージ電圧Vsが発生せず、半導体スイッチ331、332の破壊を防止しながら、交流線路17U、17Wを遮断することができる。
実施の形態12.
図16は、この発明による電力供給回路の実施の形態12で使用される回路遮断装置30Lを示す電気回路図である。この回路遮断装置30Lも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Lは、交流電力線路17の2つの交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生したときに、交流線路17U、17Wを遮断する。
図16に示す回路遮断装置30Lは、図9に示す回路遮断装置30Fにおいて、電流モニタ37を電圧モニタ38に代え、制御部39Aを制御部39Bに代えたものである。電圧モニタ38は、回路遮断装置30Lに内蔵され、第1、第2半導体スイッチ341、342のそれぞれの両端における電圧をモニタしたモニタ出力Smvを出力する。制御部39Bは、電力変換装置20からの異常検出出力Sfと、電圧モニタ38からのモニタ出力Smvに基づき、第1、第2半導体スイッチ341、342のゲートGに、それぞれゲート信号SG1、SG2を供給し、第1、第2半導体スイッチ341、342を制御する。その他は、図9に示す回路遮断装置30Fと同じに構成される。
この回路遮断装置30Lにおいても、第1、第2半導体スイッチ341、342は、図14と同様に制御される。具体的には、図14(a)に示すように、第2半導体スイッチ342に第2極性の電流i2が流れ、図14(b)に示すようにモニタ出力Smvが低レベルとなっている状態において、図14(c)に示すタイミングt1で異常検出出力Sfが高レベルから低レベルに変化し、電流遮断指令Ioffが発生すると、制御部39Bは、モニタ出力Smvを参照し、タイミングt1では第2極性の電流i2が流れていることを確認した上で、図14(d)に示すように、ゲート制御信号SG1を高レベルから低レベルに変化させ、第1半導体スイッチ341を即時オフ状態とする。タイミングt1では、第2半導体スイッチ342のドレインDとソースSおよび電流方向設定素子343を通じて第2極性の電流i2が流れており、第1半導体スイッチ341には、第1極性の電流i1は流れておらず、i1=0である。第1半導体スイッチ341は、i1=0となっているタイミングt1で、電流遮断指令Ioffにより即時オフ状態とされるので、半導体スイッチ341がオフ状態とされても、サージ電圧Vsは発生しない。
第1半導体スイッチ341がタイミングt1で即時オフ状態とされた後も、制御部39Bは、図14(e)に示すように、第2半導体スイッチ342のゲートGに供給されるゲート制御信号SG2に遮断待機Woffを与え、このゲート制御信号SG2を高レベルに維持する。このため、第2極性の電流i2は、第2半導体スイッチ342のドレインDとソースSおよび電流方向設定素子343を通じて流れ続ける。制御部39Bは、モニタ出力Smvを参照し、第2極性の電流i2が消滅した後のタイミングt3において、ゲート制御信号SG2を高レベルから低レベルに変化させ、このタイミングt3で第2半導体スイッチ342をオフ状態に制御する。このタイミングt3では、第2半導体スイッチ342に流れていた第2極性の電流i2は消滅し、I2=0となっており、第2半導体スイッチ332がオフ状態に制御されても、サージ電圧Vsは発生しない。また、タイミングt3では、第1半導体スイッチ341が既にオフ状態とされているので、第1極性の電流i1も流れない。
なお、第1極性の電流i1が、第1半導体スイッチ341を通じて流れ、モニタ出力Smvが高レベルとなっている状態において、タイミングt1で遮断指示Ioffが与えられる場合には、タイミングt1で第2半導体スイッチ342が即時オフ状態とされ、第1半導体スイッチ341は、タイミングt1の後、第1半導体スイッチ341に流れていた第1極性の電流i1が消滅し、モニタ出力Smvが高レベルから低レベルへ変化した後のタイミングt3で、オフ状態とされる。
このように実施の形態12の回路遮断装置30Lでは、第1、第2の半導体スイッチ341、342の一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した状態で、その一方の半導体スイッチをオフ状態とするので、半導体スイッチ341、342をオフ状態にしたときにサージ電圧Vsが発生せず、半導体スイッチ341、342の破壊を防止しながら、交流線路17U、17Wを遮断することができる。
実施の形態13.
図17は、この発明による電力供給回路の実施の形態13で使用される回路遮断装置30Mを示す電気回路図である。この回路遮断装置30Mも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Mは、交流電力線路17の2つの交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生したときに、交流線路17U、17Wを遮断する。
図17に示す回路遮断装置30Mは、図13に示す回路遮断装置30Jにおいて、互いに直列に接続された第1、第2半導体スイッチ321、322を互いに並列に接続するように変更し、また電流方向設定素子323、324を、それぞれ第1、第2半導体スイッチ321、322と直列に接続したものである。第1半導体スイッチ321のドレインDは電流方向設定素子323を通じて主端子301に接続され、そのソースSは、主端子302に接続される。第2半導体スイッチ322のドレインDは、電流方向設定素子324を通じて主端子302に接続され、そのソースSは、主端子301に接続される。
電流方向設定素子323は、第1半導体スイッチ321のドレインD側に接続され、そのアノードAは主端子301に接続されるとともに、第2半導体スイッチ322のソースSにも接続される。電流方向設定素子323のカソードKは、第1半導体スイッチ321のドレインDに接続される。電流方向設定素子324は、第2半導体スイッチ322のドレインD側に接続され、そのアノードAは主端子302に接続されるとともに、第1半導体スイッチ321のソースSに接続される。電流方向設定素子324のカソードKは、第2半導体スイッチ322のドレインDに接続される。
交流電流iの第1極性の電流i1は、電流方向設定素子323のアノードAと、そのカソードKと、第1半導体スイッチ321のドレインDと、そのソースSを経由して流れる。交流電流iの第2極性の電流i2は、電流方向設定素子324のアノードAと、そのカソードKと、第2半導体スイッチ322のドレインDと、そのソースSを経由して流れる。その他は、図13に示す回路遮断装置30Jと同じに構成される。
この実施の形態13においても、図13に示す回路遮断装置10Jと同様に、第1、第2の半導体スイッチ321、322の一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した状態で、その一方の半導体スイッチをオフ状態とするので、半導体スイッチ321、322をオフ状態にしたときにサージ電圧Vsが発生せず、半導体スイッチ321、322の破壊を防止しながら、交流線路17U、17Wを遮断することができる。
実施の形態14.
図18は、この発明による電力供給回路の実施の形態14で使用される回路遮断装置30Nを示す電気回路図である。この回路遮断装置30Nも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Nは、交流電力線路17の2つの交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生したときに、交流線路17U、17Wを遮断する。
図18に示す回路遮断装置30Nは、図15に示す回路遮断装置30Kにおいて、互いに直列に接続された第1、第2半導体スイッチ331、332を互いに並列に接続するように変更し、また電流方向設定素子333、334を、それぞれ第1、第2半導体スイッチ331、332と直列に接続したものである。第1半導体スイッチ331のコレクタCは電流方向設定素子333を通じて主端子301に接続され、そのエミッタEは、主端子302に接続される。第2半導体スイッチ332のコレクタCは、電流方向設定素子334を通じて主端子302に接続され、そのエミッタEは、主端子301に接続される。第1、第2半導体スイッチ331、332には、それぞれと並列に、保護ダイオード335、336が接続される。保護ダイオード335、336の各アノードAは第1、第2半導体スイッチ331、332の各エミッタEに、また保護ダイオード335、336の各カソードKは、それらの各コレクタCに接続される。
電流方向設定素子333は、第1半導体スイッチ331のコレクタC側に接続され、そのアノードAは主端子301に接続されるとともに、第2半導体スイッチ332のエミッタEにも接続される。電流方向設定素子333のカソードKは、第1半導体スイッチ331のコレクタCに接続される。電流方向設定素子334は、第2半導体スイッチ332のコレクタC側に接続され、そのアノードAは主端子302に接続されるとともに、第1半導体スイッチ331のエミッタEに接続される。電流方向設定素子334のカソードKは、第2半導体スイッチ332のコレクタCに接続される。
交流電流iの第1極性の電流i1は、電流方向設定素子333のアノードAと、そのカソードKと、第1半導体スイッチ331のコレクタCと、そのエミッタEを経由して流れる。交流電流iの第2極性の電流i2は、電流方向設定素子334のアノードAと、そのカソードKと、第2半導体スイッチ332のコレクタCと、そのエミッタEを経由して流れる。その他は、図15に示す回路遮断装置30Kと同じに構成される。
この実施の形態14においても、図15に示す回路遮断装置30Kと同様に、第1、第2の半導体スイッチ331、332の一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した状態で、その一方の半導体スイッチをオフ状態とするので、半導体スイッチ331、332をオフ状態にしたときにサージ電圧Vsが発生せず、半導体スイッチ331、332の破壊を防止しながら、交流線路17U、17Wを遮断することができる。
実施の形態15.
図19は、この発明による電力供給回路の実施の形態15で使用される回路遮断装置30Pを示す電気回路図である。この回路遮断装置30Pも、図1に示す電力供給回路10における回路遮断装置30として使用される。回路遮断装置30Pは、交流電力線路17の2つの交流線路17U、17Wにそれぞれ配置され、電力変換装置20の半導体スイッチ211、212に導通故障などの異常が発生したときに、交流線路17U、17Wを遮断する。
図19に示す回路遮断装置30Pは、図16に示す回路遮断装置30Lにおいて、互いに直列に接続された第1、第2半導体スイッチ341、342を互いに並列に接続するように変更し、また電流方向設定素子343、344を、それぞれ第1、第2半導体スイッチ341、342と直列に接続したものである。第1半導体スイッチ341のドレインDは電流方向設定素子343を通じて主端子301に接続され、そのソースSは、主端子302に接続される。第2半導体スイッチ342のドレインDは、電流方向設定素子344を通じて主端子302に接続され、そのソースSは、主端子301に接続される。第1、第2半導体スイッチ341、342には、それぞれと並列に、寄生ダイオード345、346が接続される。寄生ダイオード345、346の各アノードAは第1、第2半導体スイッチ341、332の各ドレインDに、また寄生ダイオード345、346の各カソードKは、それらの各ソースSに接続される。
電流方向設定素子343は、第1半導体スイッチ341のドレインD側に接続され、そのアノードAは主端子301に接続されるとともに、第2半導体スイッチ342のソースSにも接続される。電流方向設定素子343のカソードKは、第1半導体スイッチ341のドレインDに接続される。電流方向設定素子344は、第2半導体スイッチ342のドレインD側に接続され、そのアノードAは主端子302に接続されるとともに、第1半導体スイッチ341のソースSに接続される。電流方向設定素子344のカソードKは、第2半導体スイッチ342のドレインDに接続される。
交流電流iの第1極性の電流i1は、電流方向設定素子343のアノードAと、そのカソードKと、第1半導体スイッチ341のドレインDと、そのソースSを経由して流れる。交流電流iの第2極性の電流i2は、電流方向設定素子344のアノードAと、そのカソードKと、第2半導体スイッチ342のドレインDと、そのソースSを経由して流れる。その他は、図16に示す回路遮断装置30Lと同じに構成される。
この実施の形態15においても、図16に示す回路遮断装置30Lと同様に、第1、第2の半導体スイッチ341、342の一方を通じて電流が流れている状態で、その他方をオフ状態とし、この他方がオフ状態とされた後、その一方を流れていた電流が消滅した状態で、その一方の半導体スイッチをオフ状態とするので、半導体スイッチ341、342をオフ状態にしたときにサージ電圧Vsが発生せず、半導体スイッチ341、342の破壊を防止しながら、交流線路17U、17Wを遮断することができる。
この発明による電力供給回路は、例えば電気駆動自動車の駆動モータに対する電力供給回路として利用される。
この発明による電力供給回路の全体を示す電気回路図である。 この発明による電力供給回路の実施の形態1で使用される回路遮断装置を示す電気回路図である。 実施の形態1で使用される回路遮断装置の動作説明用波形図である。 この発明による電力供給回路の実施の形態2で使用される回路遮断装置を示す電気回路図である。 この発明による電力供給回路の実施の形態3で使用される回路遮断装置を示す電気回路図である。 この発明による電力供給回路の実施の形態4で使用される回路遮断装置を示す電気回路図である。 実施の形態4で使用される回路遮断装置の動作説明用波形図である。 この発明による電力供給回路の実施の形態5で使用される回路遮断装置を示す電気回路図である。 この発明による電力供給回路の実施の形態6で使用される回路遮断装置を示す電気回路図である。 この発明による電力供給回路の実施の形態7で使用される回路遮断装置を示す電気回路図である。 この発明による電力供給回路の実施の形態8で使用される回路遮断装置を示す電気回路図である。 この発明による電力供給回路の実施の形態9で使用される回路遮断装置を示す電気回路図である。 この発明による電力供給回路の実施の形態10で使用される回路遮断装置を示す電気回路図である。 実施の形態10で使用される回路遮断装置の動作説明用波形図である。 この発明による電力供給回路の実施の形態11で使用される回路遮断装置を示す電気回路図である。 この発明による電力供給回路の実施の形態12で使用される回路遮断装置を示す電気回路図である。 この発明による電力供給回路の実施の形態13で使用される回路遮断装置を示す電気回路図である。 この発明による電力供給回路の実施の形態14で使用される回路遮断装置を示す電気回路図である。 この発明による電力供給回路の実施の形態15で使用される回路遮断装置を示す電気回路図である。
符号の説明
10:電力供給回路、11:直流電源、13:交流負荷、15:直流電力線路、
17:交流電力線路、20:電力変換装置、30A〜30P:回路遮断装置、
32、321、322、331、332、341、342:半導体スイッチ、
323、324、333、334、343、344:電流方向設定素子、
37:電流モニタ、38:電圧モニタ、39、39A、39B:制御部。

Claims (7)

  1. 直流電源に直流電力線路を通じて電力変換装置を接続し、この電力変換装置に交流電力線路を通じて交流負荷を接続した電力供給回路であって、
    前記交流電力線路を遮断する回路遮断装置、および前記交流電力線路に流れる交流電流をモニタする電流モニタを備え、
    前記回路遮断装置は、前記交流電力線路に配設された少なくとも1つの半導体スイッチと、前記電流モニタのモニタ出力に基づいて前記半導体スイッチを遮断する制御部とを含み、
    前記交流電流がほぼゼロとなるタイミングで、前記半導体スイッチがオフ状態とされることを特徴とする電力供給回路。
  2. 直流電源に直流電力線路を通じて電力変換装置を接続し、この電力変換装置に交流電力線路を通じて交流負荷を接続した電力供給回路であって、
    前記交流電力線路を遮断する回路遮断装置、および前記交流電力線路に流れる交流電流をモニタする電流モニタを備え、
    前記回路遮断装置は、前記交流電力線路に第1極性の電流を流す第1半導体スイッチと、前記交流電力線路に前記第1極性と逆極性の第2極性の電流を流す第2半導体スイッチと、前記電流モニタのモニタ出力に基づいて前記第1、第2半導体スイッチを遮断する制御部とを含み、
    前記第1、第2半導体スイッチの一方を通じて前記交流電力線路に電流が流れている状態で、その他方がオフ状態とされ、またその他方がオフ状態とされた後、その一方を通じて前記交流電力線路に流れていた電流が消滅した状態で、その一方がオフ状態とされることを特徴とする電力供給回路。
  3. 直流電源に直流電力線路を通じて電力変換装置を接続し、この電力変換装置に交流電力線路を通じて交流負荷を接続した電力供給回路であって、
    前記交流電力線路を遮断する回路遮断装置を備え、
    前記回路遮断装置は、前記交流電力線路に第1極性の電流を流す第1半導体スイッチと、前記交流電力線路に前記第1極性と逆極性の第2極性の電流を流す第2半導体スイッチと、前記第1、第2半導体スイッチの電圧をモニタする電圧モニタと、この電圧モニタのモニタ出力に基づいて前記第1、第2半導体スイッチを遮断する制御部とを含み、
    前記第1、第2半導体スイッチの一方を通じて前記交流電力線路に電流が流れている状態で、その他方がオフ状態とされ、またその他方がオフ状態とされた後、その一方を通じて流れていた電流が消滅した状態で、その一方がオフ状態とされることを特徴とする電力供給回路。
  4. 請求項1〜3のいずれか一項記載の電力供給回路であって、前記半導体スイッチまたは前記第1、第2半導体スイッチが、窒化物半導体またはシリコンカーバイド半導体で構成されたことを特徴とする電力供給回路。
  5. 請求項1〜3のいずれか一項記載の電力供給回路であって、前記半導体スイッチまたは第1、第2半導体スイッチが、IGBTまたはMOSFETであることを特徴とする電力供給回路。
  6. 請求項2または3記載の電力供給回路であって、前記第1、第2半導体スイッチのそれぞれと並列に電流方向設定素子が接続されたことを特徴とする電力供給回路。
  7. 請求項2または3記載の電力供給回路であって、前記第1、第2半導体スイッチのそれぞれと直列に電流方向設定素子が接続されたことを特徴とする電力供給回路。
JP2006250833A 2006-09-15 2006-09-15 電力供給回路 Pending JP2008072865A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250833A JP2008072865A (ja) 2006-09-15 2006-09-15 電力供給回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250833A JP2008072865A (ja) 2006-09-15 2006-09-15 電力供給回路

Publications (1)

Publication Number Publication Date
JP2008072865A true JP2008072865A (ja) 2008-03-27

Family

ID=39293958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250833A Pending JP2008072865A (ja) 2006-09-15 2006-09-15 電力供給回路

Country Status (1)

Country Link
JP (1) JP2008072865A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220705A (ja) * 2008-03-17 2009-10-01 Jtekt Corp 操舵制御装置
JP2009262648A (ja) * 2008-04-23 2009-11-12 Jtekt Corp 操舵制御装置
JP2010081729A (ja) * 2008-09-26 2010-04-08 Jtekt Corp モータ回路及び電動パワーステアリング装置
JP2010148303A (ja) * 2008-12-22 2010-07-01 Panasonic Corp マトリクスコンバータ回路
JP2010246235A (ja) * 2009-04-03 2010-10-28 Toshiba Corp 鉄道車両駆動制御装置
JP2013017249A (ja) * 2011-06-30 2013-01-24 Jtekt Corp 電動モータ用制御装置
WO2013137244A1 (ja) * 2012-03-16 2013-09-19 株式会社 東芝 インバータ装置及びパワーステアリング装置
JP2017028971A (ja) * 2015-07-28 2017-02-02 日産自動車株式会社 電源装置
DE102010016565B4 (de) * 2009-04-24 2017-06-08 Denso Corporation Vorrichtung zur Umwandlung elektrischer Leistung für Fahrzeuge
CN111201152A (zh) * 2017-11-08 2020-05-26 矢崎总业株式会社 半导体继电器控制装置
EP3829016A4 (en) * 2018-07-25 2021-07-21 Mitsubishi Electric Corporation SEMICONDUCTOR CIRCUIT BREAKER AND CIRCUIT BREAKER

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298950A (ja) * 1988-05-25 1989-12-01 Mitsubishi Electric Corp 力率改善装置
JPH08182105A (ja) * 1994-12-21 1996-07-12 Toshiba Corp 電気車制御装置
JP2000308360A (ja) * 1999-02-15 2000-11-02 Toyota Central Res & Dev Lab Inc ソフトスイッチングインバータ回路
JP2006060275A (ja) * 2004-08-17 2006-03-02 Showa Dengyosha:Kk 電子遮断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298950A (ja) * 1988-05-25 1989-12-01 Mitsubishi Electric Corp 力率改善装置
JPH08182105A (ja) * 1994-12-21 1996-07-12 Toshiba Corp 電気車制御装置
JP2000308360A (ja) * 1999-02-15 2000-11-02 Toyota Central Res & Dev Lab Inc ソフトスイッチングインバータ回路
JP2006060275A (ja) * 2004-08-17 2006-03-02 Showa Dengyosha:Kk 電子遮断装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220705A (ja) * 2008-03-17 2009-10-01 Jtekt Corp 操舵制御装置
US8907603B2 (en) 2008-04-23 2014-12-09 Jtekt Corporation Steering control apparatus
JP2009262648A (ja) * 2008-04-23 2009-11-12 Jtekt Corp 操舵制御装置
US8541967B2 (en) 2008-04-23 2013-09-24 Jtekt Corporation Steering control apparatus
JP2010081729A (ja) * 2008-09-26 2010-04-08 Jtekt Corp モータ回路及び電動パワーステアリング装置
JP2010148303A (ja) * 2008-12-22 2010-07-01 Panasonic Corp マトリクスコンバータ回路
JP2010246235A (ja) * 2009-04-03 2010-10-28 Toshiba Corp 鉄道車両駆動制御装置
DE102010016565B4 (de) * 2009-04-24 2017-06-08 Denso Corporation Vorrichtung zur Umwandlung elektrischer Leistung für Fahrzeuge
JP2013017249A (ja) * 2011-06-30 2013-01-24 Jtekt Corp 電動モータ用制御装置
JP2013198202A (ja) * 2012-03-16 2013-09-30 Toshiba Corp インバータ装置及びパワーステアリング装置
CN104170238A (zh) * 2012-03-16 2014-11-26 株式会社东芝 变换器装置以及动力转向装置
US20150035464A1 (en) * 2012-03-16 2015-02-05 Kabushiki Kaisha Toshiba Inverter device and power steering device
WO2013137244A1 (ja) * 2012-03-16 2013-09-19 株式会社 東芝 インバータ装置及びパワーステアリング装置
US9887650B2 (en) 2012-03-16 2018-02-06 Kabushiki Kaisha Toshiba Inverter device and power steering device
JP2017028971A (ja) * 2015-07-28 2017-02-02 日産自動車株式会社 電源装置
CN111201152A (zh) * 2017-11-08 2020-05-26 矢崎总业株式会社 半导体继电器控制装置
CN111201152B (zh) * 2017-11-08 2022-11-29 矢崎总业株式会社 半导体继电器控制装置
EP3829016A4 (en) * 2018-07-25 2021-07-21 Mitsubishi Electric Corporation SEMICONDUCTOR CIRCUIT BREAKER AND CIRCUIT BREAKER
US11848550B2 (en) 2018-07-25 2023-12-19 Mitsubishi Electric Corporation Semiconductor circuit breaker and circuit breaking device

Similar Documents

Publication Publication Date Title
JP2008072865A (ja) 電力供給回路
KR101542339B1 (ko) 시스템 보호 성능들을 갖는 dc-전력 시스템
CN106663557B (zh) 用于中断直流电流的分离开关
US20160344329A1 (en) System and method for fault protection of a motor
WO2015121983A1 (ja) 直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法
US8338983B2 (en) SSPC for AC power distribution
JP6646870B2 (ja) チョッパ装置
JP6717186B2 (ja) インバータ制御回路
WO2012120567A1 (ja) 電力変換装置
JP2007282313A (ja) 回転機駆動装置
JP2011120462A (ja) ノーマリー・オン電界効果トランジスタを用いる電流型パワー・コンバータ
JP2014038775A (ja) 直流回路用の回路遮断スイッチ
JP2020120479A (ja) 電源装置
WO2014192327A1 (ja) 電力変換装置および制御方法
JP6202871B2 (ja) 直流回路遮断装置
US7547982B2 (en) Device for the feeding of auxiliary operating facilities for a fuel-electrically driven vehicle
JP5031607B2 (ja) 直流高速真空遮断装置
EP2634882A1 (en) DC supply unit for a power provision unit
US9673692B2 (en) Application of normally closed power semiconductor devices
JP2007312480A (ja) 三相インバータ回路
JP2005019107A (ja) 直流リレー
JP6704444B1 (ja) 電力変換装置
JP2020014295A (ja) 電力変換装置及び電力変換装置における電流制御方法
JP7226551B2 (ja) 直流電源装置
JP2005019106A (ja) 直流リレー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927