JP4534188B2 - Fuel cell electrode material and solid oxide fuel cell using the same - Google Patents

Fuel cell electrode material and solid oxide fuel cell using the same Download PDF

Info

Publication number
JP4534188B2
JP4534188B2 JP2003121419A JP2003121419A JP4534188B2 JP 4534188 B2 JP4534188 B2 JP 4534188B2 JP 2003121419 A JP2003121419 A JP 2003121419A JP 2003121419 A JP2003121419 A JP 2003121419A JP 4534188 B2 JP4534188 B2 JP 4534188B2
Authority
JP
Japan
Prior art keywords
particles
fuel cell
particle
electrode material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003121419A
Other languages
Japanese (ja)
Other versions
JP2004327278A (en
Inventor
博美 杉本
格 柴田
貢 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003121419A priority Critical patent/JP4534188B2/en
Publication of JP2004327278A publication Critical patent/JP2004327278A/en
Application granted granted Critical
Publication of JP4534188B2 publication Critical patent/JP4534188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用電極材料、その製造方法及びこれを用いた固体酸化物形燃料電池に係り、更に詳細には、長時間高温で使用した場合でもシンタリングが発生しにくい燃料電池用電極材料、その製造方法及びこれを用いた固体酸化物形燃料電池に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来から、化学エネルギーを電気化学的な反応により電気エネルギーに変換する装置として、固体酸化物形燃料電池(SOFC)が知られている。このSOFCは、燃料極、固体電解質及び空気極の各層を互いに積層した3層を燃料電池の発電部とし、外部から燃料極には水素、炭化水素等の燃料ガスを供給し、空気極には空気等の酸化剤ガスを供給して電気を発生させる。
【0003】
また、SOFCにおいて、電極性能を向上させる技術として、粒子内の構造をミクロに制御したサーメット粉体の製造方法が提案されている。この製造方法は、2種類以上の微粒子で電極を構成し、このうち1種類を外周部に偏在させること、また、ミスト状の原料を乾燥させ熱分解により反応させること、を特徴とする(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平9−309768号公報
【0005】
しかし、外周部の微粒子が1成分の金属材料から構成されている場合、高温にて長期間使用すると、シンタリングが進行し、電極性能が劣化するという問題点があった。
【0006】
更に、多孔質酸化物粉体(YSZ等)に金属塩水溶液を含浸、熱処理し、表面に金属が担持された粒子を成型・焼成して電極とすることが提案されている。(例えば、特許文献2参照。)。
【0007】
【特許文献2】
特開平10−144337号公報
【0008】
しかし、基体となる粉体表面を金属層が全て覆ってしまうので、SOFC用電極として用いた場合は、電極反応に重要な三相界面が少なくなるという問題点があった。
【0009】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、電極材料の加熱時の凝集による性能劣化が少なく、多くの三相界面を有し、電極の気孔率・比表面積が大きく、安価に製造でき、構造制御が容易な燃料電池用電極材料、その製造方法及びこれを用いた固体酸化物形燃料電池を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、主成分と成る第1粒子に2種以上の粒子を被覆することにより、上記課題が解決できることを見出し、本発明を完成するに至った。
【0011】
【発明の実施の形態】
以下、本発明の燃料電池用電極材料について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示す。
【0012】
上述の如く、本発明の燃料電池用電極材料は、構成成分が異なり且つ粒子径が0.1〜10μmである3種以上の粒子を結着して成る。また、上記粒子には、下記の粒子径比を満たす3つの粒子が含まれる。即ち、これらを第1粒子、第2粒子及び第3粒子としたとき、これらの粒子径比P:P:Pは10〜100:1〜10:1〜10で表される。
なお、上記第1〜3粒子の粒子径は、レーザー粒度分布測定や遠心沈降法等の一般的な方法で測定できる。
【0013】
このように第2粒子及び第3粒子の粒径を第1粒子と同等以下にすることで、第1粒子の表面には、2種以上の異種成分から成る粒子がそれぞれ分散状態で且つ適度な空孔率を保持しつつ被覆される。これより、耐熱衝撃性が向上する。また、本電極材料を用いた電極は、IR抵抗、反応抵抗が低減されるので、通電時の低温化及びシンタリング防止により電極の長期安定性が向上する。
また、第2粒子及び第3粒子の一方を金属成分とするときは、他方は焼結し難い成分とすることが望ましく、このときはシンタリングをより防止できる。更に、第2粒子、第3粒子のいずれか一方又は双方として、イオン導電性や混合導電性を有する酸化物を混在させるときは、それぞれの被覆成分で異なる電極反応機構が進行されるので、より電極性能が向上し易い。
【0014】
また、上記第1粒子は、電極基体として機能するものを使用できる。例えば、SOFC等の高温で使用されるデバイスに使用するときは、電解質層と同質のもの又は熱膨張係数の近い酸化物などを適宜選択でき、このときは耐熱衝撃性が向上し得る。一方、上記第2粒子及び第3粒子は、電極基体を修飾する機能を有するものを使用できる。
【0015】
更に、上記第1粒子としては、イオン導電性又は混合導電性を有する酸化物を使用できる。これより、電極性能を向上できるとともに電極の構造をより強化できる材料が得られる。例えば、酸素イオン伝導性などを有する従来公知の電解質材料、具体的には、酸化ネオウジム(Nd)、酸化サマリウム(Sm)、イットリア(Y)、酸化スカンジウム(Sc)及び酸化ガドリニウム(Gd)などを固溶した安定化ジルコニアや、セリア(CeO)系固溶体、酸化ビスマス固溶体及びランタンガリウム(LaGa)固溶体ぺロブスカイト、ランタンコバルト系酸化物、ランタンマンガン系酸化物等空気極材料などが挙げられる。
なお、この場合は、第2粒子及び第3粒子の少なくとも一方は、金属、金属酸化物のいずれか一方又は双方を含有することが望ましい。これより、電極に触媒活性及び導電性を付与し、電極性能を向上させ得る。また、かかる金属材料として貴金属を用いる場合は、所望の機能層を薄く配設できるので、原料の使用量及びコストを低減できる。
ここで、上記「混合導電性」とは、電子・正孔とイオン導電性を同時に有するものをいう。電極材料が混合導電性であるときは、電極反応に必要な電子・イオンを同時に供給することができるため、接触部位に三相界面を形成し易い。また、「導電性」とは、固体内で電子やイオン等の電気的キャリアとなる物質を運ぶ性質をいい、特に作動温度域で10−7S・cm−1以上の導電率を持つものを「導電体」という。
【0017】
一方、上記第2粒子、第3粒子のいずれか一方又は双方は、混合導電性を有する材料であることが好適である。例えば、混合伝導性を有する従来公知の電解質材料、具体的にはジルコニア系固溶体、セリア(CeO)系固溶体、酸化ビスマス固溶体、ランタンガリウム(LaGa)固溶体、ランタンコバルト系酸化物、ランタンマンガン系酸化物、サマリウムコバルト系酸化物又はサマリウムマンガン系酸化物、及びこれらを任意に組合わせたものを使用することができる。
これより、SOFCにおいては、被覆成分の1つが混合導電性を有することで、主成分(第1粒子)の表面に電極反応に必要な三相界面を効率良く均一に分布させることができ、反応サイトが増加するので電極性能が向上し得る。
【0018】
次に、本発明の燃料電池用電極材料の製造方法について詳細に説明する。
かかる製造方法は、上記第2粒子及び3粒子を予め混合しておき、その後に第1粒子を混合して燃料電池用電極材料を得ることを特徴とする。
具体的には、例えば、
(1)第2粒子として0.2〜0.4μmの平均粒子径を有するSDC粉末を20%用意し、第3粒子として0.5〜0.8μmの平均粒子径を有するNiO粉末を80%用意し、これらを混合し、平均粒子径が1.0〜1.5μmとなるように調整した造粒体を作成する。
(2)次いで、得られた造粒体に1〜2μmの平均粒子径を有する8YSZ粉末を、上記第2粒子及び第3粒子の含有量が60〜90%となるように添加して混同し、成形する。
(3)更に、得られた成形体を1100〜1300℃の温度範囲で焼成して、燃料電池用電極材料を得る。
このように、被覆成分である第2粒子及び第3粒子を予め混合させることで、第1粒子の表面に均一に多種成分が分散される。
【0019】
次に、本発明の固体酸化物形燃料電池について詳細に説明する。
かかる固体酸化物形燃料電池は、上述の燃料電池用電極材料を用いることにより、電池の長期安定性、高出力化が図られ、また低温作動型のSOFCの設計が可能となる。また、三相界面が多数点在することより電極反応が大幅に向上する。更に、第1〜3粒子の粒径比を任意に変更することで、粒子間の空隙を増加させガス拡散律速による反応抵抗を低減させることができる。例えば、図4に示すような燃料電池スタックが挙げられる。
【0020】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0021】
(実施例1)
第2粒子としてNiO、第3粒子としてSm添加セリア(以下「SDC」とする)を予めボールミルによりアルコール中で混合した。その後、第1粒子としてY添加安定化ジルコニア(以下「YSZ」とする)を同様に混合し、金属成分が重量比の3〜7割になるようにした。また、粒径は第1粒子が1μm、第2粒子が0.5μm、第3粒子が0.3μmとなるようにした。
得られた混合粉末をペースト状にし、電解質上に塗布し、所定温度・時間で焼成して、本例の電極材料を得た。この電極材料の構成を表1に、概略図を図1に示す。
【0022】
参考例2
第1粒子として粒径5μmのニッケル、第2粒子として粒径0.3μmのYSZ、第3粒子として粒径0.3μmのSDCを用いたこと以外は、実施例1と同様の操作を繰り返して、本例の電極材料を得た。この電極材料の構成を表1に、概略図を図2に示す。
【0023】
(実施例3)
第2粒子として粒径0.2μmのLa、Sr添加コバルト酸化物(LSC)、第3粒子として粒径0.2μmのPtを用いたこと以外は、実施例1と同様の操作を繰り返して、本例の電極材料を得た。この電極材料の構成を表1に、概略図を図1に示す。
【0024】
(比較例1)
第1粒子として粒径1μmのYSZ、第2粒子として粒径0.5μmのNiOを用い、実施例1と同様の操作により第1粒子上に第2粒子を被覆して、本例の電極材料を得た。この電極材料の構成を表1に、概略図を図3に示す。
【0025】
【表1】

Figure 0004534188
【0026】
<評価試験方法>
実施例1、参考例2、実施例3及び比較例1で得られた電極材料を30mmφ、2mmtのディスク状に成型し、その上面に電解質、電極を塗布して試験片とした。この試験片に0.5A/cmの電流密度で通電しながら、900℃に保温した炉内に、10時間保持することにより耐久試験を行った。
【0027】
実施例1、実施例3で得られた電極材料は、第1粒子に性状の異なる2種類の粒子を混合し被覆したものであるため、電極として長時間高温で使用した場合でもシンタリングが発生しにくいことが明らかである。特に、実施例1では、微粒子となったSDCはシンタリングし易いが、第2粒子としてNiOを混合することで、粒子表面でのシンタリングを防止できることがわかる。また、参考例2では、Niは長時間高温下でシンタリングし易いが、第2粒子及び第3粒子に互いに焼結性の異なる微粒子を用いて第1粒子を被覆することでシンタリングを防止できることがわかる。
一方、比較例1で得られた電極材料は、電極として長期間加熱されるとNiOの焼結が進行することがわかる。
【0028】
【発明の効果】
以上説明してきたように、本発明によれば、主成分と成る第1粒子に2種以上の粒子を被覆することとしたため、電極材料の加熱時の凝集による性能劣化が少なく、多くの三相界面を有し、電極の気孔率・比表面積が大きく、安価に製造でき、構造制御が容易な燃料電池用電極材料、その製造方法及びこれを用いた固体酸化物形燃料電池を提供することができる。
【図面の簡単な説明】
【図1】実施例1及び実施例3で得られた電極材料を示す概略図である。
【図2】 参考例2で得られた電極材料を示す概略図である。
【図3】比較例1で得られた電極材料を示す概略図である。
【図4】燃料電池スタックの一例を示す概略図である。
【図5】従来の電極材料の一例を示す概略図である。
【図6】従来の電極材料の他の例を示す概略図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode material for a fuel cell, a method for producing the same, and a solid oxide fuel cell using the same, and more particularly, an electrode for a fuel cell that hardly causes sintering even when used at a high temperature for a long time. The present invention relates to a material, a manufacturing method thereof, and a solid oxide fuel cell using the same.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, a solid oxide fuel cell (SOFC) is known as a device that converts chemical energy into electrical energy by an electrochemical reaction. This SOFC uses a fuel cell, a solid electrolyte, and an air electrode layered together as a power generation part of a fuel cell. Fuel gas such as hydrogen and hydrocarbon is supplied to the fuel electrode from the outside, and the air electrode is supplied to the air electrode. Electricity is generated by supplying an oxidant gas such as air.
[0003]
Also, in SOFC, as a technique for improving electrode performance, a method for producing a cermet powder in which the structure inside the particles is controlled to be microscopically has been proposed. This production method is characterized in that an electrode is composed of two or more kinds of fine particles, one of which is unevenly distributed in the outer periphery, and that a mist-like raw material is dried and reacted by thermal decomposition (for example, , See Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-309768
However, when the fine particles in the outer peripheral portion are composed of a one-component metal material, there is a problem in that, when used at a high temperature for a long time, sintering proceeds and electrode performance deteriorates.
[0006]
Further, it has been proposed to impregnate a porous oxide powder (YSZ or the like) with a metal salt aqueous solution, heat-treat, and form and sinter particles having a metal supported thereon to form an electrode. (For example, refer to Patent Document 2).
[0007]
[Patent Document 2]
Japanese Patent Laid-Open No. 10-144337
However, since the metal layer entirely covers the surface of the powder serving as the substrate, there is a problem that the three-phase interface important for the electrode reaction is reduced when used as an SOFC electrode.
[0009]
The present invention has been made in view of such problems of the prior art, and the object of the invention is that there is little performance deterioration due to aggregation during heating of the electrode material, and there are many three-phase interfaces. It is an object of the present invention to provide an electrode material for a fuel cell that has a large porosity and specific surface area of the electrode, can be manufactured at low cost, and can be easily controlled, a manufacturing method thereof, and a solid oxide fuel cell using the same.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by coating the first particles as the main component with two or more kinds of particles, thereby completing the present invention. It came to do.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the fuel cell electrode material of the present invention will be described in detail. In the present specification, “%” indicates a mass percentage unless otherwise specified.
[0012]
As described above, the fuel cell electrode material of the present invention is formed by binding three or more kinds of particles having different constituent components and having a particle diameter of 0.1 to 10 μm. In addition, the particles include three particles that satisfy the following particle size ratio. That is, when these are the first particles, the second particles, and the third particles, these particle diameter ratios P 1 : P 2 : P 3 are represented by 10 to 100: 1 to 10: 1 to 10.
The particle diameters of the first to third particles can be measured by a general method such as laser particle size distribution measurement or centrifugal sedimentation.
[0013]
Thus, by making the particle diameters of the second particles and the third particles equal to or less than those of the first particles, the particles of two or more kinds of different components are dispersed in the surface of the first particles and are appropriate. It is coated while maintaining the porosity. Thereby, the thermal shock resistance is improved. In addition, since an electrode using this electrode material has reduced IR resistance and reaction resistance, the long-term stability of the electrode is improved by lowering the temperature during energization and preventing sintering.
In addition, when one of the second particles and the third particles is a metal component, the other is desirably a component that is difficult to sinter, and in this case, sintering can be further prevented. Furthermore, when an oxide having ionic conductivity or mixed conductivity is mixed as one or both of the second particle and the third particle, since different electrode reaction mechanisms proceed with the respective coating components, Electrode performance is easy to improve.
[0014]
Moreover, the said 1st particle | grain can use what functions as an electrode base | substrate. For example, when used in a device used at a high temperature such as SOFC, an oxide having the same quality as the electrolyte layer or an oxide having a thermal expansion coefficient close to the electrolyte layer can be appropriately selected. In this case, the thermal shock resistance can be improved. On the other hand, the said 2nd particle and 3rd particle can use what has a function which modifies an electrode base | substrate.
[0015]
Furthermore, as the first particles, oxides having ionic conductivity or mixed conductivity can be used. Thus, a material that can improve the electrode performance and further strengthen the electrode structure can be obtained. For example, a conventionally known electrolyte material having oxygen ion conductivity, specifically, neodymium oxide (Nd 2 O 3 ), samarium oxide (Sm 2 O 3 ), yttria (Y 2 O 3 ), scandium oxide (Sc) 2 O 3 ) and gadolinium oxide (Gd 2 O 3 ), etc., stabilized zirconia, ceria (CeO 2 ) solid solution, bismuth oxide solid solution and lanthanum gallium (LaGa) solid solution perovskite, lanthanum cobalt oxide, Examples include air electrode materials such as lanthanum manganese-based oxides.
In this case, it is desirable that at least one of the second particle and the third particle contains one or both of a metal and a metal oxide. Thereby, catalytic activity and conductivity can be imparted to the electrode, and the electrode performance can be improved. Further, when a noble metal is used as the metal material, a desired functional layer can be thinly disposed, so that the amount of raw material used and the cost can be reduced.
Here, the above “mixed conductivity” means a material having both electron / hole and ion conductivity. When the electrode material is mixed conductive, electrons and ions necessary for the electrode reaction can be supplied simultaneously, so that a three-phase interface is easily formed at the contact site. “Conductivity” refers to the property of transporting substances that serve as electrical carriers such as electrons and ions in solids, particularly those having a conductivity of 10 −7 S · cm −1 or more in the operating temperature range. It is called “conductor”.
[0017]
On the other hand, either one or both of the second particles and the third particles are preferably a material having mixed conductivity. For example, conventionally known electrolyte materials having mixed conductivity, specifically, zirconia solid solution, ceria (CeO 2 ) solid solution, bismuth oxide solid solution, lanthanum gallium (LaGa) solid solution, lanthanum cobalt oxide, lanthanum manganese oxide Products, samarium-cobalt-based oxides or samarium-manganese-based oxides, and any combination thereof can be used.
Therefore, in SOFC, one of the coating components has mixed conductivity, so that the three-phase interface necessary for the electrode reaction can be efficiently and uniformly distributed on the surface of the main component (first particle). Since the number of sites increases, electrode performance can be improved.
[0018]
Next, the manufacturing method of the electrode material for fuel cells of this invention is demonstrated in detail.
This manufacturing method is characterized in that the second particles and the three particles are mixed in advance, and then the first particles are mixed to obtain a fuel cell electrode material.
Specifically, for example,
(1) 20% of SDC powder having an average particle diameter of 0.2 to 0.4 μm is prepared as second particles, and 80% of NiO powder having an average particle diameter of 0.5 to 0.8 μm is used as third particles. These are prepared and mixed to prepare a granulated body adjusted to have an average particle size of 1.0 to 1.5 μm.
(2) Next, 8YSZ powder having an average particle diameter of 1 to 2 μm is added to the obtained granulated body so that the content of the second particles and the third particles is 60 to 90% and mixed. Mold.
(3) Furthermore, the obtained molded body is fired in a temperature range of 1100 to 1300 ° C. to obtain a fuel cell electrode material.
Thus, by mixing the second particles and the third particles, which are the coating components, in advance, various components are uniformly dispersed on the surface of the first particles.
[0019]
Next, the solid oxide fuel cell of the present invention will be described in detail.
In such a solid oxide fuel cell, long-term stability and high output of the cell can be achieved by using the above-described electrode material for a fuel cell, and a low temperature operation type SOFC can be designed. In addition, the electrode reaction is greatly improved due to the presence of many three-phase interfaces. Furthermore, by arbitrarily changing the particle size ratio of the first to third particles, the voids between the particles can be increased, and the reaction resistance due to gas diffusion rate control can be reduced. For example, a fuel cell stack as shown in FIG.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples.
[0021]
Example 1
NiO as the second particles and Sm-added ceria (hereinafter referred to as “SDC”) as the third particles were previously mixed in alcohol by a ball mill. Thereafter, Y-added stabilized zirconia (hereinafter referred to as “YSZ”) was similarly mixed as the first particles so that the metal component was 30 to 70% of the weight ratio. In addition, the particle diameter was set to 1 μm for the first particles, 0.5 μm for the second particles, and 0.3 μm for the third particles.
The obtained mixed powder was made into a paste, applied onto the electrolyte, and fired at a predetermined temperature and time to obtain an electrode material of this example. The structure of this electrode material is shown in Table 1, and a schematic diagram is shown in FIG.
[0022]
( Reference Example 2 )
The same operation as in Example 1 was repeated except that nickel having a particle size of 5 μm was used as the first particle, YSZ having a particle size of 0.3 μm was used as the second particle, and SDC having a particle size of 0.3 μm was used as the third particle. The electrode material of this example was obtained. The structure of this electrode material is shown in Table 1, and a schematic diagram is shown in FIG.
[0023]
(Example 3)
The same operation as in Example 1 was repeated except that La having a particle diameter of 0.2 μm as the second particles, Sr-added cobalt oxide (LSC), and Pt having a particle diameter of 0.2 μm as the third particles were used. The electrode material of this example was obtained. The structure of this electrode material is shown in Table 1, and a schematic diagram is shown in FIG.
[0024]
(Comparative Example 1)
Using YSZ having a particle size of 1 μm as the first particles and NiO having a particle size of 0.5 μm as the second particles, the second particles are coated on the first particles by the same operation as in Example 1, and the electrode material of this example Got. The structure of this electrode material is shown in Table 1, and a schematic diagram is shown in FIG.
[0025]
[Table 1]
Figure 0004534188
[0026]
<Evaluation test method>
The electrode material obtained in Example 1, Reference Example 2, Example 3 and Comparative Example 1 was molded into a disk shape of 30 mmφ and 2 mmt, and an electrolyte and an electrode were applied on the upper surface to obtain a test piece. A durability test was performed by holding the test piece for 10 hours in a furnace kept at 900 ° C. while energizing the test piece at a current density of 0.5 A / cm 2 .
[0027]
Since the electrode materials obtained in Example 1 and Example 3 are obtained by mixing and coating two kinds of particles having different properties on the first particles, sintering occurs even when the electrodes are used at high temperatures for a long time. It is clear that it is difficult to do. In particular, in Example 1, although SDC which became microparticles | fine-particles is easy to sinter, it turns out that sintering on the particle | grain surface can be prevented by mixing NiO as a 2nd particle | grain. In Reference Example 2 , Ni is easy to sinter for a long time at high temperature, but the sintering is prevented by coating the first particles with fine particles having different sintering properties on the second particles and the third particles. I understand that I can do it.
On the other hand, when the electrode material obtained in Comparative Example 1 is heated as an electrode for a long time, it can be seen that the sintering of NiO proceeds.
[0028]
【The invention's effect】
As described above, according to the present invention, since the first particles as the main component are coated with two or more kinds of particles, there is little performance deterioration due to aggregation during heating of the electrode material, and many three-phases. To provide an electrode material for a fuel cell that has an interface, has a large porosity and specific surface area of the electrode, can be manufactured at low cost, and has an easy structure control, a manufacturing method thereof, and a solid oxide fuel cell using the same it can.
[Brief description of the drawings]
FIG. 1 is a schematic view showing electrode materials obtained in Example 1 and Example 3. FIG.
2 is a schematic view showing an electrode material obtained in Reference Example 2. FIG.
3 is a schematic view showing an electrode material obtained in Comparative Example 1. FIG.
FIG. 4 is a schematic view showing an example of a fuel cell stack.
FIG. 5 is a schematic view showing an example of a conventional electrode material.
FIG. 6 is a schematic view showing another example of a conventional electrode material.

Claims (4)

構成成分が異なり且つ粒子径が0.1〜10μmである3種以上の粒子を結着して成る燃料電池用電極材料であって、
上記粒子のうちの3つを第1粒子、第2粒子及び第3粒子としたとき、これらの粒子径比P :P :P が10〜100:1〜10:1〜10で表され、
上記第1粒子の表面に上記第2粒子及び上記第3粒子が分散状態で被覆され、
上記第1粒子がイオン導電性又は混合導電性を有する酸化物であり、
上記第2粒子及び/又は上記第3粒子が混合導電性を有する材料であることを特徴とする燃料電池用電極材料。
A fuel cell electrode material formed by binding three or more kinds of particles having different constituent components and a particle diameter of 0.1 to 10 μm,
When three of the above particles are the first particle, the second particle, and the third particle, these particle diameter ratios P 1 : P 2 : P 3 are expressed as 10-100: 1 to 10: 1-10. And
The surface of the first particle is coated with the second particle and the third particle in a dispersed state,
Ri oxide der that the first particles have an ionic conductivity, or mixed conducting,
The second particles and / or fuel cell electrode materials you wherein said third particle is a material having mixed conductivity.
上記第2粒子及び/又は第3粒子が混合導電性を有する材料であって、ジルコニア系固溶体、セリア系固溶体、酸化ビスマス固溶体、ランタンガリウム固溶体、ランタンコバルト系酸化物、ランタンマンガン系酸化物、サマリウムコバルト系酸化物及びサマリウムマンガン系酸化物から成る群より選ばれた少なくとも1種のものであることを特徴とする請求項1に記載の燃料電池用電極材料。The second particle and / or third particle is a material having mixed conductivity, and is a zirconia solid solution, ceria solid solution, bismuth oxide solid solution, lanthanum gallium solid solution, lanthanum cobalt oxide, lanthanum manganese oxide, samarium 2. The fuel cell electrode material according to claim 1 , wherein the electrode material is at least one selected from the group consisting of a cobalt-based oxide and a samarium-manganese oxide. 請求項1又は2に記載の燃料電池用電極材料を製造するに当たり、
上記第2粒子及び第3粒子を予め混合した後に、第1粒子を混合することを特徴とする燃料電池用電極材料の製造方法。
In producing the fuel cell electrode material according to claim 1 or 2 ,
A method for producing an electrode material for a fuel cell, wherein the first particles are mixed after the second particles and the third particles are mixed in advance.
請求項1又は2に記載の燃料電池用電極材料を用いたことを特徴とする固体酸化物形燃料電池。A solid oxide fuel cell using the fuel cell electrode material according to claim 1 .
JP2003121419A 2003-04-25 2003-04-25 Fuel cell electrode material and solid oxide fuel cell using the same Expired - Lifetime JP4534188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121419A JP4534188B2 (en) 2003-04-25 2003-04-25 Fuel cell electrode material and solid oxide fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121419A JP4534188B2 (en) 2003-04-25 2003-04-25 Fuel cell electrode material and solid oxide fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2004327278A JP2004327278A (en) 2004-11-18
JP4534188B2 true JP4534188B2 (en) 2010-09-01

Family

ID=33499995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121419A Expired - Lifetime JP4534188B2 (en) 2003-04-25 2003-04-25 Fuel cell electrode material and solid oxide fuel cell using the same

Country Status (1)

Country Link
JP (1) JP4534188B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090023027A1 (en) * 2005-03-23 2009-01-22 Kazuo Hata Fuel Electrode Material for Solid Oxide Fuel Cell, Fuel Electrode Using the Same, and Fuel Cell
JP5041193B2 (en) * 2005-09-21 2012-10-03 大日本印刷株式会社 Solid oxide fuel cell
JP2007335142A (en) * 2006-06-13 2007-12-27 Nippon Shokubai Co Ltd Nickel-ceria fuel electrode material for solid oxide fuel battery
JP4950721B2 (en) * 2007-03-26 2012-06-13 株式会社日本触媒 Fuel electrode material for solid oxide fuel cells
JP5218419B2 (en) * 2007-11-05 2013-06-26 住友金属鉱山株式会社 Nickel oxide powder material for solid oxide fuel cell, method for producing the same, fuel electrode material using the same, fuel electrode, and solid oxide fuel cell
JP5244423B2 (en) * 2008-02-29 2013-07-24 株式会社東芝 Solid oxide electrochemical cell and method for producing the same
JP5388742B2 (en) 2008-08-08 2014-01-15 株式会社田中化学研究所 Method for producing nickel oxide-stabilized zirconia composite oxide
KR101679910B1 (en) * 2013-08-01 2016-11-28 주식회사 엘지화학 Inorganic oxide powder and electrolyte comprising sintered body of the same
JP6842103B2 (en) * 2015-06-15 2021-03-17 国立研究開発法人物質・材料研究機構 Anode material for solid oxide fuel cell and its manufacturing method, and solid oxide fuel cell
KR102129651B1 (en) * 2016-09-30 2020-07-02 주식회사 엘지화학 Cathod green sheet for solid oxide fuel cell and solid oxide fuel cell
WO2023193062A1 (en) * 2022-04-06 2023-10-12 Commonwealth Scientific And Industrial Research Organisation Electrode compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001701A (en) * 1998-06-16 2000-01-07 Toto Ltd Production of nickel series/zirconia series compound powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213028A (en) * 1995-02-06 1996-08-20 Fujikura Ltd Fuel electrode of solid electrolyte fuel cell and its film forming method
JPH1154131A (en) * 1997-07-31 1999-02-26 Fujikura Ltd Fuel cell electrode for solid electrolyte type fuel cell, film forming method thereof, and fuel electrode material used in film formation
JPH11126617A (en) * 1997-10-23 1999-05-11 Fujikura Ltd Solid electrolyte-type fuel cell and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001701A (en) * 1998-06-16 2000-01-07 Toto Ltd Production of nickel series/zirconia series compound powder

Also Published As

Publication number Publication date
JP2004327278A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP5469795B2 (en) Anode-supported solid oxide fuel cell using cermet electrolyte
CN107112545B (en) Anode for solid oxide fuel cell, method for producing same, and method for producing electrolyte layer-electrode assembly for fuel cell
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP2008519404A (en) Electrochemical cell structure and its manufacturing method by controlled powder method
JP2007529852A5 (en)
JP5218419B2 (en) Nickel oxide powder material for solid oxide fuel cell, method for producing the same, fuel electrode material using the same, fuel electrode, and solid oxide fuel cell
KR100424194B1 (en) Electrode part having microstructure of extended triple phase boundary by porous ion conductive ceria film coating and Method to manufacture the said electrode
Maric et al. High‐performance Ni‐SDC cermet anode for solid oxide fuel cells at medium operating temperature
KR20130099704A (en) Functional layer material for solid oxide fuel cell, functional layer manufactured using the material and solid oxide fuel cell including the functional layer
JP2008004422A (en) Electrode for solid oxide fuel cell, solid oxide fuel cell, and its manufacturing method
CN111910201B (en) Hydrogen electrode of solid oxide electrolytic cell, preparation method of hydrogen electrode and solid oxide electrolytic cell
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
JP5454434B2 (en) Single-chamber solid oxide fuel cell
JP2006351406A (en) Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
KR101124859B1 (en) Manufacturing method of lscf powder and cell having the powder for solid oxide fuel cell
JP3661676B2 (en) Solid oxide fuel cell
JP4784197B2 (en) Nickel oxide powder and anode material for anode material of solid oxide fuel cell
KR20190028340A (en) Solid oxide fuel cell and a battery module comprising the same
JP4428946B2 (en) Fuel electrode for solid oxide fuel cell
KR101098035B1 (en) Cathode for solic oxide fuel cell
Tamm et al. Investigation of microstructure of Sr-doped lanthanum vanadium oxide anode based on SDC electrolyte
KR101218602B1 (en) The Manufacturing method of Low Temperature Operating Solid Oxide Fuel Cell composed Silver Nano Particles and Solid Oxide Fuel Cell manufactured thereby
JP4517949B2 (en) Nickel oxide powder for electrode of solid oxide fuel cell and method for producing the same
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4534188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term