JP2008001979A - Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method - Google Patents

Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method Download PDF

Info

Publication number
JP2008001979A
JP2008001979A JP2007129282A JP2007129282A JP2008001979A JP 2008001979 A JP2008001979 A JP 2008001979A JP 2007129282 A JP2007129282 A JP 2007129282A JP 2007129282 A JP2007129282 A JP 2007129282A JP 2008001979 A JP2008001979 A JP 2008001979A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
temperature
grain
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007129282A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ushigami
義行 牛神
Nobunori Fujii
宣憲 藤井
Takeharu Kataoka
毅晴 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007129282A priority Critical patent/JP2008001979A/en
Publication of JP2008001979A publication Critical patent/JP2008001979A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for stably producing a grain-oriented steel sheet with high magnetic flux density by controlling the rapid heating region in the heating step in decarburization/annealing using induction heating devices in the production of a grain-oriented magnetic steel sheet. <P>SOLUTION: When a silicon steel stock is hot-rolled, the hot-rolled sheet is annealed and is then subjected to single cold rolling or cold rolling for a plurality of times via annealing, so as to be a steel sheet with a final sheet thickness, the steel sheet is subjected to decarburization/annealing, is thereafter nitrided, is coated with a separation agent for annealing and is subjected to finish annealing, so as to produce a grain-oriented magnetic steel sheet, in the heating step in the decarburization/annealing for the steel sheet, a plurality of induction heating devices are arranged inside a decarburization/annealing furnace in series, thus the range of the heating rate during the period when the temperature of the steel sheet is in the range of 550 to 720°C is strictly controlled. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軟磁性材料として変圧器等の電気機器の鉄芯として用いられる方向性電磁鋼板を製造する方法及びその製造に用いる脱炭焼鈍炉に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet used as an iron core of an electric device such as a transformer as a soft magnetic material, and a decarburization annealing furnace used for the production thereof.

方向性電磁鋼板は、{110}<001>方位に集積した結晶粒により構成されたSiを7%以下含有した鋼板である。そのような方向性電磁鋼板の製造における結晶方位の制御は、二次再結晶とよばれるカタストロフィックな粒成長現象を利用して達成される。   The grain-oriented electrical steel sheet is a steel sheet containing 7% or less of Si composed of crystal grains accumulated in the {110} <001> orientation. Control of crystal orientation in the production of such grain-oriented electrical steel sheets is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization.

この二次再結晶を制御するための一つの方法として、インヒビターとよばれる微細析出物を熱間圧延前のスラブ加熱時に完全固溶させた後に、熱間圧延及びその後の焼鈍工程で微細析出させる方法が工業的に実施されている。この方法では、析出物を完全固溶させるために、1350℃ないし1400℃以上の高温で加熱する必要があり、この温度は普通鋼のスラブ加熱温度に比べて約200℃高く、そのための専用の加熱炉が必要であり、また、溶融スケール量が多い等の問題がある。   As one method for controlling this secondary recrystallization, fine precipitates called inhibitors are completely dissolved during slab heating before hot rolling, and then finely precipitated in hot rolling and subsequent annealing processes. The method is practiced industrially. In this method, in order to completely dissolve the precipitate, it is necessary to heat at a high temperature of 1350 ° C. to 1400 ° C. or higher, which is about 200 ° C. higher than the slab heating temperature of ordinary steel. There are problems such as requiring a heating furnace and a large amount of melt scale.

そこで、低温スラブ加熱による方向性電磁鋼板の製造について研究開発が進められた。
低温スラブ加熱による製造方法として、例えば小松らは、窒化処理により形成した(Al、Si)Nをインヒビターとして用いる方法を特許文献1で開示している。また、小林らは、その際の窒化処理の方法として、脱炭焼鈍後にストリップ状で窒化する方法を特許文献2で開示しており、本発明者らも、非特許文献1で、ストリップ状で窒化する場合の窒化物の挙動を報告している。
Therefore, research and development on the production of grain-oriented electrical steel sheets by low-temperature slab heating was advanced.
As a manufacturing method by low-temperature slab heating, for example, Komatsu et al. Discloses a method using (Al, Si) N formed by nitriding as an inhibitor. Moreover, Kobayashi et al. Disclosed a method of nitriding in strip form after decarburization annealing as a method of nitriding treatment in that case, and the present inventors also disclosed in non-patent document 1 in strip form. The behavior of nitride when nitriding is reported.

そして、本発明者らは、そのような低温スラブ加熱による方向性電磁鋼板の製造方法においては、脱炭焼鈍時にインヒビターが形成されていないので、脱炭焼鈍における一次再結晶組織の調整が二次再結晶を制御する上で重要であり、一次再結晶粒組織の粒径分布の変動係数が0.6より大きくなり粒組織が不均一になると二次再結晶が不安定になるということを特許文献3で示し、さらに、脱炭焼鈍における一次再結晶組織の調整について、特許文献4で、脱炭焼鈍の昇温過程における急速加熱を開始する温度を適切に選定して、一次再結晶集合組織に影響を与えずに一次再結晶組織の粒径調整を行うことにより製品の磁気特性を安定化できることを開示した。   And in the manufacturing method of the grain-oriented electrical steel sheet by such low-temperature slab heating, the present inventors do not form an inhibitor during decarburization annealing, so that the adjustment of the primary recrystallization structure in the decarburization annealing is secondary. It is important to control recrystallization, and it is patented that the secondary recrystallization becomes unstable when the variation coefficient of the particle size distribution of the primary recrystallized grain structure is larger than 0.6 and the grain structure becomes non-uniform. Reference 3 shows the adjustment of the primary recrystallization structure in decarburization annealing, and in Patent Document 4, the temperature at which rapid heating is started in the temperature raising process of decarburization annealing is appropriately selected, and the primary recrystallization texture It was disclosed that the magnetic properties of the product can be stabilized by adjusting the grain size of the primary recrystallized structure without affecting the product.

また、本発明者らは、一次再結晶組織中の{411}方位粒が{110}<001>二次再結晶粒の優先成長に影響を及ぼすことを見い出し、特許文献5、6において、脱炭焼鈍工程の昇温過程の加熱速度を制御し、脱炭焼鈍後の一次再結晶集合組織の粒組織においてI{111 }/I{411 }の比率を3以下に制御し、その後窒化処理を行いインヒビターを強化することにより磁束密度の高い方向性電磁鋼板が工業的に安定的に製造できることを示した。
ここで、I{111 }及びI{411 }はそれぞれ{111}及び{411}面が板面に平行である粒の割合であり、X線回折測定により板厚1/10層において測定された回折強度値を表している。
Further, the present inventors have found that {411} -oriented grains in the primary recrystallized structure affect the preferential growth of {110} <001> secondary recrystallized grains. The heating rate in the temperature raising process of the carbon annealing process is controlled, and the ratio of I {111} / I {411} is controlled to 3 or less in the grain structure of the primary recrystallization texture after decarburization annealing, and then nitriding is performed. It was shown that the grain-oriented electrical steel sheet with high magnetic flux density can be manufactured industrially stably by strengthening the inhibitor.
Here, I {111} and I {411} are ratios of grains having {111} and {411} planes parallel to the plate surface, respectively, and were measured in the plate thickness 1/10 layer by X-ray diffraction measurement. Represents the diffraction intensity value.

そして、これらの文献では、脱炭焼鈍の昇温過程の急速加熱温度範囲と加熱速度について、特許文献4では、650℃までは平均加熱速度10〜40℃/秒で加熱し、引き続いて焼鈍温度まで60℃/秒以上の加熱速度で加熱して一次再結晶組織の平均粒径を調整することが、また、特許文献6では、600℃以下の領域から750〜900℃の範囲内の所定の温度まで40℃/秒以上(好ましくは75℃/秒以上125℃/秒以下)の加熱速度で加熱することがそれぞれ記載されている。   And in these literatures, about the rapid heating temperature range and heating rate of the temperature rising process of decarburization annealing, in patent document 4, it heats to 650 degreeC with an average heating rate of 10-40 degree-C / sec, and it continues annealing temperature. Adjusting the average grain size of the primary recrystallized structure by heating at a heating rate of 60 ° C./second or more. In Patent Document 6, a predetermined range of 750 to 900 ° C. from a region of 600 ° C. or lower is used. Each of them describes heating to a temperature at a heating rate of 40 ° C./second or more (preferably 75 ° C./second or more and 125 ° C./second or less).

上記方法においては、750〜900℃の範囲内の所定の温度まで40℃/秒以上の現状よりも速い加熱速度で加熱する必要がある。そのための加熱手段について、特許文献5には、従来の通常輻射熱を利用したラジアントチューブ等による脱炭焼鈍設備を改造した設備、レーザー等の高エネルギー熱源を利用する方法、誘導加熱、通電加熱装置等が例示されているが、これらの加熱方法の中で、とりわけ、誘導加熱が、加熱速度の自由度が高く、鋼板と非接触に加熱でき、脱炭焼鈍炉内への設置が比較的容易である等の点から有利である。
ところが、脱炭焼鈍の昇温過程において、実際に誘導加熱装置を用いて電磁鋼板を加熱処理した場合、特許文献6の結果から推察されるほど磁束密度向上効果がない場合があることが判明した。
In the above method, it is necessary to heat to a predetermined temperature within the range of 750 to 900 ° C. at a heating rate higher than the current rate of 40 ° C./second or more. Regarding the heating means for that purpose, Patent Document 5 discloses a facility that is a modification of a conventional decarburization annealing facility such as a radiant tube that uses normal radiant heat, a method that uses a high energy heat source such as a laser, induction heating, an electric heating device, and the like. Among these heating methods, in particular, induction heating has a high degree of freedom in heating rate, can be heated in a non-contact manner with a steel plate, and is relatively easy to install in a decarburization annealing furnace. It is advantageous from a certain point.
However, in the temperature raising process of decarburization annealing, when the magnetic steel sheet was actually heat-treated using an induction heating device, it was found that the effect of improving the magnetic flux density might not be as much as inferred from the results of Patent Document 6. .

特公昭62ー45285号公報Japanese Examined Patent Publication No. 62-45285 特開平2−77525号公報Japanese Patent Laid-Open No. 2-77525 特公平8−32929号公報Japanese Patent Publication No. 8-32929 特開平10−310822公報JP-A-10-310822 特開平9−256051号公報Japanese Patent Laid-Open No. 9-256051 特開2002−60842公報JP 2002-60842 A 「Materials Science Forum」 204-206 (1996) 、pp593-598"Materials Science Forum" 204-206 (1996), pp593-598

本発明は、方向性電磁鋼板を製造する際、脱炭焼鈍後の一次再結晶組織を改善するために、脱炭焼鈍の昇温過程における加熱速度を誘導加熱装置を用いて制御することにより、磁束密度の高い方向性電磁鋼板を安定して製造する方法及びその方法に使用する脱炭焼鈍炉を提案することを課題とする。   In order to improve the primary recrystallization structure after decarburization annealing when manufacturing the grain-oriented electrical steel sheet, the present invention controls the heating rate in the temperature raising process of decarburization annealing by using an induction heating device, It is an object to propose a method for stably producing a grain-oriented electrical steel sheet having a high magnetic flux density and a decarburization annealing furnace used in the method.

上記の課題を解決するために、本発明は次のようにしたことを特徴とする。
請求項1に係る方向性電磁鋼板の製造方法の発明は、珪素鋼素材を熱間圧延した後、焼鈍し、一回の冷間圧延または焼鈍を介して複数の冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、焼鈍分離剤を塗布し、仕上げ焼鈍を施すとともに、脱炭焼鈍から仕上げ焼鈍の二次再結晶開始までの間に鋼板の窒素量を増加させる処理を施すことよりなる方向性電磁鋼板の製造方法において、前記最終板厚の鋼板を脱炭焼鈍する際の昇温過程において、脱炭焼鈍炉内に直列に配置された複数の誘導加熱装置を用いて、鋼板温度が550℃から720℃にある間を40〜400℃/秒を満たす加熱速度で加熱することを特徴とする。
In order to solve the above problems, the present invention is characterized as follows.
The invention of the method for producing a grain-oriented electrical steel sheet according to claim 1 is the final plate obtained by subjecting a silicon steel material to hot rolling and then annealing, and performing a plurality of cold rollings through a single cold rolling or annealing. After the steel sheet is decarburized and annealed, the steel sheet is coated with an annealing separator, finish annealing is performed, and the amount of nitrogen in the steel sheet is increased between the decarburization annealing and the start of secondary recrystallization of the finish annealing. In the method of manufacturing a grain-oriented electrical steel sheet comprising processing, a plurality of induction heating devices arranged in series in a decarburization annealing furnace in a temperature rising process when the steel sheet having the final thickness is subjected to decarburization annealing. The steel sheet is heated at a heating rate satisfying 40 to 400 ° C./second while the steel plate temperature is from 550 ° C. to 720 ° C.

請求項2に係る方向性電磁鋼板の製造方法の発明は、前記請求項1に係る発明において、質量%で、Si:0.8〜7%、C:0.085%以下、酸可溶性Al:0.01〜0.065%、N:0.012%以下を含有し、残部Feおよび不可避的不純物からなる珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延することを特徴とする。   Invention of the grain-oriented electrical steel sheet according to claim 2 is the invention according to claim 1, in mass%, Si: 0.8-7%, C: 0.085% or less, acid-soluble Al: A silicon steel material containing 0.01 to 0.065%, N: 0.012% or less, and the balance Fe and inevitable impurities is heated at a temperature of 1280 ° C. or less and then hot-rolled. To do.

請求項3に係る方向性電磁鋼板の製造方法の発明は、前記請求項1または2に係る発明において、脱炭焼鈍する際の昇温過程において、脱炭焼鈍炉内に直列に配置された複数の誘導加熱装置を用いて、鋼板温度が550℃から720℃にある間を50〜250℃/秒を満たす加熱速度で加熱することを特徴とする。   The invention of the grain-oriented electrical steel sheet manufacturing method according to claim 3 is the invention according to claim 1 or 2, wherein a plurality of the steel sheets arranged in series in the decarburization annealing furnace in the temperature rising process when decarburization annealing is performed. The steel sheet is heated at a heating rate satisfying 50 to 250 ° C./second while the steel plate temperature is from 550 ° C. to 720 ° C.

請求項4に係る方向性電磁鋼板の製造方法の発明は、前記請求項1または2に係る発明において、脱炭焼鈍する際の昇温過程において、脱炭焼鈍炉内に直列に配置された複数の誘導加熱装置を用いて、鋼板温度が550℃から720℃にある間を75〜125℃/秒を満たす加熱速度で加熱することを特徴とする。   The invention of the grain-oriented electrical steel sheet manufacturing method according to claim 4 is the invention according to claim 1 or 2, wherein a plurality of the steel sheets arranged in series in the decarburization annealing furnace in the temperature rising process when decarburization annealing is performed. The steel sheet is heated at a heating rate satisfying 75 to 125 ° C./second while the temperature of the steel sheet is from 550 ° C. to 720 ° C.

請求項5に係る方向性電磁鋼板の製造方法の発明は、前記請求項1〜4のいずれか1項に係る発明において、前記鋼板を脱炭焼鈍する際、その昇温過程において前記加熱速度で加熱する温度範囲をTs(℃)から720℃としたときに、室温から500℃までの加熱速度H(℃/秒)に応じて以下のTs(℃)から720℃までの範囲とすることを特徴とする。
H≦15: Ts≦550
15<H: Ts≦600
The invention of the grain-oriented electrical steel sheet manufacturing method according to claim 5 is the invention according to any one of claims 1 to 4, wherein the steel sheet is decarburized and annealed at the heating rate in the temperature rising process. When the heating temperature range is Ts (° C.) to 720 ° C., the following Ts (° C.) to 720 ° C. range according to the heating rate H (° C./second) from room temperature to 500 ° C. Features.
H ≦ 15: Ts ≦ 550
15 <H: Ts ≦ 600

請求項6に係る方向性電磁鋼板の製造方法の発明は、前記請求項2〜5のいずれか1項に係る発明において、珪素鋼素材が、さらに、質量%で、Mn:1%以下、Cr:0.3%以下、Cu:0.4%以下、P:0.5%以下、Sn:0.3%以下、Sb:0.3%以下、Ni:1%以下、S及びSeを合計で0.015%以下の1種または2種以上を含有することを特徴とする。   Invention of the grain-oriented electrical steel sheet according to claim 6 is the invention according to any one of claims 2 to 5, wherein the silicon steel material is further in mass%, Mn: 1% or less, Cr : 0.3% or less, Cu: 0.4% or less, P: 0.5% or less, Sn: 0.3% or less, Sb: 0.3% or less, Ni: 1% or less, S and Se in total It is characterized by containing one or more of 0.015% or less.

請求項7に係る脱炭焼鈍炉の発明は、請求項1〜6のいずれかの発明の方向性電磁鋼板を製造するための脱炭焼鈍炉であって、昇温ゾーンに複数の誘導加熱装置を直列に配置したことを特徴とする。   The invention of the decarburization annealing furnace according to claim 7 is a decarburization annealing furnace for producing the grain-oriented electrical steel sheet according to any one of claims 1 to 6, wherein a plurality of induction heating devices are provided in the temperature raising zone. Are arranged in series.

請求項8に係る脱炭焼鈍炉の発明は、請求項7に記載の発明において、低温域の誘導加熱装置の加熱速度と高温域の誘導加熱装置の加熱速度を独立に制御できるようにしたことを特徴とする。   The invention of the decarburization annealing furnace according to claim 8 is the invention according to claim 7, wherein the heating rate of the induction heating device in the low temperature region and the heating rate of the induction heating device in the high temperature region can be controlled independently. It is characterized by.

請求項1〜4に係る発明では、低温スラブ加熱による方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程での加熱速度の制御範囲の上限および下限を、複数の誘導加熱装置を用いることによって厳密に制御して脱炭焼鈍後の一次再結晶後の粒組織を二次再結晶にとって望ましいものにすることができるから、磁気特性の優れた方向性電磁鋼板をより容易に得ることができる。   In the invention which concerns on Claims 1-4, in manufacture of the grain-oriented electrical steel sheet by a low temperature slab heating, the upper limit and the minimum of the control range of the heating rate in the temperature rising process of decarburization annealing use a several induction heating apparatus. The grain structure after the primary recrystallization after decarburization annealing can be made desirable for the secondary recrystallization by strictly controlling by, so that a grain-oriented electrical steel sheet with excellent magnetic properties can be obtained more easily. .

請求項5に係る発明では、脱炭焼鈍の昇温過程において、加熱速度を制御する開始温度を、該開始温度までの低温域の加熱速度を調整することによって高め、それによって加熱速度を制御する必要がある温度範囲を縮小することができる。   In the invention according to claim 5, in the temperature raising process of decarburization annealing, the starting temperature for controlling the heating rate is increased by adjusting the heating rate in the low temperature region up to the starting temperature, thereby controlling the heating rate. The required temperature range can be reduced.

請求項6に係る発明では、添加元素に応じてさらに磁気特性などが改良された方向性電磁鋼板を製造することができる。
請求項7、8に係る発明では、請求項1〜5に係る発明の製造方法の実施に効果的な装置を提供することができる。
In the invention which concerns on Claim 6, the grain-oriented electrical steel sheet in which the magnetic characteristics etc. were further improved according to the additive element can be manufactured.
The invention according to claims 7 and 8 can provide an apparatus effective for carrying out the manufacturing method of the invention according to claims 1 to 5.

本発明者らは、上記の課題を解決するために、脱炭焼鈍の昇温過程において、誘導加熱装置を用いて加熱した場合の加熱状況の調査を行った。
その結果、誘導加熱装置を用いて電磁鋼板を加熱した場合、低温域と高温域において加熱速度が大幅に変化することが判明した。誘導加熱装置によって電磁鋼板を加熱した場合、キューリ点付近の温度になると渦電流の電流浸透深さが深くなり、帯状鋼板の巾方向断面の表層部を一周している渦電流の表裏相殺が発生し、渦電流が流れなくなるため、キューリ点近傍の温度域での加熱効率が急激に低下し、それによって加熱速度が大幅に変化するものと考えられる。誘導加熱の加熱効率は透磁率に概ね比例すると考えられるが、透磁率は、図1に示すようにキューリ点近傍で急激に低下してしまう。そのために加熱速度もキューリ点近傍で急激に低下してしまい、広い温度域で一定の加熱速度を制御することが困難となる。
In order to solve the above-described problems, the present inventors have investigated the heating situation when heating is performed using an induction heating device in the temperature raising process of decarburization annealing.
As a result, it was found that when the magnetic steel sheet was heated using an induction heating device, the heating rate changed significantly between the low temperature range and the high temperature range. When an electromagnetic steel sheet is heated by an induction heating device, the current penetration depth of the eddy current increases when the temperature near the Curie point is reached, and front and back cancellation of the eddy current that goes around the surface layer part of the cross-section in the width direction of the strip steel sheet occurs. Since the eddy current does not flow, the heating efficiency in the temperature range near the Curie point is drastically reduced, and the heating rate is considered to change drastically. Although it is considered that the heating efficiency of induction heating is substantially proportional to the magnetic permeability, the magnetic permeability rapidly decreases near the Curie point as shown in FIG. For this reason, the heating rate also decreases rapidly in the vicinity of the curie point, making it difficult to control a constant heating rate in a wide temperature range.

そこで、脱炭焼鈍の昇温過程において、磁束密度を高めることができる加熱速度について詳細に調べるとともに、誘導加熱装置を用いてそのような加熱速度範囲に制御できる手段についての検討を行った。
本発明者らは、質量で、Si:0.8〜7%、C:0.085%以下、酸可溶性Al:0.01〜0.065%、N:0.012%以下を含有し、残部Feおよび不可避的不純物からなる珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延し、得られた熱延板を焼鈍し、次いで一回の冷間圧延または焼鈍を介して複数の冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、焼鈍分離剤を塗布し、仕上げ焼鈍を施すとともに、脱炭焼鈍から仕上げ焼鈍の二次再結晶開始までの間に鋼板に窒化処理を施すことにより方向性電磁鋼板を製造する際に、脱炭焼鈍工程の昇温過程における組織変化の大きな550℃から720℃の温度域の加熱速度の上限と下限を、ある範囲に厳密に制御する必要があること、また、その際の加熱速度の制御を誘導加熱で行う場合の手段として、複数の誘導加熱装置を直列に配置して、低温域およびキューリ点付近の温度域の加熱をそれぞれ制御することにより、脱炭焼鈍後の一次再結晶集合組織({411}、{111}など)を制御して、磁気特性の優れた二次再結晶組織を安定に発達させることができるという知見を得て、本発明を完成させた。
Therefore, in the temperature raising process of the decarburization annealing, the heating rate capable of increasing the magnetic flux density was examined in detail, and a means that can be controlled within such a heating rate range using an induction heating device was examined.
The present inventors contain, by mass, Si: 0.8 to 7%, C: 0.085% or less, acid-soluble Al: 0.01 to 0.065%, N: 0.012% or less, A silicon steel material composed of the remaining Fe and inevitable impurities is heated at a temperature of 1280 ° C. or less and then hot-rolled, and the obtained hot-rolled sheet is annealed, and then a plurality of pieces are obtained through one cold rolling or annealing. The steel sheet of the final plate thickness is subjected to cold rolling, and after the steel sheet is decarburized and annealed, an annealing separator is applied, finish annealing is performed, and from the start of secondary recrystallization of decarburization annealing to finish annealing. When producing a grain-oriented electrical steel sheet by nitriding the steel sheet in the middle, the upper and lower limits of the heating rate in the temperature range of 550 ° C. to 720 ° C. where the structure change is large in the temperature rising process of the decarburization annealing process, The need to strictly control within a certain range, and As a means for controlling the heat rate by induction heating, a plurality of induction heating devices are arranged in series, and the heating after the decarburization annealing is controlled by controlling the heating in the temperature range near the low temperature range and the Curie point, respectively. The present invention was completed by obtaining the knowledge that a recrystallization texture ({411}, {111}, etc.) can be controlled to stably develop a secondary recrystallization structure having excellent magnetic properties.

以下に、その知見が得られた実験について説明する。
質量%で、Si:3.3%、C:0.055%、酸可溶性Al:0.028%、N:0.008%、Mn:0.1%、S:0.007%を含有し、残部Feおよび不可避的不純物からなるスラブを1150℃の温度で加熱した後、2.3mm厚に熱間圧延し、その後、1120℃に加熱して再結晶させた後、900℃の温度で焼鈍する2段階の熱延板焼鈍を施し、その熱延試料を0.22mm厚まで冷間圧延した後、通電加熱装置を用いて15℃/秒の加熱速度で550℃まで加熱し、組織変化の大きな550℃から720℃の温度域の加熱速度を種々変更し、その後15℃/秒の加熱速度でさらに加熱して830℃の温度で脱炭焼鈍し、続いて、アンモニア含有雰囲気で焼鈍して鋼板中の窒素を増加させる窒化処理を行い、次いで、MgOを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を行った。
Below, the experiment for which the knowledge was obtained will be described.
In mass%, Si: 3.3%, C: 0.055%, acid-soluble Al: 0.028%, N: 0.008%, Mn: 0.1%, S: 0.007% Then, the slab composed of the remaining Fe and inevitable impurities is heated at a temperature of 1150 ° C., then hot-rolled to a thickness of 2.3 mm, then heated to 1120 ° C. for recrystallization, and then annealed at a temperature of 900 ° C. The two-stage hot-rolled sheet annealing is performed, the hot-rolled sample is cold-rolled to a thickness of 0.22 mm, and then heated to 550 ° C. at a heating rate of 15 ° C./second using an electric heating device, Various heating rates in the large temperature range of 550 ° C. to 720 ° C. were changed, and further heating was performed at a heating rate of 15 ° C./second, followed by decarburization annealing at a temperature of 830 ° C., followed by annealing in an ammonia-containing atmosphere. Nitriding treatment to increase nitrogen in the steel sheet is performed, and then MgO After the application of the annealing separator consisting mainly, it was finished annealing.

図2に脱炭焼鈍時の550〜720℃の温度域の加熱速度と仕上げ焼鈍後の試料の磁束密度B8の関係を示す。
図2より、今回の試料においては、脱炭焼鈍の昇温過程における550℃から720℃の温度範囲において、この温度範囲内の各温度における加熱速度を40〜400℃/秒に制御すると、1.91T以上の磁束密度(B8)を有する電磁鋼板が得られることがわかる。そして、加熱速度を50〜250℃/秒の範囲に制御すれば約0.015Tの更なる磁束密度(B8)の向上が、さらに、加熱速度を75〜125℃/秒の範囲に厳密に制御すれば0.015T以上の磁束密度(B8)の向上が可能であることがわかる。
FIG. 2 shows the relationship between the heating rate in the temperature range of 550 to 720 ° C. during decarburization annealing and the magnetic flux density B8 of the sample after finish annealing.
From FIG. 2, in this sample, in the temperature range from 550 ° C. to 720 ° C. in the temperature raising process of decarburization annealing, the heating rate at each temperature within this temperature range is controlled to 40 to 400 ° C./second. It can be seen that an electrical steel sheet having a magnetic flux density (B8) of .91 T or more is obtained. If the heating rate is controlled in the range of 50 to 250 ° C./second, the magnetic flux density (B8) is further improved by about 0.015 T, and the heating rate is strictly controlled in the range of 75 to 125 ° C./second. It can be seen that the magnetic flux density (B8) of 0.015 T or more can be improved.

次に、加熱をするための手段としては、脱炭焼鈍炉の昇温ゾーンに誘導加熱装置を配置して、ラジアントチューブやエレマによる輻射加熱装置と誘導加熱装置とを組み合わせて加熱できるようにすれば、製品の磁気特性が向上する上述の加熱速度範囲に厳密に制御することが可能であり、磁気特性の優れた二次再結晶組織を安定に発達させることができることを確認した。
誘導加熱装置としては、550〜720℃の温度域範囲で、透磁率の高い低温域と透磁率の低いキューリ点近傍の高温域において、それぞれに異なるコイル形状の誘導加熱装置を配置したり、それぞれの温度域の誘導加熱装置の出力を独立に制御する手段を講じたりすることによって、この温度域の加熱速度を所望の範囲に制御することができる。
Next, as a means for heating, an induction heating device is arranged in the temperature raising zone of the decarburization annealing furnace so that the radiation heating device using the radiant tube or elema and the induction heating device can be combined and heated. For example, it was confirmed that it was possible to strictly control within the above-described heating rate range in which the magnetic properties of the product were improved, and a secondary recrystallized structure having excellent magnetic properties could be stably developed.
As the induction heating device, in the temperature range of 550 to 720 ° C., in the high temperature range near the Curie point where the permeability is low and the low permeability, a different coil-shaped induction heating device is arranged, respectively, By taking a means for independently controlling the output of the induction heating device in the temperature range, the heating rate in this temperature range can be controlled to a desired range.

以上の知見に基づきなされた本発明につき、以下で順次説明する。
まず、本発明で用いる珪素鋼素材の成分の限定理由について説明する。
本発明では、少なくとも、質量%で、Si:0.8〜7%、C:0.085%以下、酸可溶性Al:0.01〜0.065%、N:0.012%以下を含有し、残部Feおよび不可避的不純物からなる成分組成を基本とし、必要に応じて他の成分を含有する方向性電磁鋼板用の珪素鋼スラブを素材として用いることが好ましいが、その場合の各成分の含有範囲の限定理由は次のとおりである。
The present invention made on the basis of the above findings will be sequentially described below.
First, the reasons for limiting the components of the silicon steel material used in the present invention will be described.
In the present invention, at least, by mass, Si: 0.8-7%, C: 0.085% or less, acid-soluble Al: 0.01-0.065%, N: 0.012% or less In addition, it is preferable to use a silicon steel slab for grain-oriented electrical steel sheets containing other components as necessary, based on the component composition consisting of the remainder Fe and unavoidable impurities, but the inclusion of each component in that case The reasons for limiting the range are as follows.

Siは、添加量を多くすると電気抵抗が高くなり、鉄損特性が改善される。しかし、7%を超えて添加されると冷延が極めて困難となり、圧延時に割れてしまう。より工業生産に適するのは4.8%以下である。また、0.8%より少ないと、仕上げ焼鈍時にγ変態が生じ、鋼板の結晶方位が損なわれてしまう。   When Si is added in an increased amount, the electrical resistance increases and the iron loss characteristics are improved. However, if added over 7%, cold rolling becomes extremely difficult and cracks during rolling. More suitable for industrial production is 4.8% or less. On the other hand, if it is less than 0.8%, γ transformation occurs during finish annealing, and the crystal orientation of the steel sheet is impaired.

Cは、一次再結晶組織を制御するうえで有効な元素であるが、磁気特性に悪影響を及ぼすので、仕上げ焼鈍前に脱炭する必要がある。Cが0.085%より多いと、脱炭焼鈍時間が長くなり、工業生産における生産性が損なわれてしまう。   C is an effective element for controlling the primary recrystallization structure, but it adversely affects the magnetic properties, so it is necessary to decarburize before finish annealing. When C is more than 0.085%, the decarburization annealing time becomes long, and the productivity in industrial production is impaired.

酸可溶性Alは、本発明においてNと結合して(Al、Si)Nとして、インヒビターとしての機能を果すために必須の元素である。二次再結晶が安定する0.01〜0.065%を限定範囲とする。
Nは、0.012%を超えると、冷延時、鋼板中にブリスターとよばれる空孔を生じるため、0.012%を超えないようにする。
In the present invention, acid-soluble Al is an element essential for binding to N and acting as an inhibitor as (Al, Si) N. The limiting range is 0.01 to 0.065% at which secondary recrystallization is stabilized.
If N exceeds 0.012%, voids called blisters are formed in the steel sheet during cold rolling, so N should not exceed 0.012%.

本発明では、スラブの素材として、上記成分に加えて、必要に応じて、さらに、Mn、Cr、Cu、P、Sn、Sb、Ni、S、Seの少なくとも1種類を、質量%で、Mnでは1%以下、Crでは0.3%以下、Cuでは0.4%以下、Pでは0.5%以下、Snでは0.3%以下、Sbでは0.3%以下、Niでは1%以下、S及びSeを合計で0.015%以下の範囲で含有できる。すなわち、
Mnは、比抵抗を高めて鉄損を低減させる効果がある。また、熱間圧延における割れの発生を防止する目的のために、S及びSeの総量との関係でMn/(S+Se)≧4添加することが望ましい。しかしながら添加量が1%を超えると、製品の磁束密度が低下してしまう。
In the present invention, as a material for the slab, in addition to the above components, if necessary, at least one of Mn, Cr, Cu, P, Sn, Sb, Ni, S, and Se is contained in mass% and Mn. 1% or less, Cr 0.3% or less, Cu 0.4% or less, P 0.5% or less, Sn 0.3% or less, Sb 0.3% or less, Ni 1% or less , S and Se can be contained within a total range of 0.015% or less. That is,
Mn has an effect of increasing specific resistance and reducing iron loss. Moreover, for the purpose of preventing the occurrence of cracks in hot rolling, it is desirable to add Mn / (S + Se) ≧ 4 in relation to the total amount of S and Se. However, if the addition amount exceeds 1%, the magnetic flux density of the product is lowered.

Crは、脱炭焼鈍の酸化層を改善し、グラス被膜形成に有効な元素であり、0.3%以下の範囲で添加する。0.3%を超えて添加すると脱炭に要する時間が長くなり、工業生産における生産性が損なわれてしまう。
Cuは、比抵抗を高めて鉄損を低減させることに有効な元素である。添加量が0.4%を超えると鉄損低減効果が飽和するとともに、熱延時に「カッパーヘゲ」なる表面疵の原因になる。
Cr improves the decarburization annealing oxide layer and is an effective element for glass coating formation, and is added in the range of 0.3% or less. If it exceeds 0.3%, the time required for decarburization becomes longer, and the productivity in industrial production is impaired.
Cu is an element effective for increasing the specific resistance and reducing the iron loss. When the added amount exceeds 0.4%, the iron loss reducing effect is saturated, and it causes surface flaws such as “copper lashes” during hot rolling.

Pは、比抵抗を高めて鉄損を低減させることに有効な元素である。添加量が0.5%を超えると圧延性に問題を生じる。
SnとSbは、良く知られている粒界偏析元素である。本発明はAlを含有しているため、仕上げ焼鈍の条件によっては焼鈍分離剤から放出される水分によりAlが酸化されてコイル位置でインヒビター強度が変動し、磁気特性がコイル位置で変動する場合がある。この対策の一つとして、これらの粒界偏析元素の添加により酸化を防止する方法があり、そのためにそれぞれ0.30%以下の範囲で添加できる。一方0.30%を超えると脱炭焼鈍時に酸化されにくく、グラス皮膜の形成が不十分となるとともに、脱炭焼鈍性を著しく阻害する。
P is an element effective for increasing the specific resistance and reducing the iron loss. If the addition amount exceeds 0.5%, a problem arises in rolling properties.
Sn and Sb are well-known grain boundary segregation elements. Since the present invention contains Al, depending on the conditions of finish annealing, Al is oxidized by moisture released from the annealing separator, and the inhibitor strength varies at the coil position, and the magnetic characteristics may vary at the coil position. is there. As one of the countermeasures, there is a method of preventing oxidation by adding these grain boundary segregation elements. Therefore, each of them can be added in a range of 0.30% or less. On the other hand, if it exceeds 0.30%, it is difficult to be oxidized during the decarburization annealing, the formation of the glass film becomes insufficient, and the decarburization annealability is significantly inhibited.

Niは比抵抗を高めて鉄損を低減させることに有効な元素である。また、熱延板の金属組織を制御して磁気特性を向上させるうえで有効な元素である。しかしながら、添加量が1%を超えると二次再結晶が不安定になる。
その他、SおよびSeは磁気特性に悪影響を及ぼすので総量で0.015%以下とすることが望ましい。
Ni is an element effective for increasing the specific resistance and reducing the iron loss. Moreover, it is an element effective in improving the magnetic properties by controlling the metal structure of the hot-rolled sheet. However, when the addition amount exceeds 1%, secondary recrystallization becomes unstable.
In addition, since S and Se adversely affect the magnetic properties, the total amount is desirably 0.015% or less.

次に本発明の製造条件および製造に用いる手段について説明する。
上記の成分組成を有する珪素鋼スラブは、転炉または電気炉等により鋼を溶製し、必要に応じて溶鋼を真空脱ガス処理し、ついで連続鋳造もしくは造塊後分塊圧延することによって得られる。その後、熱間圧延に先だってスラブ加熱がなされる。本発明においては、スラブ加熱温度は1280℃以下として、上述の高温スラブ加熱の諸問題を回避する。
珪素鋼スラブは、通常は150〜350mmの範囲、好ましくは220〜280mmの厚みに鋳造されるが、30〜70mmの範囲のいわゆる薄スラブであっても良い。薄スラブの場合は熱延板を製造する際に中間厚みに粗加工を行う必要がないという利点がある。
Next, the production conditions of the present invention and the means used for production will be described.
A silicon steel slab having the above component composition is obtained by melting steel with a converter or electric furnace, etc., vacuum-degassing the molten steel as necessary, and then performing continuous casting or block rolling after ingot forming. It is done. Thereafter, slab heating is performed prior to hot rolling. In the present invention, the slab heating temperature is set to 1280 ° C. or less to avoid the above-described problems of high-temperature slab heating.
Silicon steel slabs are usually cast to a thickness of 150 to 350 mm, preferably 220 to 280 mm, but may be so-called thin slabs of 30 to 70 mm. In the case of a thin slab, there is an advantage that it is not necessary to perform roughing to an intermediate thickness when manufacturing a hot-rolled sheet.

上述した温度にて加熱されたスラブは引続き熱間圧延され所要板厚の熱延板とされる。この熱延板を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍することが、本発明のように脱炭焼鈍の加熱を誘導加熱で行う際に有効である。   The slab heated at the above-mentioned temperature is subsequently hot-rolled to obtain a hot-rolled sheet having a required thickness. After heating and recrystallizing this hot-rolled sheet to a predetermined temperature of 1000 to 1150 ° C., annealing at 850 to 1100 ° C., which is lower than that temperature, is a heating of decarburization annealing as in the present invention. It is effective when performing by induction heating.

一段目の焼鈍については、熱延板の再結晶を促進する観点からは5℃/秒以上、好ましくは10℃/秒以上の加熱速度で行い、1100℃以上の高温では0秒、1000℃程度の低温では30秒以上の時間焼鈍を行えば良い。また、二段目の焼鈍時間は20秒以上、二段目の焼鈍後は、平均5℃/秒以上、好ましくは15℃/秒以上の冷却速度で冷却すれば良い。   The first stage annealing is performed at a heating rate of 5 ° C./second or more, preferably 10 ° C./second or more from the viewpoint of promoting recrystallization of the hot-rolled sheet, and at a high temperature of 1100 ° C. or more, 0 second, about 1000 ° C. At low temperatures, annealing for 30 seconds or more may be performed. Further, the second stage annealing time is 20 seconds or more, and after the second stage annealing, cooling is performed at an average cooling rate of 5 ° C./second or more, preferably 15 ° C./second or more.

その後、一回もしくは焼鈍を挟んだ二回以上に冷間圧延により最終板厚とする。冷間圧延の回数は、望む製品の特性レベルとコストとを勘案して適宜選択される。冷間圧延に際しては、最終冷間圧延率を80%以上とすることが、{411}や{111}等の一次再結晶方位を発達させる上で必要である。   Thereafter, the final thickness is obtained by cold rolling at least once or two or more times with annealing. The number of cold rolling operations is appropriately selected in consideration of the desired property level and cost of the product. In cold rolling, it is necessary to make the final cold rolling rate 80% or more in order to develop primary recrystallization orientations such as {411} and {111}.

冷間圧延後の鋼板は、鋼中に含まれるCを除去するために湿潤雰囲気中で脱炭焼鈍を施す。その際、脱炭焼鈍後の粒組織においてI{111 }/I{411 }の比率を3以下とし、その後二次再結晶発現前に窒素を増加させる処理を行うことにより、磁束密度の高い製品を安定して製造することができる。
この脱炭焼鈍後の一次再結晶を制御する方法としては、脱炭焼鈍工程の昇温過程における加熱速度を調整することにより制御される。
The steel sheet after cold rolling is subjected to decarburization annealing in a humid atmosphere in order to remove C contained in the steel. At that time, a product having a high magnetic flux density is obtained by performing a treatment in which the ratio of I {111} / I {411} is set to 3 or less in the grain structure after decarburization annealing and then nitrogen is increased before secondary recrystallization is exhibited. Can be manufactured stably.
The primary recrystallization after the decarburization annealing is controlled by adjusting the heating rate in the temperature rising process of the decarburization annealing process.

加熱速度は、一次再結晶集合組織I{111}/I{411}に大きな影響を及ぼす。一次再結晶では、結晶方位によって再結晶しやすさが異なるため、I{111}/I{411}を3以下とするためには、{411}方位粒が再結晶しやすい加熱速度に制御する必要がある。{411}方位粒は100℃/秒近傍の速度で一番再結晶しやすい。従って、加熱速度を40〜400℃/秒、さらに50〜250℃/秒、さらには75〜125℃/秒と厳密に制御するほど磁束密度の高い製品を安定して製造することができる。   The heating rate has a great influence on the primary recrystallization texture I {111} / I {411}. In primary recrystallization, the recrystallization easiness varies depending on the crystal orientation. Therefore, in order to set I {111} / I {411} to 3 or less, the heating rate is controlled so that the {411} orientation grains are easily recrystallized. There is a need. {411} oriented grains are most easily recrystallized at a speed of around 100 ° C./second. Therefore, a product having a high magnetic flux density can be stably manufactured as the heating rate is strictly controlled to 40 to 400 ° C./second, further 50 to 250 ° C./second, and further 75 to 125 ° C./second.

この加熱速度で加熱する必要がある温度域は、基本的に550℃から720℃までの温度域である。もちろん、550℃以下の温度から上記の加熱速度範囲での急速加熱を開始してもよい。この加熱速度を高い加熱速度に維持すべき温度範囲の下限温度は、低温域での加熱サイクルの影響を受ける。そのため、急速加熱が必要な温度範囲を開始温度Ts(℃)から720℃としたときに、室温から500℃までの加熱速度H(℃/秒)に応じて以下のTs(℃)から720℃までの範囲とするのがよい。
H≦15: Ts≦550
15<H: Ts≦600
The temperature range that needs to be heated at this heating rate is basically the temperature range from 550 ° C to 720 ° C. Of course, you may start the rapid heating in the said heating rate range from the temperature of 550 degrees C or less. The lower limit temperature of the temperature range where the heating rate should be maintained at a high heating rate is affected by the heating cycle in the low temperature range. Therefore, when the temperature range requiring rapid heating is 720 ° C. from the starting temperature Ts (° C.), the following Ts (° C.) to 720 ° C. according to the heating rate H (° C./second) from room temperature to 500 ° C. It is good to be in the range up to.
H ≦ 15: Ts ≦ 550
15 <H: Ts ≦ 600

低温域の加熱速度が15℃/秒の標準的な加熱速度の場合には、550℃から720℃の範囲を40℃/秒以上の加熱速度で急速加熱する必要がある。低温域の加熱速度が15℃/秒よりも遅い場合には、550℃以下の温度から720℃の範囲を40℃/秒以上の加熱速度で急速加熱する必要がある。一方、低温域の加熱速度が15℃/秒よりも速い場合には、550℃よりも高い温度で600℃以下の温度から720℃までの範囲を40℃/秒以上の加熱速度で急速加熱すれば十分である。例えば、室温から50℃/秒で加熱した場合は、600℃から720℃の範囲の昇温速度が40℃/秒以上であればよい。   When the heating rate in the low temperature region is a standard heating rate of 15 ° C./second, it is necessary to rapidly heat the range of 550 ° C. to 720 ° C. at a heating rate of 40 ° C./second or more. When the heating rate in the low temperature region is slower than 15 ° C./second, it is necessary to rapidly heat the temperature from 550 ° C. or lower to 720 ° C. at a heating rate of 40 ° C./second or higher. On the other hand, when the heating rate in the low temperature range is faster than 15 ° C./second, rapid heating is performed at a temperature higher than 550 ° C. from 600 ° C. to 720 ° C. at a heating rate of 40 ° C./second or more. It is enough. For example, when heating from room temperature at 50 ° C./second, the temperature increase rate in the range of 600 ° C. to 720 ° C. may be 40 ° C./second or more.

本発明では、脱炭焼鈍炉に複数の誘導加熱装置を直列に配置して、昇温途中の加熱速度を上記の適正範囲に厳密に制御することを特徴とする。
誘導加熱装置を用いると、加熱速度の自由度が高く、鋼板と非接触に加熱でき、脱炭焼鈍炉内への設置が比較的容易である等の点が、従来の通常輻射熱を利用したラジアントチューブ等による脱炭焼鈍設備を改造した設備、レーザー等の高エネルギー熱源を利用する方法、通電加熱装置に比べて有利である。
The present invention is characterized in that a plurality of induction heating devices are arranged in series in a decarburization annealing furnace, and the heating rate during the temperature rise is strictly controlled within the above appropriate range.
When using an induction heating device, it has a high degree of freedom in heating rate, can be heated in a non-contact manner with a steel plate, and is relatively easy to install in a decarburization annealing furnace. This is more advantageous than equipment modified from decarburization annealing equipment such as a tube, a method using a high energy heat source such as a laser, and an electric heating device.

一台の誘導加熱装置を用いて電磁鋼板を加熱した場合、キューリ点付近の温度になると加熱効率が急激に低下してしまい低温域とキューリ点付近の高温域で加熱速度が大幅に変化して、上記の好適な加熱速度範囲内で鋼板を加熱することが困難になる。従って、脱炭焼鈍炉内において、キューリ点付近の高温域と低温域の加熱領域に、複数の誘導加熱装置を直列に配置することによって、全ての温度域における鋼板の加熱速度を好適な加熱速度範囲内とすることが本発明の特徴である。それぞれの誘導加熱装置は、その温度域での加熱速度が好適な加熱速度範囲内となるように独立に制御することが好ましい。   When a magnetic steel sheet is heated using a single induction heating device, the heating efficiency drops sharply when the temperature is near the curie point, and the heating rate changes significantly between the low temperature range and the high temperature range near the curie point. It becomes difficult to heat the steel plate within the preferable heating rate range. Therefore, in the decarburization annealing furnace, by arranging a plurality of induction heating devices in series in the high temperature region and the low temperature region near the Curie point, the heating rate of the steel sheet in all temperature regions is set to a suitable heating rate. It is a feature of the present invention to be within the range. Each induction heating device is preferably controlled independently so that the heating rate in the temperature range is within a suitable heating rate range.

図3に、誘導加熱装置としてシングルターンの誘導加熱コイルを用い、脱炭焼鈍炉の昇温ゾーンにそれを2個直列に配置して、高温域用と低温域用にした例を示す(脱炭焼鈍炉自体は図示せず)。各誘導加熱コイル2、3は、例えば可変抵抗器5を介して交流電源4に接続されており、コイル毎に独立に出力を制御して、電磁鋼板1を所定の加熱速度で加熱できるようにする。
図3では、同形状のコイルを2個用いたが、高温域用と低温域用をそれぞれ複数のコイルで形成してもよく、また、高温域用と低温域用でコイル形状を変えてもよい。出力の調整手段も、この例に限らず、電流の周波数を変化させる手段であってもよい。誘導コイルの間には絶縁体を配置するのが好ましい。
FIG. 3 shows an example in which a single-turn induction heating coil is used as the induction heating device, and two of them are arranged in series in the temperature raising zone of the decarburization annealing furnace for the high temperature region and the low temperature region. (The carbon annealing furnace itself is not shown). Each induction heating coil 2, 3 is connected to an AC power source 4 via, for example, a variable resistor 5 so that the output can be controlled independently for each coil so that the electromagnetic steel sheet 1 can be heated at a predetermined heating rate. To do.
In FIG. 3, two coils having the same shape are used. However, the high temperature region and the low temperature region may be formed of a plurality of coils, respectively, and the coil shape may be changed for the high temperature region and the low temperature region. Good. The output adjusting means is not limited to this example, and may be a means for changing the frequency of the current. An insulator is preferably disposed between the induction coils.

本発明では、厳密に制御する必要がある温度域は550〜720℃であるので、低温から720℃までの加熱帯に複数の誘導加熱装置を配置して、鋼板を所定の加熱速度で加熱しても良いし、または、550〜720℃の温度領域のみ複数の誘導加熱装置を配置して、他の温度域の加熱はラジアントチューブ等の従来の加熱装置を配置して鋼板を所定の加熱速度で加熱してもよい。   In the present invention, since the temperature range that needs to be strictly controlled is 550 to 720 ° C., a plurality of induction heating devices are arranged in a heating zone from a low temperature to 720 ° C., and the steel sheet is heated at a predetermined heating rate. Alternatively, a plurality of induction heating devices may be disposed only in the temperature range of 550 to 720 ° C., and heating in other temperature regions may be performed by using a conventional heating device such as a radiant tube to heat the steel plate at a predetermined heating rate. You may heat with.

また、上記の加熱速度の調整の効果を安定して発揮させるためには、特許文献6に示されているように、加熱した後に770〜900℃の温度域で雰囲気ガスの酸化度(PH2O/PH2)を0.15超1.1以下として鋼板の酸素量を2.3g/m2以下とすることが有効である。雰囲気ガスの酸化度が0.15未満では鋼板表面に形成されるグラス被膜の密着性が劣化し、1.1を越えるとグラス被膜に欠陥が生じる。また、鋼板の酸素量を2.3g/m2以下とすることにより、(Al,Si)Nインヒビタ−の分解を抑制して高い磁束密度を有する方向性電磁鋼板の製品が安定して製造できる。 In order to stably exhibit the effect of adjusting the heating rate, as shown in Patent Document 6, the degree of oxidation (PH 2) of the atmospheric gas in the temperature range of 770 to 900 ° C. after heating is performed. It is effective that O / PH 2 ) is more than 0.15 and 1.1 or less, and the oxygen content of the steel sheet is 2.3 g / m 2 or less. If the degree of oxidation of the atmospheric gas is less than 0.15, the adhesion of the glass coating formed on the steel sheet surface deteriorates, and if it exceeds 1.1, defects occur in the glass coating. Further, by setting the oxygen content of the steel sheet to 2.3 g / m 2 or less, it is possible to stably produce a grain-oriented electrical steel sheet having a high magnetic flux density by suppressing the decomposition of the (Al, Si) N inhibitor. .

また、脱炭焼鈍において、鋼板の酸素量を2.3g/m2以下とすると同時に、特許文献3に示されているように、一次再結晶粒径が15μm 以上となるようすることにより、二次再結晶をより安定して発現でき、さらに優れた方向性電磁鋼板を製造することができる。 In the decarburization annealing, the oxygen content of the steel sheet is set to 2.3 g / m 2 or less, and at the same time, as shown in Patent Document 3, the primary recrystallized grain size is set to 15 μm or more. Secondary recrystallization can be expressed more stably, and a more excellent grain-oriented electrical steel sheet can be produced.

窒素を増加させる窒化処理としては、脱炭焼鈍に引き続いて、アンモニア等の窒化能のあるガスを含有する雰囲気中で焼鈍する方法、MnN等の窒化能のある粉末を焼鈍分離剤中に添加すること等により仕上げ焼鈍中に行う方法等がある。
脱炭焼鈍の加熱速度を高めた場合に二次再結晶をより安定的に行わせるためには、(Al,Si)Nの組成比率を調整することが望ましく、また、増加させた後の窒素量としては、鋼中のAl量:[Al]に対する窒素量:[N]の比、すなわち[N]/[Al]が、質量比として14/27以上、望ましくは2/3以上となるようにする。
その後、マグネシアを主成分とする焼鈍分離剤を塗布した後に、仕上げ焼鈍を行い{110}<001>方位粒を二次再結晶により優先成長させる。
As a nitriding treatment for increasing nitrogen, a method of annealing in an atmosphere containing a nitriding gas such as ammonia following decarburization annealing, and a nitriding powder such as MnN are added to the annealing separator. For example, there is a method to be performed during finish annealing.
In order to perform secondary recrystallization more stably when the heating rate of decarburization annealing is increased, it is desirable to adjust the composition ratio of (Al, Si) N, and the nitrogen after the increase The amount of Al in the steel: the ratio of nitrogen amount: [N] to [Al], that is, [N] / [Al] is 14/27 or more, preferably 2/3 or more as a mass ratio. To.
Thereafter, after applying an annealing separator mainly composed of magnesia, finish annealing is performed to preferentially grow {110} <001> oriented grains by secondary recrystallization.

以下、本発明の実施例を説明するが、実施例で採用した条件は、本発明の実施可能性及び効果を確認するための一条件例である。本発明は、この例に限定されるものではなく、本発明を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Examples of the present invention will be described below, but the conditions adopted in the examples are one example of conditions for confirming the feasibility and effects of the present invention. The present invention is not limited to this example, and various conditions can be adopted as long as the object of the present invention is achieved without departing from the present invention.

質量%で、Si:3.3%、C:0.06%、酸可溶性Al:0.028%、N:0.008%、Mn:0.1%、S:0.008%、Cr:0.1%、P:0.03%を含有し、残部Feおよび不可避的不純物よりなるスラブを1150℃の温度で加熱した後、2.3mm厚に熱間圧延し、その後、1120℃+920℃の二段焼鈍を施した。得られた熱延板試料を0.22mm厚まで冷間圧延した後、脱炭焼鈍の昇温を輻射加熱装置と誘導加熱装置とを組み合わせて行った。その際、一部の試料(A)は、室温から550℃までは輻射加熱方式により加熱し(20℃/秒)、次いで550〜680℃を誘導加熱コイルAによって加熱し(130℃/秒)、さらに、680〜720℃を誘導加熱コイルBによって加熱し(100℃/秒)、均熱温度830℃で脱炭焼鈍を行った。また、一部の試料(B)は、室温から830℃までは輻射加熱方式により加熱し(20℃/秒)、均熱温度830℃で脱炭焼鈍を行った。その後、アンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.02質量%とした。ついで、これらの試料にMgOを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。
得られた試料の仕上げ焼鈍後の磁束密度B8を表1に示す。
In mass%, Si: 3.3%, C: 0.06%, acid-soluble Al: 0.028%, N: 0.008%, Mn: 0.1%, S: 0.008%, Cr: A slab containing 0.1%, P: 0.03%, the balance Fe and inevitable impurities being heated at a temperature of 1150 ° C., then hot rolled to a thickness of 2.3 mm, and then 1120 ° C. + 920 ° C. Two-stage annealing was performed. The obtained hot-rolled sheet sample was cold-rolled to a thickness of 0.22 mm, and then decarburization annealing was performed by combining a radiation heating device and an induction heating device. At that time, a part of the sample (A) is heated from room temperature to 550 ° C. by a radiant heating method (20 ° C./second), and then 550 to 680 ° C. is heated by the induction heating coil A (130 ° C./second). Further, 680 to 720 ° C. was heated by the induction heating coil B (100 ° C./second), and decarburization annealing was performed at a soaking temperature of 830 ° C. Some samples (B) were heated from room temperature to 830 ° C. by a radiant heating method (20 ° C./second), and decarburized and annealed at a soaking temperature of 830 ° C. Then, it annealed in the ammonia containing atmosphere and made nitrogen in a steel plate 0.02 mass%. Then, after applying an annealing separator mainly composed of MgO to these samples, finish annealing was performed.
Table 1 shows the magnetic flux density B8 after finish annealing of the obtained sample.

Figure 2008001979
Figure 2008001979

試料として、実施例1と同じ冷間圧延後の板を用いて、脱炭焼鈍の昇温を輻射加熱装置と誘導加熱装置とを組み合わせて行った。一部の試料(A)は、室温から550℃までは幅射加熱方式により加熱し(20℃/秒)、次いで550〜680℃を誘導加熱コイルAによって加熱(130℃/秒)し、さらに、680〜720℃を誘導加熱コイルBによって加熱し(100℃/秒)、720〜830℃を幅射加熱方式により加熱し(20℃/秒)、均熱温度830℃で脱炭焼鈍を行った。一部の試料(B)は、室温から690℃までを誘導加熱コイルAによって加熱し(190℃/秒)、さらに、690〜720℃を誘導加熱コイルBによって加熱し(170℃/秒)、均熱温度830℃で脱炭焼鈍を行った。一部の試料(C)は、室温から690℃までを誘導加熱コイルAによって加熱(350℃/秒)し、さらに、690〜720℃を誘導加熱コイルBによって加熱し(280℃/秒)、均熱温度830℃で脱炭焼鈍を行った。一部の試料(D)は、室温から690℃までを誘導加熱コイルAによって加熱(70℃/秒)し、さらに、690〜720℃を誘導加熱コイルBによって加熱し(10℃/秒)、均熱温度830℃で脱炭焼鈍を行った。
その後、これらの試料をアンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.022質量%とし、ついでMgOを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。
得られた試料の仕上げ焼鈍後の磁束密度B8を表2に示す。
As a sample, the same cold-rolled plate as in Example 1 was used, and decarburization annealing was performed by combining a radiation heating device and an induction heating device. Some samples (A) are heated from room temperature to 550 ° C. by a long-range heating method (20 ° C./second), and then 550-680 ° C. is heated by induction heating coil A (130 ° C./second). , 680 to 720 ° C. is heated by induction heating coil B (100 ° C./second), 720 to 830 ° C. is heated by a widthwise heating method (20 ° C./second), and decarburization annealing is performed at a soaking temperature of 830 ° C. It was. Some samples (B) were heated from room temperature to 690 ° C. by induction heating coil A (190 ° C./second), and further heated by 690-720 ° C. by induction heating coil B (170 ° C./second). Decarburization annealing was performed at a soaking temperature of 830 ° C. Some samples (C) were heated from room temperature to 690 ° C. by induction heating coil A (350 ° C./second), and further heated by 690-720 ° C. by induction heating coil B (280 ° C./second). Decarburization annealing was performed at a soaking temperature of 830 ° C. Some samples (D) were heated from room temperature to 690 ° C. by induction heating coil A (70 ° C./sec), and further heated by 690-720 ° C. by induction heating coil B (10 ° C./sec), Decarburization annealing was performed at a soaking temperature of 830 ° C.
Thereafter, these samples were annealed in an ammonia-containing atmosphere so that the nitrogen content in the steel sheet was 0.022% by mass, and then an annealing separator containing MgO as a main component was applied, followed by finish annealing.
Table 2 shows the magnetic flux density B8 after finish annealing of the obtained sample.

Figure 2008001979
Figure 2008001979

質量%で、Si:3.3%、C:0.055%、酸可溶性Al:0.027%、N:0.008%、Mn:0.1%、S:0.007%、Cr:0.1%、Sn:0.05%、P:0.03%、Cu:0.2%を含有し、残部Feおよび不可避的不純物よりなるスラブを1150℃の温度で加熱した後、2.3mm厚に熱間圧延し、その後、1100℃+900℃の二段焼鈍を施した。得られた熱延板試料を0.22mm厚まで冷間圧延した後、脱炭焼鈍の昇温を輻射加熱装置と誘導加熱装置とを組み合わせて行った。その際、一部の試料(A)は、室温から550℃までは輻射加熱方式により加熱し(20℃/秒)、次いで550〜680℃を誘導加熱コイルAによって加熱し(130℃/秒)、さらに、680〜720℃を誘導加熱コイルBによって加熱し(100℃/秒)、均熱温度830℃で脱炭焼鈍を行った。また、一部の試料(B)は、室温から830℃までは輻射加熱方式により加熱し(20℃/秒)、均熱温度830℃で脱炭焼鈍を行った。その後、これらの試料をアンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.02質量%とし、ついでMgOを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。
得られた試料の仕上げ焼鈍後の磁束密度B8を表3に示す。
In mass%, Si: 3.3%, C: 0.055%, acid-soluble Al: 0.027%, N: 0.008%, Mn: 0.1%, S: 0.007%, Cr: 1. A slab containing 0.1%, Sn: 0.05%, P: 0.03%, Cu: 0.2%, the balance Fe and inevitable impurities being heated at a temperature of 1150 ° C. It was hot-rolled to a thickness of 3 mm and then subjected to two-stage annealing at 1100 ° C. + 900 ° C. The obtained hot-rolled sheet sample was cold-rolled to a thickness of 0.22 mm, and then decarburization annealing was performed by combining a radiation heating device and an induction heating device. At that time, a part of the sample (A) is heated from room temperature to 550 ° C. by a radiant heating method (20 ° C./second), and then 550 to 680 ° C. is heated by the induction heating coil A (130 ° C./second). Further, 680 to 720 ° C. was heated by the induction heating coil B (100 ° C./second), and decarburization annealing was performed at a soaking temperature of 830 ° C. Some samples (B) were heated from room temperature to 830 ° C. by a radiant heating method (20 ° C./second), and decarburized and annealed at a soaking temperature of 830 ° C. Thereafter, these samples were annealed in an ammonia-containing atmosphere so that the nitrogen content in the steel sheet was 0.02 mass%, and then an annealing separator containing MgO as a main component was applied, followed by finish annealing.
Table 3 shows the magnetic flux density B8 after finish annealing of the obtained sample.

Figure 2008001979
Figure 2008001979

試料として、実施例1と同じ冷間圧延後の板を用い、その板を加熱速度(A)15℃/秒、(B)50℃/秒の加熱速度で、(1)500℃、(2)550℃、(3)600℃の温度まで加熱し、その後、100℃/秒の加熱速度で720℃まで加熱し、さらに10℃/秒で8300℃の温度まで加熱して脱炭焼鈍を施した。続いてアンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.021%に増加させ、次いで、MgOを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。
仕上げ焼鈍後の試料の磁気特性を表6に示す。低温域の加熱速度を速めることにより、100℃/秒で急速加熱する際の開始温度を600℃に高めても良好な磁気特性が得られることが分かる。
As a sample, the same plate after cold rolling as in Example 1 was used, and the plate was heated at a heating rate (A) of 15 ° C./sec, (B) at a heating rate of 50 ° C./sec, (1) 500 ° C., (2 ) Heated to a temperature of 550 ° C., (3) 600 ° C., then heated to 720 ° C. at a heating rate of 100 ° C./sec, and further heated to a temperature of 8300 ° C. at 10 ° C./sec to perform decarburization annealing. did. Subsequently, annealing was performed in an ammonia-containing atmosphere to increase the nitrogen in the steel sheet to 0.021%. Then, after applying an annealing separator mainly composed of MgO, finish annealing was performed.
Table 6 shows the magnetic properties of the samples after finish annealing. It can be seen that by increasing the heating rate in the low temperature region, good magnetic properties can be obtained even if the starting temperature for rapid heating at 100 ° C./second is increased to 600 ° C.

Figure 2008001979
Figure 2008001979

鉄の温度と透磁率の関係を示す図である(Ferromagnetism(1951),R.M.Bozorth著 p714から引用)。It is a figure which shows the relationship between the temperature and the magnetic permeability of iron (quoted from Ferromagnetism (1951), R.M.Bozorth p714). 脱炭焼鈍の昇温途中の550〜720℃の温度域の加熱速度と製品の磁束密度(B8)の関係を示す図である。It is a figure which shows the relationship between the heating rate of the temperature range of 550-720 degreeC in the middle of temperature rising of decarburization annealing, and the magnetic flux density (B8) of a product. 本発明の脱炭焼鈍炉を説明する図である。It is a figure explaining the decarburization annealing furnace of this invention.

符号の説明Explanation of symbols

1 鋼板
2 誘導加熱コイル(誘導加熱装置)
3 誘導加熱コイル(誘導加熱装置)
4 交流電源
5 可変抵抗器
1 Steel plate 2 Induction heating coil (Induction heating device)
3 Induction heating coil (induction heating device)
4 AC power supply 5 Variable resistor

Claims (8)

珪素鋼素材を熱間圧延した後、焼鈍し、一回の冷間圧延または焼鈍を介して複数の冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、焼鈍分離剤を塗布し、仕上げ焼鈍を施すとともに、脱炭焼鈍から仕上げ焼鈍の二次再結晶開始までの間に鋼板の窒素量を増加させる処理を施すことよりなる方向性電磁鋼板の製造方法において、
前記最終板厚の鋼板を脱炭焼鈍する際の昇温過程において、脱炭焼鈍炉内に直列に配置された複数の誘導加熱装置を用いて、鋼板温度が550℃から720℃にある間を40〜400℃/秒を満たす加熱速度で加熱することを特徴とする方向性電磁鋼板の製造方法。
After hot rolling the silicon steel material, it is annealed and subjected to multiple cold rollings through a single cold rolling or annealing to form a steel plate of the final thickness, and after the decarburization annealing of the steel plate, annealing separation In the method for producing a grain-oriented electrical steel sheet comprising applying an agent, performing a finish annealing, and performing a process of increasing the amount of nitrogen in the steel sheet between the decarburization annealing and the start of the secondary recrystallization of the finish annealing,
In the temperature rising process when decarburizing and annealing the steel plate having the final thickness, a plurality of induction heating devices arranged in series in the decarburizing annealing furnace are used, while the steel plate temperature is between 550 ° C. and 720 ° C. A method for producing a grain-oriented electrical steel sheet, characterized by heating at a heating rate satisfying 40 to 400 ° C / second.
質量%で、Si:0.8〜7%、C:0.085%以下、酸可溶性Al:0.01〜0.065%、N:0.012%以下を含有し、残部Feおよび不可避的不純物からなる珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。   In mass%, Si: 0.8-7%, C: 0.085% or less, acid-soluble Al: 0.01-0.065%, N: 0.012% or less, the remainder Fe and unavoidable The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the silicon steel material made of impurities is heated at a temperature of 1280 ° C or lower and then hot-rolled. 前記鋼板を脱炭焼鈍する際の昇温過程において、脱炭焼鈍炉内に直列に配置された複数の誘導加熱装置を用いて、鋼板温度が550℃から720℃にある間を50〜250℃/秒を満たす加熱速度で加熱することを特徴とする請求項1または2に記載の優れた磁気特性を有する方向性電磁鋼板の製造方法。   In the temperature raising process when decarburizing and annealing the steel sheet, a plurality of induction heating devices arranged in series in the decarburizing annealing furnace are used, and the steel sheet temperature is between 550 ° C. and 720 ° C. to 50 to 250 ° C. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1 or 2, wherein heating is performed at a heating rate satisfying / sec. 前記鋼板を脱炭焼鈍する際の昇温過程において、脱炭焼鈍炉内に直列に配置された複数の誘導加熱装置を用いて、鋼板温度が550℃から720℃にある間を75〜125℃/秒を満たす加熱速度で加熱することを特徴とする請求項1または2に記載の優れた磁気特性を有する方向性電磁鋼板の製造方法。   In the temperature raising process when decarburizing and annealing the steel plate, a plurality of induction heating devices arranged in series in the decarburizing annealing furnace are used, and the steel plate temperature is 75 to 125 ° C. while the temperature is from 550 ° C. to 720 ° C. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1 or 2, wherein heating is performed at a heating rate satisfying / sec. 前記鋼板を脱炭焼鈍する際、その昇温過程において前記加熱速度で加熱する温度範囲をTs(℃)から720℃としたときに、室温から500℃までの加熱速度H(℃/秒)に応じて以下のTs(℃)から720℃までの範囲とすることを特徴とする請求項1〜4のいずれか1項に記載の方向性電磁鋼板の製造方法。
H≦15: Ts≦550
15<H: Ts≦600
When the steel sheet is decarburized and annealed, the heating rate H (° C./sec) from room temperature to 500 ° C. when the temperature range heated at the heating rate in the temperature raising process is Ts (° C.) to 720 ° C. The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 4, wherein the range is from the following Ts (° C) to 720 ° C.
H ≦ 15: Ts ≦ 550
15 <H: Ts ≦ 600
前記珪素鋼素材が、さらに、質量%で、Mn:1%以下、Cr:0.3%以下、Cu:0.4%以下、P:0.5%以下、Sn:0.3%以下、Sb:0.3%以下、Ni:1%以下、S及びSeを合計で0.015%以下の1種または2種以上を含有することを特徴とする請求項2〜5のいずれか1項に記載の優れた磁気特性を有する方向性電磁鋼板の製造方法。   The silicon steel material is further in mass%, Mn: 1% or less, Cr: 0.3% or less, Cu: 0.4% or less, P: 0.5% or less, Sn: 0.3% or less, 6. Sb: 0.3% or less, Ni: 1% or less, S and Se are contained in total of 0.015% or less of 1 type or 2 types or more, The any one of Claims 2-5 characterized by the above-mentioned. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties as described in 1. 請求項1〜6のいずれか1項に記載の方向性電磁鋼板を製造するための脱炭焼鈍炉であって、昇温ゾーンに複数の誘導加熱装置を直列に配置したことを特徴とする脱炭焼鈍炉。   A decarburization annealing furnace for producing the grain-oriented electrical steel sheet according to any one of claims 1 to 6, wherein a plurality of induction heating devices are arranged in series in a temperature raising zone. Charcoal annealing furnace. 低温域の誘導加熱装置の加熱速度と高温域の誘導加熱装置の加熱速度を独立に制御できるようにしたことを特徴とする請求項7に記載の脱炭焼鈍炉。   The decarburization annealing furnace according to claim 7, wherein the heating rate of the induction heating device in the low temperature region and the heating rate of the induction heating device in the high temperature region can be controlled independently.
JP2007129282A 2006-05-24 2007-05-15 Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method Pending JP2008001979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129282A JP2008001979A (en) 2006-05-24 2007-05-15 Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006144138 2006-05-24
JP2007129282A JP2008001979A (en) 2006-05-24 2007-05-15 Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method

Publications (1)

Publication Number Publication Date
JP2008001979A true JP2008001979A (en) 2008-01-10

Family

ID=39006605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129282A Pending JP2008001979A (en) 2006-05-24 2007-05-15 Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method

Country Status (1)

Country Link
JP (1) JP2008001979A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207278A (en) * 2011-03-30 2012-10-25 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
WO2013089297A1 (en) * 2011-12-16 2013-06-20 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets having excellent magnetic properties
WO2014034931A1 (en) * 2012-09-03 2014-03-06 Jfeスチール株式会社 Rapidly heating device of continuous annealing equipment
JP2014047411A (en) * 2012-09-03 2014-03-17 Jfe Steel Corp Rapid heating device in continuous annealing furnace
JP2014047412A (en) * 2012-09-03 2014-03-17 Jfe Steel Corp Rapid heating device in continuous annealing furnace
JP2014074210A (en) * 2012-10-05 2014-04-24 Jfe Steel Corp Method of manufacturing grain-oriented electromagnetic steel sheet
JP2014173098A (en) * 2013-03-06 2014-09-22 Jfe Steel Corp Method of producing grain-oriented magnetic steel sheet
CN105008557A (en) * 2013-02-28 2015-10-28 杰富意钢铁株式会社 Production method for grain-oriented electrical steel sheets
JP2015531147A (en) * 2012-07-30 2015-10-29 ポスコ Heating device and continuous metal plate heating mechanism including the same
EP2878687A4 (en) * 2012-07-26 2016-03-16 Jfe Steel Corp Method for producing oriented electromagnetic steel sheet
US9748029B2 (en) 2012-07-26 2017-08-29 Ginza Maronie P.C. Method of producing grain-oriented electrical steel sheet
US9748028B2 (en) 2012-07-26 2017-08-29 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
WO2020149348A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing unidirectional electromagnetic steel sheet
WO2021054408A1 (en) * 2019-09-18 2021-03-25 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
RU2795222C1 (en) * 2019-09-18 2023-05-02 Ниппон Стил Корпорейшн Method for production of an electrical sheet steel with a grain-oriented structure
CN116083701A (en) * 2023-04-06 2023-05-09 首钢智新迁安电磁材料有限公司 High-magnetic-induction oriented silicon steel with excellent surface and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060842A (en) * 2000-08-08 2002-02-28 Nippon Steel Corp Method for producing grain oriented silicon steel sheet having high magnetic flux density
JP2005206906A (en) * 2004-01-26 2005-08-04 Nippon Steel Corp Method for induction-heating steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060842A (en) * 2000-08-08 2002-02-28 Nippon Steel Corp Method for producing grain oriented silicon steel sheet having high magnetic flux density
JP2005206906A (en) * 2004-01-26 2005-08-04 Nippon Steel Corp Method for induction-heating steel sheet

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207278A (en) * 2011-03-30 2012-10-25 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
WO2013089297A1 (en) * 2011-12-16 2013-06-20 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets having excellent magnetic properties
CN103429775A (en) * 2011-12-16 2013-12-04 Posco公司 Method for manufacturing grain-oriented electrical steel sheet having excellent magnetic properties
US9663839B2 (en) 2011-12-16 2017-05-30 Posco Method for manufacturing grain-oriented electrical steel sheet having excellent magnetic properties
EP2878687A4 (en) * 2012-07-26 2016-03-16 Jfe Steel Corp Method for producing oriented electromagnetic steel sheet
US9748028B2 (en) 2012-07-26 2017-08-29 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
US9748029B2 (en) 2012-07-26 2017-08-29 Ginza Maronie P.C. Method of producing grain-oriented electrical steel sheet
US9738949B2 (en) 2012-07-26 2017-08-22 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
US9617616B2 (en) 2012-07-26 2017-04-11 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
JP2015531147A (en) * 2012-07-30 2015-10-29 ポスコ Heating device and continuous metal plate heating mechanism including the same
CN104603298A (en) * 2012-09-03 2015-05-06 杰富意钢铁株式会社 Rapidly heating device of continuous annealing equipment
RU2617085C2 (en) * 2012-09-03 2017-04-19 ДжФЕ СТИЛ КОРПОРЕЙШН Device for quick heating of continuous oxyging line
JP2014047412A (en) * 2012-09-03 2014-03-17 Jfe Steel Corp Rapid heating device in continuous annealing furnace
JP2014047411A (en) * 2012-09-03 2014-03-17 Jfe Steel Corp Rapid heating device in continuous annealing furnace
WO2014034931A1 (en) * 2012-09-03 2014-03-06 Jfeスチール株式会社 Rapidly heating device of continuous annealing equipment
US10072318B2 (en) 2012-09-03 2018-09-11 Jfe Steel Corporation Rapid heating apparatus of continuous annealing line
JP2014074210A (en) * 2012-10-05 2014-04-24 Jfe Steel Corp Method of manufacturing grain-oriented electromagnetic steel sheet
US10134514B2 (en) 2013-02-28 2018-11-20 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
CN105008557A (en) * 2013-02-28 2015-10-28 杰富意钢铁株式会社 Production method for grain-oriented electrical steel sheets
EP2963131A4 (en) * 2013-02-28 2016-03-16 Jfe Steel Corp Production method for grain-oriented electrical steel sheets
JP2014173098A (en) * 2013-03-06 2014-09-22 Jfe Steel Corp Method of producing grain-oriented magnetic steel sheet
WO2020149348A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing unidirectional electromagnetic steel sheet
JPWO2020149348A1 (en) * 2019-01-16 2021-11-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7230931B2 (en) 2019-01-16 2023-03-01 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2021054408A1 (en) * 2019-09-18 2021-03-25 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
JPWO2021054408A1 (en) * 2019-09-18 2021-03-25
CN114423877A (en) * 2019-09-18 2022-04-29 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
EP4032996A4 (en) * 2019-09-18 2022-10-19 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
RU2795222C1 (en) * 2019-09-18 2023-05-02 Ниппон Стил Корпорейшн Method for production of an electrical sheet steel with a grain-oriented structure
JP7364931B2 (en) 2019-09-18 2023-10-19 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
CN116083701A (en) * 2023-04-06 2023-05-09 首钢智新迁安电磁材料有限公司 High-magnetic-induction oriented silicon steel with excellent surface and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5729414B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP2008001979A (en) Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method
JP5273944B2 (en) Manufacturing method of mirror-oriented electrical steel sheet
JP5320690B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
KR101062127B1 (en) Method for manufacturing directional electromagnetic steel sheet with high magnetic flux density
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5300210B2 (en) Method for producing grain-oriented electrical steel sheet
WO2011148849A1 (en) Process for production of unidirectional electromagnetic steel sheet
JP5332134B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP4714637B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP5068579B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP2009256713A (en) Method for manufacturing grain-oriented electrical steel sheet
JP3481567B2 (en) Method for producing grain-oriented electrical steel sheet having B8 of 1.88T or more
JP3943837B2 (en) Method for producing grain-oriented electrical steel sheet
JP4456317B2 (en) Method for producing grain-oriented electrical steel sheet
JP5068580B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP4427226B2 (en) Method for producing grain-oriented electrical steel sheet
JP2009209428A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with remarkably high magnetic flux density
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JP2011111645A (en) Method for producing grain-oriented magnetic steel sheet
JPH10273727A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP2011208196A (en) Method for manufacturing grain-oriented electromagnetic steel sheet having considerably low iron loss
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP2002069532A (en) Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density
JP3485532B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121127

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130125