JP2007284753A - Hard coating member and its producing method - Google Patents

Hard coating member and its producing method Download PDF

Info

Publication number
JP2007284753A
JP2007284753A JP2006114156A JP2006114156A JP2007284753A JP 2007284753 A JP2007284753 A JP 2007284753A JP 2006114156 A JP2006114156 A JP 2006114156A JP 2006114156 A JP2006114156 A JP 2006114156A JP 2007284753 A JP2007284753 A JP 2007284753A
Authority
JP
Japan
Prior art keywords
layered compound
inorganic layered
layer
compound layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006114156A
Other languages
Japanese (ja)
Other versions
JP4758806B2 (en
Inventor
Atsushi Takahashi
敦 高橋
Kiyoshi Kitahara
清志 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo Printing Co Ltd
Original Assignee
Kyodo Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo Printing Co Ltd filed Critical Kyodo Printing Co Ltd
Priority to JP2006114156A priority Critical patent/JP4758806B2/en
Publication of JP2007284753A publication Critical patent/JP2007284753A/en
Application granted granted Critical
Publication of JP4758806B2 publication Critical patent/JP4758806B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a hard coating member having high surface hardness; and to provide the hard coating member produced by the method. <P>SOLUTION: The hard coating member is obtained by immersing a resin base material having an electroconductive layer thereon or itself having electrical conductivity into a dispersion, in which a clay mineral such as smectite, kaolin or mica is dispersed, and applying a voltage to form a layer of an inorganic layered compound on the surface of the base material by electrophoretic deposition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、無機層状化合物層を有するハードコート部材及びその製造方法に関する。   The present invention relates to a hard coat member having an inorganic layered compound layer and a method for producing the same.

従来より、樹脂中に無機層状化合物を含有させたハードコートが知られている(特許文献1)。   Conventionally, a hard coat containing an inorganic layered compound in a resin is known (Patent Document 1).

特開2002−241700号公報JP 2002-241700 A

しかし、特許文献1のハードコート膜においては、無機層状化合物が軟質の樹脂バインダー中に分散されているため、硬度が十分ではないという問題があった。   However, the hard coat film of Patent Document 1 has a problem that the hardness is not sufficient because the inorganic layered compound is dispersed in a soft resin binder.

そこで、本発明は、高い表面硬度を有するハードコート部材及びその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the hard-coat member which has high surface hardness, and its manufacturing method.

即ち、本発明のハードコート部材は、樹脂基材上に、泳動電着法により形成された無機層状化合物層を有することを特徴とする。   That is, the hard coat member of the present invention is characterized by having an inorganic layered compound layer formed by electrophoretic deposition on a resin substrate.

また、本発明のハードコート部材の製造方法は、無機層状化合物分散液中の電極間に電圧を印加し、一方の電極上に無機層状化合物層を形成する工程を有することを特徴とする。   Moreover, the manufacturing method of the hard-coat member of this invention has the process of applying a voltage between the electrodes in an inorganic layered compound dispersion liquid, and forming an inorganic layered compound layer on one electrode.

本発明のハードコート部材の無機層状化合物層は、樹脂バインダーを含まない無機層状化合物単独の層であるため、硬度が高い。   Since the inorganic layered compound layer of the hard coat member of the present invention is a layer of an inorganic layered compound alone that does not contain a resin binder, the hardness is high.

また、本発明の製造方法は、樹脂バインダーを用いずに無機層状化合物層を形成するため、材料ロスが無く、環境に優しい。   Moreover, since the inorganic layered compound layer is formed without using a resin binder, the production method of the present invention has no material loss and is environmentally friendly.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の無機層状化合物層は、泳動電着法により形成されたものである。   The inorganic layered compound layer of the present invention is formed by electrophoretic electrodeposition.

具体的には、無機層状化合物分散液に2枚の電極を設置し、両電極間に電圧を印加することにより、一方の電極上に無機層状化合物層を形成することができる。この際、一方の電極を基材、より好ましくは導電性を有する樹脂基材とし、この基材上に無機層状化合物層が形成されるように電圧を印加することが好ましい。   Specifically, an inorganic layered compound layer can be formed on one electrode by installing two electrodes in the inorganic layered compound dispersion and applying a voltage between the two electrodes. At this time, it is preferable that one electrode is a base material, more preferably a resin base material having conductivity, and a voltage is applied so that an inorganic layered compound layer is formed on the base material.

無機層状化合物は、いわゆる粘土化合物といわれるもので、イオン交換能を有する層状化合物、その中でも特に溶液中で表面電荷を持つ層状化合物が望ましい。この種の層状化合物は板状微粒子とも呼ばれ、Si四面体やAl八面体等の多面体が平面上に連なったシート構造を層状に重ねた結晶構造を備えると共に、層間にイオン吸着サイトを有する化合物である。   The inorganic layered compound is a so-called clay compound, and is preferably a layered compound having an ion exchange ability, and particularly a layered compound having a surface charge in a solution. This type of layered compound is also called a plate-like fine particle, and it has a crystal structure in which a sheet structure in which polyhedrons such as Si tetrahedrons and Al octahedrons are arranged on a plane is layered and has an ion adsorption site between layers. It is.

無機層状化合物の具体例としては、例えばスメクタイト、カオリン、雲母、ハイドロタルサイト等の粘土鉱物を挙げることができる。これらのうちでも、特にスメクタイト(その合成品も含む)が望ましい。   Specific examples of the inorganic layered compound include clay minerals such as smectite, kaolin, mica and hydrotalcite. Of these, smectite (including synthetic products thereof) is particularly desirable.

スメクタイトは、4面体構造を持つ4価のシリコンイオンからなる層(4面体層)と8面体構造を持つ2価と3価のカチオンからなる層(8面体層)とを持ち、4面体層−8面体層−4面体層という3層を基本結晶構造とする板状鉱物の総称である。スメクタイトの層間にはイオン吸着サイトが存在し、溶液中で種々の化合物を吸着する特徴を持つ。また、スメクタイトの層間に水が入り込むことにより、自分の体積の十数倍に膨れあがる特徴(膨潤性)を持つ。スメクタイトの種類としては、サポナイト、ヘクトライト、モンモリロナイトなどが知られている。合成サポナイトの例としては、例えばクニミネ工業社製「スメクトンSA」等が、合成ヘクトライトの例としては、例えばロックウッド社製「ラポナイトXLG」、コープケミカル社製「ルーセンタイトSWN」等が、合成モンモリロナイトの例としては、クニミネ工業社製の「クニピアF」等がある。   Smectite has a tetrahedral layer composed of tetravalent silicon ions (tetrahedral layer) and an octahedral structure composed of bivalent and trivalent cations (octahedral layer). It is a generic term for plate-like minerals having a basic crystal structure of three layers called an octahedral layer and a tetrahedral layer. There is an ion adsorption site between smectite layers, and it has the feature of adsorbing various compounds in solution. In addition, when water enters between the layers of smectite, it has a characteristic (swellability) that swells to a dozen times of its own volume. Known types of smectite include saponite, hectorite, and montmorillonite. Examples of synthetic saponite include “Smecton SA” manufactured by Kunimine Kogyo Co., Ltd., and examples of synthetic hectorite include “Laponite XLG” manufactured by Rockwood, “Lucentite SWN” manufactured by Corp Chemical, etc. Examples of montmorillonite include “Kunipia F” manufactured by Kunimine Industries.

導電性を有する樹脂基材としては、導電層を有する樹脂基材が挙げられる。具体的には、例えば、ポリエステル、ポリカーボネート、ポリエーテルスルホン、ポリイミド、トリアセチルセルロース等よりなる樹脂基材上に、例えば、酸化インジウム、酸化スズ、酸化亜鉛等よりなる導電層を、スパッタ、CVD、イオンプレーティング、ディップコート、スクリーン印刷等により形成したものが挙げられる。   Examples of the resin base material having conductivity include a resin base material having a conductive layer. Specifically, for example, a conductive layer made of indium oxide, tin oxide, zinc oxide or the like is formed on a resin substrate made of polyester, polycarbonate, polyethersulfone, polyimide, triacetylcellulose, etc., by sputtering, CVD, Examples thereof include those formed by ion plating, dip coating, screen printing, and the like.

導電層の厚さは、0.01μm〜100μmが好ましく、0.05μm〜50μmがより好ましい。100μmを超えると導電層の形成が難しくなる可能性があり、0.01μm未満では所望の通電量を得ることができない可能性がある。   The thickness of the conductive layer is preferably 0.01 μm to 100 μm, more preferably 0.05 μm to 50 μm. If the thickness exceeds 100 μm, it may be difficult to form a conductive layer, and if it is less than 0.01 μm, a desired energization amount may not be obtained.

なお、樹脂基材自体が導電性を有する場合には、導電層を設けなくてもよい。この様な樹脂基材としては、例えばポリアニリン、ポリピロール、ポリチオフェン等の導電性高分子よりなる基材、例えば金属粉、導電性顔料、酸化インジウムスズ粒子等の導電性フィラーを含有させた樹脂よりなる基材等が挙げられる。   In addition, when the resin base material itself has conductivity, the conductive layer may not be provided. As such a resin base material, for example, a base material made of a conductive polymer such as polyaniline, polypyrrole or polythiophene, for example, a resin containing a conductive filler such as a metal powder, a conductive pigment, or indium tin oxide particles is used. Examples include base materials.

無機層状化合物層の厚さは、0.001μm〜50μmが好ましく、0.05μm〜20μmがより好ましい。50μmを超えると積層が難しくなる可能性があり、0.001μm未満では本来の機能である耐擦傷性が得られない可能性がある。   The thickness of the inorganic layered compound layer is preferably 0.001 μm to 50 μm, and more preferably 0.05 μm to 20 μm. If it exceeds 50 μm, lamination may be difficult, and if it is less than 0.001 μm, scratch resistance, which is the original function, may not be obtained.

基材としては、特に限定されず、剛性基材、可撓性基材の何れでもよいが、容易に引っ掻き傷が生じる基材である場合に最大の利益が得られる。   The substrate is not particularly limited and may be either a rigid substrate or a flexible substrate, but the maximum benefit can be obtained when the substrate is easily scratched.

例えば、前述の導電性を有する樹脂基材の他に、ガラス、石英、木材、金属、塗装金属等が挙げられ、基材自体が導電性を有さない場合には、樹脂基材の場合と同様に導電層を形成すればよい。   For example, in addition to the above-mentioned resin base material having conductivity, glass, quartz, wood, metal, painted metal, etc. may be mentioned. When the base material itself does not have conductivity, Similarly, a conductive layer may be formed.

より具体的な基材としては、シート、フィルムの他、レンズ(例えば、眼鏡レンズ、カメラレンズ、双眼鏡レンズ、望遠鏡レンズ、フレネルレンズ等)、鏡、ウォッチクリスタル、ホログラム、窓、コンピュータープライバシーフィルター、コンパクトディスク、DVDディスク等のような光学素子;タッチスクリーンディスプレー(例えば、コンピュータタッチスクリーンおよびパーソナルデータアシスタントのもの)、テレビ、電子ペーパーのような可撓性電子ディスプレイ、コンピューターモニター、携帯電話、グローバルポジショニングシステム、計算機等を含む電子ディスプレー装置を有する物品;バックライトおよび交通標識を含む野外標識を含むグラフィック物品;自動車、スカルプチャー、膜スイッチ、宝石等が挙げられる。   More specific substrates include sheets, films, lenses (eg, spectacle lenses, camera lenses, binocular lenses, telescope lenses, Fresnel lenses, etc.), mirrors, watch crystals, holograms, windows, computer privacy filters, compact Optical elements such as discs, DVD discs, etc .; touch screen displays (for example, those of computer touch screens and personal data assistants), flexible electronic displays such as televisions, electronic paper, computer monitors, mobile phones, global positioning systems Articles with electronic display devices including computers, graphic articles including outdoor signs including backlights and traffic signs, automobiles, sculptures, membrane switches, jewelry, etc.

また、例えば塗工型の導電層等の表面の粗い導電層を有する基材を用いた場合には、基材(導電層)と無機層状化合物層との密着性が十分でない場合がある。この様な場合には、無機層状化合物層を他の基材に転写して積層してもよい。   For example, when a base material having a rough conductive layer such as a coating-type conductive layer is used, the adhesion between the base material (conductive layer) and the inorganic layered compound layer may not be sufficient. In such a case, the inorganic layered compound layer may be transferred to another substrate and laminated.

具体的には、無機層状化合物層と他の基材を接着剤を介して貼り合せ、接着が促進したところで導電層と無機層状化合物層の界面を剥離して、無機層状化合物層を他の基材上に転写する。接着剤としては、塩化ビニル/酢酸ビニル共重合体、エチレン/酢酸ビニル共重合体、塩化ビニル/プロピオン酸共重合体、ゴム系樹脂、シアノアクリレート樹脂、セルロース系樹脂、アイオノマー樹脂、ポリオレフィン系共重合体、ポリウレタン系樹脂、エポキシ系樹脂などが挙げあられる。転写する他の基材は特に限定されず、上述の基材を用いることができるが、フィルムとしては、ポリエステル系、ポリエチレン系、ポリプロピレン系、ポリイミド系、ポリアミド系、ポリスルフォン系、ポリカードネート系などのフィルムが挙げられる。   Specifically, the inorganic layered compound layer and another substrate are bonded together via an adhesive, and when the adhesion is promoted, the interface between the conductive layer and the inorganic layered compound layer is peeled off, and the inorganic layered compound layer is separated from the other group. Transfer onto the material. Adhesives include vinyl chloride / vinyl acetate copolymer, ethylene / vinyl acetate copolymer, vinyl chloride / propionic acid copolymer, rubber resin, cyanoacrylate resin, cellulose resin, ionomer resin, polyolefin copolymer Examples thereof include coalescence, polyurethane resin, and epoxy resin. Other base materials to be transferred are not particularly limited, and the above-mentioned base materials can be used. As the film, polyester-based, polyethylene-based, polypropylene-based, polyimide-based, polyamide-based, polysulfone-based, polycardinate-based And the like.

以下、本発明を実施例によりさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

<実施例1>   <Example 1>

まず、無機層状化合物(クニミネ工業社製「クニピアF」)0.1gを水100mlに分散させた液を用意した。この分散液中に、陰極としてステンレス板(100mm×100mm×0.3mm)、陽極として透明導電塗料(インジウム・スズ酸化物微粒子)を塗工して厚さ1μmの導電層を形成したPETフィルム(100mm×100mm×0.1mm)を設置した。   First, a liquid was prepared by dispersing 0.1 g of an inorganic layered compound (“Kunipia F” manufactured by Kunimine Kogyo Co., Ltd.) in 100 ml of water. In this dispersion, a stainless steel plate (100 mm × 100 mm × 0.3 mm) as a cathode and a transparent conductive paint (indium tin oxide fine particles) as an anode were coated to form a 1 μm-thick PET film ( 100 mm × 100 mm × 0.1 mm) was installed.

両電極間に5Vの定電圧の直流を10分間通電し、陽極側の導電層上に、透明で金属光沢性のある無機層状化合物層を形成し、50℃で24時間乾燥して厚さ0.12μmの無機層状化合物層を得た。   A direct current of 5 V constant voltage was applied between the electrodes for 10 minutes to form a transparent and metallic glossy inorganic layered compound layer on the anode-side conductive layer, and dried at 50 ° C. for 24 hours to obtain a thickness of 0 An inorganic layered compound layer of 12 μm was obtained.

このフィルムの、無機層状化合物層と無機層状化合物層を形成していない面の表面硬度を、超微小硬さ試験装置((株)フィッシャー・インストルメンツ製「フィッシャースコープH−100」)で測定したところ、それぞれ、264mN/mm2、180mN/mm2であった。 The surface hardness of the surface of the film on which the inorganic layered compound layer and the inorganic layered compound layer are not formed is measured with an ultra micro hardness tester (“Fischer Scope H-100” manufactured by Fisher Instruments Co., Ltd.). where were, respectively, was 264mN / mm 2, 180mN / mm 2.

<実施例2>
まず、無機層状化合物(クニミネ工業社製「スメクトン」)0.1gを水100mlに分散させた液を用意した。この分散液中に、陰極としてステンレス板(100mm×100mm×0.3mm)、陽極としてスパッタリングにより厚さ0.1μmのインジウム・スズ酸化膜(導電層)を形成したポリカーボネートフィルム(100mm×100mm×0.2mm)を設置した。
<Example 2>
First, a liquid was prepared by dispersing 0.1 g of an inorganic layered compound (“Smecton” manufactured by Kunimine Kogyo Co., Ltd.) in 100 ml of water. In this dispersion, a stainless steel plate (100 mm × 100 mm × 0.3 mm) as a cathode and a polycarbonate film (100 mm × 100 mm × 0) in which an indium tin oxide film (conductive layer) having a thickness of 0.1 μm is formed as an anode by sputtering. .2 mm).

両電極間に3Vの定電圧の直流を20分間通電し、陽極側の導電層上に、透明で金属光沢性のある無機層状化合物層を形成し、50℃で24時間乾燥して厚さ0.10μmの無機層状化合物層を得た。   A direct current with a constant voltage of 3 V was passed between the electrodes for 20 minutes to form a transparent and metallic glossy inorganic layered compound layer on the anode-side conductive layer, and dried at 50 ° C. for 24 hours to obtain a thickness of 0 A 10 μm inorganic layered compound layer was obtained.

このフィルムの、無機層状化合物層と無機層状化合物層を形成していない面の表面硬度を、実施例1と同様に測定したところ、それぞれ、250mN/mm2、222mN/mm2であった。 This film, the surface hardness of the surface is not formed of an inorganic layered compound layer and the inorganic layered compound layer was measured in the same manner as in Example 1, respectively, was 250mN / mm 2, 222mN / mm 2.

<実施例3>
実施例1と同様にして、無機層状化合物層まで形成した。一方、PETフィルム(100mm×100mm×0.05mm)上にポリウレタン系接着剤を1μmの厚さで塗工した。その後、両者の接着層と無機層状化合物層を対向させて張り合わせ、40℃で24時間エージングを行った後に、無機層状化合物層と導電層との層間で剥離し、無機層状化合物層/接着層/PETフィルムという層構成のバリアフィルムを得た。
<Example 3>
In the same manner as in Example 1, the inorganic layered compound layer was formed. On the other hand, a polyurethane adhesive was applied to a thickness of 1 μm on a PET film (100 mm × 100 mm × 0.05 mm). Thereafter, the adhesive layer and the inorganic layered compound layer are laminated to face each other, and after aging at 40 ° C. for 24 hours, peeling is performed between the inorganic layered compound layer and the conductive layer, and the inorganic layered compound layer / adhesive layer / A barrier film having a layer structure of PET film was obtained.

このフィルムの、無機層状化合物層と無機層状化合物層を形成していない面の表面硬度を、実施例1と同様に測定したところ、それぞれ、252mN/mm2、180mN/mm2であった。 This film, the surface hardness of the surface is not formed of an inorganic layered compound layer and the inorganic layered compound layer was measured in the same manner as in Example 1, respectively, was 252mN / mm 2, 180mN / mm 2.

<実施例4>
まず、無機層状化合物(コープケミカル製「ルーセンタイト」)0.5gを水100mlに分散させた液を用意した。この分散液中に、陰極としてステンレス板(100mm×100mm×0.3mm)、陽極として透明導電塗料(インジウム・スズ酸化物微粒子)を塗工して厚さ1μmの導電層を形成したポリエーテルスルフォンフィルム(100mm×100mm×0.2mm)を設置した。
<Example 4>
First, a liquid in which 0.5 g of an inorganic layered compound (“Lucentite” manufactured by Co-op Chemical) was dispersed in 100 ml of water was prepared. In this dispersion, a polyethersulfone in which a stainless plate (100 mm × 100 mm × 0.3 mm) is applied as a cathode and a transparent conductive paint (indium tin oxide fine particles) is applied as an anode to form a conductive layer having a thickness of 1 μm. A film (100 mm × 100 mm × 0.2 mm) was installed.

両電極間に7Vの定電圧の直流を20分間通電し、陽極側の透明導電層上に、透明で金属光沢性のある無機層状化合物層を形成し、50℃で24時間乾燥して厚さ0.2μmの無機層状化合物層を得た。   A 7V constant voltage direct current was applied between the electrodes for 20 minutes to form a transparent and metallic glossy inorganic layered compound layer on the anode side transparent conductive layer, and dried at 50 ° C. for 24 hours to obtain a thickness. An inorganic layered compound layer of 0.2 μm was obtained.

一方、PETフィルム(100mm×100mm×0.05mm)上にエポキシ系接着剤を1μmの厚さで塗工した。   On the other hand, an epoxy adhesive was applied to a thickness of 1 μm on a PET film (100 mm × 100 mm × 0.05 mm).

その後、両者の接着層と無機層状化合物層を対向させて張り合わせ、40℃で24時間エージングを行った後に、無機層状化合物層と導電層との層間で剥離し、無機層状化合物層/接着層/PETフィルムという層構成のバリアフィルムを得た。   Thereafter, the adhesive layer and the inorganic layered compound layer are laminated to face each other, and after aging at 40 ° C. for 24 hours, peeling is performed between the inorganic layered compound layer and the conductive layer, and the inorganic layered compound layer / adhesive layer / A barrier film having a layer structure of PET film was obtained.

このフィルムの、無機層状化合物層と無機層状化合物層を形成していない面の表面硬度を、実施例1と同様に測定したところ、それぞれ、254mN/mm2、180mN/mm2であった。 This film, the surface hardness of the surface is not formed of an inorganic layered compound layer and the inorganic layered compound layer was measured in the same manner as in Example 1, respectively, was 254mN / mm 2, 180mN / mm 2.

<比較例1>
ポリビニルアルコールと実施例1で用いた無機層状化合物を重量比40:60で混合した塗工液を、実施例1で用いたPETフィルム上に塗工し、50℃で24時間乾燥し、厚さ0.12μmの層を形成した。
<Comparative Example 1>
A coating solution prepared by mixing polyvinyl alcohol and the inorganic layered compound used in Example 1 at a weight ratio of 40:60 was applied onto the PET film used in Example 1, dried at 50 ° C. for 24 hours, and then thickened. A 0.12 μm layer was formed.

このフィルムの、無機層状化合物層の表面硬度を、実施例1と同様に測定したところ、140mN/mm2であった。 When the surface hardness of the inorganic layered compound layer of this film was measured in the same manner as in Example 1, it was 140 mN / mm 2 .

Claims (6)

基材上に、泳動電着法により形成された無機層状化合物層を有することを特徴とするハードコート部材。   A hard coat member comprising an inorganic layered compound layer formed by electrophoretic electrodeposition on a substrate. 前記無機層状化合物層が、導電層を介して基材上に積層されていることを特徴とする請求項1に記載のハードコート部材。   The hard coat member according to claim 1, wherein the inorganic layered compound layer is laminated on a base material via a conductive layer. 前記無機層状化合物層が、接着層を介して基材上に積層されていることを特徴とする請求項1に記載のハードコート部材。   The hard coat member according to claim 1, wherein the inorganic layered compound layer is laminated on a base material via an adhesive layer. 無機層状化合物分散液中の電極間に電圧を印加し、一方の電極上に無機層状化合物層を形成する工程を有することを特徴とするハードコート部材の製造方法。   A method for producing a hard coat member, comprising a step of applying a voltage between electrodes in an inorganic layered compound dispersion to form an inorganic layered compound layer on one electrode. 前記一方の電極が、基材であることを特徴とする請求項4に記載のハードコート部材の製造方法。   The method for manufacturing a hard coat member according to claim 4, wherein the one electrode is a base material. さらに、前記無機層状化合物層を基材上に積層する工程を有することを特徴とする請求項4に記載のハードコート部材の製造方法。   Furthermore, the manufacturing method of the hard-coat member of Claim 4 which has the process of laminating | stacking the said inorganic layered compound layer on a base material.
JP2006114156A 2006-04-18 2006-04-18 Hard coat member and manufacturing method thereof Expired - Fee Related JP4758806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114156A JP4758806B2 (en) 2006-04-18 2006-04-18 Hard coat member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114156A JP4758806B2 (en) 2006-04-18 2006-04-18 Hard coat member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007284753A true JP2007284753A (en) 2007-11-01
JP4758806B2 JP4758806B2 (en) 2011-08-31

Family

ID=38756810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114156A Expired - Fee Related JP4758806B2 (en) 2006-04-18 2006-04-18 Hard coat member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4758806B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150343A (en) * 1976-06-10 1977-12-14 Nippon Steel Corp Process for producing surfaceetreated steel sheet with lamellar silicic acid highhmolecular compound coatings
JPS5540754A (en) * 1978-09-19 1980-03-22 Mitsubishi Electric Corp Electrodeposition coating
JPS5964798A (en) * 1982-09-30 1984-04-12 Takenaka Komuten Co Ltd Electric adhesion of bentonite to steel material
JPH04183898A (en) * 1990-11-16 1992-06-30 Toyota Central Res & Dev Lab Inc Electrophoretic coating device of clay ore
JPH08134697A (en) * 1994-11-11 1996-05-28 Nisshin Steel Co Ltd Method for coating antifungal and mildew-proofing zeolite by utilizing electrophoresis
JPH10310897A (en) * 1997-03-11 1998-11-24 Agency Of Ind Science & Technol High performance heat insulator and its production
JP2002088500A (en) * 2000-09-18 2002-03-27 Japan Science & Technology Corp Method for preparing crystal oriented laminar compound film by elecrophoresis method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150343A (en) * 1976-06-10 1977-12-14 Nippon Steel Corp Process for producing surfaceetreated steel sheet with lamellar silicic acid highhmolecular compound coatings
JPS5540754A (en) * 1978-09-19 1980-03-22 Mitsubishi Electric Corp Electrodeposition coating
JPS5964798A (en) * 1982-09-30 1984-04-12 Takenaka Komuten Co Ltd Electric adhesion of bentonite to steel material
JPH04183898A (en) * 1990-11-16 1992-06-30 Toyota Central Res & Dev Lab Inc Electrophoretic coating device of clay ore
JPH08134697A (en) * 1994-11-11 1996-05-28 Nisshin Steel Co Ltd Method for coating antifungal and mildew-proofing zeolite by utilizing electrophoresis
JPH10310897A (en) * 1997-03-11 1998-11-24 Agency Of Ind Science & Technol High performance heat insulator and its production
JP2002088500A (en) * 2000-09-18 2002-03-27 Japan Science & Technology Corp Method for preparing crystal oriented laminar compound film by elecrophoresis method

Also Published As

Publication number Publication date
JP4758806B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
KR101452598B1 (en) Optical laminate, polarizing plate and image display device
JP5414426B2 (en) Composite film
JP3206713B2 (en) Anti-glare material and polarizing film using the same
US20140251662A1 (en) Optically clear conductive adhesive and articles therefrom
JP2011100107A (en) Method for manufacturing electrophoretic display sheet, electrophoretic display sheet, electrophoretic display device, and electronic apparatus
WO2004009352A1 (en) Functional film for transfer having functional layer, object furnished with functional layer and process for producing the same
CN103891427A (en) Electronic apparatus, electronic apparatus casing, and front face protection plate
JP6866104B2 (en) Conductors, their manufacturing methods, and devices containing them
JP2022092068A (en) Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid
JPH04235527A (en) Substrate for liquid crystal cell
JP4758806B2 (en) Hard coat member and manufacturing method thereof
US20190018297A1 (en) Electrochromic devices
JP2010134180A (en) Liquid crystal device and electronic apparatus
JP4984463B2 (en) Method for manufacturing electrophoresis apparatus
EP4238763A1 (en) Piezoelectric film, touch panel, and piezoelectric film manufacturing method
JP2009276396A (en) Light-reflective film and light-eflective plate
TW201321881A (en) Electrophoretic display sheet and electrophoretic display medium using same
JP2013061507A (en) Gas barrier substrate and color filter
TW201211592A (en) Color filter member for electronic paper, electronic paper, and manufacturing method thereof
JP4675060B2 (en) Electrophoretic display medium
JP2003172957A (en) Porous film, manufacturing method therefor, electrochemical display device using porous film and manufacturing method therefor
KR20170035567A (en) Conductive light shielding tape
CN213635975U (en) Array substrate and display screen
US11874436B2 (en) Optical device having fluid-filled partitioned spaces with electric field control material
JP2913880B2 (en) Electrochromic display element and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees