JPH04183898A - Electrophoretic coating device of clay ore - Google Patents

Electrophoretic coating device of clay ore

Info

Publication number
JPH04183898A
JPH04183898A JP31217190A JP31217190A JPH04183898A JP H04183898 A JPH04183898 A JP H04183898A JP 31217190 A JP31217190 A JP 31217190A JP 31217190 A JP31217190 A JP 31217190A JP H04183898 A JPH04183898 A JP H04183898A
Authority
JP
Japan
Prior art keywords
coated
suspension
anode
sepiolite
clay mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31217190A
Other languages
Japanese (ja)
Inventor
Koji Sakano
幸次 坂野
Ryusuke Tsuji
龍介 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP31217190A priority Critical patent/JPH04183898A/en
Publication of JPH04183898A publication Critical patent/JPH04183898A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly coat a conductive material to be coated with a large amt. of cation exchange type clay ore by immersing the material to be coated as an anode into a suspension dispersed with the above-mentioned clay ore in a coating cell and subjecting the clay ore particles to electrophoresis. CONSTITUTION:The suspension 3 prepd. by dispersing sepiolite at about 0.1 to 10wt.% in water is housed in the coating cell 4 made of acrylic resin. The anode 1 consisting of the stainless steel material to be coated and a stainless steel counter electrode 2 are immersed into this suspension 3. About 100V/cm electric field is impressed between these two electrodes 1 and 2 from a DC power source 5 to migrate the sepiolite in the suspension 3 from the material which is to be coated and is polarized positive to the anode 1 so as to stick the sepiolite thereon. The material 1 to be coated is coated uniformly with a large amt. of the sepiolite having the excellent characteristics, such as adsorption characteristic, catalyst characteristics, etc., in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸臭性、吸水性等の吸着特性や、有用な触媒
活性を有する粘土鉱物の粒子を各種の担体に均一に、大
量に、しかも容易で安価に被覆できる粘土鉱物の電気泳
動被覆装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to the production of clay mineral particles having adsorption properties such as odor absorption and water absorption, as well as useful catalytic activity, uniformly and in large quantities on various carriers. Moreover, the present invention relates to an electrophoretic coating device for clay minerals that can be coated easily and inexpensively.

(従来技術) 従来、金属等の被塗物質を、粘土鉱物等の粉末で被覆せ
しめる方法としては、多(の手法が使われている。その
代表的な例として、粉末を水等で懸濁させ、この懸濁液
中に被塗物質を浸漬し、粉末を被覆するデイツプ方法、
粉末をそのまま用い、高電圧下で粉末に電荷を与え、電
場を利用して金属等の導電性材料等に粉末を被覆させる
静電塗装方法がある。
(Prior art) Conventionally, various methods have been used to coat materials such as metals with powders such as clay minerals.A typical example is to suspend powders in water, etc. a dip method in which the substance to be coated is immersed in this suspension to coat the powder;
There is an electrostatic coating method that uses powder as it is, applies a charge to the powder under high voltage, and uses an electric field to coat conductive materials such as metals with the powder.

前記は、装置が簡単である利点はあるが、該粘土鉱物粉
末を少量しか被覆できない欠点があった。
Although the above method has the advantage that the apparatus is simple, it has the disadvantage that only a small amount of the clay mineral powder can be coated.

さらに、付着力が弱いため、簡単に剥がれ落ちてしまう
問題もあった。一方、後者の静電塗装方法は、被覆効率
が高く、かなりの量を被覆せしめることができる。しか
し、高電圧で該粘土鉱物に電荷をもたせるため、高価な
高電圧発生装置が必要となる。更に、荷電した該粘土鉱
物粉末を噴霧させるため、大規模な集塵装置が必要とな
る。このため、設備に多額な費用がかかる上に、ハニカ
ム状等の複雑な形状の被塗物に対するコーチインクが困
難であった。
Furthermore, since the adhesive force is weak, there is also the problem that it easily peels off. On the other hand, the latter electrostatic coating method has high coating efficiency and can coat a considerable amount. However, in order to charge the clay mineral with a high voltage, an expensive high voltage generator is required. Furthermore, in order to atomize the charged clay mineral powder, a large-scale dust collector is required. For this reason, not only does the equipment cost a lot of money, but it is also difficult to apply coach ink to objects having complex shapes such as honeycomb shapes.

(発明の目的) 本発明者らは、このような従来技術の問題点に鑑み、鋭
意研究を行った。その結果、粘土鉱物の懸濁液が負に帯
電しており、陽極へ泳動することを見出すとともに、こ
れを利用して前記問題点を解決した新規な粘土鉱物の被
覆装置を開発できることに思い当たった。
(Object of the Invention) The present inventors conducted extensive research in view of the problems of the prior art. As a result, they discovered that the clay mineral suspension was negatively charged and migrated toward the anode, and they also realized that they could use this to develop a new clay mineral coating device that solved the above problems. .

そこで、本発明の目的は、被塗物質を吸着特性、触媒特
性など様々の優れた特性を有する粘土鉱物により、均一
、大量に被覆し、しかも実用に耐えるだけの強度を持っ
た脱臭材、吸着材あるいは触媒等を製造する安価で効率
的な粘土鉱物の電気泳動被覆装置を提供することにある
Therefore, the purpose of the present invention is to provide a deodorizing material and an adsorbent that can coat the coated material uniformly and in large quantities with clay minerals having various excellent properties such as adsorption properties and catalytic properties, and which has enough strength to withstand practical use. An object of the present invention is to provide an inexpensive and efficient electrophoretic coating device for clay minerals for producing materials, catalysts, etc.

(発明の構成) 本発明の粘土鉱物の電気泳動被覆装置は、カチオン交換
性の粘土鉱物を分散させた懸濁液中の粘土鉱物の粒子を
電気泳動させるための被覆槽と、該被覆槽にあって前記
懸濁液に浸漬され、少なくともその表面の一部に導電性
を有した被塗物質台からなる陽極と、前記懸濁液に浸漬
され、前記陽極を正に分極するための対極と、前記陽極
および前記対極に導線を介して接続して前記両極間に小
さな電圧を印加する電圧発生手段とからなる。
(Structure of the Invention) The electrophoretic coating device for clay minerals of the present invention includes a coating tank for electrophoresing clay mineral particles in a suspension in which cation-exchangeable clay minerals are dispersed, and an anode consisting of a coated material base which is immersed in the suspension and has conductivity on at least a part of its surface, and a counter electrode which is immersed in the suspension and is for positively polarizing the anode. , voltage generating means connected to the anode and the counter electrode via a conductive wire and applying a small voltage between the two electrodes.

(発明の作用) 電圧発生手段によりカチオン交換性の粘土鉱物が分散し
た懸濁液に浸かった被塗物質からなる陽極と対極の間に
小さな電圧を印加する。この時、粘土鉱物を付着させた
被塗物質は、対極に対し、正に分極される。
(Operation of the Invention) A small voltage is applied by a voltage generating means between an anode and a counter electrode, which are made of a coating material immersed in a suspension in which cation-exchangeable clay minerals are dispersed. At this time, the coated material to which the clay mineral is attached is positively polarized with respect to the opposite electrode.

カチオン交換性粘土鉱物は、その構造中の金属イオンと
溶液中のカチオンとをイオン交換できるものであり、そ
の構造の電荷のバランスから表面に負電荷を帯びている
。又、表面官能基としてOH基も有している。
Cation-exchangeable clay minerals can exchange metal ions in their structure with cations in a solution, and their surfaces are negatively charged due to the balance of charges in their structure. It also has an OH group as a surface functional group.

このOH基により、溶媒との親和性が生じ、単粒子状に
分散する。
This OH group creates an affinity with the solvent and disperses it into single particles.

溶媒中で単粒子状に分散した粘土鉱物は、負に帯電する
ため、電場の勾配に従い正に分極した被塗物質の方向へ
溶液中を泳動し、被塗物質上に付着する。
Since the clay mineral dispersed in the form of single particles in a solvent is negatively charged, it migrates in the solution in the direction of the positively polarized material to be coated according to the gradient of the electric field, and adheres to the material to be coated.

(発明の効果) 本発明によれば、上記のように被塗物質からなる陽極を
カチオン交換性の粘土鉱物の懸濁液に浸漬し、小さな電
圧を印加するだけて被塗物質上に粘土鉱物を付着させる
ことができる。従って、電圧発生装置等を含めた全体の
装置は小規模のものでよ(、設備費が少なくてすむ。ま
た、これら粘土鉱物は、静電気的に付着しているため、
凝集力が大きい。さらに本発明の装置によれば、従来の
浸漬により付着させるデイツプ法に比べ、2.5倍の付
着量を得ることができる。
(Effects of the Invention) According to the present invention, as described above, an anode made of a material to be coated is immersed in a suspension of a cation-exchangeable clay mineral, and a small voltage is applied to the clay mineral on the material to be coated. can be attached. Therefore, the entire equipment, including the voltage generator, etc., can be small-scale (equipment costs are low).Also, since these clay minerals are electrostatically attached,
Great cohesive force. Furthermore, according to the apparatus of the present invention, it is possible to obtain a coating amount 2.5 times greater than that of the conventional dip method in which the coating is deposited by dipping.

このように、本発明によれば、吸着特性、触媒活性等様
々の特性を有したカチオン交換性粘土鉱物を任意の形状
の担体に強い力で大量にしかも均一に付着させることが
できる。これにより、脱臭材12分解触媒等有用な機能
材を安価に製造することができる。
As described above, according to the present invention, a large amount of cation-exchangeable clay minerals having various properties such as adsorption properties and catalytic activity can be uniformly deposited on a carrier of any shape with strong force. Thereby, useful functional materials such as the deodorizing material 12 decomposition catalyst can be manufactured at low cost.

(その他の発明) 本発明のその他の発明として、カチオン交換性粘土鉱物
の被覆方法を次に示す。本方法は、カチオン交換性の粘
土鉱物を極性溶媒に分散させることによって負に帯電し
た粘土鉱物を有する懸濁液を作製する。この中に、少な
くともその表面の一部に導電性を有する被塗物質からな
る陽極と、該陽極を正に分極するための対極とを互いに
接することなく浸漬配置し、前記陽極、対極間に100
 V/cm以下の強さの電場を印加することにより、前
記角に帯電した粘土鉱物を前記被塗物質からなる陽極方
向に泳動させ、前記カチオン交換性の粘土鉱物を前記陽
極に付着させるものである。
(Other Inventions) As other inventions of the present invention, a method for coating a cation-exchangeable clay mineral will be described below. The method creates a suspension with negatively charged clay minerals by dispersing cation-exchangeable clay minerals in a polar solvent. In this, an anode made of a coated material having conductivity on at least a part of its surface and a counter electrode for positively polarizing the anode are immersed and arranged without touching each other.
By applying an electric field with a strength of V/cm or less, the clay mineral charged at the corner is caused to migrate toward the anode made of the coating material, and the cation-exchangeable clay mineral is attached to the anode. be.

電場の強さは、1’ OOV/cm以下が良い。これ以
上では溶媒の分解が優先し、被塗物質上や対極で多量の
ガスが電圧印加直後に発生し、粘土鉱物の付着を阻害す
る。
The strength of the electric field is preferably 1' OOV/cm or less. If it exceeds this range, the decomposition of the solvent takes priority, and a large amount of gas is generated on the coated material or on the counter electrode immediately after voltage application, which inhibits the adhesion of clay minerals.

本発明のカチオン交換性粘土鉱物としては、セビオライ
ト、パリゴルスカイト、複鎖構造型粘土鉱物やモンモリ
ロナイト、サポナイト°等のスメクタイト族粘土鉱物等
がある。
Examples of the cation-exchangeable clay minerals of the present invention include seviolite, palygorskite, double-chain structure type clay minerals, and smectite group clay minerals such as montmorillonite and saponite.

溶媒としては、極性溶媒が適している。即ち、水、メチ
ルアルコール、エチルアルコール、イソプロピルアルコ
ール等のアルコール類もしくはこれらの混合物が好適で
ある。この中では、水が特に優れている。
As the solvent, polar solvents are suitable. That is, water, alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, or mixtures thereof are suitable. Among these, water is particularly good.

極性を有する溶媒を用いるのは、カチオン交換性の粘土
鉱物の表面水酸基が溶媒と親和性を持ち、分散性が良く
、懸濁液が得易いからである。
The reason why a polar solvent is used is that the surface hydroxyl groups of cation-exchangeable clay minerals have affinity with the solvent, have good dispersibility, and are easy to obtain a suspension.

懸濁液の調製には、ヘンシェルミキサやホモミクサ等の
高剪断力を持つ撹拌機が用いられる。
A stirrer with high shear force, such as a Henschel mixer or a homomixer, is used to prepare the suspension.

懸濁液濃度としては、0.1wt%〜10wt%の範囲
が適当であるが、被覆を特に均一、大量に行いたい時は
、0.5〜5wt%が好適である。
The concentration of the suspension is suitably in the range of 0.1 wt% to 10 wt%, but 0.5 to 5 wt% is suitable when particularly uniform coating is desired in large quantities.

懸濁液濃度がO,1wt%以下の場合には、粘土鉱物量
が少なすぎるため、電圧印加により極性溶媒の電解が優
先し、被塗物質や対極からガスが発生し、粘土鉱物の付
着を阻害する。又、10wt%以上の高濃度の場合には
、懸濁液中の多量の粘土鉱物による抵抗が大きすぎるた
め、粘土鉱物の泳動がスムーズに行えない。
When the concentration of the suspension is less than 1 wt% O, the amount of clay minerals is too small, so electrolysis of the polar solvent takes priority due to voltage application, gas is generated from the coating material and the counter electrode, and the adhesion of clay minerals is prevented. inhibit. Moreover, in the case of a high concentration of 10 wt% or more, the resistance due to the large amount of clay minerals in the suspension is too large, so that migration of the clay minerals cannot be carried out smoothly.

粘土鉱物を付着させる被塗物質は、導電性を有するもの
、例えば金属から構成されるものが好ましい。中でも電
圧印加によりイオン溶出の少ないものが良く、貴金属系
材料が最も好ましいが、価格の面を考慮するとステンレ
ス製のものが好適である。さらに、被塗物質として非導
電性のものを用いてもよい。この場合には、被塗物質表
面を無電解鍍金等により導電性のコーティングを施す必
要がある。被塗物質の形状は、平板、丸棒、波形、ハニ
カム状等任意の形状のものが用いられる。対極には、導
電性のもの、あるいは導電性のコーティングを施した絶
縁物質が用いられる。
The material to be coated to which the clay mineral is attached is preferably one having electrical conductivity, for example, one made of metal. Among these, materials that cause less ion elution upon voltage application are preferred, and noble metal materials are most preferred, but stainless steel materials are preferred from the viewpoint of cost. Furthermore, a non-conductive material may be used as the material to be coated. In this case, it is necessary to apply a conductive coating to the surface of the material to be coated by electroless plating or the like. The material to be coated may have any shape, such as a flat plate, a round bar, a corrugated shape, or a honeycomb shape. For the counter electrode, a conductive material or an insulating material coated with a conductive coating is used.

対極の形状も、被塗物質の形状に合わせて任意に選ぶこ
とができる。被覆槽自身を対極としても良い。
The shape of the counter electrode can also be arbitrarily selected depending on the shape of the substance to be coated. The coating tank itself may be used as a counter electrode.

カチオン交換性の粘土鉱物は、粘土構造中の金属イオン
と溶液中のカチオンとイオン交換できる種類のものであ
る。
Cation-exchangeable clay minerals are those that can exchange ions with metal ions in the clay structure and cations in solution.

被覆槽内の懸濁液は、静置しても構わないが、被覆効率
を向上せしめるため、懸濁液を撹拌下で使用するのが望
ましい。
The suspension in the coating tank may be allowed to stand still, but in order to improve the coating efficiency, it is desirable to use the suspension while stirring.

また、電気泳動を利用した装置であるため、板状、柱状
、あるいはハニカム状等任意の形状の被塗物質をカチオ
ン交換性の粘土鉱物で被覆することができる。゛ また、懸濁液中の粘土鉱物の濃度を一定に保ち、均一な
付着と高い被覆効率を得るために、懸濁液を貯めておく
サブタンクを設けて、ここから液を被覆槽へ循環供給し
ても良い。
Further, since the device uses electrophoresis, it is possible to coat a material to be coated in any shape such as a plate, a column, or a honeycomb shape with a cation-exchangeable clay mineral.゛In addition, in order to maintain a constant concentration of clay minerals in the suspension and obtain uniform adhesion and high coating efficiency, a sub-tank is provided to store the suspension, and the liquid is circulated and supplied from there to the coating tank. You may do so.

以下、本発明を実施例を用いて具体的に説明する。Hereinafter, the present invention will be specifically explained using Examples.

(実施例1) カチオン交換性粘土鉱物に複鎖構造型粘土鉱物であるト
ルコ産セピオライトの100メツシユ以下の粉末を用い
、イオン交換水を0.1からl 0wt%になるように
加え、ホモミクサで10分間運転し、懸濁液を調製した
(Example 1) Using powder of 100 mesh or less of sepiolite from Turkey, which is a double-chain structure clay mineral, as a cation-exchangeable clay mineral, add ion-exchanged water from 0.1 to 0 wt%, and mix it with a homomixer. It was operated for 10 minutes and a suspension was prepared.

この懸濁液を第1図の電気泳動被覆装置内に入れて50
V/cmの直流電圧を印加し、クーロンメータ6により
電気量を測定しながら3クーロンの電気量になる迄通電
した。図中1はステンレス製の被塗物質からなる陽極、
2.3は同じステンレス製の対極、3はセピオライトを
分散させた懸濁液、4はアクリル製の被覆槽、5は直流
電源、6はクーロンメータを示す。通電により懸濁液中
の粘土鉱物が正に分極した被塗物質からなる陽極lの方
へ泳動し、その上に付着した。
This suspension was placed in the electrophoretic coating apparatus shown in FIG.
A DC voltage of V/cm was applied, and electricity was passed while measuring the amount of electricity with a coulomb meter 6 until the amount of electricity reached 3 coulombs. In the figure, 1 is an anode made of stainless steel coated material;
2.3 is the same counter electrode made of stainless steel, 3 is a suspension in which sepiolite is dispersed, 4 is an acrylic coating tank, 5 is a DC power supply, and 6 is a coulomb meter. When electricity was applied, the clay minerals in the suspension migrated toward the anode 1, which was made of a positively polarized material to be coated, and were deposited thereon.

通電後、陽極lを取り出し、110℃で5時間乾燥した
。乾燥した被塗物質を撹拌し、通電前の重量を引き、付
着したカチオン交換性粘土鉱物の量を求めた。結果を表
のNα1〜Nα6に示す。また、比較例として同じ粘土
鉱物の懸濁液中にステンレス板を浸漬し、110℃で5
時間乾燥後の粘土鉱物被覆量を求めた。結果を表のNo
、R1−R3に示す。本実施例では、比較例の2〜10
倍の付着量が得られた。
After electricity was applied, the anode 1 was taken out and dried at 110° C. for 5 hours. The dried material to be coated was stirred, and the weight before energization was subtracted to determine the amount of attached cation-exchangeable clay mineral. The results are shown in Nα1 to Nα6 in the table. In addition, as a comparative example, a stainless steel plate was immersed in a suspension of the same clay mineral.
The amount of clay mineral coverage after time drying was determined. The results are numbered in the table.
, R1-R3. In this example, 2 to 10 of the comparative example
Double the amount of adhesion was obtained.

(実施例2) カチオン交換性粘土鉱物にスメクタイト族粘土鉱物であ
るモンモリロナイトを用い、実施例1と同じ方法で懸濁
液を調製した。上記懸濁液を入れた実施例1と同じ装置
を用い、同じ条件で直流電圧を印加した。電気量3クー
ロンの通電により、懸濁液中の粘土鉱物が正に分極した
被塗物質からなる陽極1の方へ泳動し、その上に付着し
た。結果を表の11k17〜Nα11に示す。また、比
較例として同じ粘土鉱物の懸濁液中にステンレス板を浸
漬し、110℃で5時間乾燥後の粘土鉱物被覆量を求め
た。結果を表のl1lnR4、N[lR5に示す。本実
施例では、比較例の2〜3倍の付着量が得られた。
(Example 2) A suspension was prepared in the same manner as in Example 1 using montmorillonite, which is a smectite clay mineral, as the cation-exchangeable clay mineral. Using the same device as in Example 1 containing the above suspension, a DC voltage was applied under the same conditions. By applying an electric current of 3 coulombs, clay minerals in the suspension migrated toward the anode 1 made of a positively polarized coated material and deposited thereon. The results are shown in 11k17 to Nα11 in the table. Further, as a comparative example, a stainless steel plate was immersed in a suspension of the same clay mineral, and the amount of clay mineral coverage after drying at 110° C. for 5 hours was determined. The results are shown in l1lnR4, N[lR5 in the table. In this example, the amount of adhesion was 2 to 3 times that of the comparative example.

(実施例3) カチオン交換性粘土鉱物には、トルコ産セピオライトの
100メツシユ以下の粉末を用い、イオン交換水を加え
、5wt%の濃度にし、ホモミクサで懸濁液を調製した
(Example 3) As a cation-exchangeable clay mineral, a powder of 100 mesh or less of sepiolite from Turkey was used, ion-exchanged water was added to give a concentration of 5 wt%, and a suspension was prepared using a homomixer.

上記懸濁液を第2図に示す電気泳動被覆装置に入れた。The above suspension was placed in the electrophoretic coating apparatus shown in FIG.

本装置はハニカム状の被塗物質(第3図)からなる陽極
11と、くし状の対極12を装着したステンレス製の被
覆槽14を持つ。この陽極11、対極12間にクーロン
メータ17で電気量を測定しながら電源16で50V/
cmの電場を印加し、粘土鉱物を陽極に付着させた。な
お、陽極11はNiメツキしたゼオライト型のハニカム
状物質、対極12はステンレス製とした。
This apparatus has an anode 11 made of a honeycomb-shaped coated material (FIG. 3) and a stainless steel coating tank 14 equipped with a comb-shaped counter electrode 12. While measuring the amount of electricity between the anode 11 and the counter electrode 12 with a coulomb meter 17, a power supply 16 is applied at 50V/
An electric field of cm was applied to cause the clay mineral to adhere to the anode. The anode 11 was made of a Ni-plated zeolite honeycomb material, and the counter electrode 12 was made of stainless steel.

懸濁液13は別タンク15内に入れ、ポンプ18でセル
の下部から注入し、セル上部から再びタンクへ戻した。
The suspension 13 was placed in a separate tank 15, injected from the bottom of the cell with a pump 18, and returned to the tank from the top of the cell.

電極間の距離は1mmとした。The distance between the electrodes was 1 mm.

電気量3クーロンの通電により懸濁液中の粘土鉱物が正
に分極した陽極の方へ泳動し、その上に付着した。
By applying an electric current of 3 coulombs, clay minerals in the suspension migrated toward the positively polarized anode and deposited thereon.

この装置で被覆した粘土鉱物は、1168g/rr?で
あり、実施例1の平板電極とほとんど同じ被覆量が得ら
れた。
The clay mineral coated with this device is 1168g/rr? Therefore, almost the same amount of coverage as the flat plate electrode of Example 1 was obtained.

本発明はその要旨を越えない限り、これら実施例により
何ら制限されるものではない。
The present invention is not limited in any way by these Examples unless the gist of the invention is exceeded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1.2の粘土鉱物の電気泳動波覆装置の
概略図、第2図は実施例3の電気泳動被覆装置の概略図
を示す。また、第3図は実施例3に用いた陽極の斜視図
を示す。
FIG. 1 is a schematic diagram of the electrophoretic wave coating device for clay minerals of Example 1.2, and FIG. 2 is a schematic diagram of the electrophoretic coating device of Example 3. Moreover, FIG. 3 shows a perspective view of the anode used in Example 3.

Claims (1)

【特許請求の範囲】 カチオン交換性の粘土鉱物を分散させた懸濁液中の粘土
鉱物の粒子を電気泳動させるための被覆槽と、 該被覆槽にあって前記懸濁液に浸漬され、少なくともそ
の表面の一部に導電性を有した被塗物質からなる陽極と
、 前記懸濁液に浸漬され、前記陽極を正に分極するための
対極と、 前記陽極および前記対極に導線を介して接続して前記両
極間に小さな電圧を印加する電圧発生手段とからなる粘
土鉱物の電気泳動被覆装置。
[Scope of Claims] A coating tank for electrophoresing clay mineral particles in a suspension in which cation-exchangeable clay minerals are dispersed; an anode made of a coated material whose surface is partially conductive; a counter electrode immersed in the suspension to positively polarize the anode; and connected to the anode and the counter electrode via a conductive wire. and voltage generating means for applying a small voltage between the two electrodes.
JP31217190A 1990-11-16 1990-11-16 Electrophoretic coating device of clay ore Pending JPH04183898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31217190A JPH04183898A (en) 1990-11-16 1990-11-16 Electrophoretic coating device of clay ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31217190A JPH04183898A (en) 1990-11-16 1990-11-16 Electrophoretic coating device of clay ore

Publications (1)

Publication Number Publication Date
JPH04183898A true JPH04183898A (en) 1992-06-30

Family

ID=18026084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31217190A Pending JPH04183898A (en) 1990-11-16 1990-11-16 Electrophoretic coating device of clay ore

Country Status (1)

Country Link
JP (1) JPH04183898A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591691A (en) * 1994-05-23 1997-01-07 W. R. Grace & Co.-Conn. Metal foil catalyst members by aqueous electrophoretic deposition
US5795456A (en) * 1996-02-13 1998-08-18 Engelhard Corporation Multi-layer non-identical catalyst on metal substrate by electrophoretic deposition
US5985220A (en) * 1996-10-02 1999-11-16 Engelhard Corporation Metal foil having reduced permanent thermal expansion for use in a catalyst assembly, and a method of making the same
JP2007284753A (en) * 2006-04-18 2007-11-01 Kyodo Printing Co Ltd Hard coating member and its producing method
JP2007284752A (en) * 2006-04-18 2007-11-01 Kyodo Printing Co Ltd Barrier film and its producing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591691A (en) * 1994-05-23 1997-01-07 W. R. Grace & Co.-Conn. Metal foil catalyst members by aqueous electrophoretic deposition
US5604174A (en) * 1994-05-23 1997-02-18 W. R. Grace & Co.-Conn. Metal foil catalyst members by aqueous electrophoretic deposition
US5795456A (en) * 1996-02-13 1998-08-18 Engelhard Corporation Multi-layer non-identical catalyst on metal substrate by electrophoretic deposition
US5985220A (en) * 1996-10-02 1999-11-16 Engelhard Corporation Metal foil having reduced permanent thermal expansion for use in a catalyst assembly, and a method of making the same
JP2007284753A (en) * 2006-04-18 2007-11-01 Kyodo Printing Co Ltd Hard coating member and its producing method
JP2007284752A (en) * 2006-04-18 2007-11-01 Kyodo Printing Co Ltd Barrier film and its producing method

Similar Documents

Publication Publication Date Title
KR20010024257A (en) Coated products
Itaya et al. Clay-modified electrodes. 5. Preparation and electrochemical characterization of pillared clay-modified electrodes and membranes
Li et al. Fabrication of carbon paste electrode containing 1: 12 phosphomolybdic anions encapsulated in modified mesoporous molecular sieve MCM‐41 and its electrochemistry
GB933175A (en) Improvements in an electrophoretic coating process
US3476668A (en) Electrophoretic coating process in a medium containing a resin,plus powdered plastic material
JPH04183898A (en) Electrophoretic coating device of clay ore
CN108551713A (en) A kind of Electrostatic Absorption panel
Pohl Theoritical aspects of dielectrophoretic deposition and separation of particles
Petrii et al. Size effects in electrochemistry
CN109502708A (en) The preparation method and membrane capacitance electric adsorption electrode of membrane capacitance electric adsorption electrode
Huang et al. A new strategy for the fabrication of the phosphor polyoxomolybdate modified electrode from ionic liquid solutions and its electrocatalytic activities
EP0193978B1 (en) Process for incorporating powders into a polymer layer
Suzuki et al. Adsorption‐Codeposition Process of Al2 O 3 Particles onto Ag‐Al2 O 3 Dispersion Films
Nazmutdinov et al. Quantum chemical models for electrified interfaces
CN108993416A (en) A kind of preparation method of copper ion blotting membrane
TAKASU et al. Pseudocapacitance of molybdenum oxide particles highly dispersed on glassy carbon surface
Stevanović et al. Promoting effect of carbon functional groups in methanol oxidation on supported Pt catalyst
Theodoridou et al. Controlled spatial distribution of noble metal catalysts on electrochemically activated carbon fibre supports
Andonoglou et al. Preparation and electrocatalytic activity of rhodium modified pitch-based carbon fiber electrodes
Uebner et al. Electrodeposition of polyimides from nonaqueous emulsions
Bessel et al. Microheterogeneous dispersion electrolysis with nanoscale electrode-modified zeolites
Gemant Electrodeposition of synthetic resins
Van Tassel Electrophoretic deposition: fundamentals, mechanisms and examples with an in depth examination of the ion depletion effect
JPH03120395A (en) Coating method with bismuth oxide
Karvaly On the nature of certain oscillations on bimolecular lipid membranes