JP2002088500A - Method for preparing crystal oriented laminar compound film by elecrophoresis method - Google Patents

Method for preparing crystal oriented laminar compound film by elecrophoresis method

Info

Publication number
JP2002088500A
JP2002088500A JP2000282064A JP2000282064A JP2002088500A JP 2002088500 A JP2002088500 A JP 2002088500A JP 2000282064 A JP2000282064 A JP 2000282064A JP 2000282064 A JP2000282064 A JP 2000282064A JP 2002088500 A JP2002088500 A JP 2002088500A
Authority
JP
Japan
Prior art keywords
layered
thin film
layered compound
laminar compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000282064A
Other languages
Japanese (ja)
Other versions
JP4231196B2 (en
Inventor
Taido Matsumoto
泰道 松本
Mutsuhisa Koinuma
陸央 鯉沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000282064A priority Critical patent/JP4231196B2/en
Publication of JP2002088500A publication Critical patent/JP2002088500A/en
Application granted granted Critical
Publication of JP4231196B2 publication Critical patent/JP4231196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a laminar compound thin film having high crystal orientability by depositing the laminar compound on an electrode by an electrophoresis method. SOLUTION: The laminar compound thin film having the high crystal orientability and good tight adhesion is obtained by depositing the laminar compound, such as cesium titanate, on a base board by the electrophoresis method. The crystal orientability of the laminar compound thin film may be controlled by the voltage to be impressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電池の電極、触媒,光
触媒や光反応を利用する電池等、表面技術産業分野に応
用可能で、層間に種々のイオンや分子をインターカレー
トできる機能材料である層状化合物からなる薄膜を電気
泳動法で作製する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applicable to the surface technology industry, such as a battery electrode, a catalyst, a battery utilizing a photocatalyst or a photoreaction, and a functional material capable of intercalating various ions and molecules between layers. The present invention relates to a method for producing a thin film comprising a layered compound by electrophoresis.

【0002】[0002]

【従来技術及び問題点】層状化合物、特に層状酸化物
は、層間に種々のイオンや分子をインターカレートでき
る興味ある機能材料として研究が進められている。電池
の電極や光触媒等の機能材料として利用する場合には、
層状化合物を基板に固定する必要がある。層状化合物の
固定化には、スピンコート法やLB法が従来から採用さ
れている。しかし、スピンコート法やLB法では、基板
に対する層状化合物の密着性が悪く、或いは結晶配向性
を保った膜として作製することが困難なこともある。
2. Description of the Related Art Layered compounds, particularly layered oxides, have been studied as interesting functional materials capable of intercalating various ions and molecules between layers. When used as functional materials such as battery electrodes and photocatalysts,
It is necessary to fix the layered compound to the substrate. For immobilization of the layered compound, a spin coating method and an LB method have conventionally been employed. However, in the spin coating method or the LB method, the adhesion of the layered compound to the substrate may be poor, or it may be difficult to produce a film having a crystalline orientation.

【0003】[0003]

【課題を解決するための手段】本発明者等は、スピンコ
ート法やLB法に代わる方法として電気泳動法による固
定化を検討した。電気泳動法による成膜自体は従来から
知られている技術であるが、層状化合物の成膜に適用し
た例はこれまでのところ報告されていない。本発明者等
による調査・研究の結果、電気泳動法で固定した層状化
合物薄膜は、結晶配向性が高く、層剥離を伴いながら層
状化合物が電析することが明らかになった。
Means for Solving the Problems The present inventors studied immobilization by electrophoresis as an alternative to spin coating or LB. Although the film formation by the electrophoresis method is a conventionally known technique, no example of applying the method to the formation of a layered compound has been reported so far. As a result of investigations and studies by the present inventors, it has been clarified that the layered compound thin film fixed by electrophoresis has a high crystal orientation and the layered compound is electrodeposited with delamination.

【0004】本発明は、このような知見をベースに完成
されたものであり、結晶配向性のある層状化合物を有機
溶媒中で直流電圧又は交流電圧を印加して電気泳動させ
て基板上に電析させ、電析した層状化合物を薄膜とする
ことを特徴とする。有機溶媒としては、メタノール,エ
タノール,プロパノール,アセトン,ヘキサン等が使用
される。有機溶媒に分散させた層状化合物を分散させて
いる有機溶媒に、たとえば0.1〜1kVの直流又は交
流電圧を印加すると、層状化合物は剥離を繰り返しなが
ら、それぞれの電荷に応じて陽極及び陰極上に電析す
る。その結果、陽極及び陰極上に2種類の層状化合物薄
膜が生成する。
The present invention has been completed on the basis of such findings, and a layered compound having a crystalline orientation is electrophoresed by applying a DC voltage or an AC voltage in an organic solvent and electrophoresed on a substrate. Characterized in that the layered compound deposited and deposited is made into a thin film. As the organic solvent, methanol, ethanol, propanol, acetone, hexane and the like are used. When a DC or AC voltage of, for example, 0.1 to 1 kV is applied to the organic solvent in which the layered compound dispersed in the organic solvent is dispersed, the layered compound is repeatedly peeled off, and on the anode and the cathode in accordance with the respective charges. Electrodeposit. As a result, two types of layered compound thin films are formed on the anode and the cathode.

【0005】層状化合物としては、グラファイト,マイ
カ,ハイロフィライト,タルク等があり、層状構造に由
来して二次元的物性やイオン交換等の特異な性質や機能
を呈する。なかでも、チタン系層状酸化物,ニオブ系層
状酸化物,タンタル系層状酸化物等の無機層状酸化物
は、n型半導体特性を示すため、光触媒や電池の電極材
料等への応用が期待される。
[0005] Examples of the layered compound include graphite, mica, phyllolite, talc and the like, and exhibit unique properties and functions such as two-dimensional physical properties and ion exchange derived from the layered structure. In particular, inorganic layered oxides such as titanium-based layered oxides, niobium-based layered oxides, and tantalum-based layered oxides exhibit n-type semiconductor properties, and are therefore expected to be applied to photocatalysts, battery electrode materials, and the like. .

【0006】[0006]

【作用】本発明者等は、電気泳動法で層状化合物薄膜を
作製する調査・研究過程で、層剥離を伴いながら陽極と
陰極に別れて層状化合物が電析することを見出した。こ
のような電析は、層間に存在するイオン種によって層状
化合物が異なる電荷を帯びることに原因があるものと推
察される。
The present inventors have found in the course of investigation and research for producing a layered compound thin film by an electrophoresis method that the layered compound is separated into an anode and a cathode while delamination occurs, and the layered compound is electrodeposited. It is presumed that such electrodeposition is caused by the layered compound having different charges depending on the ion species existing between the layers.

【0007】すなわち、層状化合物は、層を形成するネ
ットワーク状の層部分と層間に存在するイオンや分子に
分けることができる。層状化合物の層間に存在するイオ
ンや分子は、比較的容易に他のイオンや分子と置換でき
る特性を備えている。また、層の部分の電荷は、層間の
物質や層状化合物を分散させる溶液の状態(pH等)に
よって電荷状態(プラスかマイナス)が異なる。たとえ
ば、チタン酸セシウム化合物では、層状構造を示す図1
のモデルにみられるように、チタン酸シートとセシウム
イオンが相互に重なった層構造を形成している。チタン
酸シートには、マイナスの電荷を帯びる格子欠陥(□で
表す)がある。そのため、電極に電場をかけて粒子を泳
動電析させる電気泳動法を利用すると、電極に容易に固
定でき、しかも層の電荷に応じて陽極や陰極に層状化合
物が固定される。
That is, the layered compound can be divided into a network-like layer portion forming a layer and ions and molecules existing between the layers. The ions and molecules existing between the layers of the layered compound have the property of being relatively easily replaced with other ions and molecules. Further, the charge state (plus or minus) of the charge of the layer portion differs depending on the state (pH or the like) of the solution in which the substance and the layered compound between the layers are dispersed. For example, in a cesium titanate compound, FIG.
As shown in the model, a titanate sheet and cesium ions form a layered structure overlapping each other. The titanate sheet has negatively charged lattice defects (indicated by □). Therefore, by using an electrophoresis method in which particles are electrophoretically deposited by applying an electric field to the electrodes, the particles can be easily fixed to the electrodes, and the layered compound is fixed to the anode or the cathode according to the charge of the layer.

【0008】このようにして電気泳動によるとき、結晶
配向性のある層状化合物が基板に膜状に固定化される。
層状化合物は、剥離を伴いながら基板に固定化されるた
め、陽極,陰極それぞれに2種類の層状化合物薄膜が作
成される。また、電気泳動法による成膜のため、所定方
向の表面が優先的に基板に指向し、基板との密着性が良
好な薄膜が形成される。しかも、他の成膜法に比較して
器具や操作が簡便で、しかも早い析出速度が得られ、膜
厚制御も可能となる。更に、高い電場で層状粒子が異な
った電荷状態の層になっている場合、それぞれの粒子
は、剥離しながら電荷状態に応じた電極に電析する。こ
の点、電気泳動法は、層剥離及び層状化合物の高純化に
も有効である。
[0008] In this way, when electrophoresis is performed, the layered compound having crystal orientation is immobilized on the substrate in the form of a film.
Since the layered compound is fixed to the substrate while peeling off, two types of layered compound thin films are formed for each of the anode and the cathode. Further, since the film is formed by electrophoresis, the surface in a predetermined direction is preferentially directed to the substrate, and a thin film having good adhesion to the substrate is formed. In addition, compared to other film forming methods, the apparatus and operation are simple, a high deposition rate can be obtained, and the film thickness can be controlled. Furthermore, when the layered particles are in different charge state layers under a high electric field, each particle is deposited on an electrode corresponding to the charge state while peeling off. In this regard, the electrophoresis method is also effective for delamination and purification of a layered compound.

【0009】[0009]

【実施例】本実施例では,チタン酸セシウム化合物を用
いた例を説明しているが、ニオブ酸カリウム,タンタル
酸ルビジウム,チタン酸カリウム,チタン酸ニオブ酸カ
リウム等、他の層状化合物も同様に電気泳動法で結晶性
配向性のある化合物薄膜にすることができる。
EXAMPLE In this example, an example using a cesium titanate compound is described. However, other layered compounds such as potassium niobate, rubidium tantalate, potassium titanate, potassium titanate, and the like are similarly used. A compound thin film having crystalline orientation can be formed by electrophoresis.

【0010】メタノール100重量部に対し,エチレン
グリコール50重量部,炭酸セシウム3重量部,チタニ
ウムテトラプロポオキシド13重量部及び無水クエン酸
50重量部を混合した溶液を調製した。溶液を300℃
に加熱して有機物を分解することによりチタン酸セシウ
ム前躯体を得、チタン酸セシウム前躯体を800℃で2
時間焼結してチタン酸セシウム粉末を作製した。チタン
酸セシウムは、原子レベルで層状構造をもち、一般にb
軸(0n0)方向に劈開がある。図2は、チタン酸セシ
ウム粉末のSEM写真である。
A solution was prepared by mixing 50 parts by weight of ethylene glycol, 3 parts by weight of cesium carbonate, 13 parts by weight of titanium tetrapropoxide and 50 parts by weight of citric anhydride with 100 parts by weight of methanol. Solution at 300 ° C
Cesium titanate precursor was obtained by heating the mixture to decompose organic matter,
After sintering for a time, a cesium titanate powder was produced. Cesium titanate has a layered structure at the atomic level, and is generally b
There is a cleavage in the axis (0n0) direction. FIG. 2 is an SEM photograph of the cesium titanate powder.

【0011】チタン酸セシウム層状粉末0.5gをメタ
ノール50m1に入れ、大きさ1cm×1cmの白金電
極(電極間距離3cm)を用いて数10mAの電流を流
すと数10Vの電圧がかかり、層状酸化物の状態に応じ
て陽極と陰極に層状酸化物が電析した。このとき、プロ
トン置換したチタン系層状酸化物は、ホストのTi−O
層がマイナスに電荷を帯びているので陽極側に電析し
た。他方、Csを層間に含んだチタン系層状酸化物は、
一般にTi−O層がプラスの電荷を帯びているので陰極
に電析するが、一部にプロトン置換が生じているため層
が剥離して、陰極と陽極の両電極に電析した。この場
合、陰極にはCs置換体が、陽極にはプロトン置換体が
電析する。
When 0.5 g of the cesium titanate layered powder is placed in 50 ml of methanol and a current of several tens mA is passed through a platinum electrode of 1 cm × 1 cm (distance between the electrodes is 3 cm), a voltage of several tens of volts is applied, resulting in a layered oxidation. Depending on the state of the material, a layered oxide was deposited on the anode and the cathode. At this time, the proton-substituted titanium-based layered oxide is converted into a host Ti—O
Since the layer was negatively charged, it was electrodeposited on the anode side. On the other hand, a titanium-based layered oxide containing Cs between layers is:
In general, the Ti—O layer has a positive charge and thus is deposited on the cathode. However, the proton is partially substituted, so that the layer was separated and deposited on both the cathode and the anode. In this case, a Cs-substituted product is deposited on the cathode, and a proton-substituted product is deposited on the anode.

【0012】作製された薄膜は、基板に対する密着性が
良く、X線回折分析によって結晶配向性も高いことが判
った。具体的には、チタン酸セシウム層状酸化物の粉末
では、図3のX線回折パターンにみられるように、b軸
方向(0n0)以外に(130)方向の回折ピークがあ
り、種々の方向を向いた粉末が混合されていることが判
る。なお、泳動電着には、エタノール溶媒中で100V
の直流電圧を印加する条件を採用した。
The thin film thus formed has good adhesion to the substrate and has high crystal orientation by X-ray diffraction analysis. Specifically, in the powder of the cesium titanate layered oxide, as shown in the X-ray diffraction pattern of FIG. 3, there are diffraction peaks in the (130) direction other than the b-axis direction (0n0), It can be seen that the suitable powder is mixed. For electrophoresis, 100 V in ethanol solvent was used.
The conditions for applying the DC voltage were adopted.

【0013】他方、チタン酸セシウム層状酸化物0.5
gをメタノール50mlに分散させ、電極間距離を3c
mに設定して電流を供給すると電気泳動が生じ、プラス
及びマイナスの白金電極(1cm×1cm)に電着し
た。電極上に堆積した粉末で形成された薄膜は、印加電
圧に応じてそれぞれ図4に示すX線回折パターンをもっ
ていた。図4から明らかなように、プラス極では印加電
圧に拘らず(020)のピークが強くなっており、ばら
ばらであった粉体がb軸方向を配向しながら電着したこ
とが窺われる。他方、マイナス極では低電圧を印加した
ときに(130)配向の膜が得られているが、(13
0)配向は印加電圧の増加に従って弱くなっている。こ
のような薄膜の配向性は、層状酸化物のb軸(0n0)
方向の面がよりマイナスの帯電しているためプラス側の
薄膜がb軸配向となり、(130)方向の面がよりプラ
スに帯電しているためマイナス側の薄膜が(130)配
向になる結果である。
On the other hand, cesium titanate layered oxide 0.5
g in 50 ml of methanol, and the distance between the electrodes is 3c.
When an electric current was supplied at a setting of m, electrophoresis occurred, and electrodeposition was performed on positive and negative platinum electrodes (1 cm × 1 cm). The thin film formed of the powder deposited on the electrode had an X-ray diffraction pattern shown in FIG. 4 according to the applied voltage. As is apparent from FIG. 4, the peak of (020) is strong at the positive electrode regardless of the applied voltage, which indicates that the powder that was separated was electrodeposited while being oriented in the b-axis direction. On the other hand, when a low voltage is applied to the negative electrode, a (130) oriented film is obtained.
0) The orientation becomes weaker as the applied voltage increases. The orientation of such a thin film depends on the b-axis (0n0) of the layered oxide.
Since the surface in the direction is more negatively charged, the plus side thin film has the b-axis orientation, and the surface in the (130) direction is more positively charged, and the minus side thin film has the (130) orientation. is there.

【0014】図4の結果は、層状酸化物を電気泳動で電
着させるとき、極性及び印加電圧を変えることによって
配向状態が異なる薄膜を作製できることを示している。
層状酸化物のb軸(0n0)方向の面は、よりマイナス
に帯電しているためプラス側でb軸配向の膜となり、一
方(130)方向はよりプラスに帯電しており、マイナ
ス極に電着しやすいものと考えられる。また、スピンコ
ート法で作製した層状化合物の密着性がテープ重量負荷
試験によると20〜50g/cm2であったのに対し、
電気泳動法で作成した膜は500〜1000g/cm2
と優れた密着性を示した。
The results in FIG. 4 show that when the layered oxide is electrodeposited by electrophoresis, thin films having different orientations can be produced by changing the polarity and applied voltage.
The surface of the layered oxide in the direction of the b-axis (0n0) is more negatively charged, so that it becomes a film of b-axis orientation on the plus side, while the surface in the (130) direction is more positively charged and the negative electrode is charged. It is considered easy to wear. In addition, according to the tape weight load test, the adhesion of the layered compound produced by the spin coating method was 20 to 50 g / cm 2 ,
500-1000 g / cm 2 membrane prepared by electrophoresis
And excellent adhesion.

【0015】[0015]

【発明の効果】以上に説明したように、本発明において
は、電気泳動法で層状化合物を電極上に堆積させること
により、結晶配向性の高い層状化合物薄膜を作製してい
る。得られた薄膜は、結晶配向性が高く、基板に対する
密着性にも優れている。しかも、他の成膜法に比較して
器具や操作が簡便で、しかも早い析出速度が得られ、膜
厚制御も可能となる。このようにして得られた薄膜は、
高い結晶配向性を活用した超格子等の電子デバイス,優
れた密着性を活用した光触媒,光反応を利用する電池,
サイズ認識センサー等として、広範な分野における高機
能材料として使用される。
As described above, in the present invention, a layered compound thin film having a high crystal orientation is produced by depositing a layered compound on an electrode by electrophoresis. The obtained thin film has high crystal orientation and excellent adhesion to the substrate. In addition, compared to other film forming methods, the apparatus and operation are simple, a high deposition rate can be obtained, and the film thickness can be controlled. The thin film thus obtained is
Electronic devices such as superlattices utilizing high crystal orientation, photocatalyst utilizing excellent adhesion, batteries utilizing photoreaction,
It is used as a high-performance material in a wide range of fields, such as a size recognition sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 チタン酸セシウムの層状構造を示すモデルFig. 1 Model showing the layered structure of cesium titanate

【図2】 チタン酸セシウム粉末のSEM写真FIG. 2 SEM photograph of cesium titanate powder

【図3】 チタン酸セシウム粉末のX線回折パターンFIG. 3 X-ray diffraction pattern of cesium titanate powder

【図4】 電気泳動で成膜したチタン酸セシウム薄膜の
X線回折パターン
Fig. 4 X-ray diffraction pattern of cesium titanate thin film formed by electrophoresis

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年10月19日(2000.10.
19)
[Submission date] October 19, 2000 (2000.10.
19)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】[0009]

【実施例】本実施例では,チタン酸セシウム化合物を用
いた例を説明しているが、ニオブ酸カリウム,タンタル
酸ルビジウム,チタン酸カリウム,チタン酸ニオブ酸カ
リウム等、他の層状化合物も同様に電気泳動法で結晶配
向性のある化合物薄膜にすることができる。
EXAMPLE In this example, an example using a cesium titanate compound is described. However, other layered compounds such as potassium niobate, rubidium tantalate, potassium titanate, potassium titanate, and the like are similarly used. A compound thin film having crystal orientation can be formed by electrophoresis.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】作製された薄膜は、基板に対する密着性が
良く、X線回折分析によって結晶配向性も高いことが判
った。具体的には、チタン酸セシウム層状酸化物の粉末
では、図3のX線回折パターンにみられるように、b軸
方向(0n0)以外に(130)方向の回折ピークがあ
り、種々の方向を向いた粉末が混合されていることが判
る。
The thin film thus formed has good adhesion to the substrate and has high crystal orientation by X-ray diffraction analysis. Specifically, in the powder of the cesium titanate layered oxide, as shown in the X-ray diffraction pattern of FIG. 3, there are diffraction peaks in the (130) direction other than the b-axis direction (0n0), It can be seen that the suitable powder is mixed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結晶配向性のある層状化合物を有機溶媒
中で直流電圧又は交流電圧を印加して電気泳動させて基
板上に電析させ、電析した層状化合物を薄膜とすること
を特徴とする結晶配向層状化合物膜の作製方法。
The present invention is characterized in that a layered compound having a crystalline orientation is electrophoresed by applying a DC voltage or an AC voltage in an organic solvent and electrodeposited on a substrate, and the deposited layered compound is formed into a thin film. For producing a crystallographically oriented layered compound film.
【請求項2】 チタン系層状酸化物,ニオブ系層状酸化
物又はタンタル系層状酸化物を結晶配向性のある層状化
合物として使用する請求項1記載の作製方法。
2. The method according to claim 1, wherein a titanium-based layered oxide, a niobium-based layered oxide, or a tantalum-based layered oxide is used as a layered compound having crystal orientation.
JP2000282064A 2000-09-18 2000-09-18 Method for producing crystalline alignment layered compound film by electrophoresis Expired - Fee Related JP4231196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282064A JP4231196B2 (en) 2000-09-18 2000-09-18 Method for producing crystalline alignment layered compound film by electrophoresis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282064A JP4231196B2 (en) 2000-09-18 2000-09-18 Method for producing crystalline alignment layered compound film by electrophoresis

Publications (2)

Publication Number Publication Date
JP2002088500A true JP2002088500A (en) 2002-03-27
JP4231196B2 JP4231196B2 (en) 2009-02-25

Family

ID=18766630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282064A Expired - Fee Related JP4231196B2 (en) 2000-09-18 2000-09-18 Method for producing crystalline alignment layered compound film by electrophoresis

Country Status (1)

Country Link
JP (1) JP4231196B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297230A (en) * 2005-04-18 2006-11-02 Tokyo Institute Of Technology Titanium oxide thin film, titanium oxide thin film-containing photocatalytic material, its manufacturing method, apparatus for cleaning water by using photocatalyst, and method for cleaning water by using photocatalytic reaction
WO2007023679A1 (en) * 2005-08-25 2007-03-01 Otsuka Chemical Co., Ltd. Light-resistant titanic acid coating film and resin bases with the coating film
JP2007284753A (en) * 2006-04-18 2007-11-01 Kyodo Printing Co Ltd Hard coating member and its producing method
JP2007284752A (en) * 2006-04-18 2007-11-01 Kyodo Printing Co Ltd Barrier film and its producing method
CN102768231A (en) * 2011-05-04 2012-11-07 北京化工大学 Layered cesium titanium oxide modified foam nickel electrode, and its preparation and application methods
KR101425517B1 (en) 2013-01-29 2014-08-05 한국세라믹기술원 Platy ceramic stacking organic-inorganic composite coating method using electrophoretic deposition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297230A (en) * 2005-04-18 2006-11-02 Tokyo Institute Of Technology Titanium oxide thin film, titanium oxide thin film-containing photocatalytic material, its manufacturing method, apparatus for cleaning water by using photocatalyst, and method for cleaning water by using photocatalytic reaction
WO2007023679A1 (en) * 2005-08-25 2007-03-01 Otsuka Chemical Co., Ltd. Light-resistant titanic acid coating film and resin bases with the coating film
JP2007055858A (en) * 2005-08-25 2007-03-08 Otsuka Chemical Co Ltd Light-resistant titanate coating film and light-resistant titanate film-coated resin substrate
EP1925590A1 (en) * 2005-08-25 2008-05-28 Otsuka Chemical Co., Ltd. Light-resistant titanic acid coating film and resin bases with the coating film
EP1925590A4 (en) * 2005-08-25 2010-03-17 Otsuka Chemical Co Ltd Light-resistant titanic acid coating film and resin bases with the coating film
KR101296489B1 (en) * 2005-08-25 2013-08-13 오츠카 가가쿠 가부시키가이샤 Light-resistant titanic acid coating film and resin bases with the coating film
JP2007284753A (en) * 2006-04-18 2007-11-01 Kyodo Printing Co Ltd Hard coating member and its producing method
JP2007284752A (en) * 2006-04-18 2007-11-01 Kyodo Printing Co Ltd Barrier film and its producing method
CN102768231A (en) * 2011-05-04 2012-11-07 北京化工大学 Layered cesium titanium oxide modified foam nickel electrode, and its preparation and application methods
CN102768231B (en) * 2011-05-04 2014-07-30 北京化工大学 Layered cesium titanium oxide modified foam nickel electrode, and its preparation and application methods
KR101425517B1 (en) 2013-01-29 2014-08-05 한국세라믹기술원 Platy ceramic stacking organic-inorganic composite coating method using electrophoretic deposition

Also Published As

Publication number Publication date
JP4231196B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
Prieto et al. Electrodeposition of ordered Bi2Te3 nanowire arrays
Gao et al. Site-selective deposition and micropatterning of SrTiO3 thin film on self-assembled monolayers by the liquid phase deposition method
Schuchert et al. Electrochemical copper deposition in etched ion track membranes: Experimental results and a qualitative kinetic model
Wagata et al. Control of the microstructure and crystalline orientation of ZnO films on a seed-free glass substrate by using a spin-spray method
AU8225098A (en) Porous film and method of preparation thereof
CN103820850B (en) A kind of preparation method of metallic organic framework MOF-2 polycrystalline film
Jiang et al. Rapid electrochemical synthesis of HKUST-1 on indium tin oxide
JPH0230797A (en) Production of thick film by electrophoretic method
Keikhaei et al. Fabrication of Mg (OH) 2 thin films by electrochemical deposition with Cu catalyst
JP2002088500A (en) Method for preparing crystal oriented laminar compound film by elecrophoresis method
KR101406408B1 (en) Manufacturing method of coating composition for treating a metal surface, surface treated steel sheet using the same and a method for preparing thereof
CN110237847B (en) Electrocatalyst, electrode, and preparation method and application thereof
Fei et al. Extending MoS2-based materials into the catalysis of non-acidic hydrogen evolution: challenges, progress, and perspectives
Xu et al. VS2 microflowers with in situ embedded few-layer MoS2 nanobelts for enhanced hydrogen evolution reaction at high current density
JPH07503657A (en) Electrochemical cells and their use in electrochemical separation and extraction of oxygen
Tominaka et al. Nanoporous PdCo Catalyst for Microfuel Cells: Electrodeposition and Dealloying.
EP2392696B1 (en) Method for firmly fixing particles, and method for producing structure having firmly fixed particles
Xiang et al. Fabrication of molybdenum trioxide (MoO 3) coating by electrophoretic deposition
Santiago et al. Surface Analysis and Electrochemistry of MoS2 Thin Films Prepared by Intercalation‐Exfoliation Techniques
Chao et al. Preparation of an ultrathin Pt electrocatalyst via a galvanic replacement reaction of electrodeposited CuCl for the oxidation of methanol in an alkaline medium
Mitchell et al. An electrochemical route to pre-shaped ceramic bodies
Xu et al. Template-assisted electrochemical deposition of ultrathin films of cadmium sulfide
KR101372287B1 (en) Gas sensor having nanotube thin film and method for manufacturing the same
JP2012036482A (en) Method for preparing cyano-crosslinked metal complex and electrochromic device
Eleas et al. Alternating current electrophoretic deposition of multiwall carbon nanotubes-polyaniline for supercapacitor electrode

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060509

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees