JP2007274881A - 移動体装置、微動体及び露光装置 - Google Patents

移動体装置、微動体及び露光装置 Download PDF

Info

Publication number
JP2007274881A
JP2007274881A JP2006325122A JP2006325122A JP2007274881A JP 2007274881 A JP2007274881 A JP 2007274881A JP 2006325122 A JP2006325122 A JP 2006325122A JP 2006325122 A JP2006325122 A JP 2006325122A JP 2007274881 A JP2007274881 A JP 2007274881A
Authority
JP
Japan
Prior art keywords
moving body
wafer
fine
stage
fine moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006325122A
Other languages
English (en)
Inventor
Keiichi Tanaka
慶一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006325122A priority Critical patent/JP2007274881A/ja
Publication of JP2007274881A publication Critical patent/JP2007274881A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Linear Motors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】微動ステージの駆動に寄与する電機子コイル1つあたりの発熱を抑制する。
【解決手段】粗動ステージに設けられた4つの電機子コイル56A〜56Dそれぞれと、これに対応する微動ステージWFS1に設けられた磁石ユニット52A〜52Dとが協働して発生する各駆動力の合力を、微動ステージに作用させることができるので、電機子コイル1つあたりで消費される電流を抑制することができる。これにより、電機子コイル1つあたりの発熱を抑制することができる。
【選択図】図7

Description

本発明は移動体装置、微動体及び露光装置に係り、更に詳しくは、移動体を備える移動体装置、移動体に対して微小駆動可能に支持される微動体及び前記移動体装置を備える露光装置に関する。
近年、半導体素子、液晶表示素子等の製造におけるリソグラフィ工程では、半導体等の高集積化に伴い、高いスループットで微細パターンを精度良く感光物体上に形成可能なステップ・アンド・リピート方式の縮小投影露光装置(いわゆるステッパ)や、ステップ・アンド・スキャン方式の走査型投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などの逐次移動型の露光装置が主として用いられている。
この種の露光装置では、ウエハ又はガラスプレートなどの感光物体(以下、「ウエハ」と呼ぶ)を駆動する駆動装置として、2軸リニアモータや平面モータ等によって2次元面内で駆動される粗動ステージと、該粗動ステージ上でウエハを保持してボイスコイルモータなどによりZ軸方向及び傾斜方向などに微小駆動される微動ステージとを有するウエハステージ装置が用いられている。
しかるに、上述のウエハステージ装置における、リニアモータや平面モータ、及びボイスコイルモータなどの駆動装置は、複数のコイルを有する電機子ユニットと複数の磁石を有する磁石ユニットを備えているため、電機子ユニットを構成するコイルに電流が供給されることによりコイルが発熱するおそれがある。このコイルの発熱は、露光精度を低下させる要因となるため、何らかの対策を講じる必要がある。
本発明は、上述した事情の下になされたもので、第1の観点からすると、移動体と;前記移動体に対して、非接触状態で支持された微動体と;前記移動体に設けられた4つの電機子コイルと、前記微動体に設けられ、前記4つの電機子コイルと協働して駆動力を発生する磁石ユニットと、を有する駆動機構と;を備える第1の移動体装置である。
これによれば、4つの電機子コイルそれぞれとこれに対応する磁石ユニットとが協働して発生する各駆動力の合力を、微動体に作用させることができるので、電機子コイル1つあたりの消費電流を抑制することができる。これにより、電機子コイル1つあたりの発熱を抑制することができる。
本発明は、第2の観点からすると、移動体に対して、微小駆動可能に支持される微動体であって、前記移動体に対し、非接触状態で支持される微動体本体と;前記微動体本体に設けられ、前記移動体に設けられた4つの電機子コイルと協働して駆動力を発生する磁石ユニットと;を備える微動体である。
これによれば、4つの電機子コイルそれぞれとこれに対応する磁石ユニットとが協働して発生する各駆動力の合力を、微動体本体に作用させることができるので、電機子コイル1つあたりの消費電流を抑制することができる。これにより、電機子コイル1つあたりの発熱を抑制することができる。
本発明は、第3の観点からすると、移動体と;前記移動体に対して、非接触状態で支持された本発明の微動体と;を備える第2の移動体装置である。これによれば、1つの電機子コイルにおける発熱を抑制することができる。
本発明は、第4の観点からすると、物体にパターンを形成する露光装置であって、前記物体が前記微動体上に載置される本発明の第1又は第2の移動体装置を具備することを特徴とする露光装置である。
これによれば、発熱に起因する露光精度の低下を抑制することが可能となる。
以下、本発明の一実施形態を図1〜図13(B)に基づいて説明する。
図1には、一実施形態に係る露光装置10の全体構成が概略的に示されている。この露光装置10では、後述するように、投影光学系POが使用されているので、以下においては、この投影光学系POの光軸方向をZ軸方向、これに直交する面内で図1における紙面内左右方向をY軸方向、紙面に直交する方向をX軸方向として説明する。
前記露光装置10は、レチクルRに形成された回路パターンの一部の像を投影光学系POを介してウエハW1(又はウエハW2)上に投影しつつ、レチクルRとウエハW1(又はW2)とを投影光学系POに対して1次元方向(ここではY軸方向)に相対走査することによって、レチクルRの回路パターンの全体をウエハW1(又はW2)上の複数のショット領域の各々にステップ・アンド・スキャン方式で転写するものである。
露光装置10は、EUV光(軟X線領域の光)を照明光ELとして射出する光源装置112、この光源装置112からの照明光ELを反射して所定の入射角、例えば約50〔mrad〕でレチクルRのパターン面(図1における下面(−Z側の面))に入射するように折り曲げる折り曲げミラーMを含む照明光学系(なお、折り曲げミラーMは、投影光学系POの鏡筒内部に存在しているが、実際には照明光学系の一部である)、レチクルRを保持するレチクルステージRST、レチクルRのパターン面で反射された照明光(EUV光)ELをウエハW1(又はW2)の被露光面(図1における上面(+Z側の面))に対して垂直に投射する投影光学系PO、アライメント系ALG、及びウエハW1を保持するウエハステージWST1とウエハW2を保持するウエハステージWST2とを含むウエハステージ装置100等を備えている。本実施形態では、図示は省略されているが、実際には、レチクルステージRST、投影光学系PO、及びウエハステージWST1、WST2等は不図示の真空チャンバ内に収容されている。
前記光源装置112としては、一例として、レーザ励起プラズマ光源が用いられている。このレーザ励起プラズマ光源は、EUV光発生物質(ターゲット)に高輝度のレーザ光を照射することにより、そのターゲットが高温のプラズマ状態に励起され、該ターゲットが冷える際に放出するEUV光、紫外光、可視光、及び他の波長域の光を利用するものである。なお、本実施形態では、主に波長5〜20nm、例えば波長11nmのEUV光が照明光ELとして用いられるものとする。
前記照明光学系は、照明ミラー、波長選択窓等(いずれも図示省略)及び折り曲げミラーM等を含む。光源装置112で射出され、照明光学系を介した照明光EL(前述の折り曲げミラーMで反射されたEUV光EL)は、レチクルRのパターン面を円弧スリット状の照明光となって照明する。
前記レチクルステージRSTは、XY平面に沿って配置されたレチクルステージベース132上に配置され、レチクルステージ駆動系134を構成する例えば磁気浮上型2次元リニアアクチュエータが発生する磁気浮上力によって前記レチクルステージベース132上に浮上支持されている。レチクルステージRSTは、レチクルステージ駆動系134が発生する駆動力によってY軸方向に所定ストロークで駆動されるとともに、X軸方向及びθz方向(Z軸回りの回転方向)にも微小量駆動され、更に、レチクルステージ駆動系134が複数箇所で発生する磁気浮上力の調整によってZ軸方向及びXY面に対する傾斜方向(X軸回りの回転方向であるθx方向及びY軸回りの回転方向であるθy方向)にも微小量だけ駆動可能である。
レチクルステージRSTの下面側に不図示の静電チャック方式(又はメカチャック方式)のレチクルホルダが設けられ、該レチクルホルダによって反射型のレチクルRが保持されている。このレチクルRは、シリコンウエハ、石英、低膨張ガラスなどの薄い板から成り、その−Z側の表面(パターン面)には、EUV光を反射する反射膜が、例えばモリブデンMoとベリリウムBeの膜が交互に約5.5nmの周期で、約50ペア積層された多層膜が形成されている。この多層膜は波長11nmのEUV光に対して約70%の反射率を有する。なお、前記折り曲げミラーM、その他の照明光学系内の各ミラーの反射面にも同様の構成の多層膜が形成されている。
レチクルRのパターン面に形成された多層膜の上には、吸収層として例えばニッケルNi又はアルミニウムAlが一面に塗布され、その吸収層にパターンニングが施されて回路パターンが形成されている。
レチクルステージRST(レチクルR)のXY面内の位置(θz回転も含む)は、レチクルステージRSTに設けられた(又は形成された)反射面にレーザビームを投射するレチクルレーザ干渉計(以下、「レチクル干渉計」という)182Rによって、例えば0.5〜1nm程度の分解能で常時検出される。
なお、レチクルRのZ軸方向の位置は、例えば特開平6−283403号公報(対応米国特許第5,448,332号)等に開示される多点焦点位置検出系からなる不図示のレチクルフォーカスセンサによって計測されている。
レチクル干渉計182R及びレチクルフォーカスセンサの計測値は、不図示の制御装置に供給され、該制御装置によってそれら計測値に基づいてレチクルステージ駆動部134を介してレチクルステージRSTが駆動される。
前記投影光学系POは、開口数(N.A.)が例えば0.1で、反射光学素子(ミラー)のみから成る反射光学系が使用されており、ここでは、投影倍率が例えば1/4倍のものが使用されている。従って、レチクルRによって反射され、レチクルRに形成されたパターンの情報を含むEUV光ELは、ウエハW1(W2)上に投射され、これによりレチクルR上のパターンは1/4に縮小されてウエハW1(W2)に転写される。
この投影光学系POは、鏡筒117と、該鏡筒117内部に配置された、例えば6枚の反射光学素子(ミラー)とを含んで構成されている。鏡筒117の上壁(+Z側の壁)に上下に貫通する矩形の開口117bが形成され、−Y側の側壁には、開口117aが形成されている。鏡筒117の内部には、前述した照明光学系を構成する折り曲げミラーMも配置されている。
図1に示されるように、投影光学系POから+Y側に所定距離離れた位置には、オフアクシス方式のアライメント系ALGが設けられている。このアライメント系ALGとしては、ここではブロードバンド光をウエハW1(W2)上のアライメントマーク(または空間像計測器FM1(FM2))に照射し、その反射光を受光して画像処理によりマーク検出を行うFIA(Field Image Alignment )方式のアライメントセンサが用いられている。このほか、アライメント系ALGとしてLIA(Laser Interferometric Alignment )方式のアライメントセンサ、LSA(Laser Step Alignment)方式のアライメントセンサやAFM(原子間力顕微鏡)のような走査型プローブ顕微鏡等種々のものを用いることができる。
また、投影光学系POの鏡筒117には、保持装置を介して前述のレチクルフォーカスセンサと同様の、例えば特開平6−283403号公報(対応する米国特許第5,448,332号)等に詳細に開示されているウエハフォーカスセンサが、一体的に取り付けられている(いずれも不図示)。このウエハフォーカスセンサによって、投影光学系POの鏡筒117を基準とするウエハW1又はW2の表面のZ軸方向の位置及び傾斜量が計測されている。
前記ウエハステージ装置100は、ベースBS、該ベースBS上方に配置されウエハW1を保持してXY面内を移動するウエハステージWST1、ウエハW2を保持してXY面内を移動するウエハステージWST2、これらステージWST1,WST2を駆動する駆動系、及びステージWST1、WST2の位置を計測する干渉計システム等を含んでいる。
前記ベースBSには、図1及びウエハステージ装置100を上方から見た状態を示す図2を総合するとわかるように、Y軸方向を長手方向とする2つの送電・廃熱フレーム24A,24BがX軸方向に所定間隔をあけた状態で設けられている。これら送電・廃熱フレーム24A,24Bは、+X方向から−X方向に見て、逆U字状の形状を有し、その一端と他端はベースBSのY軸方向一側と他側の端面にそれぞれ固定されている。これら送電・廃熱フレーム24A、24BのベースBS上方に位置するXY面と平行な部分の下面は、ウエハステージWST1,WST2の最上面に対して所定間隔をあけた状態に維持されている。なお、これら送電・廃熱フレーム24A,24Bの具体的な構成・機能等については後に更に詳述する。
ベースBSの上面側には、図1に示されるように、複数の永久磁石を含む磁石ユニット30が埋め込まれた状態で設けられている。この磁石ユニット30は、後述する平面モータの一部を構成しており、図4の平面図からわかるように、例えば希土類物が焼結されて製造され、Z軸方向に磁化された(垂直磁化された)永久磁石28N,28Sを含んでいる。永久磁石28Nは、+Z側の面がN磁極面とされ、永久磁石28Sは、+Z側の面がS磁極面とされている。これら永久磁石28N,28Sは、X軸方向及びY軸方向に沿って交互に所定間隔をあけてマトリックス状に配列されている。永久磁石28N、28Sとしては、平面視(上方から見て)略正方形の形状を有し、それぞれが同一の大きさを有している。
更に、磁石ユニット30は、X軸方向又はY軸方向に磁化された(水平磁化された)永久磁石(補間磁石)32を含んでいる。この補間磁石32は、永久磁石28Nと永久磁石28Sとの間に設けられており、ベースBSを+X側から見た状態を示す図5から分かるように、永久磁石28Nに接触する面がN磁極面とされ、永久磁石28Sに接触する面がS磁極面とされている。補間磁石32としては、平面視(上方から見て)略正方形の形状を有し、前述した永久磁石28N,28Sと同一の大きさを有しているものとする。この磁石ユニット30によると、永久磁石28N、永久磁石28S、補間磁石32を磁束が順次巡る磁気回路が形成され(図5参照)、補間磁石32により、起磁力を強化することができるようになっている。
ベースBSの上面には、図5(及び図1)に示されるように、磁石ユニット30を上方から覆う状態で、非磁性体から成る保護プレート26が設けられている。この保護プレート26は、ウエハステージWST1、WST2と、永久磁石28N,28S,32との直接的な接触を防止し、永久磁石28N,28S,32の損傷を防止する。
前記ウエハステージWST1は、図2に示されるように、平面視(上方から見て)略矩形の形状を有する板状部材から成る粗動ステージWRS1と、該粗動ステージWRS1上に搭載された微動ステージWFS1とを備えている。
前記粗動ステージWRS1の下面(−Z側の面)には、ウエハステージWST1を+X方向から見た状態を一部断面して示す図3(A)、及び図3(A)のウエハステージWST1を分解して示す図3(B)から分かるように、粗動ステージWRS1(ウエハステージWST1)をXY2次元面内で駆動する平面モータの一部を構成する電機子ユニット130が設けられている。
前記電機子ユニット130は、図4に示されるように、16個の電機子コイル3411〜3444を含んでいる。これら電機子コイル3411〜3444のそれぞれには、独立に電流を供給することが可能となっている。電機子コイル3411〜3444の大きさは、図4に示されるように、一辺の長さが、永久磁石28N,28S,32を合計した長さとなるように設定されている。
本実施形態では、この電機子ユニット130と前述したベースBS内部に設けられた磁石ユニット30とにより平面モータが構成されている。この平面モータによると、図4に示されるような位置に電機子ユニット130があるときには、電機子コイル3411、3413、3431、3433に電流を供給することにより、電機子ユニット130にX軸方向の駆動力を作用させることができる。また、電機子コイル3422、3424、3442、3444に電流を供給することにより、電機子ユニット130にY軸方向の力を作用させることができる。更に、電機子コイル3412、3414、3432、3434に電流を供給することにより、電機子ユニット130にZ軸方向の力を作用させることができる。
本実施形態では、図4に示される位置に電機子ユニット130がある場合以外であっても、ウエハステージWST1の位置に応じて各コイルに供給すべき電流の大きさ・方向を算出し、該算出結果に応じて電流を変更することにより、ウエハステージWST1の位置にかかわらず所望の方向への駆動力を作用させることが可能である。
したがって、不図示の制御装置では、ウエハステージWST1の位置を検出する干渉計ユニット(これについては後述する)等の検出結果と、ウエハステージWST1の移動方向及び速度とに基づいて、各コイルへの供給電流を制御することにより、所望の方向にウエハステージWST1を駆動可能となっている。
また、本実施形態では、図3(A)に示されるように、電機子ユニット130の下端には、永久磁石28N,28Sとの間に磁気吸引力を発生させる磁性体部材96が貼付されている。この磁性体部材96と永久磁石28N,28Sとの間の磁気吸引力とウエハステージWST1の自重と、平面モータによる浮上力とのバランスにより、粗動ステージWFS1とベースBS上面との間の間隔が数μm程度に維持されるようになっている。
前記微動ステージWFS1は、図3(A)、図3(B)に示されるように、ウエハW1を不図示のウエハホルダを介して下側から支持するテーブル92Aと、該テーブル92Aの下面側で、複数(例えば3本)の吊り下げ支持部材92Cを介して吊り下げ支持された板状部材92Bとを含んでいる。
前記テーブル92Aの上面には、図1、図2に示されるように、レチクルRに形成されたパターンが投影されるウエハ面上の位置とアライメント系ALGとの相対位置関係の計測(いわゆるベースライン計測)等を行うための空間像計測器FM1が設けられている。この空間像計測器FM1は、従来のDUV露光装置の基準マーク板に相当するものである。また、微動テーブル92Aの−Y側の側面と−X側の側面は鏡面加工によって反射面がそれぞれ形成されている。
微動ステージWFS1と粗動ステージWRS1の間には、図3(A)及び図3(B)に示されるように、微動ステージWFS1をXY面内で微小駆動する微動装置140と、自重キャンセル機構22A1〜22A3とが設けられている。
前記微動装置140は、微動ステージWFS1のテーブル92Aから複数(例えば3本)の吊り下げ支持部材94を介して吊り下げ支持された可動子50と、粗動ステージWRS1上面に支持部材58を介して設けられた固定子60と、を含んでいる。ウエハステージWST1が組みあがった状態(図3(A)の状態)では、可動子50と固定子60とが係合した状態(可動子50内部に固定子60が入り込んだ状態)となっており、固定子60を支持する支持部材58は、微動ステージWFS1の板状部材92Bに形成された開口92Ba(図3(B)参照)に挿入された状態となっている。
前記可動子50は、該可動子50を斜視図にて示す図6(A)に示されるように、平面視(上方から見て)概略X字状(十字状)の形状を有しており、4つの磁石ユニット52A、52B,52C,52Dと、これら磁石ユニット52A〜52Dを所定の位置関係で保持する平面視(上方から見て)L字状の4つの保持部材48A,48B,48C,48Dと、を含んでいる。
前記4つの磁石ユニット52A〜52Dのそれぞれは、図6(A)に磁石ユニット52Aを採り上げて、代表的に示されるように、Z軸方向に所定間隔を隔てた一対の磁極部40A,40Bを備えている。一方の磁極部40Aは、平板状の板状部材42Aと、該板状部材42Aの下面に設けられた垂直磁化された永久磁石44N,44Sと、該永久磁石44N,44Sに挟まれた状態で設けられた水平磁化された永久磁石(補間磁石)46とを含んでいる。永久磁石44Nは、その下面(−Z側面)がN磁極面とされ、永久磁石44Sは、その下面(−Z側面)がS磁極面とされている。また、永久磁石(補間磁石)46は、永久磁石44Nに接触する面がN磁極面とされ、永久磁石44Sに接触する面がS磁極面とされている。補間磁石46の作用は、前述した平面モータを構成する磁石ユニット30の補間磁石32と同様である。
他方の磁極部40Bも磁極部40Aと上下及び左右対称ではあるが同様の構成となっている。すなわち、磁極部40Bは、板状部材42Bと、永久磁石44N,44S,46とを含み、永久磁石44Nはその上面(+Z側の面)がN磁極面とされ、永久磁石44Sはその上面(+Z側の面)がS磁極面とされ、永久磁石(補間磁石)46の永久磁石44Nに接触する面がN磁極面、永久磁石44Sに接触する面がS磁極面とされている。
磁石ユニット52Aが上記のように構成されていることにより、図6(A)に矢印にて示されるような磁気回路が形成される。
その他の磁石ユニット52B〜52Dも同様の構成とされているが、磁石ユニット52Bと磁石ユニット52Dは、磁極部40Aが下側(−Z側)で磁極部40Bが上側(+Z側)に配置されている点が異なっている。
なお、可動子50においては、磁石ユニット52Aと52Cとが並ぶ方向、及び磁石ユニット52Bと52Dとが並ぶ方向が、X軸及びY軸に対し45°傾斜する方向となっている(図7(A)〜図7(C)参照)。
前記固定子60は、該固定子60を斜視図にて示す図6(B)に示されるように、平面視(上方から見て)X字状(十字状)の形状を有する筐体54と、該筐体54内に設けられた4つの電機子コイル56A〜56Dと、を含んでいる。
前記電機子コイル56A〜56Dは、それぞれが磁石ユニット52A〜52Dそれぞれの磁極部40A,40B間に挿入されており、それぞれの電機子コイルを流れる電流と、それぞれの磁石ユニットが発生する磁界との間の電磁相互作用により、図7(A)〜図7(C)に示されるようにX軸及びY軸に対して45°傾斜した方向(黒矢印で示される方向)の力を発生することが可能となっている。
このように構成される微動装置140によると、図7(A)に示されるように、電機子コイル56A、56Dに右回りの所定の大きさの電流(図7(A)では電流の方向が白抜き矢印にて示されている)を供給し、電機子コイル56B,56Cに左回りの所定の大きさの電流を供給することによって、各電機子コイルを流れる電流と各磁石ユニットの形成する磁界との間の電磁相互作用により、黒矢印にて示される方向の駆動力が生じる。そして、これらの駆動力の合力により、可動子50(微動ステージWFS1)には、ハッチングが付された矢印で示される方向(+Y方向)の駆動力が作用するようになっている。また、上記とは逆方向の電流をそれぞれのコイルに供給することにより、可動子50(微動ステージWFS1)に−Y方向の駆動力を作用させることができる。
また、図7(B)に示されるように、電機子コイル56A、56Bに右回りの電流を供給し、電機子コイル56C,56Dに左回りの電流を供給すると、各電機子コイルを流れる電流と各磁石ユニットの形成する磁界との間の電磁相互作用により、黒矢印にて示される方向の駆動力が生じる。そして、これらの駆動力の合力により、可動子50(微動ステージWFS1)には、ハッチングが付された矢印で示される方向(−X方向)の駆動力が作用するようになっている。また、上記とは逆方向の電流をそれぞれのコイルに供給することにより、可動子50(微動ステージWFS1)に+X方向の駆動力を作用させることができる。
更に、図7(C)に示されるように、電機子コイル56A、56Cに左回りの電流を供給し、電機子コイル56B,56Dに右回りの電流を供給すると、各電機子コイルを流れる電流と各磁石ユニットの形成する磁界との間の電磁相互作用により、黒矢印にて示される方向の駆動力が生じる。そして、これら駆動力の合力により、可動子50(微動ステージWFS1)には、ハッチングが付された矢印で示される方向(Z軸回りの回転方向(右回り))の駆動力が作用するようになっている。また、上記とは逆方向の電流をそれぞれのコイルに供給することにより可動子50(微動ステージWFS1)にZ軸回りの回転方向(左回り)の駆動力を作用させることが可能となっている。
図3(A)、図3(B)に戻り、前記3つの自重キャンセル機構22A1〜22A3(図3(A)では、図示の便宜上、自重キャンセル機構22A3の図示を省略している)は、粗動ステージWRS1上で微動ステージWFS1を3点で非接触にて支持し、それぞれが駆動機構(ボイスコイルモータ)等を含んで構成されている。これら各駆動機構により、微動ステージWFS1がZ軸方向、θx方向(X軸回りの回転方向)、θy方向(Y軸回りの回転方向)の3自由度方向に微小駆動される。これら自重キャンセル機構22A1〜22A3は、微動ステージWFS1の板状部材92Bに形成された開口92Bbを貫通した状態で設けられている。
ここで、自重キャンセル機構22A1〜22A3のうちの1つの自重キャンセル機構22A1を代表的に採り上げて、その構成等について、図8に基づいて説明する。この図8には、自重キャンセル機構22A1の縦断面図が示されている。
この図8から分かるように、自重キャンセル機構22A1は、粗動ステージWRS1上面に固定された第1部材62と、該第1部材62の上方に設けられた第2部材64と、第1部材62及び第2部材64の内部に設けられた第3部材66と、第3部材66の下端面(−Z側の面)と粗動ステージWRS1の上面(+Z側の面)とを連結した状態で設けられたベローズ68と、を含んでいる。
前記第1部材62は、外形が概略円柱状の部材から成り、その下端面の中央には所定深さの円形凹部62bが形成され、該円形凹部62bの内部底面(上面)の中央部には、第1部材62の上面まで貫通した円形の貫通孔62aが形成されている。すなわち、円形凹部62bと貫通孔62aとにより、段付きの貫通孔が形成されている。
前記第2部材64は、外形が概略円柱状の部材から成り、その下端面の中央には所定深さの断面円形の凹部64cが形成されている。また、凹部64cから+Z側に所定間隔をあけて凹部64aとほぼ同径の断面円形の室64aが形成されている。また第3部材64には、凹部64cの内部底面(上面)と室64aの内部下面とを連通する円形孔64bが形成されている。この第2部材64の上面(すなわち、自重キャンセル機構22A1の上面)には、真空予圧型(差動排気型)気体静圧軸受72が固定され、真空予圧型気体静圧軸受72が発生する静圧と、微動ステージWFS1の自重との間のバランスにより、微動ステージWFS1が自重キャンセル機構22A1により非接触で支持されている。なお、第2部材64と微動ステージWFS1との間に所定間隔を維持するために、真空予圧型気体静圧軸受72に代えて、磁気的な斥力を発生する機構を採用することとしても良い。
前記第3部材66は、第2部材64の室64aよりも一回り小さい形状を有する円板状の先端部66aと、該先端部66aの下面中央部に設けられた第1軸部66bと、該第1軸部66bの下端に設けられた第1軸部66bよりも径が大きい第2軸部66dとを有し、全体として、YZ断面(及びXZ断面)T字状の形状を有している。
この第3部材66では、第1軸部66bの高さ方向中央よりやや上側に、ヒンジ部66cが形成されており、ヒンジ部66cよりも上側部分が下側部分に対して揺動可能とされている。
前記先端部66aの上面及び下面には、エアパッド機構74が設けられている。このエアパッド機構74は、図示は省略されているが、実際には、気体を噴出する気体噴出口と、該気体噴出口から噴出された気体を低真空(例えば102〜103Pa程度)で吸引する低真空吸引口と、高真空(例えば10-2〜10-3Pa程度)で吸引する高真空吸引口とを含んでいる。また、このエアパッド機構74に対する気体の供給等は、第2部材64及び第1部材62に形成された不図示の管路、及び第1部材62に接続された不図示の気体供給管を介して、不図示の気体供給装置により行われる。このエアパッド機構74により、第3部材66の先端部66aと第2部材64の室64aの上下壁面との間に所定のクリアランス(例えば数μm程度)が形成される。
なお、第3部材66の第2軸部66dと対向する、第1部材62の内壁面にも上記と同様のエアパッド機構174が複数設けられている。これにより、第1部材62の内壁面と第3部材66の第2軸部66dとの間に所定のクリアランス(例えば数μm程度)が形成される。
前記ベローズ68には、不図示の気体供給管が接続されており、該気体供給管を介して不図示の気体供給装置から気体が供給され、ベローズ68内部が所定圧力に維持されている。
更に、第1部材62と第2部材64との間には、ボイスコイルモータ78が設けられている。このボイスコイルモータ78は、第1部材62の上面に固定された電機子コイルを含む固定子76Bと、第2部材64の凹部64cの側壁内面に固定された永久磁石を有する可動子76Aとを含んでいる。
このボイスコイルモータ78により、第1部材62と第2部材64(及び第3部材66)との間のZ軸方向に関する相対的な位置関係を変更することが可能となっている。
また、第3部材66と第1部材62との間には、エンコーダ83が設けられている。このエンコーダ83は、第3部材66の下端部に設けられたスケール82Bと、第1部材62の凹部62b側壁内面に設けられ、スケール82Bに対して光を照射する照射系とスケール82Bにて反射した光を受光する受光素子とを有するセンサヘッド82Aと、を含んでいる。このエンコーダ83により、第1部材62と第3部材66とのZ軸方向に関する相対的な位置関係を検出可能である。
その他の自重キャンセル機構22A2、22A3、上記自重キャンセル機構22A1と同様の構成となっている。
このように構成される自重キャンセル機構22A1〜22A3では、それぞれを構成するベローズ68により第3部材66、第2部材64及びエアパッド機構72を介して微動ステージWFS1を3点で低剛性にて支持することができる。ここで、ベローズ68の剛性は完全には0ではないため、エンコーダ83の計測結果に基づいて、ベローズ68の剛性を打ち消すように、ボイスコイルモータ78を微小駆動することができる。また、不図示の制御装置では、微動ステージWFS1にZ軸方向に関する駆動力を作用させるために、ボイスコイルモータ78の固定子76Bのコイルに対して、Z軸方向駆動用の電流を、上記剛性を打ち消すための電流と合成した状態で供給することができる。
図2に戻り、粗動ステージWRS1上面の+Y側端部には、受電・放熱アーム20Aが設けられている。この受電・放熱アーム20Aは、図2からわかるように、そのX軸方向の長さ(幅)が、前述した送電・廃熱フレーム24A、24B相互間の間隔よりも長く(広く)設定されているため、その上面の一部が常に、送電・廃熱フレーム24A,24Bの少なくとも一方の下面と対峙した状態となっている。
ここで、受電・放熱アーム20A内部の構成について、送電・廃熱フレーム24A,24Bの構成とあわせて、図9、図10及びその他の図面を参照して説明する。図9は、受電・放熱アーム20Aを+X側から見た状態を内部構成とともに示す図であり、図10は、送電・廃熱アーム24A,24BのXZ断面を、受電・放熱アーム20Aとともに示す図である。
前記受電・放熱アーム20Aの内部には、図9に示されるように、液体温調系86と、電力入力系84と、信号送信系88と、エンコーダを構成するヘッド部90とが設けられている。
前記液体温調系86は、粗動ステージWRS1の熱源(例えば、平面モータを構成する電機子ユニット130の電機子コイルや、微動機構140を構成する電機子コイル56A〜56D、自重キャンセル機構22A1〜22A3に含まれるボイスコイルモータなど)の近傍に敷設され、その内部を冷却液が通過する冷却管路202の一端が接続された帰還部86Aと、循環ポンプ86Bと、循環ポンプ86Bの帰還部86Aとは反対側に設けられるとともに前記冷却管路202の他端が接続された温調部86Cと、該温調部86Cに接触した状態で設けられたペルチェ素子86Dと、該ペルチェ素子86Dの温調部86Cとは反対側の面に接触した状態で設けられた放熱部86Eと、を含んでいる。
前記温調部86Cは、所定量の冷却液を収容可能なタンクであり、該温調部86C内に収容された冷却液がペルチェ素子86Dによって所定温度に冷却されるようになっている。前記放熱部86Eは、XY面に実質的に平行な(ウエハステージWSTがベースBS上に配置された状態でXY面に平行な)上面を有し、ペルチェ素子86Dの温調部86Cとは反対側の面の熱を外部に輻射により放出する。この放熱部86Eは、実際には、受電・放熱アーム20AのX軸方向(紙面直交方向)の全域にわたって設けられている。
これに対し、図10に示されるように、一方の送電・廃熱フレーム24Aの内部には、前記放熱部86Eからの熱を吸収する廃熱部186が設けられている。この廃熱部186は、送電・廃熱フレーム24AのY軸方向全域にわたって設けられている。したがって、受電・放熱アーム20Aと送電・廃熱フレーム24Aとが上下対向している状態では、廃熱部186の一部と放熱部86Eの一部とが常に対向した状態となる。この廃熱部186には例えば冷媒が供給されており、放熱部86Eから輻射された熱を効率よく吸収することができるようになっている。また、他方の廃熱フレーム24B内にも同様の廃熱部286が設けられている。
図9に戻り、前記電力入力系84は、受信部84Aと、電力変換部84Bと、A/D変換・増幅部84Cと、コネクタ84Dとを含む。前記受信部84Aには無線で電力を受信するためのコイルが設けられている。このコイルは、受電・放熱アーム20AのX軸方向(紙面直交方向)の全域にわたって設けられている。
これに対し、図10に示される一方の送電・廃熱フレーム24Aには、送電用のコイルを含む送信部184が内蔵されている。この送信部184内の送電用のコイルと受信部84A内の受電用のコイルとが上下対向した状態では、不図示の電力供給装置から供給される電力が送電用コイルと受電用のコイルとの間で無線により伝送されるようになっている。なお、この無線による電力伝送方式については、特公平5−59660号公報や、特開昭58−115945号公報などに開示されているので、その説明は省略する。また、他方の送電・廃熱フレーム24B内にも同様の送電用のコイルを含む送信部284が内蔵され、この送信部284内の送電用コイルと受信部84A内の受電用のコイルとが上下対向した状態で、送電用コイルと受電用のコイルとの間で無線による電力伝送が行われるようになっている。
このように、送電・廃熱フレーム24A又は24Bから供給され、図9の電力入力系84の受信部84Aで受電した電力は、電力変換部84Bで電流に変換された後、A/D変換・増幅部84Cにて、A/D変換及び増幅され、コネクタ84Dを介して、粗動ステージWRS1を駆動する駆動機構のコイル(例えば、平面モータの電機子ユニット130を構成するコイル3411〜3444や、自重キャンセル機構22A1〜22A3を構成するボイスコイルモータ78の固定子に含まれるコイルや、微動機構140に含まれる電機子コイル56A〜56Dなど)に供給されるようになっている。また、前述した液体温調系86を構成するペルチェ素子86Dやポンプ86Bにもこの電流が供給されるようになっている。更に、ウエハW1を微動ステージWFS1上で保持するウエハホルダが、静電吸着タイプのウエハホルダである場合には、該ウエハホルダにこの電流を供給することができる。なお、この場合には、粗動ステージWRS1と微動ステージWFS1との間の電流の供給を、前述した無線での電力伝送方式で行うこととすることができる。
前記信号送信系88は、コネクタ88Aと、A/D変換・増幅部88Bと、無線信号発生部88Cと、発信部88Dとを含んでいる。
これに対し、図10に示されるように、一方の送電・廃熱フレーム24Aには、発信部88Dに対応した受信部188が設けられ、他方の送電・廃熱フレーム24Bには受信部288が設けられている。
これら信号送信系88及び受信部188(又は288)によると、微動ステージWFS1の一部に設けられた空間像計測器FM1などのセンサにおいて計測された計測結果が、信号送信系88の発信部88Dから受信部188(又は288)に無線で発信されるようになっている。この場合、発信部88Dと受信部188(又は288)との間の信号のやり取りは、例えば赤外線を用いることもできるし、その他電波や音波などを用いることも可能である。
なお、信号送信系88を送受信可能な構成とし、ウエハステージWST1に対する不図示の制御装置からの制御信号を、信号送信系88と受信部188(又は288)とを介して送信するようにすることも可能である。
なお、受信部188(288)は、送電・廃熱フレーム24A(24B)のY軸方向全域に設けなくても良く、ウエハステージWST1において空間像計測などを行う際に送信部88Dが位置する範囲に設けておけば良い。
前記ヘッド部90は、実際には、図11に示されるように、Y軸方向に関する位置情報を計測するための複数のY軸方向計測用のヘッド90yと、X軸方向に関する位置情報を検出するための複数のX軸方向計測用のヘッド90xとを含んでいる。
前記複数のY軸方向計測用のヘッド90yは、X軸方向に所定間隔で設けられており、前記X軸方向計測用のヘッド90xは、ヘッド90yと干渉しない位置に所定間隔で設けられている。
これに対し、一方の送電・廃熱フレーム24Aの底面には、スケール190が設けられ、他方の送電・廃熱フレーム24Bの底面には、スケール290が設けられている。これらスケール190、290は、送電・廃熱フレーム24A、24Bそれぞれの+Y側端部近傍から中央部近傍にかけて設けられた、X方向及びY方向に所定周期で形成された二次元格子である。
これら、ヘッド部90及びスケール190,290によると、複数のX軸方向計測用ヘッドのうちで、スケール190又は290と対向しているヘッド90xにおいて、ウエハステージWST1のX軸方向位置を計測することが可能であり、複数のY軸方向計測用ヘッドのうちで、スケール190又は290と対向しているヘッド90yにおいて、ウエハステージWST1のY軸方向位置を計測することが可能である。なお、隣り合うヘッド90x同士の間隔、及び隣り合うヘッド90y同士の間隔は、同時にスケール190(又は290)を用いて位置計測を行える程度の間隔に設定されている。なお、上記ではヘッド部90を構成するヘッドを複数設ける場合について説明したが、計測範囲がカバーできるのであれば、ヘッドを1つのみ設けることとしても良い。
図2に戻り、他方のウエハステージWST2は、上述したウエハステージWST1と同様の構成となっている。すなわち、ウエハステージWST2は、粗動ステージWRS1と同様の粗動ステージWRS2と、該粗動ステージWRS2上の一直線上にない3箇所に設けられた3つの自重キャンセル機構22B1,22B2,22B3を介して搭載された、微動ステージWFS1と同様の微動ステージWFS2とを備えている。微動ステージWFS2上面には、空間像計測器FM2が設けられている。また、粗動ステージWRS2と微動ステージWFS2と間には前述した微動機構140と同様の微動機構が設けられ、粗動ステージWRS2の+Y側端部近傍には、前述した受電・放熱アーム20Aと同様の受電・放熱アーム20Bが設けられている。この受電・放熱アーム20Bにおいても、前述した受電・放熱アーム20Aと同様にして、送電・廃熱フレーム24A,24Bとの間で、ウエハステージWST2において発生した熱の受け渡し、無線による電力の伝送、ウエハステージWST2上の空間像計測器FM2で検出された信号の送受信、及びウエハステージWST2のXY面内の位置検出を行うことができる。
次に、ウエハステージWST1、WST2のXY面内の位置を検出するための干渉計システムについて説明する。
干渉計システムは、図2に示されるように、投影光学系POの投影中心を通過するX軸に平行な測長ビームを照射するX軸干渉計18Aと、前記投影中心を通過するY軸に平行な測長ビームを照射するY軸干渉計16と、アライメント系ALGの検出中心を通過するX軸に平行な測長ビームを照射するX軸干渉計18Bとを含んでいる。
このように構成される干渉計システムによると、ウエハステージWST1とウエハステージWST2とが図2に示される位置にある場合には、X軸干渉計18Aからの測長ビームが、ウエハステージWST1を構成する微動ステージWFS1の鏡面加工された−X側の反射面に照射され、Y軸干渉計16からの測長ビームが、微動ステージWFS1の鏡面加工された−Y側の反射面に照射される。また、X軸干渉計18Bからの測長ビームがウエハステージWST2を構成する微動ステージWFS2の鏡面加工された―X側の反射面に照射される。なお、微動ステージWFS2の鏡面加工された−Y側の反射面には、図2の状態では干渉計の測長ビームは照射されない。
また、ウエハステージWST1とウエハステージWST2との位置関係が図2とは逆の場合には、微動ステージWFS2の−X側の反射面に干渉計18Aの測長ビームが照射され、−Y側の反射面に干渉計16の測長ビームが照射され、微動ステージWFS1の−X側の反射面に干渉計18Bの測長ビームが照射される。ここで、干渉計18A,18Bは、測長軸を複数有する多軸干渉計であり、ウエハステージWST1、WST2のX軸方向の位置情報の計測以外に、ローリング(Y軸回りの回転(θy回転))及びヨーイング(θz方向の回転)の計測が可能となっている。また、干渉計16も多軸干渉計であり、ウエハステージWST1、WST2のY軸方向の位置情報の計測以外に、ピッチング(X軸回りの回転(θx回転))及びヨーイング(θz方向の回転)の計測が可能となっている。
不図示の制御装置では、後述する露光時には、干渉計18A,16の計測値に基づいて、微動ステージWFS1(又はWFS2)のXY面内の位置を高精度に管理し、後述するアライメント時(及びウエハ交換時)には、干渉計18Bの計測値及び前述したヘッド部90を構成するY軸方向計測用のヘッド90yを用いて微動ステージWFS2(又はWFS1)のXY面内の位置を高精度に管理するようになっている。
ところで、本実施形態では、粗動ステージWRS1、WRS2を駆動する平面モータを使用しないとき(ベースBSの搬送時、露光装置の組立て時、メンテナンス時など)に、ベースBS上面を覆う状態で、図5に示されるような磁束漏洩防止プレート36を設けることができる。
この磁束漏洩防止プレート36は、非磁性体部材から成り、磁石ユニット30から発生する磁束が外部に影響を与えないようにするためのプレートであり、図5に示されるように、磁石ユニット30が形成する磁気回路を覆うことが可能な程度の厚さを有している。
このように磁束漏洩防止プレート36を設けることにより、平面モータを使用しないときに、作業者の使用する工具等が磁石ユニット30に急激に吸い寄せられる事態の発生を防止することができ、また、ペースメーカー等の医療機器などへの磁束による影響や、ベースを搬送する際における露光装置に用いられる他の装置への磁束による影響を回避することが可能となる。
次に、本実施形態の露光装置10で行われる、一方のウエハステージ上のウエハに対する露光動作と、他方のウエハステージ上のウエハに対するアライメント動作等との並行処理動作を含む、一連の動作について、図2及び図12(A)〜図13(B)に基づいて説明する。
図2には、ウエハステージWST1上のウエハW1に対して露光動作が行われるのと並行して、ウエハステージWST2上のウエハW2に対してウエハアライメント動作が行われている状態が示されている。
この図2に先立って、所定のローディングポジションにウエハステージWST2があるときに、不図示のウエハローダによって、ウエハステージWST2上に載置されていた露光済みのウエハのウエハステージWST2上からのアンロード及び新たなウエハW2のウエハステージWST2上へのロード(すなわちウエハ交換)が行なわれている。
そして、不図示の制御装置は、干渉計18Bの計測値に基づいてウエハステージWST2のX位置を管理するとともに、ウエハステージWST2上に設けられた複数のY軸方向位置計測用のヘッド90yのうち、スケール190又は290のいずれかに対向しているヘッドを用いて計測される計測値に基づいてウエハステージWST2のY位置を管理しつつ、アライメント系ALGを用いて、ウエハW2上の特定の複数のショット領域(サンプルショット領域)に付設されたアライメントマーク(サンプルマーク)の位置情報を検出する。
次いで、制御装置は、その検出結果とその特定のショット領域の設計上の位置座標とに基づいて、例えば特開昭61−44429号公報などに開示される最小二乗法を用いた統計演算によりウエハW2上の全てのショット領域の配列座標を求めるEGA(エンハンスト・グローバル・アライメント)を実行する。なお、このEGA以前に、制御装置は、空間像計測器FM2を用いたベースライン計測を行うこともできる。ここで、空間像計測器FM2の計測結果は、受電・放熱アーム20Bに設けられた送信部から送電・廃熱フレーム24A又は24Bに設けられた受信部188又は288に無線で送信される。
なお、上記のウエハ交換、アライメント動作の際、制御装置は、干渉計18B,ヘッド90y(スケール190又は290)による検出結果に基づいて、粗動ステージWRS2を、前述した平面モータを介して長ストロークで駆動するとともに、微動ステージWFS2を微動機構及び自重キャンセル機構22B1〜22B3を介して微小駆動する。
このウエハ交換、アライメントと並行して、ウエハステージWST1側では、既に行われたウエハアライメント結果に基づいてウエハステージWST1上に載置されたウエハW1上の各ショット領域の露光のための加速開始位置にウエハステージWST1を移動させるショット間ステッピング動作と、レチクルR(レチクルステージRST)とウエハW1(ウエハステージWST1)とをY軸方向に相対走査してレチクルRに形成されたパターンをウエハW1上のショット領域に投影光学系POを介して転写する走査露光動作と、を繰り返す、ステップ・アンド・スキャン方式の露光動作が行なわれる。
上記のステップ・アンド・スキャン方式の露光動作中、制御装置は、粗動ステージWRS1を、前述した平面モータを介して長ストロークで駆動するとともに、微動ステージWFS1を微動機構140及び自重キャンセル機構22A1〜22A3を介して粗動ステージWRS1に対して相対的にX,Y,Z,θx,θy,θz方向に関して微小駆動する。勿論、Z,θx,θy方向の駆動に際しては、前述のウエハフォーカスセンサの計測結果が考慮される。
なお、この露光動作そのものの手順などは、通常のスキャニング・ステッパと同様なので、これ以上の詳細な説明は省略する。
上述したウエハステージWST2上のウエハW2に対するウエハアライメント動作と、ウエハステージWST1上のウエハW1に対する露光動作とでは、通常は、ウエハアライメント動作の方が先に終了する。そこで、制御装置は、ウエハアライメントの終了後、平面モータを介してウエハステージWST2を−Y方向及び−X方向に駆動する。そして、ウエハステージWST2を所定の待機位置(図12(A)に示されるウエハステージWST2の位置)に移動させ、その位置で待機させる。
その後、ウエハステージWST1上のウエハW1に対する露光動作が終了すると、制御装置は、平面モータを介してウエハステージWST1を+X方向及び+Y方向に移動させる。図12(B)には、ウエハステージWST1の−X側の反射面、−Y側の反射面に干渉計18A,16からの測長ビームが当たらなくなる直前の状態が示されている。この状態で、ヘッド90xのいずれか及びヘッド90yのいずれかがスケール290に対向した状態となるので、制御装置は、ウエハステージWST1の位置計測を干渉計18A,16からヘッド90x、90yに切り換えておく。そして、ウエハステージWST1の−Y側の反射面に対して干渉計16からの測長ビームが当たらなくなった段階で、ウエハステージWST2の−Y側の反射面に干渉計16からの測長ビームが当たるようになるので、制御装置は、この段階でウエハステージWST2のY軸方向位置の計測を干渉計16に切り換えておく。
次いで、制御装置は、図13(A)に示されるように、干渉計16によるY軸方向に関する計測結果とヘッド90xによるX軸方向に関する計測結果とに基づいて、ウエハステージWST2を平面モータを介して投影光学系POの直下に移動させる。この移動の間に、微動ステージWFS2の−X側の反射面に干渉計18Aからの測長ビームが照射されるので、ウエハステージWST2のX軸方向に関する位置計測をヘッド90xから干渉計18Aに切り替える。
一方、ウエハステージWST1側では、図12(B)に示される位置で、干渉計18A,16から、X軸方向計測用のヘッド90xとY軸方向計測用のヘッド90yによる計測に切り替えているので、スケール290に対向するヘッド90xとスケール290とを用いてウエハステージWST1のX軸方向の位置を計測するとともに、スケール290に対向するヘッド90yとスケール290とを用いてウエハステージWST1のY軸方向の位置を計測しつつ、ウエハステージWST1を+Y方向に移動させる。
そして、図13(A)に示されるように、微動ステージWFS1の−X側の反射面に干渉計18Bの測長ビームが照射された段階で、Y軸方向に関する計測を干渉計18Bに切り替え、図13(B)に示される位置(ウエハ交換位置)までウエハステージWST1を移動する。
そして、その後は、ウエハステージWST2側では、前述したウエハW1と同様にして、ウエハW2に対するステップ・アンド・スキャン方式の露光動作が行われ、ウエハステージWST1側では、前述したのと同様に、ウエハ交換及びウエハアライメント動作が実行される。
このようにして、本実施形態の露光装置10では、ウエハステージWST1,WST2の交換を行いつつ、一方のウエハステージ上のウエハに対する露光動作と、他方のウエハステージ上でのウエハ交換及びウエハアライメント動作とが、同時並行処理にて行われる。
本実施形態においては、上記並行処理中において、ウエハステージWST1の受電・放熱アーム20Aの上面と、送電・廃熱フレーム24A,24Bの少なくとも一方の下面とが、対向した状態が維持されているので、該対向した部分において、ウエハステージWST1への電力の供給や、ウエハステージWST1で発生した熱の受け渡しや、信号の送受信を行うことが可能となっている。
また、ウエハステージWST2においても、ウエハステージWST1と同様に、受電・放熱アーム20Bの上面と、送電・廃熱フレーム24A,24Bの少なくとも一方の下面とが、対向しているので、該対向した部分において、ウエハステージWST2への電力の供給や、ウエハステージWST2で発生した熱の受け渡しや、信号の送受信を行うことが可能となっている。
以上詳細に説明したように、本実施形態によると、送電・廃熱フレーム24A,24Bが、ウエハステージWST1(WST2)の放熱部86Eから輻射した熱を常時吸収することができるので、ウエハステージWST1(WST2)において発生する熱による露光精度への影響を抑制することが可能となる。この場合、従来のように、ウエハステージWST1(WST2)に冷媒を供給する配管(チューブ)を外部から接続する必要がないため、配管の張力によるウエハステージWST1(WST2)の移動精度の低下を防止することができ、この点からも露光精度を高精度に維持することが可能となる。
また、本実施形態では、ウエハステージWST1、WST2に無線で電力が入力される電力入力系84が設けられるとともに、送電・廃熱フレーム24A,24Bには、電力入力系の受信部84Aに向けて無線で電力を出力する送信部184、284が設けられているので、ウエハステージWST1、WST2及び構成各部を駆動する駆動機構に電流を供給するための配線をウエハステージWST1、WST2に外部から接続しなくて良く、配線の張力によるウエハステージWST1、WST2の移動精度の低下を防止することが可能となる。この点からも露光精度の向上を図ることが可能となる。
また、本実施形態では、ウエハステージWST1、WST2に、該ステージに設けられた計測器(例えば、空間像計測器FM1、FM2)から出力された信号を無線で発信する発信部88D、送電・廃熱フレーム24A,24Bに発信部88Dからの信号を受信する受信部188、288が設けられているので、検出器から出力された信号を取り出すための配線をウエハステージWST1、WST2の外部から接続する必要がない。したがって、この場合にも、従来のような配線の張力によるステージの移動精度の低下を防止することが可能となり、ひいては露光精度の向上を図ることが可能となる。
また、本実施形態によると、上記のように高精度な位置決めが可能なウエハステージを2つ備えており、2つのウエハステージWST1、WST2が投影光学系PO直下(露光位置)とアライメント系ALG直下(アライメント位置)との間を移動するので、ウエハの露光動作とウエハのアライメント動作とを並行して行うことができる。したがって、高精度な露光を高スループットにて行うことが可能となる。
また、本実施形態によると、ウエハステージWST1(WST2)が粗動ステージWRS1(WRS2)と微動ステージWFS1(WFS2)とを備えており、平面モータ、微動機機構140、自重キャンセル機構22A1〜22A3(22B1〜22B3)を構成するボイスコイルモータの全てにおいてコイル側が粗動ステージWRS1(WRS2)側に設けられていることから、微動ステージWFS1(WFS2)に対して駆動用の電流を供給するための配線を接続する必要がない。したがって、高精度な位置決め精度が要求される微動ステージに粗動ステージから配線が接続されないので、より高精度なウエハの位置決めを実現することが可能である。また、コイルが粗動ステージ側にのみ設けられていることにより、冷媒の供給を粗動ステージ側にのみ行えば良いため、粗動ステージと微動ステージとの間に冷媒供給用の配管を設ける必要がなく、この点からも高精度なウエハの位置決めを実現することが可能である。
また、本実施形態では、微動機構140を構成するボイスコイルモータそれぞれがX軸及びY軸に45°交差する方向の駆動力を発生し、それら駆動力の合力により微動ステージWFS1、WFS2がX軸、Y軸方向に駆動されるようになっている。したがって、単にX軸方向の駆動力を発生するボイスコイルモータやY軸方向の駆動力を発生するボイスコイルモータを用いる場合に比べ、一つのボイスコイルモータで消費される電流を抑制することができる。したがって、モータにおける発熱を抑制することができるので、発熱に起因する露光精度の低下を抑制することが可能である。
また、本実施形態では、ベースBS上に保護プレート26が設けられているので、平面モータの電機子ユニット130を構成するコイルへの電流供給を停止した際に、ウエハステージがベースBS上に落下した場合におけるベースBS上の永久磁石の損傷を防止することができる。
また、上記実施形態では、ヘッド90x、90yとスケール190,290を設け、干渉計による測長ビームが当たらないところでのウエハステージWST1、WST2の計測を実行することとしているので、上記実施形態のようにウエハステージWST1、WST2が投影光学系PO直下とアライメント系ALG直下との間で移動するような場合であっても、図2のような干渉計配置で足り、干渉計の数を軽減することが可能となる。
なお、上記実施形態では、ウエハステージWST1(WST2)内に冷媒を循環する冷却管路202が接続される液体温調系86に設けられた放熱部86Eにおいて、ウエハステージWST1(WST2)から発生した熱を輻射する場合について説明したが、これに限らず、冷却管路202や放熱部86Eなどを設けずに、ウエハステージWST1(WST2)から直接輻射する熱を、送電・廃熱フレーム24A,24Bが吸収することとしても良い。
なお、上記実施形態では、送電・廃熱フレーム24A,24Bとして、X軸方向に関して幅の狭い板状の部材を用いたが、これに限られるものではなく、露光やアライメントの際に邪魔にならなければ、その大きさ(X軸方向に関する幅)を大きくすることも可能である。この場合、放熱部86Eの面積を小さくし(局所的にし)、送電・廃熱フレームをベースBS上面とほぼ同一面積にすることもできる。また、送電・廃熱フレームは、天井側(ウエハステージWSTの上方)に設ける場合に限らず、床面側(ウエハステージWSTの下方)に設け、放熱部86EをウエハステージWSTの下面側に設けることとしても良い。また、上記実施形態における2つの送電・廃熱フレーム24A,24Bを一体化した枠状の送電・廃熱フレームを採用することとしても良い。
また、上記実施形態では、送電・廃熱フレーム24A,24Bの廃熱部186、286に冷媒を供給して廃熱部186,286を冷却する場合について説明したが、これに限らず、例えば廃熱部にペルチェ素子などの冷却機構を設けることとしても良い。また、送電・廃熱フレーム24A,24Bの廃熱部186、286が、放熱部から輻射する熱を吸収するということにのみ着目すれば、冷媒を供給しなくても良い。
なお、上記実施形態では、送電・廃熱フレーム24A,24Bのいずれかが廃熱部186、286と常時対峙(対向)している場合について、説明したが、これに限らず、廃熱部186、286から輻射した熱が送電・廃熱フレーム24A,24Bに吸収されるのであれば、多少対向した状態からずれるようなことがあっても良い。すなわち、上記実施形態では、ウエハステージWSTのY軸方向の移動範囲の全範囲にわたって、送電・廃熱フレーム24A,24Bが設けられる場合について説明したが、これに限らず、ウエハステージWSTのY軸方向の移動範囲よりも小さい範囲にわたって、送電・廃熱フレーム24A,24Bが設けられていても良い。この場合、輻射した熱を常時吸収する場合に限らず、例えば、短時間の間、熱を吸収しないときが存在しても良い。具体的には、例えば少なくとも、ウエハステージWST1(WST2)上のウエハに対して露光を行う際にウエハステージWST1(WST2)が移動する範囲で、放電・廃熱フレーム24A(24B)と廃熱部186(286)とが対向するようにすることができる。
なお、上記実施形態では、送電・廃熱フレーム24A,24BがY軸方向に延び、受電・放熱アーム20A,20Bが、X軸方向に延びている場合について説明したが、これに限らず、送電・廃熱フレーム24A,24BがX軸方向に延び、受電・放熱アーム20A,20Bが、Y軸方向に延びていても良い。また、X,Y軸方向に限らず、送電・廃熱フレーム24A,24Bと受電・放熱アーム20A,20Bの一方が、XY面内の所定方向に延び、他方が該所定方向にXY面内で交差する方向に延びていれば良い。
なお、上記実施形態では、平面モータの電機子ユニットをウエハステージ側に設ける場合について説明したが、これに限らずベースBS側に電機子ユニットを設け、ウエハステージ側に磁石ユニットを設けることとしても良い。また、上記実施形態では、微動機構140、自重キャンセル機構22A1〜22A3(22B1〜22B3)を構成するボイスコイルモータの全てにおいてコイル側が粗動ステージWRS1(WRS2)側に設けられる場合について説明したが、これに限らず、粗動ステージと微動ステージとの間に配線を設けても、微動ステージの移動に影響を与えない場合には、微動ステージ側にコイルを設けることとしても良い。
なお、上記実施形態では、送電・廃熱フレーム24A,24Bと受電・放熱アーム20A,20Bとの間で、電力の無線伝送、熱の受け渡し、検出器からの検出信号の送受信、及び干渉計からの測長ビームが照射されないときの位置計測、を行う場合について説明したが、これに限らず、上記のうちの少なくとも1つのみを行うようにしても良い。
なお、上記実施形態では、磁束漏洩防止プレート36として、図5に示されるような肉厚なプレートを用いる場合について説明したが、これに限らず、薄板状のプレートを採用し、該プレートをスペーサ部材を介してその上面の高さが図5の磁束漏洩防止プレート36の上面の高さと同一高さとなるようにベースBS上方に設けることとしても良い。
なお、上記実施形態では、干渉計システムとエンコーダ(ヘッド部90とスケール190,290)とを併用してウエハステージWST1、WST2の位置計測を行うこととしたが、これに限らず、干渉計システムを構成する干渉計を増やすことにより、干渉計システムのみでウエハステージWST1、WST2の位置計測を行っても良いし、逆に、エンコーダのみでウエハステージWST1、WST2の位置計測を行っても良い。
なお、上記実施形態では、微動装置140を構成する可動子50において、磁石ユニット52Aと52Cとが並ぶ方向、及び磁石ユニット52Bと52Dとが並ぶ方向が、X軸及びY軸に対し45°傾斜する方向となっている場合について説明したが、これに限らず、磁石ユニット52Aと52Cとが並ぶ方向、及び磁石ユニット52Bと52Dとが並ぶ方向が、XY面内でX軸及びY軸に交差する方向であれば、その角度は問わない。また、上記実施形態では、微動装置140を構成するボイスコイルモータそれぞれが、XY面内でX軸及びY軸に対して45°傾斜する方向の駆動力を発生する場合について説明したが、これに限られるものではなく、それぞれの駆動力がXY面内でX軸及びY軸に対して交差する方向に発生するのであれば、その角度は問わない。
なお、上記実施形態では、ベースBSの上面に、磁石ユニット30を上方から覆う状態で、非磁性体から成る保護プレート26を設けることとしたが、これに限らず、ウエハステージWST1,WST2の下面に保護プレートを設けることとしても良い。この保護プレートにより、上記実施形態の保護プレート26と同様、ウエハステージWST1、WST2と、永久磁石28N,28S,32との直接的な接触を防止し、永久磁石28N,28S,32の損傷を防止することが可能となる。
なお、上記実施形態では、ウエハステージを2つ有するウエハステージ装置に本発明を適用した場合について説明したが、本発明がこれに限られるものではなく、ウエハステージを1つのみ有するウエハステージ装置に本発明を適用することも可能であるし、ウエハステージを3つ以上有するウエハステージ装置に本発明を適用することも可能である。
また、上記実施形態では、アライメント系ALGを1つのみ備える場合について説明したが、これに限らず、アライメント系ALGをウエハステージWST1、WST2に対応して2つ備える構成を採用することも可能である。
なお、上記実施形態のウエハフォーカスセンサに代えて、投影光学系POを保持するボディに面形状検出装置を設けることとしても良い。この面形状検出装置としては、ウエハに対し、例えばウエハの直径より長いライン状のビームを斜入射させる照射系と、該照射系により照射されたビームの反射光を受光する検出器、例えば1次元CCDセンサ又はラインセンサなどを有する受光系を含んで構成されている。したがって、公知の多点AF系の検出原理と同じ原理で、複数の点状の照射領域を計測点として、各計測点でのウエハのZ位置(ウエハが移動する所定面(XY平面)と垂直なZ軸方向に関する位置情報)を検出することができる。この場合、露光開始前に、この面形状検出装置の照射領域をウエハが通過するときに、干渉計システム又はヘッド部90による計測値(ウエハの位置)と、該検出装置による検出結果とに基づいてウエハ表面のZ位置情報の分布を算出し、露光動作の際には、該算出結果に基づいて、ウエハステージのZ軸方向に関する位置・姿勢を制御するとすることができる。
なお、上記実施形態では、ウエハステージWST1、WST2を長ストロークで駆動する駆動装置として平面モータを用いることとしたが、これに限らず、リニアモータを用いることとしても良い。
なお、上記実施形態のウエハステージWST1、WST2は、配線及び配管が接続されていないが、故障などの非常時において、ウエハステージWST1、WST2への直接的な電力供給等を行うことができるように、ウエハステージWST1、WST2の一部に配線・配管ポートを設けておくことができる。
なお、上記実施形態ではウエハステージWST1、WST2に微動機構140、及び自重キャンセル機構22A1〜22A3、22B1〜22B3を設ける場合について説明したが、これに限らず、いずれか一方を設けたり、あるいはこれらの微動機構や自重キャンセル機構に代えて、通常用いられるボイスコイルモータを設けることとしても良い。この場合のボイスコイルモータとしては、ムービングマグネット型のボイスコイルモータ及びムービングコイル型のボイスコイルモータのいずれも採用可能であるが、上記実施形態で説明したように配線を引きずらないという観点からはムービングマグネット型のボイスコイルモータを採用することができる。
なお、上記実施形態ではウエハステージ装置に本発明の移動体装置が採用された場合について説明したが、これに限らず、レチクルステージRST側に本発明のステージ装置を採用することも可能である。
また、上記実施形態では、ウエハ表面を水平面(XY面)と平行に保持するウエハステージに本発明を採用した場合について説明したが、これに限らず、ウエハ表面をXY面と直交する面にほぼ平行に保持するウエハステージ(縦型ステージ)に本発明を採用することも可能である。
なお、国際公開第2004/53955号パンフレットに開示される液浸露光装置に本発明を適用することも可能である。また、上記実施形態の露光装置は、例えば国際公開第2005/074014号パンフレットなどに開示されているように、ウエハステージとは別に計測ステージを備えるものでも良い。この場合、本発明の移動体装置を、ウエハステージWSTとともに、又はウエハステージWSTと代えて、計測ステージMSTに採用することも可能である。
また、上記実施形態では、ステップ・アンド・スキャン方式等の走査型露光装置に本発明が適用された場合について説明したが、本発明の適用範囲がこれに限定されないことは勿論である。すなわちステップ・アンド・リピート方式の投影露光装置、さらに、ステップ・アンド・スティッチ方式の露光装置、又はプロキシミティ方式の露光装置、ミラープロジェクション・アライナーなどにも、本発明は適用できる。
露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。
なお、上記実施形態では、露光光として波長11nmのEUV光を用いる場合について説明したが、これに限らず、露光光として波長13nmのEUV光を用いても良い。この場合には、波長13nmのEUV光に対して約70%の反射率を確保するため、各ミラーの反射膜としてモリブデンMoとケイ素Siを交互に積層した多層膜を用いる必要がある。
また、上記実施形態では、露光光源としてSOR(Synchrotron Orbital Radiation)を用いることとしたが、これに限らず、レーザ励起プラズマ光源、ベータトロン光源、ディスチャージド光源、X線レーザなどのいずれを用いても良い。
なお、上記実施形態の露光装置では、露光光として波長100nm以下の光を用いることとしたが、これに限らず、波長100nm以上の光(ArFエキシマレーザ光(波長193nm)、KrFエキシマレーザ光(波長248nm)、F2レーザ光(波長157nm)、Ar2レーザ光(波長126nm)、Kr2レーザ光(波長146nm)などのパルスレーザ光や、超高圧水銀ランプからのg線(波長436nm)、i線(波長365nm)などの輝線など)を用いることも可能である。また、投影光学系は縮小系のみならず等倍および拡大系のいずれでも良い。更に投影光学系としては、反射光学素子のみからなる反射型の投影光学系に限らず、反射光学素子と屈折光学素子を有する反射屈折型(カタディオプトリック系)の投影光学系や、屈折光学素子のみを有する屈折型の投影光学系を用いることも可能である。
また、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、本発明は適用できる。
また、上記実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターンまたは反射パターン、あるいは発光パターンを形成する電子マスク(又は可変成形マスク、例えば非発光型画像表示素子(空間光変調器とも呼ばれる)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いても良い。かかる可変成形マスクを用いる場合には、前述のアライメントマークの検出結果を考慮して、ウエハ上の複数の区画領域のうち、アライメントマーク検出時に露光していたショット領域より後に露光が行われる少なくとも一つの別のショット領域の露光の際に、電子データに基づいて形成すべき、透過パターン又は反射パターンを変化させることで、ウエハとパターン像との相対位置制御を行っても良い。
なお、半導体デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した調整方法によりパターンの転写特性が調整される上記実施形態の露光装置で、マスクに形成されたパターンを感光物体上に転写するリソグラフィステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、パターンの転写特性が調整される上記実施形態の露光装置が用いられるので、高集積度のデバイスの生産性を向上することが可能である。
以上説明したように、本発明の移動体装置及び微動体は、露光装置で用いるのに適している。また、本発明の露光装置は、物体を露光して、前記物体にパターンを形成するのに適している。
一実施形態に係る露光装置を示す概略図である。 図1のウエハステージ装置を示す平面図である。 図3(A)は、ウエハステージWST1の縦断面図であり、図3(B)は、図3(A)を分解した状態を示す図である。 平面モータの構成及び作用を説明するための図である。 ベースBSを+X方向から見た状態を示す模式図である。 図6(A)は、微動機構を構成する可動子を示す斜視図であり、図6(B)は、微動機構を構成する固定子を示す斜視図である。 図7(A)〜図7(C)は、微動機構による微動ステージの駆動方法を説明するための図である。 自重キャンセル機構の縦断面図である。 受電・放熱アームの内部構成を説明するための図である。 送電・廃熱フレームの内部構成を説明するための図である。 ウエハステージ上に設けられたヘッドと送電・廃熱フレームに設けられたスケールとを示す図である。 図12(A),図12(B)は、露光装置における並行処理動作を説明するための図(その1)である。 図13(A),図13(B)は、露光装置における並行処理動作を説明するための図(その2)である。
符号の説明
10…露光装置、22A1〜22A3、22B1〜22B3…自重キャンセル機構、30…磁石ユニット(平面モータの一部)、52A〜52D…磁石ユニット(駆動機構の一部)、56A〜56D…電機子コイル(駆動機構の一部)、92A…テーブル(微動体本体の一部)、92B…板状部材(微動体本体の一部)、92C…吊り下げ支持部材(微動体本体の一部)、100…ウエハステージ装置(移動体装置)、130…電機子ユニット(平面モータの一部)、W1,W2…ウエハ(物体)、WFS1、WRS2…微動ステージ(微動体)、WRS1、WRS2…粗動ステージ(移動体)。

Claims (15)

  1. 移動体と;
    前記移動体に対して、非接触状態で支持された微動体と;
    前記移動体に設けられた4つの電機子コイルと、前記微動体に設けられ、前記4つの電機子コイルと協働して駆動力を発生する磁石ユニットと、を有する駆動機構と;を備える移動体装置。
  2. 前記磁石ユニットは、前記4つの電機子コイルのいずれかを介して対向する少なくとも一対の磁石を含み、
    前記対をなす磁石同士の対向する部分が逆極性であることを特徴とする請求項1に記載の移動体装置。
  3. 前記駆動機構は、前記4つのコイルに選択的に電流を供給することにより、前記微動体に二次元面内における並進駆動力及び前記二次元面内での回転駆動力の少なくとも一方を作用させることを特徴とする請求項1又は2に記載の移動体装置。
  4. 前記移動体に設けられ、前記微動体の自重を支持する自重キャンセル機構を更に備える請求項1〜3のいずれか一項に記載の移動体装置。
  5. 前記微動体と前記自重キャンセル機構との間は、非接触状態であることを特徴とする請求項4に記載の移動体装置。
  6. 前記自重キャンセル機構は、前記微動体に対して、前記二次元面に垂直な方向に移動する力、及び前記2次元面に傾斜する方向に移動する力を作用させることを特徴とする請求項4又は5に記載の移動体装置。
  7. 前記微動体は、前記移動体の鉛直方向上方に配置されていることを特徴とする請求項1〜6のいずれか一項に記載の移動体装置。
  8. 前記移動体を駆動する平面モータを更に備える請求項1〜7のいずれか一項に記載の移動体装置。
  9. 移動体に対して、微小駆動可能に支持される微動体であって、
    前記移動体に対し、非接触状態で支持される微動体本体と;
    前記微動体本体に設けられ、前記移動体に設けられた4つの電機子コイルと協働して駆動力を発生する磁石ユニットと;を備える微動体。
  10. 前記磁石ユニットは、前記4つの電機子コイルのいずれかを介して対向する少なくとも一対の磁石を含み、
    前記対をなす磁石同士の対向する部分が逆極性であることを特徴とする請求項9に記載の微動体。
  11. 前記微動体本体及び前記磁石ユニットの自重は、前記移動体に設けられた自重キャンセル機構により支持されることを特徴とする請求項9又は10に記載の微動体。
  12. 前記微動体本体と前記自重キャンセル機構との間は、非接触状態であることを特徴とする請求項11に記載の微動体。
  13. 前記自重キャンセル機構は、前記微動体本体に対して、二次元面に垂直な方向に移動する力、及び前記2次元面に傾斜する方向に移動する力を作用させることを特徴とする請求項12に記載の微動体。
  14. 移動体と;
    前記移動体に対して、非接触状態で支持された請求項9〜13のいずれか一項に記載の微動体と;を備える移動体装置。
  15. 物体にパターンを形成する露光装置であって、
    前記物体が前記微動体上に載置される請求項1〜8、14のいずれか一項に記載の移動体装置を具備することを特徴とする露光装置。
JP2006325122A 2006-12-01 2006-12-01 移動体装置、微動体及び露光装置 Pending JP2007274881A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325122A JP2007274881A (ja) 2006-12-01 2006-12-01 移動体装置、微動体及び露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325122A JP2007274881A (ja) 2006-12-01 2006-12-01 移動体装置、微動体及び露光装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006095982 Division 2006-03-30 2006-03-30

Publications (1)

Publication Number Publication Date
JP2007274881A true JP2007274881A (ja) 2007-10-18

Family

ID=38677090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325122A Pending JP2007274881A (ja) 2006-12-01 2006-12-01 移動体装置、微動体及び露光装置

Country Status (1)

Country Link
JP (1) JP2007274881A (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084203A1 (ja) * 2007-12-28 2009-07-09 Nikon Corporation 移動体駆動方法及び装置、露光方法及び装置、パターン形成方法及び装置、並びにデバイス製造方法
JP2009218325A (ja) * 2008-03-10 2009-09-24 Nikon Corp ステージ装置及び露光装置
JP2010278298A (ja) * 2009-05-29 2010-12-09 Nikon Corp 平面モータ装置及びステージ装置並びに露光装置
JP2012009853A (ja) * 2010-06-03 2012-01-12 Asml Netherlands Bv ステージ装置およびそのようなステージ装置を備えるリソグラフィ装置
JP2013042167A (ja) * 2007-10-22 2013-02-28 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2014064017A (ja) * 2009-02-10 2014-04-10 Carl Zeiss Smt Gmbh 投影露光システム用の少なくとも1つの磁石を有するアクチュエータ
KR20150023815A (ko) * 2003-06-19 2015-03-05 가부시키가이샤 니콘 노광 장치 및 디바이스 제조방법
KR101560007B1 (ko) 2007-07-31 2015-10-15 가부시키가이샤 니콘 노광 장치의 조정 방법, 노광 장치, 및 디바이스 제조 방법
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
JP2017201426A (ja) * 2007-12-28 2017-11-09 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
KR20150023815A (ko) * 2003-06-19 2015-03-05 가부시키가이샤 니콘 노광 장치 및 디바이스 제조방법
KR101686762B1 (ko) 2003-06-19 2016-12-28 가부시키가이샤 니콘 노광 장치 및 디바이스 제조방법
KR101674329B1 (ko) 2003-06-19 2016-11-08 가부시키가이샤 니콘 노광 장치 및 디바이스 제조방법
KR20150130563A (ko) * 2003-06-19 2015-11-23 가부시키가이샤 니콘 노광 장치 및 디바이스 제조방법
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
KR101560007B1 (ko) 2007-07-31 2015-10-15 가부시키가이샤 니콘 노광 장치의 조정 방법, 노광 장치, 및 디바이스 제조 방법
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2013042167A (ja) * 2007-10-22 2013-02-28 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2017201426A (ja) * 2007-12-28 2017-11-09 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
WO2009084203A1 (ja) * 2007-12-28 2009-07-09 Nikon Corporation 移動体駆動方法及び装置、露光方法及び装置、パターン形成方法及び装置、並びにデバイス製造方法
CN101681810B (zh) * 2007-12-28 2012-06-06 株式会社尼康 移动体驱动方法及装置、曝光方法及装置、图案形成方法及装置、以及器件制造方法
US8269945B2 (en) 2007-12-28 2012-09-18 Nikon Corporation Movable body drive method and apparatus, exposure method and apparatus, pattern formation method and apparatus, and device manufacturing method
JP5791230B2 (ja) * 2007-12-28 2015-10-07 株式会社ニコン 移動体駆動方法及び装置、露光方法及び装置、パターン形成方法及び装置、並びにデバイス製造方法
KR101536014B1 (ko) * 2007-12-28 2015-07-10 가부시키가이샤 니콘 이동체 구동 방법 및 장치, 노광 방법 및 장치, 패턴 형성 방법 및 장치, 그리고 디바이스 제조 방법
JP2009218325A (ja) * 2008-03-10 2009-09-24 Nikon Corp ステージ装置及び露光装置
JP2014064017A (ja) * 2009-02-10 2014-04-10 Carl Zeiss Smt Gmbh 投影露光システム用の少なくとも1つの磁石を有するアクチュエータ
JP2010278298A (ja) * 2009-05-29 2010-12-09 Nikon Corp 平面モータ装置及びステージ装置並びに露光装置
JP2012009853A (ja) * 2010-06-03 2012-01-12 Asml Netherlands Bv ステージ装置およびそのようなステージ装置を備えるリソグラフィ装置
US8587769B2 (en) 2010-06-03 2013-11-19 Asml Netherlands B.V. Stage apparatus and lithographic apparatus comprising such stage apparatus

Similar Documents

Publication Publication Date Title
JP5725059B2 (ja) 移動体装置、露光装置、及びデバイス製造方法
JP2007274881A (ja) 移動体装置、微動体及び露光装置
JP6607286B2 (ja) 搬送システム、露光装置、搬送方法、露光方法及びデバイス製造方法
JP4362862B2 (ja) ステージ装置及び露光装置
US8792084B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP5348630B2 (ja) 露光装置及びデバイス製造方法
JP2001118773A (ja) ステージ装置及び露光装置
JP2009158973A (ja) ステージ装置及び露光装置、並びにデバイス製造方法
TW201033753A (en) Exposure apparatus, exposure method, and device manufacturing method
JP2011003875A (ja) 露光装置及び露光方法、デバイス製造方法、並びに搬送方法
JP2013511822A (ja) 露光装置及び露光方法並びにデバイス製造方法
JP2013513224A (ja) 露光装置及びデバイス製造方法
JP5348627B2 (ja) 移動体装置、露光装置及びデバイス製造方法
JP2013506268A (ja) 露光装置及びデバイス製造方法
JP5348629B2 (ja) 露光装置及びデバイス製造方法
JP2014204079A (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2005276932A (ja) 露光装置及びデバイス製造方法
JP2012074751A (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP5299638B2 (ja) 露光装置及びデバイス製造方法
JP2012531030A (ja) 露光装置及びデバイス製造方法
WO2005036618A1 (ja) ステージ装置及び露光装置
JP2013506270A (ja) ステージ装置、露光装置、駆動方法及び露光方法並びにデバイス製造方法
JP2011061130A (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2006165363A (ja) 支持装置、ステージ装置及び露光装置