JP2007271226A - Combustion control method and combustion device - Google Patents

Combustion control method and combustion device Download PDF

Info

Publication number
JP2007271226A
JP2007271226A JP2006100146A JP2006100146A JP2007271226A JP 2007271226 A JP2007271226 A JP 2007271226A JP 2006100146 A JP2006100146 A JP 2006100146A JP 2006100146 A JP2006100146 A JP 2006100146A JP 2007271226 A JP2007271226 A JP 2007271226A
Authority
JP
Japan
Prior art keywords
combustion air
secondary combustion
exhaust gas
supply amount
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006100146A
Other languages
Japanese (ja)
Other versions
JP4830140B2 (en
Inventor
Koichi Tsuji
浩一 辻
Shinya Miyoshi
信哉 三好
Yoshihiro Okada
美洋 岡田
Tatsu Onodera
龍 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2006100146A priority Critical patent/JP4830140B2/en
Publication of JP2007271226A publication Critical patent/JP2007271226A/en
Application granted granted Critical
Publication of JP4830140B2 publication Critical patent/JP4830140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce environmental load such as dioxin and carbon monoxide included in exhaustion gas after combustion by complete combustion of the exhaustion gas in a secondary combustion chamber of a combustion device. <P>SOLUTION: At least oxygen concentration, trend of oxygen concentration variation with time, temperature and trend of temperature variation with time of the exhaust gas after combustion are measured by an oximeter 101 and a thermometer 102 provided in the secondary chamber S2 and are output to a control part 100. Based on the measured values, the control part 100 calculates a secondary combustion air supply quantity and determines opening of a damper 105. In the case where two or more calculated secondary combustion air supply quantities are provided, the supply quantity with the largest variation of supply quantity of the secondary combustion air is regarded as the secondary combustion air supply quantity to be blown into the secondary combustion chamber and the opening of the damper 105 is determined. This result is output to the damper 105 and the secondary combustion air supply quantity is controlled. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,焼却原料を焼却させる一次燃焼室と排ガスを燃焼させる二次燃焼室を有する焼却装置における燃焼制御方法とその焼却装置に関する。 The present invention relates to a combustion control method in an incinerator having a primary combustion chamber for incinerating incinerated raw materials and a secondary combustion chamber for burning exhaust gas, and the incinerator thereof.

焼却原料を焼却させる焼却炉としては,様々な方式の設備が提唱され,使用されている。焼却炉は,例えば廃棄物といった焼却原料を投入し,乾燥,熱分解,燃焼をさせることを目的とした一次燃焼室と,そこで生じた排ガス中に含まれる未燃ガスまたは微細な焼却原料,煤などを完全燃焼させることを目的とした二次燃焼室(フリーボード)が設けられているのが一般的である。このような焼却炉においては,焼却炉から排出された排ガスを処理する排ガス処理設備を強化するか,あるいは二次燃焼室の燃焼効率を高めることにより,環境負荷の低減を図ることが多い。なお,ここで述べる環境負荷の低減とは,排ガス中のダイオキシン類や一酸化炭素等の濃度を低減することである。   As an incinerator for incinerating incineration raw materials, various types of equipment have been proposed and used. An incinerator is a primary combustion chamber for the purpose of charging incineration raw materials such as waste, and drying, pyrolysis and combustion, and unburned gas or fine incineration raw materials contained in the exhaust gas generated there. In general, a secondary combustion chamber (free board) is provided for the purpose of completely burning the components. In such an incinerator, the environmental burden is often reduced by strengthening an exhaust gas treatment facility for treating the exhaust gas discharged from the incinerator or increasing the combustion efficiency of the secondary combustion chamber. The reduction of environmental load described here is to reduce the concentration of dioxins and carbon monoxide in the exhaust gas.

この焼却炉の排ガス中の一酸化炭素濃度は,排ガス中のダイオキシン類の濃度と高い相関関係を持つことが知られており,排ガス中の一酸化炭素濃度を低減することが求められている。一酸化炭素濃度の低減のための方策としては,排ガス中の未燃成分を完全燃焼させることが有効である。   It is known that the concentration of carbon monoxide in the exhaust gas of this incinerator has a high correlation with the concentration of dioxins in the exhaust gas, and it is required to reduce the concentration of carbon monoxide in the exhaust gas. As a measure for reducing the carbon monoxide concentration, it is effective to completely burn the unburned components in the exhaust gas.

そこで従来から,一次燃焼室よりも断面積の小さい二次燃焼室を設け,二次燃焼室内に旋回流を生じさせる焼却炉が用いられてきた(特許文献1)。これにより,二次燃焼室内で,排ガスと二次燃焼空気を好適に混合させることにより,排ガスの完全燃焼を実現しようとしてきた。 Therefore, conventionally, an incinerator that has a secondary combustion chamber having a smaller cross-sectional area than the primary combustion chamber and generates a swirling flow in the secondary combustion chamber has been used (Patent Document 1). As a result, exhaust gas and secondary combustion air are suitably mixed in the secondary combustion chamber to achieve complete combustion of the exhaust gas.

また二次燃焼室内での燃焼を,排ガスと二次燃焼空気の混合を良好にすることで向上させるだけでなく,機動的に制御するための焼却炉として,二次燃焼空気の吹き込み量を制御するノズルを追加した焼却炉が用いられてきた(特許文献2)。さらに二次燃焼空気を制御するために,二次燃焼室内で燃焼される排ガスの燃焼過程の中間成分をレーザーにより計測し,計測値に基づいて二次燃焼空気を制御する方法が用いられてきた(特許文献3)。 In addition to improving combustion in the secondary combustion chamber by improving the mixing of exhaust gas and secondary combustion air, it controls the amount of secondary combustion air blown as an incinerator for controlling it flexibly. An incinerator with an additional nozzle has been used (Patent Document 2). Furthermore, in order to control the secondary combustion air, a method has been used in which the intermediate component of the combustion process of the exhaust gas combusted in the secondary combustion chamber is measured with a laser and the secondary combustion air is controlled based on the measured value. (Patent Document 3).

特開2004−233048号公報JP 2004-233048 A 特開平11−218314号公報Japanese Patent Laid-Open No. 11-218314 特開2002−228133号公報JP 2002-228133 A

しかしながら,これら従来の焼却炉においては,排ガスを完全燃焼させることができず,燃焼した後の排ガス中の一酸化炭素濃度が十分に低減できない場合があった。
すなわち,一次燃焼室よりも断面積の小さい二次燃焼室を設け,二次燃焼室内に旋回流を生じさせる焼却炉を用いた場合,排ガスと燃焼空気の混合を完全にすることはできなかった。
また,二次燃焼空気の吹き込み量を制御するノズルを追加した焼却炉を用いた場合,焼却原料の成分の変化や外的要因による炉内状況の変化に適切に対応できなかった。
さらに二次燃焼室内で燃焼される排ガスの燃焼過程の中間成分をレーザーにより計測し,計測値に基づいて二次燃焼空気を制御する方法を用いた場合,炉壁へのクリンカーなどの付着により永続的な炉内雰囲気の観測を行なうことができず,二次燃焼空気を適切に供給するように制御することができなかった。
However, in these conventional incinerators, exhaust gas cannot be completely burned, and the concentration of carbon monoxide in the exhaust gas after combustion may not be sufficiently reduced.
In other words, when a secondary combustion chamber with a smaller cross-sectional area than the primary combustion chamber was provided and an incinerator that produced a swirling flow in the secondary combustion chamber was used, the mixing of exhaust gas and combustion air could not be completed. .
In addition, when using an incinerator with an additional nozzle that controls the amount of secondary combustion air blown, it was not possible to respond appropriately to changes in the composition of the incinerated raw materials and changes in the in-furnace situation due to external factors.
Furthermore, when the intermediate component of the combustion process of the exhaust gas burned in the secondary combustion chamber is measured with a laser, and the method of controlling the secondary combustion air based on the measured value is used, it becomes permanent due to adhesion of clinker to the furnace wall. As a result, it was impossible to observe the atmosphere inside the furnace and control the secondary combustion air to be properly supplied.

本発明は,かかる点に鑑みてなされたものであり,二次燃焼室内で排ガスを完全燃焼させることにより,燃焼した後の排ガスに含まれるダイオキシン類,一酸化炭素等の環境負荷を低減することを目的とする。   The present invention has been made in view of the above points, and reduces the environmental load such as dioxins and carbon monoxide contained in the exhaust gas after combustion by completely burning the exhaust gas in the secondary combustion chamber. With the goal.

前記の目的を達成するため,本発明によれば,焼却原料を焼却させる一次燃焼室と排ガスを燃焼させる二次燃焼室を有する焼却装置における燃焼制御方法であって,前記一次燃焼室において,一次燃焼空気を供給して,焼却原料を焼却させる工程と,前記二次燃焼室において,二次燃焼空気を供給して,前記一次燃焼室で発生した排ガスを燃焼させる工程と,前記二次燃焼室内で燃焼した後の排ガスの少なくとも酸素濃度,又は温度を測定する工程と,少なくとも前記燃焼した後の排ガスの酸素濃度の測定結果,酸素濃度の経時変化傾向,前記燃焼した後の排ガスの温度の測定結果,又は温度の経時変化傾向に基づいて,二次燃焼空気供給量を演算する工程と,前記演算結果に基づいて,前記二次燃焼室に吹き込む前記二次燃焼空気の供給量を制御する工程と,を有することを特徴としている。 In order to achieve the above object, according to the present invention, there is provided a combustion control method in an incinerator having a primary combustion chamber for incinerating incinerated raw materials and a secondary combustion chamber for combusting exhaust gas. Supplying the combustion air to incinerate the incinerated raw material; supplying the secondary combustion air in the secondary combustion chamber to burn the exhaust gas generated in the primary combustion chamber; and the secondary combustion chamber A step of measuring at least the oxygen concentration or temperature of the exhaust gas after combustion in the combustion chamber, and at least the measurement result of the oxygen concentration of the exhaust gas after combustion, the change with time of the oxygen concentration, the measurement of the temperature of the exhaust gas after combustion A step of calculating a secondary combustion air supply amount based on a result or a trend of change in temperature with time, and a supply amount of the secondary combustion air blown into the secondary combustion chamber based on the calculation result It is characterized by having a step of controlling, the.

本発明においては,二次燃焼室内で燃焼した後の排ガスの酸素濃度を測定し,その酸素濃度の経時変化傾向を測定し,また,二次燃焼室内で燃焼した後の排ガスの温度を測定し,その温度の経時変化傾向を測定する。測定された排ガスの酸素濃度,酸素濃度の経時変化傾向,温度,又は温度の経時変化傾向の内,少なくともいずれか1つに基づいて排ガスが完全燃焼するために好適な二次燃焼空気供給量が演算される。この演算結果により,例えばダンパーを用いて,排ガスを燃焼させるための二次燃焼空気供給量が制御される。このようにして二次燃焼室内で排ガスが完全燃焼すれば,燃焼後の排ガス中の一酸化炭素濃度が低減する。また,二次燃焼室内で燃焼後の排ガス温度とその経時変化傾向を測定することにより,二次燃焼室内温度を焼却装置の維持管理に最適な温度状態に維持することができる。これにより,焼却原料を安定して焼却することができる。   In the present invention, the oxygen concentration of the exhaust gas after combustion in the secondary combustion chamber is measured, the tendency of the oxygen concentration to change over time is measured, and the temperature of the exhaust gas after combustion in the secondary combustion chamber is measured. , Measure the tendency of the temperature over time. There is a secondary combustion air supply amount suitable for complete combustion of exhaust gas based on at least one of the measured oxygen concentration, oxygen concentration trend over time, temperature, or temperature trend over time. Calculated. Based on this calculation result, the amount of secondary combustion air supplied for burning the exhaust gas is controlled using, for example, a damper. If exhaust gas is completely burned in the secondary combustion chamber in this way, the concentration of carbon monoxide in the exhaust gas after combustion is reduced. In addition, by measuring the exhaust gas temperature after combustion in the secondary combustion chamber and its tendency to change over time, the temperature of the secondary combustion chamber can be maintained at an optimum temperature state for maintaining the incinerator. Thereby, the incineration raw material can be incinerated stably.

前記二次燃焼空気供給量の制御は,前記演算結果が2以上ある場合には,前記二次燃焼空気の供給量の変化量が最も大きい供給量を,前記二次燃焼室に吹き込む二次燃焼空気供給量としてもよい。これによって,例えば作業員がその後にマニュアルで微調整をして,より最適な供給量を設定することが容易になる。かかる場合,自動制御系で設定された前記供給量の範囲内で調節すればよいので微調整しやすく,しかも自動制御系で設定された前記供給量は,演算結果で得られたものの中で最大の変化量であるから,作業員がマニュアル微調整しても,必ず最適な供給量を探して設定することができる。   The control of the supply amount of the secondary combustion air is such that when there are two or more calculation results, the secondary combustion air that blows the supply amount having the largest change amount of the supply amount of the secondary combustion air into the secondary combustion chamber. An air supply amount may be used. Thereby, for example, it becomes easy for an operator to make a fine adjustment manually thereafter to set a more optimal supply amount. In such a case, it is only necessary to adjust within the range of the supply amount set in the automatic control system, so that fine adjustment is easy, and the supply amount set in the automatic control system is the maximum among the results obtained from the calculation results. Therefore, the optimum supply amount can always be found and set even if the operator makes fine adjustments manually.

前記燃焼した後の排ガスの酸素濃度の測定結果に基づく前記二次燃焼空気の供給量の演算は,予め定められた酸素濃度の目標値に近づけるものとしてもよい。   The calculation of the supply amount of the secondary combustion air based on the measurement result of the oxygen concentration of the exhaust gas after combustion may be close to a predetermined target value of the oxygen concentration.

前記燃焼した後の排ガスの酸素濃度の経時変化傾向に基づく前記二次燃焼空気の供給量の演算は,上昇傾向の場合には供給量を減少させ,下降傾向の場合には供給量を増加させて,酸素濃度が一定になるようにしてもよい。   The calculation of the supply amount of the secondary combustion air based on the time-dependent change tendency of the oxygen concentration of the exhaust gas after combustion is to decrease the supply amount in the case of an upward trend and increase the supply amount in the case of a downward trend. Thus, the oxygen concentration may be constant.

前記燃焼した後の排ガスの温度の測定結果に基づく前記二次燃焼空気の供給量の演算は,予め定められた温度の目標値に近づけるものとしてもよい。   The calculation of the supply amount of the secondary combustion air based on the measurement result of the temperature of the exhaust gas after combustion may be close to a target value of a predetermined temperature.

前記燃焼した後の排ガスの温度の経時変化傾向に基づく前記二次燃焼空気の供給量の演算は,上昇傾向の場合には供給量を増加させ,下降傾向の場合には供給量を減少させて,温度が一定になるようにしてもよい。   The calculation of the supply amount of the secondary combustion air based on the time-dependent trend of the temperature of the exhaust gas after combustion is performed by increasing the supply amount in the upward trend and decreasing the supply amount in the downward trend. The temperature may be constant.

前記二次燃焼空気供給量を制御しても制御目的が達成できない場合には,前記二次燃焼空気供給量の演算結果に基づいて,一次燃焼空気供給量を演算する工程と,前記一次燃焼空気供給量の演算結果に基づいて,前記一次燃焼室に吹き込む前記一次燃焼空気の供給量を制御する工程と,をさらに有していてもよい。   If the control purpose cannot be achieved by controlling the secondary combustion air supply amount, a step of calculating the primary combustion air supply amount based on the calculation result of the secondary combustion air supply amount, and the primary combustion air supply And a step of controlling the supply amount of the primary combustion air blown into the primary combustion chamber based on the calculation result of the supply amount.

前記一次燃焼空気には外気と前記燃焼した後の排ガスとの混合空気を用い,前記一次燃焼空気の供給量の制御に替えて,又は前記一次燃焼空気の供給量の制御と共に,少なくとも前記燃焼した後の排ガスの酸素濃度又は前記燃焼済した後の排ガスの温度の測定結果に基づいて,前記一次燃焼空気における外気と燃焼した後の排ガスとの混合比率を制御する工程をさらに有していてもよい。   As the primary combustion air, mixed air of outside air and the exhaust gas after combustion is used, and at least the combustion is performed in place of the control of the supply amount of the primary combustion air or together with the control of the supply amount of the primary combustion air The method may further comprise a step of controlling a mixing ratio between the outside air in the primary combustion air and the exhaust gas after combustion based on the measurement result of the oxygen concentration of the exhaust gas after or the temperature of the exhaust gas after combustion. Good.

さらに別な観点によれば,本発明では,焼却原料を焼却させる一次燃焼室と排ガスを燃焼させる二次燃焼室を有する焼却装置であって,前記一次燃焼室内に,焼却原料を焼却させるための一次燃焼空気が供給される,一次燃焼空気供給口と,前記二次燃焼室内に,前記一次燃焼室で発生した排ガスを燃焼させるための二次燃焼空気が供給される,二次燃焼空気供給口と,前記二次燃焼室内で燃焼した後の排ガスの少なくとも酸素濃度を測定する酸素濃度計,又は温度を測定する温度計と,少なくとも前記酸素濃度計又は温度計の測定結果に基づいて,前記二次燃焼空気の供給量を制御する制御部と,を有することを特徴としている。これによって,本発明の制御方法を好適に実施することができる。   According to yet another aspect, the present invention is an incinerator having a primary combustion chamber for incinerating incinerated raw material and a secondary combustion chamber for combusting exhaust gas, for incinerating the incinerated raw material in the primary combustion chamber. A primary combustion air supply port to which primary combustion air is supplied, and a secondary combustion air supply port to which secondary combustion air for burning exhaust gas generated in the primary combustion chamber is supplied into the secondary combustion chamber. And an oxygen concentration meter that measures at least the oxygen concentration of the exhaust gas after combustion in the secondary combustion chamber, or a thermometer that measures temperature, and at least the measurement result of the oxygen concentration meter or thermometer, And a control unit for controlling the supply amount of the secondary combustion air. As a result, the control method of the present invention can be suitably implemented.

前記二次燃焼空気供給量を制御しても制御目的が達成できない場合には,前記制御部は,前記一次燃焼空気の供給量をさらに制御するように構成してもよい。   If the control object cannot be achieved even by controlling the secondary combustion air supply amount, the control unit may be configured to further control the primary combustion air supply amount.

前記一次燃焼空気として,外気と前記燃焼した後の排ガスとの混合空気を用い,前記制御部は,前記酸素濃度計の測定結果と前記温度計の測定結果に基づいて,この混合比率を制御するようにしてもよい。これによって,温度,濃度の制御範囲をさらに広範なものとすることができる。   As the primary combustion air, mixed air of outside air and the exhaust gas after combustion is used, and the control unit controls the mixing ratio based on the measurement result of the oximeter and the measurement result of the thermometer. You may do it. As a result, the temperature and concentration control range can be further expanded.

本発明によれば,二次燃焼室内で燃焼後の排ガスの少なくとも酸素濃度,酸素濃度の経時変化傾向,温度,又は温度の経時変化傾向を測定し,二次燃焼空気,又は二次燃焼空気と一次燃焼空気の両方を制御することにより,二次燃焼室内で排ガスを完全燃焼させることができる。これにより,燃焼後の排ガスに含まれる環境負荷となる有害物質の濃度を低減することができる。
また,二次燃焼室内で燃焼後の排ガス温度とその経時変化の傾向変化を測定することにより,二次燃焼室内温度を焼却装置の維持管理に最適な温度状態に維持することができる。これにより,焼却原料を安定して焼却することができる。
According to the present invention, at least the oxygen concentration of the exhaust gas after combustion in the secondary combustion chamber, the change tendency of oxygen concentration with time, the temperature, or the change tendency of temperature with time are measured, and the secondary combustion air or the secondary combustion air and By controlling both primary combustion air, exhaust gas can be completely burned in the secondary combustion chamber. Thereby, the density | concentration of the harmful substance used as the environmental load contained in the waste gas after combustion can be reduced.
In addition, by measuring the exhaust gas temperature after combustion in the secondary combustion chamber and the change in the trend over time, the temperature of the secondary combustion chamber can be maintained at the optimum temperature for the maintenance of the incinerator. Thereby, the incineration raw material can be incinerated stably.

以下,本発明の実施の形態として,焼却原料である自動車破砕残渣(ASR)を焼却する流動床式の廃棄物焼却炉について,図1に基づいて説明する。図1は本実施の形態にかかる焼却装置1の構成の概略図を示している。   Hereinafter, as an embodiment of the present invention, a fluidized bed waste incinerator for incinerating automobile crushing residue (ASR) as an incineration raw material will be described with reference to FIG. FIG. 1 shows a schematic diagram of a configuration of an incinerator 1 according to the present embodiment.

焼却装置1は,傾斜分散型流動層焼却炉であり,略角型の炉体2を有する。炉体2の内部空間のうち,下部は焼却原料の燃焼(一次燃焼)を行なう一次燃焼室S1となっており一次燃焼室S1の上部は,焼却原料の一次燃焼で発生した排ガスの燃焼(二次燃焼)を行なう二次燃焼室(フリーボード)S2となっている。 The incinerator 1 is an inclined dispersion type fluidized bed incinerator and has a substantially square furnace body 2. The lower part of the internal space of the furnace body 2 is a primary combustion chamber S1 for burning the incinerated raw material (primary combustion), and the upper part of the primary combustion chamber S1 is the combustion of exhaust gas generated by the primary combustion of the incinerated raw material (second A secondary combustion chamber (free board) S2 for performing (next combustion).

炉体2の炉床5は,略長方形状をなし,幅方向を左右方向(図1においては手前側から後側へ向かう方向)に向け,前方(図1においては左方)から後方(図1においては右方)に向かうほど次第に低くなるように傾斜させて設けられている。炉床5の周縁部から略鉛直方向に立設された側壁部6は,略長方形状の横断面を有する。この側壁部6によって囲まれた内部空間が,一次燃焼室S1となっている。
側壁部6の上方には,略長方形状のほぼ一様な横断面形状を有する略角筒状をなす側壁部7が,側壁部6と連続して設けられている。側壁部7は,長さ方向を高さ方向とし,略鉛直方向に立設された4つの内側面,すなわち,図2に示す前内側面7a,後内側面7b,左内側面7c,右内側面7dを有している。図示の例では,後内側面7b,左内側面7c,右内側面7dは,側壁部6の後内側面,左内側面,右内側面とそれぞれ略鉛直な平面状に連続した面になっている。そして,側壁部7に囲まれた内部空間が,二次燃焼室S2となっている。二次燃焼室S2の下端部は,一次燃焼室S1の上部と上下に連通しており,一次燃焼室S1内の雰囲気は,二次燃焼室S2内に上昇気流となって導入されるようになっている。側壁部7の上端部は,天井部8によって閉塞されている。
The hearth 5 of the furnace body 2 has a substantially rectangular shape, the width direction is directed in the left-right direction (the direction from the front side to the rear side in FIG. 1), and the front side (left side in FIG. 1) to the rear side (see FIG. In FIG. 1, it is provided so as to be gradually lowered toward the right). The side wall portion 6 erected in the substantially vertical direction from the peripheral edge portion of the hearth 5 has a substantially rectangular cross section. An internal space surrounded by the side wall portion 6 is a primary combustion chamber S1.
Above the side wall portion 6, a side wall portion 7 having a substantially rectangular tube shape having a substantially rectangular cross section is provided continuously with the side wall portion 6. The side wall portion 7 has four lengthwise inner surfaces, ie, a front inner side surface 7a, a rear inner side surface 7b, a left inner side surface 7c, and a right inner side as shown in FIG. It has a side surface 7d. In the illustrated example, the rear inner side surface 7b, the left inner side surface 7c, and the right inner side surface 7d are surfaces that are continuous in a substantially vertical plane with the rear inner side surface, the left inner side surface, and the right inner side surface of the side wall 6, respectively. Yes. And the internal space enclosed by the side wall part 7 becomes the secondary combustion chamber S2. The lower end portion of the secondary combustion chamber S2 communicates with the upper portion of the primary combustion chamber S1 up and down so that the atmosphere in the primary combustion chamber S1 is introduced into the secondary combustion chamber S2 as an updraft. It has become. The upper end portion of the side wall portion 7 is closed by the ceiling portion 8.

図1に示すように,炉床5上,すなわち一次燃焼室S1の底部には,粒子状の流動媒体である例えば珪砂等の流動砂が堆積させられ,焼却原料を攪拌しながら燃焼させる流動層10が形成される。流動層10の上方において,側壁部6の前内側面,すなわち炉床5の最上部側上方には,一次燃焼室S1に焼却原料と流動砂を投入する投入口11が開口されている。焼却原料と流動砂は,投入口11を介して,一次燃焼室S1に連続的に供給されるようになっている。   As shown in FIG. 1, fluidized sand such as silica sand, which is a particulate fluidized medium, is deposited on the hearth 5, that is, at the bottom of the primary combustion chamber S 1. 10 is formed. Above the fluidized bed 10, an inlet 11 for opening the incinerated raw material and fluidized sand to the primary combustion chamber S <b> 1 is opened on the front inner side of the side wall 6, that is, above the uppermost side of the hearth 5. The incinerated raw material and fluidized sand are continuously supplied to the primary combustion chamber S1 through the inlet 11.

図1に示すように,炉床5には,流動砂を吹き上げて流動化させるための一次燃焼空気を一次燃焼室S1に供給する複数の一次燃焼空気供給口20が,炉床5全体に設けられている。炉床5の下方には,複数に分割された吹込み部21が形成されている。図3に示すように,この実施の形態では,吹込み部21は,炉床5の傾斜方向(すなわち,側壁部6の前内側面から後内側面に向かう方向)に沿って4つに分割されて配置されると共に,炉床5の傾斜する方向と交差する幅方向(すなわち,側壁部6の左内側面から右内側面に向かう方向)に沿って3つに分割されて配置されている。すなわち,合計で,傾斜方向に4,幅方向に3の,4x3=12に分割された吹込み部21が,炉床5の下方全体に取り付けられている。そして,各吹込み部21から一次燃焼空気供給口20を介して一次燃焼空気を吹き込み,一次燃焼空気を上方に向かって吐出させることによって,一次燃焼室S1内の流動砂を吹き上げて攪拌,流動化させ,流動層10を形成させるようになっている。   As shown in FIG. 1, the hearth 5 is provided with a plurality of primary combustion air supply ports 20 for supplying primary combustion air to the primary combustion chamber S <b> 1 for blowing and fluidizing the fluidized sand. It has been. A blow part 21 divided into a plurality of parts is formed below the hearth 5. As shown in FIG. 3, in this embodiment, the blowing portion 21 is divided into four along the inclination direction of the hearth 5 (that is, the direction from the front inner surface to the rear inner surface of the side wall portion 6). And is divided and arranged in three along the width direction intersecting with the direction in which the hearth 5 inclines (that is, the direction from the left inner surface to the right inner surface of the side wall 6). . That is, the blowing part 21 divided into 4 × 3 = 12, 4 in the inclination direction and 3 in the width direction, is attached to the entire lower part of the hearth 5 in total. Then, the primary combustion air is blown from each blowing portion 21 through the primary combustion air supply port 20, and the primary combustion air is discharged upward to blow up the fluidized sand in the primary combustion chamber S1, thereby stirring and flowing The fluidized bed 10 is formed.

図1に示すように,炉床5の最下部である後端部には,燃焼原料の燃え殻(不燃物)及び流動砂を一次燃焼室S1から取り出すための取出し口30が設けられている。この燃え殻及び流動砂が取出し口30を通って一次燃焼室S1から取り出される。   As shown in FIG. 1, a rear end portion, which is the lowermost portion of the hearth 5, is provided with a take-out port 30 for taking out a combustion husk (non-combustible material) and fluidized sand from the primary combustion chamber S <b> 1. The burning husk and fluidized sand are taken out from the primary combustion chamber S1 through the take-out port 30.

側壁部7の下部には,気体として例えば空気等の酸素含有気体を二次燃焼室S2に供給する二次燃焼空気供給口40が,前内側面7a,後内側面7b,左内側面7c,右内側面7dにそれぞれ複数個ずつ設けられている。平面視においては,複数の二次燃焼空気供給口40が二次燃焼室S2の下部中央部を囲むように配置されており,二次燃焼室S2下部の周囲全体から二次燃焼空気を噴出させるようになっている。すなわち,二次燃焼室S2内の排ガスの気流に対し,周囲全体から二次燃焼空気の流れを衝突させて,排ガス対して二次燃焼空気を混合させ,排ガスの燃焼を促進させるようになっている。このように,排ガスに対し周囲全体から二次燃焼空気を供給することで,排ガスと二次燃焼空気を確実に混合させることができる。なお,二次燃焼空気供給口40から供給される酸素含有気体としては,例えば酸素濃度が高められた酸素富化空気を用いてもよい。   In the lower part of the side wall portion 7, secondary combustion air supply ports 40 for supplying an oxygen-containing gas such as air to the secondary combustion chamber S2 as gases are provided on the front inner side surface 7a, the rear inner side surface 7b, the left inner side surface 7c, A plurality of each is provided on the right inner surface 7d. In a plan view, the plurality of secondary combustion air supply ports 40 are arranged so as to surround the lower center portion of the secondary combustion chamber S2, and the secondary combustion air is ejected from the entire periphery of the lower portion of the secondary combustion chamber S2. It is like that. That is, the flow of the secondary combustion air collides with the flow of exhaust gas in the secondary combustion chamber S2 from the entire periphery, and the secondary combustion air is mixed with the exhaust gas to promote combustion of the exhaust gas. Yes. Thus, by supplying the secondary combustion air to the exhaust gas from the entire periphery, the exhaust gas and the secondary combustion air can be reliably mixed. As the oxygen-containing gas supplied from the secondary combustion air supply port 40, for example, oxygen-enriched air with an increased oxygen concentration may be used.

各前内側面7a,後内側面7b,左内側面7c,右内側面7dにおいて,二次燃焼空気供給口40は,上下複数段に並べて配列されており,各段において,幅方向(横方向,略水平方向)に等間隔を空けて,幅方向全体に渡って並べて設けられている。各前内側面7a,後内側面7b,左内側面7c,右内側面7dに設けられた二次燃焼空気供給口40の段数は互いに同じであり,前内側面7a,後内側面7b,左内側面7c,右内側面7dの各段の高さは,それぞれ互いに同じ高さになっている。すなわち,各段において,二次燃焼空気供給口40が互いに同じ高さにて長方形の枠状に沿って等間隔で並べられており,各段の複数の二次燃焼空気供給口40によって,二次燃焼室S2の中央部が囲まれるような配置になっている。このように,二次燃焼空気供給口40を側壁部7の内側面全体に渡って同じ高さに等間隔で設けることにより,二次燃焼室S2内の排ガスに対し,周囲全体から二次燃焼空気を均等に噴出させることができる。これにより,排ガスに対し二次燃焼空気をむらなく均一に混合させやすくなる。   In each front inner side surface 7a, rear inner side surface 7b, left inner side surface 7c, and right inner side surface 7d, the secondary combustion air supply ports 40 are arranged side by side in a plurality of upper and lower stages. , Substantially in the horizontal direction), and arranged side by side over the entire width direction. The number of stages of the secondary combustion air supply ports 40 provided on each of the front inner surface 7a, the rear inner surface 7b, the left inner surface 7c, and the right inner surface 7d is the same, and the front inner surface 7a, the rear inner surface 7b, The height of each step of the inner side surface 7c and the right inner side surface 7d is the same as each other. That is, in each stage, the secondary combustion air supply ports 40 are arranged at equal intervals along a rectangular frame shape at the same height, and the plurality of secondary combustion air supply ports 40 in each stage are The arrangement is such that the center of the next combustion chamber S2 is surrounded. Thus, by providing the secondary combustion air supply port 40 at the same height over the entire inner surface of the side wall portion 7 at equal intervals, the secondary combustion from the entire periphery to the exhaust gas in the secondary combustion chamber S2 can be performed. Air can be ejected evenly. Thereby, it becomes easy to mix the secondary combustion air uniformly with the exhaust gas.

また,図示の例では,各段の各二次燃焼空気供給口40は,そのすぐ下段又は上段の二次燃焼空気供給口40に対して上下に並ばず,平面視において下段又は上段の二次燃焼空気供給口40同士の間に配置されている。そして,一段おきに二次燃焼空気供給口40が上下に一列に並ぶように配置されている。このようにすると,上下に隣り合う段の二次燃焼空気供給口40から供給される二次燃焼空気の流れが互いに衝突することや,圧力が部分的に高くなりすぎたり流速が速くなったりすることを防止できる。すなわち,流速分布の均一性,圧力分布の均一性,二次燃焼空気の分布の均一性を良好にすることができる。したがって,排ガスと二次燃焼空気とをむらなく均一に混合させやすくなり,また,排ガスを安定的に燃焼させることができる。   Further, in the illustrated example, the secondary combustion air supply ports 40 of each stage are not lined up and down with respect to the secondary combustion air supply ports 40 immediately below or above it, and the lower or upper secondary combustion air supply ports 40 in plan view. It arrange | positions between the combustion air supply ports 40. And the secondary combustion air supply port 40 is arrange | positioned so that it may rank in a line up and down every other stage. If it does in this way, the flow of the secondary combustion air supplied from the secondary combustion air supply port 40 of the stage which adjoins up and down will collide with each other, pressure will become partly high, or the flow velocity will become high. Can be prevented. That is, the uniformity of the flow velocity distribution, the uniformity of the pressure distribution, and the uniformity of the distribution of the secondary combustion air can be improved. Therefore, the exhaust gas and the secondary combustion air can be easily and uniformly mixed, and the exhaust gas can be burned stably.

各二次燃焼空気供給口40からは,各内側面に対して略垂直な方向,すなわち略水平方向に,対向する内側面側に向かって二次燃焼空気が供給される。前内側面7aの各二次燃焼空気供給口40からは前方から後方に向かって供給され,後内側面7bの各二次燃焼空気供給口40からは後方から前方に向かって供給され,左内側面7cの各二次燃焼空気供給口40からは左方から右方に向かって供給され,右内側面7dの各二次燃焼空気供給口40からは右方から左方に向かって供給される。したがって,二次燃焼室S2の中央部に対して四方から二次燃焼空気が供給される。   From each secondary combustion air supply port 40, the secondary combustion air is supplied in a direction substantially perpendicular to each inner surface, that is, in a substantially horizontal direction, toward the opposing inner surface. From each secondary combustion air supply port 40 on the front inner side surface 7a, it is supplied from the front to the rear, and from each secondary combustion air supply port 40 on the rear inner side surface 7b, it is supplied from the rear to the front. Supplied from each secondary combustion air supply port 40 on the side surface 7c from left to right and supplied from each secondary combustion air supply port 40 on the right inner surface 7d from right to left. . Therefore, the secondary combustion air is supplied from four directions to the central portion of the secondary combustion chamber S2.

側壁部7の外側には,二次燃焼空気供給口40に二次燃焼空気を供給する二次燃焼空気吹込み部41が備えられている。二次燃焼空気吹込み部41は,図2に示すように,複数に分割されている。この実施の形態では,側壁部7の前方及び後方に設けられた二次燃焼空気吹込み部41は,3つの均等な大きさの箱状に分割されており,側壁部7の前外側面及び後外側面の幅方向全体に渡ってそれぞれ取り付けられている。
また,側壁部7の左方及び右方に設けられた二次燃焼空気吹込み部41は,2つの均等な大きさの箱状に分割されており,側壁部7の左外側面及び右外側面の幅方向全体に渡ってそれぞれ取り付けられている。各二次燃焼空気吹込み部41には,二次燃焼空気供給路42がそれぞれ接続されている。二次燃焼空気供給路42には,二次燃焼空気の圧力を測定する二次圧力計104が設けられている。二次圧力計104には,例えば差圧式圧力計が使用される。さらに二次燃焼空気供給路42にはダンパー105が設けられており,各二次燃焼空気供給路42から各二次燃焼空気吹込み部41に供給される二次燃焼空気の供給量は,それぞれ個別に可変になっている。したがってダンパー105により,各二次燃焼空気吹込み部41に,二次燃焼空気供給口40からの二次燃焼空気の供給量を任意に制御することができる。これにより,排ガスと二次燃焼空気との混合速度等を制御することができ,排ガスと二次燃焼空気を確実に混合させることができる。
A secondary combustion air blowing portion 41 that supplies secondary combustion air to the secondary combustion air supply port 40 is provided outside the side wall portion 7. The secondary combustion air blowing part 41 is divided into a plurality of parts as shown in FIG. In this embodiment, the secondary combustion air blowing part 41 provided in front and rear of the side wall part 7 is divided into three equal-sized boxes, and the front outer side surface of the side wall part 7 and It is respectively attached over the entire width direction of the rear outer surface.
Further, the secondary combustion air blowing portions 41 provided on the left side and the right side of the side wall portion 7 are divided into two equal-sized boxes, and the left outer side surface and the right outer side of the side wall portion 7 are divided. Each is attached over the entire width direction of the side. A secondary combustion air supply path 42 is connected to each secondary combustion air blowing section 41. The secondary combustion air supply passage 42 is provided with a secondary pressure gauge 104 that measures the pressure of the secondary combustion air. As the secondary pressure gauge 104, for example, a differential pressure type pressure gauge is used. Further, a damper 105 is provided in the secondary combustion air supply path 42, and the amount of secondary combustion air supplied from each secondary combustion air supply path 42 to each secondary combustion air blowing section 41 is respectively It is variable individually. Therefore, the amount of secondary combustion air supplied from the secondary combustion air supply port 40 can be arbitrarily controlled by the damper 105 to each secondary combustion air blowing portion 41. Thereby, the mixing speed etc. of exhaust gas and secondary combustion air can be controlled, and exhaust gas and secondary combustion air can be mixed reliably.

図1及び図2に示すように,側壁部7において,複数の二次燃焼空気供給口40の下方には,火炎を噴射するバーナ45の噴射口45aが備えられている。図示の例では,バーナ45は,左内側面7cと右内側面7dにそれぞれ一つずつ,互いに対称な位置に設けられている。   As shown in FIGS. 1 and 2, an injection port 45 a of a burner 45 that injects a flame is provided below the plurality of secondary combustion air supply ports 40 in the side wall portion 7. In the illustrated example, one burner 45 is provided at a position symmetrical to each other on the left inner surface 7c and the right inner surface 7d.

また,側壁部7において,複数の二次燃焼空気供給口40の上方には,火炎を噴射する補助用のバーナ46の噴射口46aが備えられている。バーナ46は,左内側面7cと右内側面7dにそれぞれ一つずつ,互いに対称な位置に設けられている。さらにバーナ46の上方には,燃焼済みの排ガスの温度を測定する温度計102が例えば4つ設けられている。温度計102には,例えば熱電対式温度計が使用される。なお,温度計102の個数は1つ以上あればよいが,正確な温度測定のため,複数個あるほうが好ましい。   In addition, an injection port 46 a of an auxiliary burner 46 that injects a flame is provided in the side wall portion 7 above the plurality of secondary combustion air supply ports 40. One burner 46 is provided on each of the left inner surface 7c and the right inner surface 7d at symmetrical positions. Further, for example, four thermometers 102 for measuring the temperature of the burned exhaust gas are provided above the burner 46. As the thermometer 102, for example, a thermocouple thermometer is used. The number of thermometers 102 may be one or more, but a plurality of thermometers are preferable for accurate temperature measurement.

後内側面7bの上端部には,二次燃焼室S2内の雰囲気を排気する排気口50が開口されている。排気口50には排気路51が接続されている。排気口51内に,燃焼済みの排ガスの酸素濃度を測定する酸素濃度計101が設けられている。酸素濃度計101には,例えばジルコニア式酸素濃度計が使用される。この排気路51はバグフィルタ52に接続されている。一次燃焼室S1,二次燃焼室S2内の雰囲気は,二次燃焼室S2内を上昇して,排気口50から排気される。そして,バグフィルタ52で塵埃が捕捉された後,外部に排気されるようになっている。また,バグフィルタ52で塵埃を捕捉された排ガスの一部は,戻し経路53を通って,給気経路54から供給された例えば外気等の酸素含有気体と混合されるようになっている。戻し経路53及び給気経路54は,供給経路55を介して前述した一次燃焼空気吹込み部21に接続されている。   An exhaust port 50 for exhausting the atmosphere in the secondary combustion chamber S2 is opened at the upper end of the rear inner surface 7b. An exhaust passage 51 is connected to the exhaust port 50. An oxygen concentration meter 101 that measures the oxygen concentration of the burned exhaust gas is provided in the exhaust port 51. For the oxygen concentration meter 101, for example, a zirconia oxygen concentration meter is used. This exhaust passage 51 is connected to a bag filter 52. The atmosphere in the primary combustion chamber S1 and the secondary combustion chamber S2 rises in the secondary combustion chamber S2 and is exhausted from the exhaust port 50. Then, after dust is captured by the bag filter 52, it is exhausted to the outside. Further, a part of the exhaust gas in which dust is trapped by the bag filter 52 passes through the return path 53 and is mixed with an oxygen-containing gas such as outside air supplied from the air supply path 54. The return path 53 and the air supply path 54 are connected to the above-described primary combustion air blowing unit 21 via the supply path 55.

図3に示すように,供給経路55は,各一次燃焼空気吹込み部21に接続されている。二次燃焼室S2から排気された排ガスを供給する戻し経路53と外気等の酸素含有気体を供給する給気経路54は,2つの混合チャンバ60a,60bに接続してあり,これら混合チャンバ60a,60b内において排ガスと外気が混合され,その混合気体が各供給経路55から各一次燃焼空気吹込み部21にそれぞれ一次燃焼空気として供給される。各混合チャンバ60a,60bには,一次燃焼空気の圧力を測定する一次圧力計103が設けられている。一次圧力計103には,例えば差圧式圧力計が使用される。 As shown in FIG. 3, the supply path 55 is connected to each primary combustion air blowing section 21. A return path 53 for supplying exhaust gas exhausted from the secondary combustion chamber S2 and an air supply path 54 for supplying oxygen-containing gas such as outside air are connected to the two mixing chambers 60a and 60b. The exhaust gas and the outside air are mixed in 60b, and the mixed gas is supplied as primary combustion air from each supply path 55 to each primary combustion air blowing section 21. Each mixing chamber 60a, 60b is provided with a primary pressure gauge 103 for measuring the pressure of the primary combustion air. For example, a differential pressure type pressure gauge is used as the primary pressure gauge 103.

戻し経路53には,混合チャンバ60a,60b内に供給する排ガスの供給量を制御する排ガス供給量制御弁61が,各混合チャンバ60a,60bごとにそれぞれ装着され,同様に,給気経路54には,混合チャンバ60a,60b内に供給する外気の供給量を制御する外気供給量制御弁62が,各混合チャンバ60a,60bごとにそれぞれ装着されている。そして,排ガス供給量制御弁61と外気供給量制御弁62を制御することによって,各混合チャンバ60a,60b内で作られる一次燃焼空気における外気と排ガスの混合比がそれぞれ独立して可変に構成されている。排ガスは焼却で酸素が消費されたことによって酸素濃度が外気よりも低くなっているので,このように各混合チャンバ60a,60b内で一次燃焼空気を作る際に,外気と排ガスの混合比を変えることにより,各混合チャンバ60a,60bにおいて,一次燃焼空気中の酸素量(すなわち,一次燃焼空気中の酸素濃度)をそれぞれ任意に制御することが可能である。   An exhaust gas supply amount control valve 61 for controlling the supply amount of exhaust gas supplied into the mixing chambers 60a and 60b is mounted on the return path 53 for each of the mixing chambers 60a and 60b. Is equipped with an outside air supply amount control valve 62 for controlling the amount of outside air supplied into the mixing chambers 60a and 60b for each of the mixing chambers 60a and 60b. Then, by controlling the exhaust gas supply amount control valve 61 and the outside air supply amount control valve 62, the mixing ratio of the outside air and the exhaust gas in the primary combustion air produced in each mixing chamber 60a, 60b is made variable independently. ing. Since the exhaust gas consumes oxygen by incineration, the oxygen concentration is lower than that of the outside air. Therefore, when the primary combustion air is produced in each of the mixing chambers 60a and 60b, the mixing ratio of the outside air and the exhaust gas is changed. Thereby, in each mixing chamber 60a, 60b, it is possible to arbitrarily control the amount of oxygen in the primary combustion air (that is, the oxygen concentration in the primary combustion air).

また各供給経路55にも,各一次燃焼空気吹込み部21に供給する一次燃焼空気の供給量を制御する一次燃焼空気供給量制御弁63がそれぞれ装着されている。これら一次燃焼空気供給量制御弁63を制御することによって,各一次燃焼空気吹込み部21に供給される一次燃焼空気の供給量がそれぞれ可変に構成されている。したがって,各一次燃焼空気吹込み部21からの一次燃焼空気の吹込み速度を増減させることによって,流動砂の吹き上げ高さを制御することができる。また,例えば幅方向において中央部分に配置されている4つの一次燃焼空気吹込み部21からの一次燃焼空気の吹込み量を相対的に少なくし,その左右両端部分に配置される一次燃焼空気吹込み部21からの一次燃焼空気の吹込み量を相対的に多くするなど,任意に制御できるように構成されている。   Each supply path 55 is also provided with a primary combustion air supply amount control valve 63 for controlling the supply amount of the primary combustion air supplied to each primary combustion air blowing section 21. By controlling the primary combustion air supply amount control valve 63, the supply amount of primary combustion air supplied to each primary combustion air blowing section 21 is configured to be variable. Therefore, the height of the fluidized sand can be controlled by increasing or decreasing the primary combustion air blowing speed from each primary combustion air blowing section 21. Further, for example, the amount of primary combustion air blown from the four primary combustion air blowing portions 21 arranged in the central portion in the width direction is relatively reduced, and the primary combustion air blowing arranged in the left and right end portions thereof is relatively reduced. For example, the amount of primary combustion air blown from the intake portion 21 is relatively increased.

さらに焼却装置1は炉体2の外部に制御部100を有する。制御部100は図4に示すように,次の7つの演算部を有している。
(1)ダンパー開度演算部C1により,酸素濃度計101から測定される燃焼済みの排ガスの酸素濃度に基づいて二次燃焼空気供給量が演算され,演算された二次燃焼空気供給量と二次圧力計104から測定される二次燃焼空気の圧力に基づいて,ダンパー105の開度が演算される。
(2)ダンパー開度演算部C2により,酸素濃度計101から測定される燃焼済みの排ガスの酸素濃度の経時変化傾向に基づいて二次燃焼空気供給量が演算され,演算された二次燃焼空気供給量と二次圧力計104から測定される二次燃焼空気の圧力に基づいて,ダンパー105の開度が演算される。
(3)ダンパー開度演算部C3により,温度計102から測定される燃焼済みの排ガスの温度に基づいて二次燃焼空気供給量が演算され,演算された二次燃焼空気供給量と二次圧力計104から測定される二次燃焼空気の圧力に基づいて,ダンパー105の開度が演算される。
(4)ダンパー開度演算部C4により,温度計102から測定される燃焼済みの排ガスの温度の経時変化傾向に基づいて二次燃焼空気供給量が演算され,演算された二次燃焼空気供給量と二次圧力計104から測定される二次燃焼空気の圧力に基づいて,ダンパー105の開度が演算される。
(5)ダンパー開度演算部C1〜C4により演算された二次燃焼空気供給量に基づいて,ダンパー開度演算部C5により,二次燃焼空気供給量が比較演算され,ダンパー105の開度が決定される。
(6)一次燃焼空気供給量演算部C6により,C5により演算された二次燃焼空気供給量に基づいて一次燃焼空気供給量が演算され,一次燃焼空気供給量制御弁63の開度が演算される。
(7)一次燃焼空気混合割合演算部C7により,酸素濃度計101から測定される燃焼済みの排ガスの酸素濃度と温度計102から測定される燃焼済みの排ガスの温度に基づいて,一次燃焼空気の排ガス量及び外気量が演算され,演算された一次燃焼空気の排ガス量及び外気量と一次圧力計103から測定される一次燃焼空気の圧力に基づいて,排ガス供給量制御弁61の開度と外気供給量制御弁62の開度が演算される。
なお,制御部100は,図示しない計器室に設置されており,その制御の状態変化を監督者が確認できるようになっている。
Further, the incinerator 1 has a control unit 100 outside the furnace body 2. As shown in FIG. 4, the control unit 100 has the following seven arithmetic units.
(1) The damper opening calculation unit C1 calculates the secondary combustion air supply amount based on the oxygen concentration of the exhausted exhaust gas measured from the oximeter 101, and calculates the calculated secondary combustion air supply amount and the second Based on the pressure of the secondary combustion air measured from the secondary pressure gauge 104, the opening degree of the damper 105 is calculated.
(2) The secondary combustion air supply amount is calculated by the damper opening calculation unit C2 based on the temporal change tendency of the oxygen concentration of the burned exhaust gas measured from the oximeter 101, and the calculated secondary combustion air Based on the supply amount and the pressure of the secondary combustion air measured from the secondary pressure gauge 104, the opening degree of the damper 105 is calculated.
(3) The secondary combustion air supply amount is calculated by the damper opening calculation unit C3 based on the temperature of the exhausted exhaust gas measured from the thermometer 102, and the calculated secondary combustion air supply amount and the secondary pressure are calculated. Based on the pressure of the secondary combustion air measured from the meter 104, the opening degree of the damper 105 is calculated.
(4) The secondary combustion air supply amount is calculated by the damper opening calculation unit C4 on the basis of the temporal change tendency of the temperature of the burned exhaust gas measured from the thermometer 102, and the calculated secondary combustion air supply amount Based on the pressure of the secondary combustion air measured from the secondary pressure gauge 104, the opening degree of the damper 105 is calculated.
(5) Based on the secondary combustion air supply amount calculated by the damper opening calculation units C1 to C4, the damper opening calculation unit C5 compares and calculates the secondary combustion air supply amount, and the damper 105 opening degree It is determined.
(6) The primary combustion air supply amount calculation unit C6 calculates the primary combustion air supply amount based on the secondary combustion air supply amount calculated by C5, and the opening degree of the primary combustion air supply amount control valve 63 is calculated. The
(7) Based on the oxygen concentration of the combusted exhaust gas measured from the oxygen concentration meter 101 and the temperature of the combusted exhaust gas measured from the thermometer 102 by the primary combustion air mixing ratio calculation unit C7, The exhaust gas amount and the outside air amount are calculated, and based on the calculated exhaust gas amount and the outside air amount of the primary combustion air and the pressure of the primary combustion air measured from the primary pressure gauge 103, the opening degree and the outside air of the exhaust gas supply amount control valve 61 are calculated. The opening degree of the supply amount control valve 62 is calculated.
The control unit 100 is installed in an instrument room (not shown) so that the supervisor can check the change in the control state.

次に,以上のように構成された焼却装置1を用いた焼却原料の焼却処理について説明する。先ず,焼却原料と流動砂を所定の供給量で,投入口11を介して,炉床5の高所側の上方となる位置から一次燃焼室S1内に連続的に供給する。   Next, the incineration processing of the incineration raw material using the incinerator 1 configured as described above will be described. First, the incinerated raw material and fluidized sand are continuously supplied into the primary combustion chamber S1 from the upper position of the hearth 5 through the inlet 11 at a predetermined supply amount.

このように一次燃焼室S1内に供給される焼却原料は,例えば廃棄自動車からリサイクル備品を取除いた残りを粉砕したシュレッダーダスト(ASR)である。ASRは,例えば廃棄自動車処理場などで粉砕され発生する。ASRの如き焼却原料は,無機物としてFe,Cu,Zn,Pb等の金属,ガラス等を含み,また,有機化合物として,ゴム,繊維屑やウレタンなどの軟質樹脂,塩ビなどの硬質プラスチック等を含む。また,ASRの如き焼却原料は大きさや形状はまちまちであるので,焼却を安定させるために,破砕機やローラーミルによる粉砕などの前処理し,焼却原料の最大の粒径を50mm以下としておくことが望ましい。また,振動ふるい機,風力選別機等による分級によって焼却原料中から微細に粉砕されたガラスを選択的に除去し,焼却原料の粒径のばらつきを小さくしておくことが望ましい。その他,磁力選別や渦電流選別,比重選別等によって,焼却原料中からFe,Cu,Alなどの金属成分を除去してから焼却することが望ましい。   The incineration raw material supplied into the primary combustion chamber S1 in this way is, for example, shredder dust (ASR) obtained by pulverizing the remainder obtained by removing recycled equipment from a discarded vehicle. The ASR is generated by being pulverized, for example, at a waste automobile treatment plant. Incineration raw materials such as ASR include metals such as Fe, Cu, Zn, and Pb as inorganic substances, glass, etc., and organic compounds include rubber, soft plastics such as fiber scraps and urethane, and hard plastics such as vinyl chloride. . Incineration materials such as ASR vary in size and shape, so in order to stabilize incineration, pretreatment such as crushing with a crusher or roller mill should be performed, and the maximum particle size of the incineration material should be 50 mm or less. Is desirable. In addition, it is desirable to selectively remove finely crushed glass from the incinerated raw material by classification with a vibration sieve, a wind sorter, etc., and to reduce the variation in the particle size of the incinerated raw material. In addition, it is desirable to incinerate after removing metal components such as Fe, Cu, and Al from the incineration raw material by magnetic force sorting, eddy current sorting, specific gravity sorting, or the like.

一次燃焼室S1内に焼却原料と流動砂を連続的に供給する一方で,各一次燃焼空気吹込み部21から,空気と二次燃焼室S2からの排ガスとの混合気体を一次燃焼空気として一次燃焼室S1内に上向きに吹込み,流動砂を吹き上げて流動化させる。これにより,流動砂と一緒に投入した焼却原料を,流動化した流動砂により攪拌させながら加熱して,焼却する。すると,焼却原料中の樹脂,繊維くず等の可燃物が熱分解又は燃焼させられて,熱分解ガス,酸化ガス等のガス成分を含む排ガスが生じる。排ガスは流動層10から上昇して,流動層10の上方に設けられた二次燃焼室S2に向かう。   While the incineration raw material and fluidized sand are continuously supplied into the primary combustion chamber S1, a mixed gas of air and exhaust gas from the secondary combustion chamber S2 is primarily used as primary combustion air from each primary combustion air blowing section 21. Blowing upward into the combustion chamber S1, fluidized sand is blown up and fluidized. In this way, the incineration raw material introduced together with the fluidized sand is heated and incinerated with the fluidized fluidized sand being incinerated. Then, combustibles such as resin and fiber waste in the incineration raw material are pyrolyzed or burned, and exhaust gas containing gas components such as pyrolysis gas and oxidizing gas is generated. The exhaust gas rises from the fluidized bed 10 and travels to the secondary combustion chamber S2 provided above the fluidized bed 10.

焼却後に残った焼却原料の燃えがらと流動砂は,取り出し口30から排出される。   Burning material and fluid sand of the incinerated raw material remaining after the incineration are discharged from the outlet 30.

一方,一次燃焼室S1から二次燃焼室S2に上昇した排ガスは,二次燃焼室S2の下端部において,バーナ45から供給された火炎が混合させられることにより加熱される。   On the other hand, the exhaust gas rising from the primary combustion chamber S1 to the secondary combustion chamber S2 is heated by mixing the flame supplied from the burner 45 at the lower end of the secondary combustion chamber S2.

二次燃焼室S2においては,各二次燃焼空気供給口40から二次燃焼空気(酸素含有気体)が供給されている。バーナ45によって加熱された排ガスは,二次燃焼室S2の下部を通る際に,周囲の二次燃焼空気供給口40から供給される二次燃焼空気によって,二次燃焼室S2の中央部に押し寄せられながら上昇する。また,二次燃焼空気供給口40から供給された二次燃焼空気は,排ガスと混合しながら,排ガスの上昇気流によって押し上げられて上昇する。   In the secondary combustion chamber S2, secondary combustion air (oxygen-containing gas) is supplied from each secondary combustion air supply port 40. When the exhaust gas heated by the burner 45 passes through the lower part of the secondary combustion chamber S2, the exhaust gas supplied from the surrounding secondary combustion air supply port 40 is pushed toward the center of the secondary combustion chamber S2. It rises while being. Moreover, the secondary combustion air supplied from the secondary combustion air supply port 40 is pushed up by the rising airflow of the exhaust gas and rises while being mixed with the exhaust gas.

各二次燃焼空気供給口40からは,二次燃焼空気が供給されている。なお,各二次燃焼空気供給路42から各二次燃焼空気吹込み部41に供給される二次燃焼空気の供給量をそれぞれ制御することにより,各二次燃焼空気吹込み部41に,各二次燃焼空気供給口40から吐出される二次燃焼空気の供給量を後述する方法で制御し,排ガスを完全燃焼させることができる。   Secondary combustion air is supplied from each secondary combustion air supply port 40. Each secondary combustion air blowing section 41 is controlled by controlling the amount of secondary combustion air supplied from each secondary combustion air supply passage 42 to each secondary combustion air blowing section 41. The supply amount of the secondary combustion air discharged from the secondary combustion air supply port 40 can be controlled by a method described later so that the exhaust gas can be completely burned.

さらに二次燃焼空気が混合された排ガスは,二次燃焼空気供給口40の上方において,バーナ46から供給された火炎と混合させられ,加熱される。このバーナ46の火炎により,排ガスの燃焼がさらに促進される。また,二次燃焼室S2内の温度分布が制御され,排ガスの燃焼状態のばらつきを低減することができる。   Further, the exhaust gas mixed with the secondary combustion air is mixed with the flame supplied from the burner 46 above the secondary combustion air supply port 40 and heated. The combustion of the exhaust gas is further promoted by the flame of the burner 46. In addition, the temperature distribution in the secondary combustion chamber S2 is controlled, and variations in the combustion state of the exhaust gas can be reduced.

以上のようにして,排ガスは,二次燃焼させられながら二次燃焼室S2内を上昇し,未燃ガスや微細な焼却原料の燃焼が行われた後,排気口50から排出される。そして,バグフィルタ52によって排ガス中の飛灰等が集塵された後,外部に排気されるようになっている。また,バグフィルタ52で塵埃を捕捉された排ガスの一部は,戻し経路53を通って,給気経路54から供給された例えば外気等の酸素含有気体と混合され一次燃焼空気を構成する。   As described above, the exhaust gas rises in the secondary combustion chamber S2 while being subjected to secondary combustion, and after the unburned gas and fine incineration raw material are combusted, the exhaust gas is discharged from the exhaust port 50. And after the fly ash etc. in exhaust gas are collected by the bag filter 52, it is exhausted outside. Further, a part of the exhaust gas in which dust is captured by the bag filter 52 passes through the return path 53 and is mixed with an oxygen-containing gas such as outside air supplied from the air supply path 54 to constitute primary combustion air.

次に二次燃焼空気の供給量の制御方法について,説明する。二次燃焼空気の供給量の制御には,少なくとも酸素濃度計101又は温度計102からの測定結果が用いられる。酸素濃度計101からは,燃焼した後の排ガスの酸素濃度,又は酸素濃度の経時変化傾向が,制御部100に出力される。温度計102からは,燃焼した後の排ガスの温度,又は温度の経時変化傾向が,制御部100に出力される。制御部100では図4に示すように,次のC1〜C5の演算が行われる。その後,ダンパー105に演算結果が出力され,二次燃焼空気の供給量が制御される。
(1)ダンパー開度演算部C1では,酸素濃度計101からの燃焼した後の排ガスの酸素濃度の測定結果に基づいて,二次燃焼空気の供給量が演算される。すなわち,例えば酸素濃度の目標値を5%とした場合,酸素濃度の測定結果が目標値より低い場合には,完全燃焼に必要な酸素量が供給されていないとみなす。そして,二次燃焼空気により二次燃焼室内の酸素濃度を増加させるために,酸素濃度の測定結果が目標値となるように二次燃焼空気供給量の増加量を演算する。逆に,酸素濃度の測定結果が目標値より高い場合には,完全燃焼に必要な酸素量以上に酸素が供給されているとみなす。そして,二次燃焼空気により二次燃焼室内の酸素濃度を減少させるために,酸素濃度の測定結果が目標値となるように二次燃焼空気供給量の減少量を演算する。その後,二次燃焼空気供給路42の閉塞状況を判断するために,二次圧力計104からの二次燃焼空気の圧力を考慮して,ダンパー105の開度を決定する。なお,酸素濃度の測定結果が目標値である場合には,二次燃焼空気供給量を変化させない。すなわち,ダンパー105の開度も変更されない。
(2)ダンパー開度演算部C3では,酸素濃度計101からの燃焼した後の排ガスの酸素濃度の経時変化傾向に基づいて,二次燃焼空気の供給量が演算される。すなわち,二次燃焼室内の二次燃焼室内の燃焼した後の排ガスの酸素濃度の経時変化の傾向変化が上昇方向の場合には,以後二次燃焼室内の燃焼した後の排ガスの酸素濃度がより高くなるものとみなす。そして,二次燃焼空気により二次燃焼室内の燃焼した後の酸素濃度を減少させるために,燃焼した後の排ガスの酸素濃度が一定になるように二次燃焼空気供給量の減少量を演算する。逆に,その傾向変化が下降方向の場合には,以後二次燃焼室内の燃焼した後の排ガスの酸素濃度がより低くなるものとみなす。そして,二次燃焼空気により二次燃焼室内の燃焼した後の排ガスの酸素濃度を増加させるために,燃焼した後の排ガスの温度が一定になるように燃焼空気供給量の増加量を演算する。その後,二次燃焼空気供給路42の閉塞状況を判断するために,二次圧力計104からの二次燃焼空気の圧力を考慮して,ダンパー105の開度を決定する。なお,燃焼した後の排ガスの酸素濃度が一定である場合には,以後二次燃焼室内の燃焼した後の排ガスの酸素濃度は変化しないものとみなして,二次燃焼空気供給量を変化させない。すなわち,ダンパー105の開度も変更されない。
(3)ダンパー開度演算部C2では,温度計102からの燃焼した後の排ガスの温度の測定結果に基づいて,二次燃焼空気の供給量が演算される。すなわち,例えば温度の目標値を890±10℃とした場合(温度計102が複数設けられている場合はその測定結果の平均値),温度の測定結果が目標値より高い場合には,二次燃焼室内の燃焼した後の排ガスの温度が最適な温度よりも高いとみなす。そして,二次燃焼空気により二次燃焼室内の燃焼した後の排ガスを冷却するために,温度の測定結果が目標値となるように二次燃焼空気供給量の増加量を演算する。逆に,温度の測定結果が目標値より低い場合には,二次燃焼室内の燃焼した後の排ガスの温度が最適な温度よりも低いとみなす。そして,二次燃焼空気により二次燃焼室内の燃焼した後の排ガスが冷却されるのを防ぐために,度の測定結果が目標値となるように二次燃焼空気供給量の減少量を演算する。その後,二次燃焼空気供給路42の閉塞状況を判断するために,二次圧力計104からの二次燃焼空気の圧力を考慮して,ダンパー105の開度を決定する。なお,温度の測定結果が目標値である場合には,二次燃焼空気供給量を変化させない。すなわち,ダンパー105の開度も変更されない。
(4)ダンパー開度演算部C4では,温度計102からの燃焼した後の排ガスの温度の経時変化傾向に基づいて,二次燃焼空気の供給量が演算される。すなわち,二次燃焼室内の二次燃焼室内の燃焼した後の排ガスの温度の経時変化の傾向変化が上昇方向の場合には,以後二次燃焼室内の燃焼した後の排ガスの温度がより高くなるものとみなす。そして,二次燃焼空気により二次燃焼室内の燃焼した後の排ガスを冷却するために,燃焼した後の排ガスの温度が一定になるように二次燃焼空気供給量の増加量を演算する。逆に,その傾向変化が下降方向の場合には,以後二次燃焼室内の燃焼した後の排ガスの温度がより低くなるものとみなす。そして,二次燃焼空気により二次燃焼室内の燃焼した後の排ガスの冷却を防止するために,燃焼した後の排ガスの温度が一定になるように燃焼空気供給量の減少量を演算する。その後,二次燃焼空気供給路42の閉塞状況を判断するために,二次圧力計104からの二次燃焼空気の圧力を考慮して,ダンパー105の開度を決定する。なお,燃焼した後の排ガスの温度が一定である場合には,以後二次燃焼室内の燃焼した後の排ガスの温度は変化しないものとみなして,二次燃焼空気供給量を変化させない。すなわち,ダンパー105の開度も変更されない。
(5)ダンパー開度演算部C1〜C4より演算された二次燃焼空気供給量が2つ以上ある場合,ダンパー開度演算部C5により,二次燃焼空気供給量が比較演算される。すなわち,二次燃焼空気供給量の変化量が最も大きい供給量を二次燃焼空気供給量とする。その後,その二次燃焼空気供給量に対応するダンパー105の開度が決定する。
Next, a method for controlling the supply amount of secondary combustion air will be described. For the control of the supply amount of the secondary combustion air, at least the measurement result from the oxygen concentration meter 101 or the thermometer 102 is used. From the oxygen concentration meter 101, the oxygen concentration of the exhaust gas after combustion or the tendency of the oxygen concentration to change with time is output to the control unit 100. From the thermometer 102, the temperature of the exhaust gas after combustion, or the temporal change tendency of the temperature, is output to the control unit 100. As shown in FIG. 4, the control unit 100 performs the following calculations C1 to C5. Thereafter, the calculation result is output to the damper 105, and the supply amount of the secondary combustion air is controlled.
(1) In the damper opening calculation unit C1, the supply amount of secondary combustion air is calculated based on the measurement result of the oxygen concentration of the exhaust gas after combustion from the oximeter 101. That is, for example, when the target value of oxygen concentration is 5%, if the measurement result of oxygen concentration is lower than the target value, it is considered that the oxygen amount necessary for complete combustion is not supplied. Then, in order to increase the oxygen concentration in the secondary combustion chamber by the secondary combustion air, the increase amount of the secondary combustion air supply amount is calculated so that the measurement result of the oxygen concentration becomes the target value. Conversely, if the measurement result of oxygen concentration is higher than the target value, it is considered that oxygen is supplied in excess of the amount of oxygen required for complete combustion. Then, in order to reduce the oxygen concentration in the secondary combustion chamber by the secondary combustion air, the amount of decrease in the secondary combustion air supply amount is calculated so that the measurement result of the oxygen concentration becomes the target value. Thereafter, the opening degree of the damper 105 is determined in consideration of the pressure of the secondary combustion air from the secondary pressure gauge 104 in order to determine the blockage of the secondary combustion air supply path 42. If the measurement result of the oxygen concentration is the target value, the secondary combustion air supply amount is not changed. That is, the opening degree of the damper 105 is not changed.
(2) In the damper opening calculation unit C3, the supply amount of the secondary combustion air is calculated based on the temporal change tendency of the oxygen concentration of the exhaust gas after combustion from the oximeter 101. That is, when the change in the oxygen concentration of the exhaust gas after combustion in the secondary combustion chamber after combustion in the secondary combustion chamber is increasing, the oxygen concentration of the exhaust gas after combustion in the secondary combustion chamber is further increased. It is considered to be high. Then, in order to reduce the oxygen concentration after combustion in the secondary combustion chamber by the secondary combustion air, the reduction amount of the secondary combustion air supply amount is calculated so that the oxygen concentration of the exhaust gas after combustion becomes constant . On the contrary, when the tendency change is in the downward direction, it is considered that the oxygen concentration of the exhaust gas after combustion in the secondary combustion chamber becomes lower. Then, in order to increase the oxygen concentration of the exhaust gas after combustion in the secondary combustion chamber by the secondary combustion air, the increase amount of the combustion air supply amount is calculated so that the temperature of the exhaust gas after combustion becomes constant. Thereafter, the opening degree of the damper 105 is determined in consideration of the pressure of the secondary combustion air from the secondary pressure gauge 104 in order to determine the blockage of the secondary combustion air supply path 42. When the oxygen concentration of the exhaust gas after combustion is constant, the oxygen concentration of the exhaust gas after combustion in the secondary combustion chamber is assumed not to change, and the secondary combustion air supply amount is not changed. That is, the opening degree of the damper 105 is not changed.
(3) In the damper opening calculation unit C2, the supply amount of the secondary combustion air is calculated based on the measurement result of the exhaust gas temperature after combustion from the thermometer 102. That is, for example, when the target temperature value is 890 ± 10 ° C. (the average value of the measurement results when a plurality of thermometers 102 are provided), when the temperature measurement result is higher than the target value, the secondary It is considered that the temperature of the exhaust gas after combustion in the combustion chamber is higher than the optimum temperature. Then, in order to cool the exhaust gas after combustion in the secondary combustion chamber by the secondary combustion air, the increase amount of the secondary combustion air supply amount is calculated so that the temperature measurement result becomes the target value. Conversely, if the temperature measurement result is lower than the target value, the temperature of the exhaust gas after combustion in the secondary combustion chamber is considered to be lower than the optimum temperature. Then, in order to prevent the exhaust gas after combustion in the secondary combustion chamber from being cooled by the secondary combustion air, the amount of decrease in the secondary combustion air supply amount is calculated so that the measured result becomes the target value. Thereafter, the opening degree of the damper 105 is determined in consideration of the pressure of the secondary combustion air from the secondary pressure gauge 104 in order to determine the blockage of the secondary combustion air supply path 42. When the temperature measurement result is the target value, the secondary combustion air supply amount is not changed. That is, the opening degree of the damper 105 is not changed.
(4) In the damper opening calculation unit C4, the supply amount of the secondary combustion air is calculated based on the temporal change tendency of the temperature of the exhaust gas after combustion from the thermometer 102. In other words, if the trend of the time-dependent change in the temperature of the exhaust gas after combustion in the secondary combustion chamber is upward, the temperature of the exhaust gas after combustion in the secondary combustion chamber becomes higher. Consider it a thing. Then, in order to cool the exhaust gas after combustion in the secondary combustion chamber by the secondary combustion air, the increase amount of the secondary combustion air supply amount is calculated so that the temperature of the exhaust gas after combustion becomes constant. On the contrary, when the tendency change is in the downward direction, the temperature of the exhaust gas after combustion in the secondary combustion chamber is considered to be lower. Then, in order to prevent the exhaust gas after combustion in the secondary combustion chamber from being cooled by the secondary combustion air, the reduction amount of the combustion air supply amount is calculated so that the temperature of the exhaust gas after combustion becomes constant. Thereafter, the opening degree of the damper 105 is determined in consideration of the pressure of the secondary combustion air from the secondary pressure gauge 104 in order to determine the blockage of the secondary combustion air supply path 42. When the temperature of the exhaust gas after combustion is constant, it is assumed that the temperature of the exhaust gas after combustion in the secondary combustion chamber does not change thereafter, and the secondary combustion air supply amount is not changed. That is, the opening degree of the damper 105 is not changed.
(5) When there are two or more secondary combustion air supply amounts calculated by the damper opening calculation units C1 to C4, the damper combustion calculation unit C5 compares and calculates the secondary combustion air supply amount. That is, the supply amount with the largest change amount of the secondary combustion air supply amount is set as the secondary combustion air supply amount. Thereafter, the opening degree of the damper 105 corresponding to the secondary combustion air supply amount is determined.

決定されたダンパー105の開度は,制御部100からダンパー105に伝達される。そして,ダンパー105の開度が制御されることにより,二次燃焼空気供給口40から供給される二次燃焼空気の供給量は好適に制御され,二次燃焼空気は排ガスと迅速かつ十分に混合される。排ガスと二次燃焼空気とが十分に混合されることにより,排ガス中に含まれる未燃ガスや,排ガスと共に吹き上げられた微細な焼却原料に対して,二次燃焼空気中の酸素が満遍なく供給され,未燃ガスや微細な焼却原料の酸化が効率良く促進される。したがって,二次燃焼室S2において排ガスを確実に燃焼させることができる。また,二次燃焼空気と衝突することで,排ガスの上昇速度が抑制される。したがって,二次燃焼室S2内での排ガスの滞留時間が短くなることを防止でき,滞留時間を十分に確保し,二次燃焼を十分に行うことができる。   The determined opening degree of the damper 105 is transmitted from the control unit 100 to the damper 105. Then, by controlling the opening degree of the damper 105, the supply amount of the secondary combustion air supplied from the secondary combustion air supply port 40 is suitably controlled, and the secondary combustion air is quickly and sufficiently mixed with the exhaust gas. Is done. By thoroughly mixing the exhaust gas and the secondary combustion air, the oxygen in the secondary combustion air is uniformly supplied to the unburned gas contained in the exhaust gas and the fine incineration raw material blown up with the exhaust gas. , Oxidation of unburned gas and fine incineration raw materials is promoted efficiently. Therefore, the exhaust gas can be reliably burned in the secondary combustion chamber S2. Moreover, the rising speed of exhaust gas is suppressed by colliding with secondary combustion air. Therefore, it is possible to prevent the residence time of the exhaust gas in the secondary combustion chamber S2 from being shortened, sufficiently securing the residence time, and sufficiently performing the secondary combustion.

さらにこのような二次燃焼空気の制御によっても,二次燃焼室の酸素量や温度を適切な範囲におさめることができない場合には,一次燃焼空気の制御が行われる。この場合,制御部100における一次燃焼空気供給量演算部C6では,制御目標とする二次燃焼空気供給量に対して,実際の二次燃焼空気供給量の制御だけでは達成できなかった量に基づいて,一次燃焼空気供給量が演算される。すなわち,二次燃焼空気の供給量を多くしたい場合には,目標とする二次燃焼空気供給量の増加量に対して,実際の二次燃焼空気供給量の増加だけでは足りない量に基づいて,一次燃焼空気供給量の増加量が演算される。逆に,目標とする二次燃焼空気の供給量を少なくしたい場合には,目標とする二次燃焼空気供給量の減少量に対して,実際の二次燃焼空気供給量の減少だけでは減らしきれない量に基づいて,一次燃焼空気供給量の減少量が演算される。その後,一次圧力計103からの一次燃焼空気の圧力を考慮して,一次燃焼空気供給量制御弁63の開度が決定される。   Further, when the secondary combustion chamber cannot control the oxygen amount and temperature of the secondary combustion chamber within an appropriate range, the primary combustion air is controlled. In this case, in the primary combustion air supply amount calculation unit C6 in the control unit 100, based on the amount that cannot be achieved only by controlling the actual secondary combustion air supply amount with respect to the secondary combustion air supply amount that is the control target. Thus, the primary combustion air supply amount is calculated. In other words, when it is desired to increase the supply amount of secondary combustion air, the actual increase in the supply amount of secondary combustion air is not sufficient for the target increase in the supply amount of secondary combustion air. , The increase amount of the primary combustion air supply amount is calculated. Conversely, when it is desired to reduce the target supply amount of secondary combustion air, the actual decrease in the supply amount of secondary combustion air can be reduced compared to the target decrease in the supply amount of secondary combustion air. Based on the missing amount, the amount of decrease in the primary combustion air supply amount is calculated. Thereafter, the opening degree of the primary combustion air supply amount control valve 63 is determined in consideration of the pressure of the primary combustion air from the primary pressure gauge 103.

また,一次燃焼空気として,燃焼した後の排ガスと酸素含有気体である外気の混合ガスを使用する場合には,制御部100における一次燃焼空気混合割合演算部C7によって,燃焼した後の排ガスと外気の混合比率を演算する。この場合,一次燃焼空気混合割合演算部C7では,少なくとも酸素濃度計101からの燃焼した後の排ガスの酸素濃度の測定結果,又は温度計102からの燃焼した後の排ガスの温度の測定結果に基づいて,燃焼した後の排ガスと外気の混合比率が演算される。その後,演算された混合比率に基づき,一次圧力計103からの一次燃焼空気の圧力を考慮して,排ガス供給量制御弁61の開度及び外気供給量制御弁62の開度が決定される。なお,一次圧力計103は,供給された一次燃焼空気中に含まれる酸素量と熱容量を決定するために使用される。   Further, when using a mixed gas of the exhaust gas after combustion and the outside air that is an oxygen-containing gas as the primary combustion air, the primary combustion air mixing ratio calculation unit C7 in the control unit 100 performs the combustion of the exhaust gas and the outside air after combustion. The mixing ratio is calculated. In this case, the primary combustion air mixing ratio calculation unit C7 is based on at least the measurement result of the oxygen concentration of the exhaust gas after combustion from the oxygen concentration meter 101 or the measurement result of the temperature of the exhaust gas after combustion from the thermometer 102. Thus, the mixing ratio of the exhaust gas after combustion and the outside air is calculated. Thereafter, based on the calculated mixing ratio, the opening degree of the exhaust gas supply amount control valve 61 and the opening degree of the outside air supply amount control valve 62 are determined in consideration of the pressure of the primary combustion air from the primary pressure gauge 103. The primary pressure gauge 103 is used to determine the amount of oxygen and the heat capacity contained in the supplied primary combustion air.

このように決定された,少なくとも一次燃焼空気供給量制御弁63の開度,又は排ガス供給量制御弁61の開度及び外気供給量制御弁62の開度が,それぞれ一次燃焼空気供給量制御弁63,又は排ガス供給量制御弁61及び外気供給量制御弁62に伝達され,一次燃焼空気が制御される。   At least the opening degree of the primary combustion air supply amount control valve 63 or the opening degree of the exhaust gas supply amount control valve 61 and the opening degree of the outside air supply amount control valve 62 determined in this way are respectively the primary combustion air supply amount control valve. 63, or the exhaust gas supply amount control valve 61 and the outside air supply amount control valve 62 are transmitted to control the primary combustion air.

以上のように,本実施の形態の焼却装置1によれば,二次燃焼室内で燃焼後の排ガスの少なくとも酸素濃度,酸素濃度の経時変化傾向,温度,又は温度の経時変化傾向を測定し,二次燃焼空気,又は二次燃焼空気と一次燃焼空気の両方を制御することにより,二次燃焼室内で排ガスを完全燃焼させることができる。これにより,燃焼後の排ガスに含まれる環境負荷となる有害物質の濃度を低減することができる。
また,二次燃焼室内で燃焼後の排ガス温度とその経時変化の傾向変化を測定することにより,二次燃焼室内温度を焼却装置の維持管理に最適な温度状態に維持することができる。これにより,焼却原料を安定して焼却することができる。
As described above, according to the incinerator 1 of the present embodiment, at least the oxygen concentration of the exhaust gas after combustion in the secondary combustion chamber, the oxygen concentration aging tendency, the temperature, or the temperature aging tendency is measured, By controlling the secondary combustion air or both the secondary combustion air and the primary combustion air, the exhaust gas can be completely burned in the secondary combustion chamber. Thereby, the density | concentration of the harmful substance used as the environmental load contained in the waste gas after combustion can be reduced.
In addition, by measuring the exhaust gas temperature after combustion in the secondary combustion chamber and the change in the trend over time, the temperature of the secondary combustion chamber can be maintained at the optimum temperature for the maintenance of the incinerator. Thereby, the incineration raw material can be incinerated stably.

以上,本発明の実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において,各種の変更例または修正例に想到しうることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes and modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

本実施の形態では,焼却装置1は傾斜分散型流動層燃焼炉としたが,本発明はかかるものには限定されず,各種流動床炉,ストーカ炉,ロータリーキルンなどの焼却炉,またはそれらを組み合わせた各種焼却装置とその燃焼制御方法について適用できる。その場合,一次燃焼空気の制御を実施しない形態であったり,燃焼空気吹き込み量の具体的な決定方法に差異があったりしても,計測機器の仕組みに違いがあったりしても,本発明の技術的範囲に属するものとみなされる。   In the present embodiment, the incinerator 1 is an inclined dispersion type fluidized bed combustion furnace, but the present invention is not limited to such an incinerator, such as various fluidized bed furnaces, stoker furnaces, rotary kilns, or combinations thereof. It can be applied to various incinerators and their combustion control methods. In this case, the present invention can be applied to a configuration in which the control of the primary combustion air is not performed, there is a difference in the specific method for determining the combustion air blowing amount, or there is a difference in the mechanism of the measuring device. Is considered to belong to the technical scope of

本実施の形態では,焼却原料にはASRとしたが,焼却原料はかかるものに限定されず,各種の廃棄物,例えば,都市ごみの粉砕物,産業廃棄物の粉砕物,汚泥,木屑等であってもよい。また,例えばASRと産業廃棄物の粉砕物との混合物など,異なる種類の廃棄物を混合したものであってもよい。本発明にかかる焼却装置によれば,様々な性質の廃棄物を,例えば難燃性の廃棄物であっても,効率的に焼却処理することが可能である。 In this embodiment, ASR is used as the incineration raw material, but the incineration raw material is not limited to this, and various types of waste such as municipal waste, industrial waste, sludge, wood waste, etc. There may be. Further, for example, a mixture of different types of waste such as a mixture of ASR and pulverized industrial waste may be used. According to the incineration apparatus according to the present invention, it is possible to efficiently incinerate wastes of various properties, for example, even incombustible wastes.

本実施の形態は,ボイラーや発電設備等を付設した焼却装置1に適用することもできる。例えば,側壁部7に冷媒配管を内設して,冷媒配管の内部に通された冷媒と排ガスが冷媒配管の内外面を介して熱交換することで,排ガスの熱が回収される構成としてもよい。また,二次燃焼後の排ガスをボイラーに導入して,ボイラーの熱交換器において排ガスの熱を回収する構成としてもよい。その場合,ボイラーは二次燃焼室S2とバグフィルタ52との間に設け,排ガスをボイラーによって冷却した後,バグフィルタ52において集塵することが好ましい。このとき,酸素濃度計Aは,ボイラーで冷却された排ガスが排出される排気口に接続された排気路に設置することが好ましい。   This embodiment can also be applied to the incinerator 1 provided with a boiler, power generation equipment, and the like. For example, a configuration may be adopted in which a refrigerant pipe is provided in the side wall 7 and the heat of the exhaust gas is recovered by heat exchange between the refrigerant and the exhaust gas passed through the refrigerant pipe through the inner and outer surfaces of the refrigerant pipe. Good. Moreover, it is good also as a structure which introduce | transduces the waste gas after secondary combustion into a boiler, and collect | recovers the heat | fever of waste gas in the heat exchanger of a boiler. In that case, it is preferable that the boiler is provided between the secondary combustion chamber S2 and the bag filter 52, and dust is collected in the bag filter 52 after exhaust gas is cooled by the boiler. At this time, the oximeter A is preferably installed in an exhaust path connected to an exhaust port through which exhaust gas cooled by the boiler is exhausted.

また,本実施の形態では,焼却装置1は廃棄物の焼却処理に用いるものとしたが,例えば石炭やごみ固形化燃料(RDF:Refuse Derived Fuel)等を燃料(焼却原料)として用いる発電施設の燃焼炉に適用することもできる。   In this embodiment, the incinerator 1 is used for incineration of waste. For example, a power generation facility that uses coal, refuse solidified fuel (RDF), or the like as fuel (incineration raw material). It can also be applied to a combustion furnace.

本発明は,焼却原料を焼却させる一次燃焼室と排ガスを燃焼させる二次燃焼室を有する焼却装置における,燃焼制御方法とその焼却装置に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a combustion control method and an incinerator thereof in an incinerator having a primary combustion chamber for incinerating incinerated raw materials and a secondary combustion chamber for combusting exhaust gas.

本実施の形態にかかる焼却装置の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the incinerator concerning this Embodiment. 図1におけるA−A線による断面図である。It is sectional drawing by the AA line in FIG. 一次燃焼空気の吹込み部の斜視図である。It is a perspective view of the blowing part of primary combustion air. 本実施の形態にかかる焼却装置の制御部の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the control part of the incinerator concerning this Embodiment.

符号の説明Explanation of symbols

1 焼却装置
20 一次燃焼空気供給口
40 二次燃焼空気供給口
61 排ガス供給量制御弁
62 外気供給量制御弁
63 一次燃焼空気供給量制御弁
100 制御部
101 酸素濃度計
102 温度計
103 一次圧力計
104 二次圧力計
105 ダンパー
S1 一次燃焼室
S2 二次燃焼室
DESCRIPTION OF SYMBOLS 1 Incinerator 20 Primary combustion air supply port 40 Secondary combustion air supply port 61 Exhaust gas supply amount control valve 62 Outside air supply amount control valve 63 Primary combustion air supply amount control valve 100 Control part 101 Oxygen concentration meter 102 Thermometer 103 Primary pressure gauge 104 Secondary pressure gauge 105 Damper S1 Primary combustion chamber S2 Secondary combustion chamber

Claims (11)

焼却原料を焼却させる一次燃焼室と排ガスを燃焼させる二次燃焼室を有する焼却装置における燃焼制御方法であって,
前記一次燃焼室において,一次燃焼空気を供給して,焼却原料を焼却させる工程と,
前記二次燃焼室において,二次燃焼空気を供給して,前記一次燃焼室で発生した排ガスを燃焼させる工程と,
前記二次燃焼室内で燃焼した後の排ガスの少なくとも酸素濃度,又は温度を測定する工程と,
少なくとも前記燃焼した後の排ガスの酸素濃度の測定結果,酸素濃度の経時変化傾向,前記燃焼した後の排ガスの温度の測定結果,又は温度の経時変化傾向に基づいて,二次燃焼空気供給量を演算する工程と,
前記演算結果に基づいて,前記二次燃焼室に吹き込む前記二次燃焼空気の供給量を制御する工程と,
を有することを特徴とする,燃焼制御方法。
A combustion control method in an incinerator having a primary combustion chamber for incinerating incinerated raw materials and a secondary combustion chamber for combusting exhaust gas,
Supplying the primary combustion air in the primary combustion chamber to incinerate the incinerated raw material;
Supplying secondary combustion air in the secondary combustion chamber and combusting exhaust gas generated in the primary combustion chamber;
Measuring at least the oxygen concentration or temperature of the exhaust gas after burning in the secondary combustion chamber;
Based on at least the measurement result of the oxygen concentration of the exhaust gas after combustion, the tendency of the oxygen concentration to change with time, the measurement result of the temperature of the exhaust gas after combustion, or the trend of change of temperature with time, the secondary combustion air supply amount is determined. A process of calculating,
Controlling a supply amount of the secondary combustion air blown into the secondary combustion chamber based on the calculation result;
A combustion control method comprising:
前記二次燃焼空気供給量の制御は,前記演算結果が2以上ある場合には,前記二次燃焼空気の供給量の変化量が最も大きい供給量を,前記二次燃焼室に吹き込む二次燃焼空気供給量とすることを特徴とする,請求項1に記載の燃焼制御方法。 The control of the supply amount of the secondary combustion air is such that when there are two or more calculation results, the secondary combustion air that blows the supply amount having the largest change amount of the supply amount of the secondary combustion air into the secondary combustion chamber. The combustion control method according to claim 1, wherein an air supply amount is used. 前記燃焼した後の排ガスの酸素濃度の測定結果に基づく前記二次燃焼空気の供給量の演算は,予め定められた酸素濃度の目標値に近づけるものであることを特徴とする,請求項1又は2に記載の燃焼制御方法。 The calculation of the supply amount of the secondary combustion air based on the measurement result of the oxygen concentration of the exhaust gas after the combustion is close to a predetermined target value of the oxygen concentration. The combustion control method according to 2. 前記燃焼した後の排ガスの酸素濃度の経時変化傾向に基づく前記二次燃焼空気の供給量の演算は,上昇傾向の場合には供給量を減少させ,下降傾向の場合には供給量を増加させて,酸素濃度が一定になるようにすることを特徴とする,請求項1〜3のいずれかに記載の燃焼制御方法。 The calculation of the supply amount of the secondary combustion air based on the time-dependent change tendency of the oxygen concentration of the exhaust gas after combustion is to decrease the supply amount in the case of an upward trend and increase the supply amount in the case of a downward trend. The combustion control method according to any one of claims 1 to 3, wherein the oxygen concentration is constant. 前記燃焼した後の排ガスの温度の測定結果に基づく前記二次燃焼空気の供給量の演算は,予め定められた温度の目標値に近づけるものであることを特徴とする,請求項1〜4のいずれかに記載の燃焼制御方法。 The calculation of the supply amount of the secondary combustion air based on the measurement result of the temperature of the exhaust gas after the combustion is close to a target value of a predetermined temperature. The combustion control method according to any one of the above. 前記燃焼した後の排ガスの温度の経時変化傾向に基づく前記二次燃焼空気の供給量の演算は,上昇傾向の場合には供給量を増加させ,下降傾向の場合には供給量を減少させて,温度が一定になるようにするものであることを特徴とする,請求項1〜5のいずれかに記載の燃焼制御方法。 The calculation of the supply amount of the secondary combustion air based on the time-dependent trend of the temperature of the exhaust gas after combustion is performed by increasing the supply amount in the upward trend and decreasing the supply amount in the downward trend. The combustion control method according to any one of claims 1 to 5, wherein the temperature is made constant. 前記二次燃焼空気供給量を制御しても制御目的が達成できない場合には,前記二次燃焼空気供給量の演算結果に基づいて,一次燃焼空気供給量を演算する工程と,
前記一次燃焼空気供給量の演算結果に基づいて,前記一次燃焼室に吹き込む前記一次燃焼空気の供給量を制御する工程と,
をさらに有することを特徴とする,請求項1〜6に記載の燃焼制御方法。
A step of calculating a primary combustion air supply amount based on a calculation result of the secondary combustion air supply amount when the control purpose cannot be achieved by controlling the secondary combustion air supply amount;
Controlling the supply amount of the primary combustion air blown into the primary combustion chamber based on the calculation result of the primary combustion air supply amount;
The combustion control method according to claim 1, further comprising:
前記一次燃焼空気には外気と前記燃焼した後の排ガスとの混合空気を用い,前記一次燃焼空気の供給量の制御に替えて,又は前記一次燃焼空気の供給量の制御と共に,少なくとも前記燃焼した後の排ガスの酸素濃度又は前記燃焼済した後の排ガスの温度の測定結果に基づいて,前記一次燃焼空気における外気と燃焼した後の排ガスとの混合比率を制御する工程を有することを特徴とする,請求項7に記載の燃焼制御方法。 As the primary combustion air, mixed air of outside air and the exhaust gas after combustion is used, and at least the combustion is performed in place of the control of the supply amount of the primary combustion air or together with the control of the supply amount of the primary combustion air The method has a step of controlling the mixing ratio of the outside air in the primary combustion air and the exhaust gas after combustion based on the measurement result of the oxygen concentration of the exhaust gas after or the temperature of the exhaust gas after combustion. The combustion control method according to claim 7. 焼却原料を焼却させる一次燃焼室と排ガスを燃焼させる二次燃焼室を有する焼却装置であって,
前記一次燃焼室内に,焼却原料を焼却させるための一次燃焼空気が供給される,一次燃焼空気供給口と,
前記二次燃焼室内に,前記一次燃焼室で発生した排ガスを燃焼させるための二次燃焼空気が供給される,二次燃焼空気供給口と,
前記二次燃焼室内で燃焼した後の排ガスの少なくとも酸素濃度を測定する酸素濃度計,又は温度を測定する温度計と,
少なくとも前記酸素濃度計又は温度計の測定結果に基づいて,前記二次燃焼空気の供給量を制御する制御部と,
を有することを特徴とする,焼却装置。
An incinerator having a primary combustion chamber for incinerating incinerated raw materials and a secondary combustion chamber for combusting exhaust gas,
A primary combustion air supply port through which primary combustion air for incineration of the incinerated raw material is supplied into the primary combustion chamber;
A secondary combustion air supply port for supplying secondary combustion air for burning exhaust gas generated in the primary combustion chamber into the secondary combustion chamber;
An oxygen concentration meter for measuring at least the oxygen concentration of exhaust gas after combustion in the secondary combustion chamber, or a thermometer for measuring temperature;
A control unit for controlling the supply amount of the secondary combustion air based on at least the measurement result of the oxygen concentration meter or the thermometer;
Incinerator characterized by having.
前記二次燃焼空気供給量を制御しても制御目的が達成できない場合には,前記制御部は,前記一次燃焼空気の供給量をさらに制御することを特徴とする,請求項9に記載の焼却装置。 The incineration according to claim 9, wherein the control unit further controls the supply amount of the primary combustion air when the control object cannot be achieved even by controlling the supply amount of the secondary combustion air. apparatus. 前記一次燃焼空気は,外気と前記燃焼した後の排ガスとの混合空気であり,前記二次燃焼空気供給量を制御しても制御目的が達成できない場合には,前記制御部は,前記酸素濃度計の測定結果と前記温度計の測定結果に基づいて,前記一次燃焼空気の混合比率を制御することを特徴とする,請求項9又は10に記載の燃焼装置。 When the primary combustion air is a mixed air of outside air and the exhaust gas after combustion, and the control purpose cannot be achieved even by controlling the supply amount of the secondary combustion air, the control unit The combustion apparatus according to claim 9 or 10, wherein a mixing ratio of the primary combustion air is controlled based on a measurement result of the meter and a measurement result of the thermometer.
JP2006100146A 2006-03-31 2006-03-31 Combustion control method and incinerator Active JP4830140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100146A JP4830140B2 (en) 2006-03-31 2006-03-31 Combustion control method and incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100146A JP4830140B2 (en) 2006-03-31 2006-03-31 Combustion control method and incinerator

Publications (2)

Publication Number Publication Date
JP2007271226A true JP2007271226A (en) 2007-10-18
JP4830140B2 JP4830140B2 (en) 2011-12-07

Family

ID=38674211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100146A Active JP4830140B2 (en) 2006-03-31 2006-03-31 Combustion control method and incinerator

Country Status (1)

Country Link
JP (1) JP4830140B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021834A (en) * 2009-07-16 2011-02-03 Nippon Steel Engineering Co Ltd Method of controlling vapor content in waste melting furnace and vapor content control device for waste melting furnace facility
JP2013257063A (en) * 2012-06-12 2013-12-26 Jfe Engineering Corp Waste incinerator, and method of incinerating waste
KR101385851B1 (en) * 2012-08-30 2014-04-17 한국남동발전 주식회사 Fluidized bed boiler and combustion controlling method using the same
KR101458032B1 (en) * 2012-11-26 2014-11-04 주식회사 이지1 Industry boiler that derive horizontaiy combustion of pellet
KR101580085B1 (en) * 2015-07-28 2015-12-23 이보엠텍 주식회사 Fluidized bed combustor for precise control of fluidizing air
JP2019007705A (en) * 2017-06-27 2019-01-17 川崎重工業株式会社 Gas supply method for secondary combustion, gas supply structure for secondary combustion, and waste incinerator
JP2020098081A (en) * 2018-12-19 2020-06-25 株式会社プランテック Combustion control method
CN113544433A (en) * 2019-02-28 2021-10-22 株式会社环境经营总和研究所 Powder fuel combustion device and combustion method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180825A (en) * 1985-02-06 1986-08-13 Tokyo Met Gov Operation of incinerator
JPH05248618A (en) * 1992-03-10 1993-09-24 Kubota Corp Co controlling method in incinerator
JPH06300239A (en) * 1993-04-19 1994-10-28 Babcock Hitachi Kk Dioxin restraining control method of combustion device
JPH07260125A (en) * 1994-03-18 1995-10-13 Ngk Insulators Ltd Method and device for combustion control of suppressed fluidized bed furnace
JPH07332642A (en) * 1994-06-03 1995-12-22 Kubota Corp Garbage incinerator
JPH09269113A (en) * 1996-03-29 1997-10-14 Nikko Kinzoku Kk Method for treating industrial waste
JPH10169948A (en) * 1996-12-10 1998-06-26 Mitsui Eng & Shipbuild Co Ltd Combustion control method for incinerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180825A (en) * 1985-02-06 1986-08-13 Tokyo Met Gov Operation of incinerator
JPH05248618A (en) * 1992-03-10 1993-09-24 Kubota Corp Co controlling method in incinerator
JPH06300239A (en) * 1993-04-19 1994-10-28 Babcock Hitachi Kk Dioxin restraining control method of combustion device
JPH07260125A (en) * 1994-03-18 1995-10-13 Ngk Insulators Ltd Method and device for combustion control of suppressed fluidized bed furnace
JPH07332642A (en) * 1994-06-03 1995-12-22 Kubota Corp Garbage incinerator
JPH09269113A (en) * 1996-03-29 1997-10-14 Nikko Kinzoku Kk Method for treating industrial waste
JPH10169948A (en) * 1996-12-10 1998-06-26 Mitsui Eng & Shipbuild Co Ltd Combustion control method for incinerator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021834A (en) * 2009-07-16 2011-02-03 Nippon Steel Engineering Co Ltd Method of controlling vapor content in waste melting furnace and vapor content control device for waste melting furnace facility
JP2013257063A (en) * 2012-06-12 2013-12-26 Jfe Engineering Corp Waste incinerator, and method of incinerating waste
KR101385851B1 (en) * 2012-08-30 2014-04-17 한국남동발전 주식회사 Fluidized bed boiler and combustion controlling method using the same
KR101458032B1 (en) * 2012-11-26 2014-11-04 주식회사 이지1 Industry boiler that derive horizontaiy combustion of pellet
KR101580085B1 (en) * 2015-07-28 2015-12-23 이보엠텍 주식회사 Fluidized bed combustor for precise control of fluidizing air
JP2019007705A (en) * 2017-06-27 2019-01-17 川崎重工業株式会社 Gas supply method for secondary combustion, gas supply structure for secondary combustion, and waste incinerator
JP2020098081A (en) * 2018-12-19 2020-06-25 株式会社プランテック Combustion control method
CN113544433A (en) * 2019-02-28 2021-10-22 株式会社环境经营总和研究所 Powder fuel combustion device and combustion method
CN113544433B (en) * 2019-02-28 2024-03-26 株式会社环境经营总合研究所 Powder fuel combustion device and combustion method

Also Published As

Publication number Publication date
JP4830140B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4830140B2 (en) Combustion control method and incinerator
JP4479655B2 (en) Grate-type waste incinerator and its combustion control method
JP4889176B2 (en) Method and apparatus for burning solid fuel, especially solid waste
JP3347463B2 (en) Combustible material incineration method
JP4361890B2 (en) Method and apparatus for adjusting slag basicity of gasification melting furnace
US5762008A (en) Burning fuels, particularly for incinerating garbage
JP4565279B2 (en) Fluidized bed furnace and its incineration method
KR20030019364A (en) Waste incinerator and method of operating the incinerator
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP3956862B2 (en) Combustion control method for waste incinerator and waste incinerator
JP2006308226A (en) Fluidized bed furnace and incineration method of fluidized bed furnace
JP2003074817A (en) Waste gasifying/melting equipment, and its operation method
JP2001021129A (en) Direct connected ignition ash melting facility and operation control method
JP2003074819A (en) Waste melting equipment, and its operation method
JP3989333B2 (en) Operation method of waste incinerator
JP4660757B2 (en) Fluidized bed furnace and its incineration method
JP4111107B2 (en) Method and apparatus for preventing corrosion of melting furnace secondary combustion chamber dust discharger
JP5472847B2 (en) Steam volume control device for waste melting furnace equipment
KR100660757B1 (en) Method of operating waste incinerator and waste incinerator
JPH03125808A (en) Fluidized-bed type refuse incinerator
JP2004239508A (en) Combustion control method of refuse incinerator, and refuse incinerator
JP5876264B2 (en) Waste treatment equipment
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
JP3995237B2 (en) Operation method of waste incinerator
JP2007147135A (en) Fluidized bed furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110901

R150 Certificate of patent or registration of utility model

Ref document number: 4830140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250