JP2007266248A - Electric double layer capacitor, carbon material thereof, and electrode thereof - Google Patents

Electric double layer capacitor, carbon material thereof, and electrode thereof Download PDF

Info

Publication number
JP2007266248A
JP2007266248A JP2006088430A JP2006088430A JP2007266248A JP 2007266248 A JP2007266248 A JP 2007266248A JP 2006088430 A JP2006088430 A JP 2006088430A JP 2006088430 A JP2006088430 A JP 2006088430A JP 2007266248 A JP2007266248 A JP 2007266248A
Authority
JP
Japan
Prior art keywords
double layer
electric double
carbon material
layer capacitor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006088430A
Other languages
Japanese (ja)
Inventor
Akihiro Mabuchi
昭弘 馬淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2006088430A priority Critical patent/JP2007266248A/en
Publication of JP2007266248A publication Critical patent/JP2007266248A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double layer capacitor of large electrostatic capacitance. <P>SOLUTION: Relating to the carbon material for an electric double layer capacitor, the peak is 6 (ml nm<SP>-1</SP>g<SP>-1</SP>) or higher in the range of 0.6-1nm of pore radius, in a pore volume distribution curve measured by an MP method using nitrogen adsorption. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気二重層キャパシタ用炭素材料、電気二重層キャパシタ用電極、及び電気二重層キャパシタに関する。   The present invention relates to a carbon material for an electric double layer capacitor, an electrode for an electric double layer capacitor, and an electric double layer capacitor.

従来、電気エネルギーを蓄積するデバイスの一種として、分極性電極と電解液との界面に形成される電気二重層を蓄電に利用した電気二重層キャパシタが知られている。電気二重層キャパシタは、一般に、炭素材料を主成分とする一対の分極性電極と、当該分極性電極の間に配置したセパレータと、水または有機溶剤を溶媒とする電解液とを有して構成され、電解質イオンが電解液中を移動し、電極界面へ吸脱着することによって充放電される。このため、充放電の際に電極において酸化還元反応を伴う化学電池と比較して、急速な充放電が可能で、特性の劣化が少ないという特徴を有する。   2. Description of the Related Art Conventionally, an electric double layer capacitor that uses an electric double layer formed at the interface between a polarizable electrode and an electrolyte for power storage is known as a type of device that stores electric energy. An electric double layer capacitor generally includes a pair of polarizable electrodes mainly composed of a carbon material, a separator disposed between the polarizable electrodes, and an electrolyte using water or an organic solvent as a solvent. Then, the electrolyte ions move in the electrolytic solution and are charged and discharged by adsorbing and desorbing to the electrode interface. For this reason, compared with a chemical battery with an oxidation-reduction reaction at the time of charging / discharging, it has characteristics that rapid charging / discharging is possible and characteristic deterioration is small.

このような電気二重層キャパシタは、携帯電話、家庭用電気製品、OA機器、車載機器等のバックアップ電源や補助電源として使用されている。また、最近では、ハイブリッド電気自動車用途への開発が進んでおり、この場合、電気二重層キャパシタはブレーキ減速時の回生運動エネルギーによって充電され、加速時には放電してエンジンの出力を補助する。   Such an electric double layer capacitor is used as a backup power source or an auxiliary power source for cellular phones, household electrical appliances, OA devices, in-vehicle devices, and the like. Recently, development for hybrid electric vehicle applications has progressed. In this case, the electric double layer capacitor is charged by regenerative kinetic energy during brake deceleration and discharged during acceleration to assist engine output.

近年、電気二重層キャパシタは、さらなる用途拡大を図るため、静電容量を大きくすることが求められており、例えば、電気二重層キャパシタの静電容量が分極性電極の表面積に略比例するとの考えから、分極性電極を構成する炭素材料である活性炭の表面積を増大させること(例えば、特許文献1参照)が提案されている。この特許文献1によれば、石油コークスに水酸化カリウムを混合して焼成することにより、比表面積が2000〜3500m/gの活性炭を作製することができ、この活性炭を主成分とする分極性電極を使用することにより静電容量の大きな電気二重層キャパシタを得られることが記載されている。 In recent years, electric double layer capacitors have been required to have a large capacitance in order to further expand their applications. For example, the capacitance of electric double layer capacitors is considered to be approximately proportional to the surface area of a polarizable electrode. Therefore, it has been proposed to increase the surface area of activated carbon, which is a carbon material constituting the polarizable electrode (see, for example, Patent Document 1). According to Patent Document 1, activated carbon having a specific surface area of 2000 to 3500 m 2 / g can be produced by mixing and calcining potassium hydroxide with petroleum coke, and polarizability containing this activated carbon as a main component. It is described that an electric double layer capacitor having a large capacitance can be obtained by using an electrode.

また、静電容量を向上させるために、賦活を浅く留めた炭素材料のうち、結晶子の層間距離が特定の範囲にあるものを電気二重層キャパシタの分極性電極に適用すること(例えば、特許文献2参照)も提案されている。この特許文献2によれば、特定の結晶子の層間距離を有する炭素材料は、比表面積が小さくても、電圧の印加によって大きく膨張し、静電容量を増大させるという特性を有しているため、電気二重層キャパシタの体積の増大を抑えることにより単位体積当りの静電容量が大きくなることが記載されている。   In addition, in order to improve the capacitance, a carbon material whose activation is kept shallow is applied to a polarizable electrode of an electric double layer capacitor having a crystallite interlayer distance within a specific range (for example, a patent Document 2) has also been proposed. According to this Patent Document 2, a carbon material having a specific crystallite interlayer distance has a characteristic that, even if the specific surface area is small, the carbon material expands greatly by application of voltage and increases capacitance. It is described that the capacitance per unit volume is increased by suppressing the increase in the volume of the electric double layer capacitor.

特開昭63−78513公報JP-A 63-78513 特開平11−317333号公報JP 11-317333 A

しかし、特許文献1に記載された技術では、活性炭の比表面積を大きくする場合には、強い賦活処理が必要となる。このため、実際には、分極性電極の表面積の増加は電気二重層キャパシタの静電容量の増加に比例せず、むしろこの強い賦活処理によって分極性電極としての電極密度は低下する傾向にあり、電気二重層キャパシタの静電容量の向上は望めなかった。   However, in the technique described in Patent Literature 1, when the specific surface area of the activated carbon is increased, a strong activation process is required. Therefore, in practice, the increase in the surface area of the polarizable electrode is not proportional to the increase in the capacitance of the electric double layer capacitor, but rather the electrode density as the polarizable electrode tends to decrease due to this strong activation treatment, An improvement in the capacitance of the electric double layer capacitor could not be expected.

また、特許文献2に記載された技術では、炭素材料が大きく膨張し過ぎる場合には、それを規制するための大きな容器が必要となる。また、膨張を規制することにより、炭素材料に歪みが発生するため、リサイクルによって劣化し易くなる。このため、このような電気二重層キャパシタは実用性に乏しかった。   Moreover, in the technique described in Patent Document 2, if the carbon material expands too much, a large container is required to regulate it. Moreover, since distortion is generated in the carbon material by restricting the expansion, the carbon material is easily deteriorated by recycling. For this reason, such an electric double layer capacitor was not practical.

本発明は上記の問題に鑑みて案出されたものであり、電気二重層キャパシタの静電容量を大きくすることができる電気二重層キャパシタ用炭素材料を提供することを目的とするものである。   The present invention has been devised in view of the above problems, and an object of the present invention is to provide a carbon material for an electric double layer capacitor that can increase the capacitance of the electric double layer capacitor.

上記目的を達成するための本発明に係る電気二重層キャパシタ用炭素材料の第1特徴構成は、窒素吸着を用いたMP法により測定した細孔体積分布曲線において、細孔半径が0.6〜1nmの範囲にあるピークが6ml・nm−1・g−1以上である点にある。 The first characteristic configuration of the carbon material for an electric double layer capacitor according to the present invention for achieving the above object is that, in the pore volume distribution curve measured by the MP method using nitrogen adsorption, the pore radius is 0.6 to The peak in the range of 1 nm is at least 6 ml · nm −1 · g −1 .

つまり、この構成によれば、細孔半径が0.6〜1nmの範囲にある細孔が多くなるため、電解質イオンの吸着量を向上させることができる。
したがって、本発明に係る電気二重層キャパシタ用炭素材料を使用することにより、静電容量の大きな電気二重層キャパシタとすることができる。
That is, according to this configuration, since the number of pores having a pore radius in the range of 0.6 to 1 nm increases, the adsorption amount of electrolyte ions can be improved.
Therefore, by using the carbon material for an electric double layer capacitor according to the present invention, an electric double layer capacitor having a large capacitance can be obtained.

本発明に係る電気二重層キャパシタ用炭素材料の第2特徴構成は、窒素吸着を用いたBJH法(脱着側)により測定した細孔体積分布曲線において細孔半径が3.6〜4nmの範囲にあるピークが0.5ml/g以下である点にある。   The second characteristic configuration of the carbon material for electric double layer capacitors according to the present invention is that the pore radius is 3.6 to 4 nm in the pore volume distribution curve measured by the BJH method (desorption side) using nitrogen adsorption. There is a certain peak at 0.5 ml / g or less.

つまり、この構成によれば、細孔半径が3.6〜4nmの範囲にある細孔が少なくなるため、嵩密度の低下を抑えることができる。したがって、電気二重層キャパシタに使用した場合の静電容量に対する影響を小さくすることができる。   That is, according to this configuration, since the number of pores having a pore radius in the range of 3.6 to 4 nm is reduced, a decrease in bulk density can be suppressed. Therefore, it is possible to reduce the influence on the electrostatic capacity when used for the electric double layer capacitor.

本発明に係る電気二重層キャパシタ用炭素材料の第3特徴構成は、ヤシ殻炭を賦活処理して得られる点にある。   The 3rd characteristic structure of the carbon material for electric double layer capacitors which concerns on this invention exists in the point obtained by activating a coconut shell charcoal.

つまり、この構成によれば、ヤシ殻炭を賦活処理することにより、細孔半径が0.6〜1nmの範囲にある細孔が多い炭素材料を作製することができる。   That is, according to this configuration, a carbon material with many pores having a pore radius in the range of 0.6 to 1 nm can be produced by activating the coconut shell charcoal.

本発明に係る電気二重層キャパシタ用炭素材料の第4特徴構成は、前記賦活処理が、水酸化カリウムまたは水酸化ナトリウムを用いた処理である点にある。   A fourth characteristic configuration of the carbon material for an electric double layer capacitor according to the present invention is that the activation treatment is treatment using potassium hydroxide or sodium hydroxide.

つまり、この構成によれば、ヤシ殻炭に対し、特に水酸化カリウムまたは水酸化ナトリウムを用いたアルカリ賦活処理することにより、細孔半径が0.6〜1nmの範囲にある細孔がより多い炭素材料を作製することができる。   In other words, according to this configuration, the coconut shell charcoal has more pores in the range of 0.6 to 1 nm, particularly by alkali activation treatment using potassium hydroxide or sodium hydroxide. A carbon material can be produced.

本発明に係る電気二重層キャパシタ用電極の特徴構成は、前記電気二重層キャパシタ用炭素材料で構成した点にある。   The characteristic structure of the electrode for an electric double layer capacitor according to the present invention is that it is composed of the carbon material for an electric double layer capacitor.

つまり、この構成によれば、前記電気二重層キャパシタ用炭素材は、電解質イオンの吸着量が多いため、良好な電気二重層キャパシタ用電極として適用することができる。   That is, according to this configuration, the carbon material for an electric double layer capacitor can be applied as a good electrode for an electric double layer capacitor because it has a large amount of electrolyte ion adsorption.

本発明に係る電気二重層キャパシタの特徴構成は、前記電気二重層キャパシタ用電極を備えた点にある。   A characteristic configuration of the electric double layer capacitor according to the present invention is that the electric double layer capacitor electrode is provided.

つまり、この構成によれば、前記電気二重層キャパシタ用電極を備えることにより、静電容量を大きくすることができる。   In other words, according to this configuration, the capacitance can be increased by providing the electric double layer capacitor electrode.

本発明に係る電気二重層キャパシタ用炭素材料は、窒素吸着を用いたMP法により測定した細孔体積分布曲線において、細孔半径が0.6〜1nmの範囲にあるピークが6ml・nm−1・g−1以上であるものである。すなわち、本発明者らは、電気二重層キャパシタの静電容量の増加が分極性電極の表面積の増加に比例しないことから、炭素材料が有する細孔径が2nm以下のミクロ孔の存在に着目し、鋭意検討した結果、特に、細孔径が1.2〜2nmのミクロ孔が電気二重層キャパシタの静電容量の増加に寄与することを見出した。したがって、このような電気二重層キャパシタ用炭素材料で分極性電極を構成することにより、電気二重層キャパシタの静電容量を大きくすることができる。 The carbon material for an electric double layer capacitor according to the present invention has a peak having a pore radius in the range of 0.6 to 1 nm in a pore volume distribution curve measured by the MP method using nitrogen adsorption of 6 ml · nm −1. -It is more than g- 1 . That is, the present inventors pay attention to the presence of micropores having a pore diameter of 2 nm or less that the carbon material has because the increase in the capacitance of the electric double layer capacitor is not proportional to the increase in the surface area of the polarizable electrode, As a result of intensive studies, it has been found that micropores having a pore diameter of 1.2 to 2 nm contribute to an increase in the capacitance of the electric double layer capacitor. Therefore, the electrostatic capacity of the electric double layer capacitor can be increased by configuring the polarizable electrode with such a carbon material for the electric double layer capacitor.

また、本発明に係る電気二重層キャパシタ用炭素材料は、窒素吸着を用いたBJH法(脱着側)により測定した細孔体積分布曲線において、細孔半径が3.6〜4nmの範囲にあるピークが0.5ml・g−1以下であることが好ましい。分極性電極において、細孔径が2〜50nmのメソ孔は、電解液の浸透や電解質イオンの急速な出入りを助けるという意味である程度必要であるものの、電解質イオン吸着量が少ないため静電容量を大きくするということに対する寄与は小さい。このため、メソ孔が多く存在し過ぎるとデッドボリュームとなり、むしろ静電容量が低下する傾向になる。 Moreover, the carbon material for electric double layer capacitors according to the present invention has a peak whose pore radius is in the range of 3.6 to 4 nm in the pore volume distribution curve measured by the BJH method (desorption side) using nitrogen adsorption. Is preferably 0.5 ml · g −1 or less. In a polarizable electrode, mesopores with a pore size of 2 to 50 nm are necessary to some extent in the sense of helping the penetration of electrolyte and rapid entry and exit of electrolyte ions, but the capacitance is increased due to the small amount of electrolyte ion adsorption. The contribution to doing is small. For this reason, if there are too many mesopores, it becomes a dead volume, and rather the capacitance tends to decrease.

ここで、MP法とは、「t−プロット法」(B.C.Lippene, J.H.de Boer, J.Catalysis, 4, 319(1965))を用いて、ミクロ孔の容積、面積、分布を求める方法をいう。MP法は、Mikhail, Brunuer, Bodorにより考案された方法である(R.S.Mikhail, S.Brunauer, E.E.Bodor, J.Colloid Interface Sci., 26, 45,(1968))。
また、BJH法とは、Barrett, Joyner, Halendaによって提唱されたメソ孔の分布を求める代表的な方法であり、吸着・脱着ともにデータが得られるが脱着側のデータを用いることが一般的である(E.P.Barrett, L.G.Joyner and P.P.Halenda, J,Am.Chem.Soc., 73, 373, (1951))。
Here, the MP method refers to a method for determining the volume, area, and distribution of micropores using a “t-plot method” (BCLippene, JHde Boer, J. Catalysis, 4, 319 (1965)). The MP method is a method devised by Mikhail, Brunuer, Bodor (RSMikhail, S. Brunauer, EEBodor, J. Colloid Interface Sci., 26, 45, (1968)).
The BJH method is a typical method proposed by Barrett, Joyner, and Halenda for obtaining the distribution of mesopores. Data for both adsorption and desorption can be obtained, but the data on the desorption side is generally used. (EP Barrett, LG Joyner and PPHalenda, J, Am. Chem. Soc., 73, 373, (1951)).

本発明に係る電気二重層キャパシタ用炭素材料のBET法による比表面積は、2000〜3000m/gであることが好ましい。すなわち、電気二重層キャパシタの分極性電極としては、比表面積が大きい方が、静電容量は大きくなるため好ましいが、比表面積が大きくなりすぎると、嵩密度が低下するため、単位体積当りの電解質イオンの吸着量が低下し、静電容量が低下する。 It is preferable that the specific surface area by the BET method of the carbon material for electric double layer capacitors according to the present invention is 2000 to 3000 m 2 / g. That is, as the polarizable electrode of the electric double layer capacitor, it is preferable that the specific surface area is large because the electrostatic capacity is large. However, if the specific surface area is excessively large, the bulk density is lowered, so that the electrolyte per unit volume is reduced. The amount of adsorbed ions decreases and the capacitance decreases.

このような電気二重層キャパシタ用炭素材料は、特に限定されないが、例えば、ヤシ殻炭を賦活処理することによって作製することができる。具体的な一例としては、ヤシ殻炭と、水酸化ナトリウムまたは水酸化カリウムとを混合し、窒素等の不活性ガス雰囲気下で、450〜900℃、30〜120分間程度熱処理する。熱処理は、例えば、450〜600℃で15〜60分間熱処理した後、600〜900℃で15〜60分間熱処理するように、2段階以上で行うこともできる。また、賦活処理前に不活性ガス雰囲気下において熱処理し、賦活が大きく進行しないようにする等の前処理を行うこともできる。   Although such a carbon material for electric double layer capacitors is not particularly limited, for example, it can be produced by activating coconut shell charcoal. As a specific example, coconut shell charcoal and sodium hydroxide or potassium hydroxide are mixed and heat-treated at 450 to 900 ° C. for 30 to 120 minutes in an inert gas atmosphere such as nitrogen. The heat treatment can be performed in two or more stages, for example, after heat treatment at 450 to 600 ° C. for 15 to 60 minutes and then heat treatment at 600 to 900 ° C. for 15 to 60 minutes. In addition, it is possible to perform a pretreatment such as heat treatment in an inert gas atmosphere before the activation treatment so that the activation does not proceed greatly.

本発明に係る電気二重層キャパシタ用炭素材料の原料は、ヤシ殻を炭化したヤシ殻炭に限らず、例えば、木粉、セルロース等の植物系原料や、ピッチ、コークス、メソカーボンマイクロビーズ等の鉱物系原料等を炭化処理したものを適用することもできる。また、これらの原料は、単独で使用してもよく、また、2種類以上の混合物を使用することもできる。   The raw material of the carbon material for the electric double layer capacitor according to the present invention is not limited to coconut shell charcoal obtained by carbonizing the coconut shell, for example, plant-based raw materials such as wood flour and cellulose, pitch, coke, mesocarbon microbeads, etc. A material obtained by carbonizing a mineral raw material or the like can also be applied. Moreover, these raw materials may be used independently and can also use 2 or more types of mixtures.

以下、本発明に係る電気二重層キャパシタ用炭素材料(以下。「炭素材料」と称する)を分極性電極に用いた電気二重層キャパシタ(以下、「キャパシタ」と称する)の一実施形態について、図面を参照して説明する。キャパシタの形状としては、特に制限はなく、例えば、フィルム型、コイン型、円筒型、箱型等、種々の形状のものが採用できる。   Hereinafter, an embodiment of an electric double layer capacitor (hereinafter referred to as “capacitor”) using a carbon material for an electric double layer capacitor (hereinafter referred to as “carbon material”) according to the present invention as a polarizable electrode will be described. Will be described with reference to FIG. There is no restriction | limiting in particular as a shape of a capacitor, For example, the thing of various shapes, such as a film type, a coin type | mold, a cylindrical type, a box type | mold, is employable.

図1に示すように、キャパシタ1は、一対の分極性電極2a,2bと、分極性電極2a,2bの間に配置したセパレータ3と、分極性電極2a,2b及びセパレータ3を収容する外装体5とを備え、分極性電極2a,2b及びセパレータ3には、電解液(図示せず)が含浸してある。分極性電極2a,2bには、電流を外部に取り出すための集電体4a,4bがそれぞれ電気的に接続してある。外装体5は、従来公知のものが使用でき、キャパシタ1の形状に対応させて選択する。   As shown in FIG. 1, the capacitor 1 includes a pair of polarizable electrodes 2a and 2b, a separator 3 disposed between the polarizable electrodes 2a and 2b, and an outer package that accommodates the polarizable electrodes 2a and 2b and the separator 3. The polarizable electrodes 2a and 2b and the separator 3 are impregnated with an electrolytic solution (not shown). Current collectors 4a and 4b for taking out current to the outside are electrically connected to the polarizable electrodes 2a and 2b, respectively. As the exterior body 5, a conventionally known one can be used, and is selected according to the shape of the capacitor 1.

分極性電極2a,2bは、本発明に係る炭素材料をバインダーにて成形したものである。成形方法は、特に限定されず、ロール成形、プレス成形、炭素材料のスラリーを金属箔上に塗布する等、電池用電極またはキャパシタ用電極に対して提案されている種々の方法を用いることができる。なお、成形の際には、必要に応じて導電剤等を添加してもよい。導電剤としては、アセチレンブラック、カーボンブラック、黒鉛等の炭素質、金属粉等が例示される。   The polarizable electrodes 2a and 2b are formed by molding a carbon material according to the present invention with a binder. The forming method is not particularly limited, and various methods proposed for battery electrodes or capacitor electrodes, such as roll forming, press forming, and applying a slurry of a carbon material on a metal foil, can be used. . In molding, a conductive agent or the like may be added as necessary. Examples of the conductive agent include carbonaceous materials such as acetylene black, carbon black, and graphite, and metal powder.

本発明に係る炭素材料の粒子径は、2〜5μmにコントロールしたものを用いる。これにより、成形時にローラ等で圧縮することにより、容易に0.6〜0.7g/mlという高い嵩密度を達成することができるため、電極の単位体積当りの比容量(F/ml)を高くすることができる。また、粒子径を2〜5μmにコントロールすることで、優れた低温特性を発揮することもできる。   The carbon material according to the present invention has a particle diameter controlled to 2 to 5 μm. Thereby, by compressing with a roller or the like at the time of molding, a high bulk density of 0.6 to 0.7 g / ml can be easily achieved, so that the specific capacity (F / ml) per unit volume of the electrode is reduced. Can be high. Moreover, the outstanding low temperature characteristic can also be exhibited by controlling a particle diameter to 2-5 micrometers.

分極性電極2a,2bの形状は、キャパシタ1の形状、大きさ、満たすべき特性によって適宜決定する。例えば、コイン型の場合には、厚みが0.1〜10mm程度の円盤状の電極、箱型の場合には厚みが0.1〜30mm程度のシート状の電極、円筒型の場合には円柱状の電極または厚みが0.02〜2mm程度のアルミニウム、ステンレス鋼等の金属集電箔を巻回した電極等を用いることができる。   The shapes of the polarizable electrodes 2a and 2b are appropriately determined depending on the shape and size of the capacitor 1 and the characteristics to be satisfied. For example, in the case of a coin type, a disk-like electrode having a thickness of about 0.1 to 10 mm, in the case of a box type, a sheet-like electrode having a thickness of about 0.1 to 30 mm, or in the case of a cylindrical type, a circle A columnar electrode or an electrode wound with a metal current collector foil such as aluminum or stainless steel having a thickness of about 0.02 to 2 mm can be used.

分極性電極2a,2bに使用するバインダーは、特に制限はなく、従来公知のものを使用する。例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系材料、その他ポリビニルピロリドン、ポリビニルアルコール、SBRゴム、アクリル酸樹脂等が挙げられる。これらのバインダーは、単独で使用してもよく、また、2種以上を併用することもできる。バインダーの添加量は、炭素材料の粒度、粒度分布、粒子形状、目的とする電極密度等に応じて適宜決定すればよく、例えば、炭素材料を基準として3〜30重量%程度とする。   The binder used for the polarizable electrodes 2a and 2b is not particularly limited, and conventionally known binders are used. Examples thereof include fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride, cellulosic materials such as carboxymethyl cellulose, methyl cellulose, and hydroxypropyl cellulose, and other polyvinyl pyrrolidone, polyvinyl alcohol, SBR rubber, and acrylic acid resin. These binders may be used alone or in combination of two or more. The addition amount of the binder may be appropriately determined according to the particle size, particle size distribution, particle shape, target electrode density, etc. of the carbon material, and is, for example, about 3 to 30% by weight based on the carbon material.

セパレータ3は、ポリエチレン、ポリプロピレン等のポリオレフィン製の微孔膜、不織布、一般に電解コンデンサー紙と称され、パルプを主原料とする多孔質膜等の公知の材料を採用する。セパレータ3は、必ずしも使用するものではなく、セパレータ3に代えて、固体電解質やゲル状電解質等を用いることもできる。   Separator 3 employs a known material such as a microporous membrane made of polyolefin such as polyethylene or polypropylene, a nonwoven fabric, generally called electrolytic capacitor paper, and a porous membrane made mainly of pulp. The separator 3 is not necessarily used, and a solid electrolyte, a gel electrolyte, or the like can be used instead of the separator 3.

電解液は、特に限定されず、例えば非水系電解液を用いる。中でも、単セル当たりの電圧が高い有機電解液を用いることが好ましい。有機電解液は、非プロトン性の有機溶媒に電解質を0.5〜3.0mol/L程度の濃度で溶解したものが好ましい。有機溶媒としては、特に限定されないが、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、アセトニトリル等の従来公知のものを、単独または2種以上を混合して使用する。また、電解質としては、例えば、テトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロフォスフェート等の従来公知のものを、単独または2種以上を混合して使用する。   The electrolytic solution is not particularly limited, and for example, a non-aqueous electrolytic solution is used. Among these, it is preferable to use an organic electrolyte having a high voltage per unit cell. The organic electrolytic solution is preferably one in which an electrolyte is dissolved in an aprotic organic solvent at a concentration of about 0.5 to 3.0 mol / L. Although it does not specifically limit as an organic solvent, For example, conventionally well-known things, such as propylene carbonate, ethylene carbonate, butylene carbonate, (gamma) -butyrolactone, a sulfolane, acetonitrile, are used individually or in mixture of 2 or more types. Moreover, as electrolyte, conventionally well-known things, such as a tetraethylammonium tetrafluoroborate, a triethylmethylammonium tetrafluoroborate, a tetraethylammonium hexafluorophosphate, are used individually or in mixture of 2 or more types.

集電体4a,4bは、特に制限はなく、アルミニウム、ステンレス鋼等の従来公知のものを適用する。   The current collectors 4a and 4b are not particularly limited, and conventionally known ones such as aluminum and stainless steel are applied.

このように構成されたキャパシタ1の充電電圧は、上記の有機電解液を用いる場合には1.8〜3.3V程度の範囲に設定する。充電電圧が低すぎると利用可能な容量が減少し、高すぎると電解液の分解が激しくなる。このため、充電電圧は、上記の範囲内で、炭素材料の種類、電解液の組成、使用温度、寿命等に応じて、適宜決定すればよい。   The charging voltage of the capacitor 1 configured as described above is set to a range of about 1.8 to 3.3 V when the above-described organic electrolytic solution is used. If the charging voltage is too low, the available capacity is reduced, and if it is too high, the electrolyte solution is severely decomposed. For this reason, the charging voltage may be appropriately determined in accordance with the type of the carbon material, the composition of the electrolytic solution, the operating temperature, the lifetime, and the like within the above range.

以下に、キャパシタ1の実施例を示し、本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the capacitor 1 will be shown below and the present invention will be described in more detail. However, the present invention is not limited to these examples.

(実施例1)
平均粒径が約40メッシュのヤシ殻炭100gと、粒状の水酸化ナトリウム300gとを十分に混合し、窒素気流中で500℃、30分間の第1段焼成を行った後、700℃、20分間の第2段焼成を行い、活性炭を作製した。得られた活性炭を温水でよく洗浄してナトリウム化合物を除去した後、乾燥して本発明の炭素材料とし、この炭素材料の物性を測定した。次いで、本発明の炭素材料に、常法にしたがって得られた結合剤及び導電剤を加え、混合機でよく混錬し、得られたペーストをロールにより延伸処理して0.6mmのシート状電極材料を作製した。このシート状電極材料を直径16mmの円板状に打ち抜き、その2枚を重ね合わせて電極とし、1.5mol/LのTEMABF(トリエチルメチルアンモニウムテトラフルオロボレート)/PC(プロピレンカーボネート)電解液と、セパレータとしての電解コンデンサー紙とを用いて、電気二重層キャパシタであるコンデンサユニットセルを作製し、放電電流密度3mA/cmにおける静電容量を測定した。
Example 1
After 100 g of coconut shell charcoal having an average particle size of about 40 mesh and 300 g of granular sodium hydroxide are sufficiently mixed, first-stage firing is performed in a nitrogen stream at 500 ° C. for 30 minutes, and then 700 ° C., 20 Second-stage firing for minutes was performed to produce activated carbon. The obtained activated carbon was thoroughly washed with warm water to remove the sodium compound and then dried to obtain the carbon material of the present invention, and the physical properties of this carbon material were measured. Next, a binder and a conductive agent obtained according to a conventional method are added to the carbon material of the present invention, kneaded well with a mixer, and the obtained paste is stretched with a roll to give a 0.6 mm sheet electrode. The material was made. This sheet-like electrode material is punched into a disk shape having a diameter of 16 mm, and the two are overlapped to form an electrode, and 1.5 mol / L TEMABF 4 (triethylmethylammonium tetrafluoroborate) / PC (propylene carbonate) electrolyte solution and A capacitor unit cell that is an electric double layer capacitor was prepared using electrolytic capacitor paper as a separator, and the capacitance at a discharge current density of 3 mA / cm 2 was measured.

(実施例2)
水酸化ナトリウムの使用量を250gとした以外は、実施例1と同様の方法でコンデンサユニットセルを作製し、同様の測定を行った。
(Example 2)
A capacitor unit cell was produced in the same manner as in Example 1 except that the amount of sodium hydroxide used was 250 g, and the same measurement was performed.

(実施例3)
水酸化ナトリウムに代えて水酸化カリウムを使用したこと以外は、実施例1と同様の方法でコンデンサユニットセルを作製し、同様の測定を行った。
(Example 3)
A capacitor unit cell was prepared in the same manner as in Example 1 except that potassium hydroxide was used instead of sodium hydroxide, and the same measurement was performed.

(比較例1)
ヤシ殻炭に代えてメソカーボンマイクロビーズ(MCMB)を使用したこと以外は、実施例2と同様の方法でコンデンサユニットセルを作製し、同様の測定を行った。
(Comparative Example 1)
A capacitor unit cell was produced in the same manner as in Example 2 except that mesocarbon microbeads (MCMB) were used instead of coconut shell charcoal, and the same measurement was performed.

(比較例2)
市販の水蒸気賦活炭を用いて、実施例1と同様の方法でコンデンサユニットセルを作製し、同様の測定を行った。
(Comparative Example 2)
Using commercially available steam activated charcoal, a capacitor unit cell was produced in the same manner as in Example 1, and the same measurement was performed.

その結果、表1に示すように、実施例1〜3では、細孔半径が0.8nmのところに6ml・nm−1・g−1以上のピークがあり、比較例1,2に比べて活物質当りの比容量が大きくなった。
このように、本発明の電気二重層キャパシタ用炭素材料を使用することにより、静電容量が大きくなることが確認できた。
As a result, as shown in Table 1, in Examples 1 to 3, there was a peak of 6 ml · nm −1 · g −1 or more where the pore radius was 0.8 nm, which was higher than that of Comparative Examples 1 and 2. The specific capacity per active material has increased.
As described above, it was confirmed that the capacitance was increased by using the carbon material for an electric double layer capacitor of the present invention.

Figure 2007266248
Figure 2007266248

本発明に係る電気二重層キャパシタ用炭素材料を使用した電気二重層キャパシタは、イブリッド電気自動車用途等、様々な分野に適用することができる。   The electric double layer capacitor using the carbon material for an electric double layer capacitor according to the present invention can be applied to various fields such as an hybrid electric vehicle application.

本実施形態に係る電気二重層キャパシタを説明する概略断面図Schematic sectional view for explaining the electric double layer capacitor according to the present embodiment

符号の説明Explanation of symbols

1 キャパシタ(電気二重層キャパシタ)
2a,2b 分極性電極
3 セパレータ
4a,4b 集電体
5 外装体
1 Capacitor (electric double layer capacitor)
2a, 2b Polarized electrode 3 Separator 4a, 4b Current collector 5 Exterior body

Claims (6)

窒素吸着を用いたMP法により測定した細孔体積分布曲線において、細孔半径が0.6〜1nmの範囲にあるピークが6ml・nm−1・g−1以上である電気二重層キャパシタ用炭素材料。 In the pore volume distribution curve measured by the MP method using nitrogen adsorption, the peak for the pore radius in the range of 0.6 to 1 nm is 6 ml · nm −1 · g −1 or more carbon for electric double layer capacitor material. 窒素吸着を用いたBJH法(脱着側)により測定した細孔体積分布曲線において、細孔半径が3.6〜4nmの範囲にあるピークが0.5ml・g−1以下である請求項1に記載の電気二重層キャパシタ用炭素材料。 The pore volume distribution curve measured by the BJH method (desorption side) using nitrogen adsorption has a peak having a pore radius in the range of 3.6 to 4 nm of 0.5 ml · g −1 or less. The carbon material for electric double layer capacitors as described. ヤシ殻炭を賦活処理して得られる請求項1または2に記載の電気二重層キャパシタ用炭素材料。   The carbon material for an electric double layer capacitor according to claim 1 or 2, obtained by activating coconut shell charcoal. 前記賦活処理が、水酸化カリウムまたは水酸化ナトリウムを用いた処理である請求項3に記載の電気二重層キャパシタ用炭素材料。   The carbon material for an electric double layer capacitor according to claim 3, wherein the activation treatment is treatment using potassium hydroxide or sodium hydroxide. 請求項1〜4のいずれか一項に記載の電気二重層キャパシタ用炭素材料で構成した電気二重層キャパシタ用電極。   The electrode for electric double layer capacitors comprised with the carbon material for electric double layer capacitors as described in any one of Claims 1-4. 請求項5に記載の電気二重層キャパシタ用電極を備えた電気二重層キャパシタ。   The electric double layer capacitor provided with the electrode for electric double layer capacitors of Claim 5.
JP2006088430A 2006-03-28 2006-03-28 Electric double layer capacitor, carbon material thereof, and electrode thereof Pending JP2007266248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088430A JP2007266248A (en) 2006-03-28 2006-03-28 Electric double layer capacitor, carbon material thereof, and electrode thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088430A JP2007266248A (en) 2006-03-28 2006-03-28 Electric double layer capacitor, carbon material thereof, and electrode thereof

Publications (1)

Publication Number Publication Date
JP2007266248A true JP2007266248A (en) 2007-10-11

Family

ID=38638954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088430A Pending JP2007266248A (en) 2006-03-28 2006-03-28 Electric double layer capacitor, carbon material thereof, and electrode thereof

Country Status (1)

Country Link
JP (1) JP2007266248A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121785A (en) * 2009-12-08 2011-06-23 Habikkusu Kk Activated carbonized material
WO2011133454A3 (en) * 2010-04-21 2011-12-29 Corning Incorporated Electrochemical capacitor having lithium containing electrolyte
WO2012074054A1 (en) * 2010-12-03 2012-06-07 南開工業株式会社 Active carbon powder and process for production thereof, and electric double layer capacitor
WO2014054599A1 (en) * 2012-10-01 2014-04-10 旭化成株式会社 Electrode for electrical storage element, and nonaqueous lithium electrical storage element
WO2014088439A1 (en) * 2012-12-03 2014-06-12 Общество С Ограниченной Ответственностью "Товарищество Энергетических И Электромобильных Проектов" Method for manufacturing electrical double layer capacitor electrodes
US9799459B2 (en) 2014-08-08 2017-10-24 Corning Incorporated High pore volume utilization carbon and electric double layer capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293527A (en) * 1998-04-07 1999-10-26 Petoca Ltd Optically isotropic pitch-based activated carbon fiber and electric double layer capacitor using the same
JP2000040645A (en) * 1998-07-23 2000-02-08 Takeda Chem Ind Ltd Activated charcoal for electrode of electrode dual layer capacitor and manufacture thereof
JP2002033249A (en) * 2000-05-09 2002-01-31 Mitsubishi Chemicals Corp Activated charcoal for electric double-layer capacitor
WO2004019356A1 (en) * 2002-08-23 2004-03-04 Nisshinbo Industries, Inc. Electric double-layer capacitor
JP2004067498A (en) * 2002-06-13 2004-03-04 Kashima Oil Co Ltd Activated carbon and electrical double layer capacitor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293527A (en) * 1998-04-07 1999-10-26 Petoca Ltd Optically isotropic pitch-based activated carbon fiber and electric double layer capacitor using the same
JP2000040645A (en) * 1998-07-23 2000-02-08 Takeda Chem Ind Ltd Activated charcoal for electrode of electrode dual layer capacitor and manufacture thereof
JP2002033249A (en) * 2000-05-09 2002-01-31 Mitsubishi Chemicals Corp Activated charcoal for electric double-layer capacitor
JP2004067498A (en) * 2002-06-13 2004-03-04 Kashima Oil Co Ltd Activated carbon and electrical double layer capacitor using the same
WO2004019356A1 (en) * 2002-08-23 2004-03-04 Nisshinbo Industries, Inc. Electric double-layer capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121785A (en) * 2009-12-08 2011-06-23 Habikkusu Kk Activated carbonized material
WO2011133454A3 (en) * 2010-04-21 2011-12-29 Corning Incorporated Electrochemical capacitor having lithium containing electrolyte
US8593787B2 (en) 2010-04-21 2013-11-26 Corning Incorporated Electrochemical capacitor having lithium containing electrolyte
WO2012074054A1 (en) * 2010-12-03 2012-06-07 南開工業株式会社 Active carbon powder and process for production thereof, and electric double layer capacitor
JP5099277B1 (en) * 2010-12-03 2012-12-19 南開工業株式会社 Activated carbon powder, method for producing the same, and electric double layer capacitor
WO2014054599A1 (en) * 2012-10-01 2014-04-10 旭化成株式会社 Electrode for electrical storage element, and nonaqueous lithium electrical storage element
CN104704586A (en) * 2012-10-01 2015-06-10 旭化成株式会社 Electrode for electrical storage element, and nonaqueous lithium electrical storage element
JPWO2014054599A1 (en) * 2012-10-01 2016-08-25 旭化成株式会社 Electrode for storage element and non-aqueous lithium storage element
US9979010B2 (en) 2012-10-01 2018-05-22 Asahi Kasei Kabushiki Kaisha Electrode for electrical storage element, and nonaqueous lithium electrical storage element
WO2014088439A1 (en) * 2012-12-03 2014-06-12 Общество С Ограниченной Ответственностью "Товарищество Энергетических И Электромобильных Проектов" Method for manufacturing electrical double layer capacitor electrodes
US9799459B2 (en) 2014-08-08 2017-10-24 Corning Incorporated High pore volume utilization carbon and electric double layer capacitor

Similar Documents

Publication Publication Date Title
KR100836524B1 (en) Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
US8842417B2 (en) High voltage electro-chemical double layer capacitor
JP5344972B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
US8564934B2 (en) Ultracapacitor with improved aging performance
JP2001284188A (en) Manufacturing method of carbon material for electric double-layer capacitor electrode, and manufacturing method of electric double-layer capacitor using the carbon material
JP2010070393A (en) Carbon material for electric double layer capacitor and method for producing the same
JP2006261516A (en) Electric double layer capacitor
KR20090009809A (en) Electrode for electric double layer capacitor and electric double layer capacitor
JP5242090B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
JP2016538715A (en) Ultracapacitor with improved aging performance
JP2007266248A (en) Electric double layer capacitor, carbon material thereof, and electrode thereof
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
JP5145496B2 (en) Method for producing carbon nanostructure
WO2022085694A1 (en) Nonaqueous alkali metal power storage element and positive electrode coating liquid
WO2016043154A1 (en) Electrode material for electrochemical capacitor, electrode coating solution for electrochemical capacitor, electrode for electrochemical capacitor, and electrochemical capacitor
KR100911891B1 (en) Manufacturing method of activated carbon for electric double layer capacitor and the electric double layer capacitor electrode and the capacitor
JP2017092303A (en) Active carbon for electrode for high potential capacitor, manufacturing method thereof, and electric double-layer capacitor with the active carbon
JP2016004962A (en) Electrode material for power storage device, manufacturing method for the same, electrode mixture material for power storage device and method of manufacturing electrode for power storage device
JP2013080780A (en) Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same
JP7184555B2 (en) positive electrode precursor
JP5604227B2 (en) Method for producing activated carbon for capacitor and activated carbon
KR102348929B1 (en) Electrode mateterial, electric double layer capacitor and method of producing the same
JP3872494B1 (en) Winding type electric double layer capacitor
JP2010114356A (en) Electrochemical capacitor
JP4718320B2 (en) Porous material and electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110303