JP2007258084A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2007258084A
JP2007258084A JP2006083340A JP2006083340A JP2007258084A JP 2007258084 A JP2007258084 A JP 2007258084A JP 2006083340 A JP2006083340 A JP 2006083340A JP 2006083340 A JP2006083340 A JP 2006083340A JP 2007258084 A JP2007258084 A JP 2007258084A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
flat
electrode body
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006083340A
Other languages
Japanese (ja)
Inventor
Hidekazu Yamamoto
英和 山本
Atsushi Fukui
厚史 福井
Yasuyuki Kusumoto
靖幸 樟本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006083340A priority Critical patent/JP2007258084A/en
Publication of JP2007258084A publication Critical patent/JP2007258084A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery capable of preventing the thickness of the battery from being increased by charge and discharge, excelling in a charge-discharge characteristic, and having high energy density. <P>SOLUTION: This lithium secondary battery uses a negative electrode 2 including Si or a Si alloy in an active material, and is composed by storing, in a battery case 20 along with a nonaqueous electrolyte, a flat electrode body 10 flatly rolled by interposing a separator 3 between a positive electrode 1 and the negative electrode. Pressure not smaller than 1.0×10<SP>4</SP>N/m<SP>2</SP>is made to act on a flat part of the flat electrode body at least in first charge/discharge of the lithium secondary battery. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はリチウム二次電池に係り、特に、活物質にSi又はSi合金を含む負極を用い、正極とこの負極との間にセパレータを介在させて扁平状に巻いた扁平電極体を非水電解質と一緒に電池容器内に収容させたリチウム二次電池において、このリチウム二次電池を充放電させた場合に、上記の扁平電極体の平面部に撓みなどが生じて電池の厚みが増加するのを防止し、充放電特性に優れると共に高エネルギー密度のリチウム二次電池が得られるようにした点に特徴を有するものである。   The present invention relates to a lithium secondary battery, and in particular, a non-aqueous electrolyte comprising a flat electrode body using a negative electrode containing Si or a Si alloy as an active material and having a separator interposed between the positive electrode and the negative electrode. In a lithium secondary battery housed in a battery container together with this lithium secondary battery, when the lithium secondary battery is charged / discharged, the flat portion of the flat electrode body is bent and the thickness of the battery increases. This is characterized in that a lithium secondary battery having a high energy density and excellent charge / discharge characteristics is obtained.

高出力,高エネルギー密度の新型二次電池として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにしたリチウム二次電池が様々な機器に利用されるようになった。   As a new secondary battery with high output and high energy density, a lithium secondary battery that uses a non-aqueous electrolyte and moves lithium ions between the positive and negative electrodes to perform charging and discharging is used in various devices. It came to be.

そして、近年においては、携帯電話、ノートパソコン、PDAなどのモバイル機器の小型化・軽量化が著しく進行すると共に、多機能化に伴って消費電力も増加している。   In recent years, mobile devices such as mobile phones, notebook personal computers, and PDAs have been remarkably reduced in size and weight, and the power consumption has increased with the increase in functionality.

このため、リチウム二次電池をこれらの電源として使用する場合、リチウム二次電池にも軽量化及び高容量化が要望されている。   For this reason, when a lithium secondary battery is used as these power supplies, the lithium secondary battery is also required to be lighter and have a higher capacity.

ここで、リチウム二次電池においては、その負極の活物質に黒鉛などの炭素材料が使用されているが、近年においては、上記のようにリチウム二次電池の軽量化及び高容量化を図るため、黒鉛などの炭素材料に比べて単位質量及び単位体積あたりの充放電容量に優れる材料として、Si、Ge、Sn等のリチウムと合金化するものを負極の活物質に用いることが提案されており、特に、Siは活物質1gあたり約4000mAhの高い理論容量を示すことから、負極の活物質にSiを用いた様々なリチウム二次電池が提案されている(例えば、特許文献1参照。)。   Here, in the lithium secondary battery, a carbon material such as graphite is used as the active material of the negative electrode. However, in recent years, in order to reduce the weight and increase the capacity of the lithium secondary battery as described above. It has been proposed that materials that are alloyed with lithium, such as Si, Ge, Sn, etc., be used as the active material of the negative electrode, as materials having superior unit mass and charge / discharge capacity per unit volume compared to carbon materials such as graphite. In particular, since Si exhibits a high theoretical capacity of about 4000 mAh per gram of active material, various lithium secondary batteries using Si as the negative electrode active material have been proposed (see, for example, Patent Document 1).

しかし、このように負極の活物質にSiを用いたリチウム二次電池の場合、充放電時におけるSiの膨張収縮による体積変化が大きくなり、正極と負極との間にセパレータを介在させて扁平状に巻いた扁平電極体を非水電解質と一緒に電池容器内に収容させたリチウム二次電池の場合、この扁平電極体の平面部に撓みが生じて電池の厚みが増加し、リチウム二次電池の充放電特性が低下すると共にエネルギー密度が低下するという問題があった。
特開2002−260637号
However, in the case of the lithium secondary battery using Si as the active material of the negative electrode in this way, the volume change due to the expansion and contraction of Si during charging / discharging becomes large, and a flat shape is formed by interposing a separator between the positive electrode and the negative electrode. In the case of a lithium secondary battery in which a flat electrode body wound around is accommodated in a battery container together with a non-aqueous electrolyte, the flat portion of the flat electrode body bends to increase the thickness of the battery, and the lithium secondary battery There is a problem in that the charge / discharge characteristics are reduced and the energy density is lowered.
Japanese Patent Laid-Open No. 2002-260637

本発明は、負極の活物質としてSi又はSi合金を用い、正極と負極との間にセパレータを介在させて扁平状に巻いた扁平電極体を非水電解質と一緒に電池容器内に収容させたリチウム二次電池における上記のような問題を解決することを課題とするものであり、充放電により扁平電極体の平面部に撓みが生じて電池の厚みが増加するのを防止し、充放電特性に優れると共に高エネルギー密度のリチウム二次電池が得られるようにすることを課題とするものである。   In the present invention, Si or Si alloy is used as an active material for a negative electrode, and a flat electrode body wound in a flat shape with a separator interposed between the positive electrode and the negative electrode is housed in a battery container together with a nonaqueous electrolyte. An object of the present invention is to solve the above-mentioned problems in a lithium secondary battery, and charging / discharging prevents the flat portion of the flat electrode body from being bent to increase the thickness of the battery, and charge / discharge characteristics. It is an object of the present invention to obtain a lithium secondary battery having excellent energy efficiency and high energy density.

本発明においては、上記のような課題を解決するため、活物質にSi又はSi合金を含む負極を用い、正極とこの負極との間にセパレータを介在させて扁平状に巻いた扁平電極体を非水電解質と一緒に電池容器内に収容させたリチウム二次電池において、少なくともこのリチウム二次電池の最初の充放電時に上記の扁平電極体における平面部に1.0×104N/m2以上の圧力が作用するようにしたのである。 In the present invention, in order to solve the above-described problems, a flat electrode body that is wound in a flat shape using a negative electrode containing Si or a Si alloy as an active material and interposing a separator between the positive electrode and the negative electrode is provided. In a lithium secondary battery housed in a battery container together with a non-aqueous electrolyte, at least the flat portion of the flat electrode body has 1.0 × 10 4 N / m 2 at the time of the first charge / discharge of the lithium secondary battery. The above pressure is applied.

ここで、リチウム二次電池の最初の充放電時に、扁平電極体における平面部に1.0×104N/m2以上の圧力を作用させるにあたっては、最初の充放電時にこのリチウム二次電池を押圧させるようにする他、この扁平電極体を収容させた電池容器の強度を高め、上記のように充放電時における膨張が大きいSi又はSi合金を含む負極を用いた扁平電極体が充放電時に膨張するのをこの電池容器により抑制して、扁平電極体の平面部に1.0×104N/m2以上の圧力を作用させることができる。 Here, when applying a pressure of 1.0 × 10 4 N / m 2 or more to the flat portion of the flat electrode body during the first charge / discharge of the lithium secondary battery, the lithium secondary battery is used during the first charge / discharge. In addition to increasing the strength of the battery container in which the flat electrode body is housed, the flat electrode body using the negative electrode containing Si or Si alloy having a large expansion during charge / discharge as described above is charged / discharged. The battery container can be prevented from expanding at times, and a pressure of 1.0 × 10 4 N / m 2 or more can be applied to the flat portion of the flat electrode body.

また、上記のようにリチウム二次電池の最初の充放電時に扁平電極体の平面部に圧力を作用させるにあたり、充放電により扁平電極体に撓みなどを一層抑制するためには、扁平電極体の平面部に作用させる圧力を2.0×104N/m2以上にすることが好ましい。 In addition, in order to further suppress the bending of the flat electrode body due to charge / discharge when the pressure is applied to the flat portion of the flat electrode body during the first charge / discharge of the lithium secondary battery as described above, It is preferable that the pressure applied to the flat portion is 2.0 × 10 4 N / m 2 or more.

ここで、本発明のリチウム二次電池において使用する非水電解質は特に限定されず、一般に使用されているものを用いることかでき、例えば、非水系溶媒に溶質を溶解させた非水電解液や、ポリエチレンオキシド,ポリアクリロニトリル等のポリマー電解質に上記の非水電解液を含浸させたゲル状ポリマー電解質などを用いることができる。   Here, the nonaqueous electrolyte used in the lithium secondary battery of the present invention is not particularly limited, and any commonly used one can be used. For example, a nonaqueous electrolyte obtained by dissolving a solute in a nonaqueous solvent, Further, a gel polymer electrolyte obtained by impregnating the above-described non-aqueous electrolyte into a polymer electrolyte such as polyethylene oxide or polyacrylonitrile can be used.

また、上記の非水系溶媒についても特に限定されず、一般に使用されているものを用いることかでき、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネートと、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートとの混合溶媒や、環状カーボネートと1,2−ジメトキシエタン、1,2−ジエトキシエタン等のエーテル系溶媒との混合溶媒を使用することができる。   Further, the above non-aqueous solvent is not particularly limited, and those commonly used can be used. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl A mixed solvent of a chain carbonate such as carbonate or a mixed solvent of a cyclic carbonate and an ether solvent such as 1,2-dimethoxyethane or 1,2-diethoxyethane can be used.

また、上記の溶質についても特に限定されず、一般に使用されているものを用いることができ、例えば、LiPF6,LiBF4,LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,LiAsF6,LiClO4,Li210Cl10,Li212Cl12や、これらの混合物等を用いることができる。 Further, the solute is not particularly limited, and those commonly used can be used. For example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , a mixture thereof, or the like can be used.

また、正極に使用する正極活物質についても特に限定されず、一般に使用されているものを用いることができ、例えば、LiCoO2,LiNiO2,LiMn24,LiMnO2,LiCo0.5Ni0.52,LiNi0.7Co0.2Mn0.12等のリチウム含有遷移金属酸化物や、MnO2などのリチウムを含有していない金属酸化物等を用いることができる。 Further, there is no particular limitation on the positive electrode active material used in the positive electrode, in general there can be used those which are used, for example, LiCoO 2, LiNiO 2, LiMn 2 O 4, LiMnO 2, LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 O 2 and other lithium-containing transition metal oxides, MnO 2 and other metal oxides not containing lithium, and the like can be used.

また、上記のリチウム二次電池における電池容器としては、その厚みを厚くしなくても充分な強度を有し、上記のように充放電により扁平電極体の平面部に撓みが生じて変形するのを防止すると共に、電池の体積密度が低下しないようにするため、その材質として、ヤング率が1.0×1011N/m2以上の強度を有するものを用いることが好ましく、このような材質としてはステンレス鋼などが挙げられる。 In addition, the battery container in the lithium secondary battery has sufficient strength without increasing its thickness, and the flat portion of the flat electrode body is bent and deformed by charging and discharging as described above. In addition, it is preferable to use a material having a Young's modulus having a strength of 1.0 × 10 11 N / m 2 or more, in order to prevent the volume density of the battery from decreasing. Examples include stainless steel.

本発明においては、活物質にSi又はSi合金を含む負極を用い、正極とこの負極との間にセパレータを介在させて扁平状に巻いた扁平電極体を非水電解質と一緒に電池容器内に収容させたリチウム二次電池に対して、少なくとも最初の充放電時に、上記の扁平電極体における平面部に1.0×104N/m2以上の圧力を作用させるようにしたため、この最初の充放電によってSiの膨張収縮が生じるが、上記の圧力により扁平電極体の変形が規制されて、扁平電極体の平面部に撓みが生じるのが防止されるようになる。 In the present invention, a negative electrode containing Si or Si alloy as an active material is used, and a flat electrode body that is wound in a flat shape with a separator interposed between the positive electrode and the negative electrode is placed in a battery container together with a nonaqueous electrolyte. With respect to the accommodated lithium secondary battery, a pressure of 1.0 × 10 4 N / m 2 or more is applied to the flat portion of the flat electrode body at least during the first charge / discharge. Although charging and discharging cause expansion and contraction of Si, the deformation of the flat electrode body is restricted by the above pressure, and the flat portion of the flat electrode body is prevented from being bent.

そして、このように最初の充放電時に扁平電極体の変形が規制されることにより、扁平電極体がこの状態で維持されるようになり、その後、圧力を解除して充放電を行っても、扁平電極体が大きく変形することがなく、扁平電極体の平面部に撓みが生じてリチウム二次電池の厚みが増加するのが防止されるようになり、充放電特性に優れると共に高エネルギー密度のリチウム二次電池が得られるようになる。   And by controlling the deformation of the flat electrode body at the time of the first charge and discharge in this way, the flat electrode body will be maintained in this state, and after that, even if the charge is released by releasing the pressure, The flat electrode body is not greatly deformed, the flat portion of the flat electrode body is prevented from being bent and the thickness of the lithium secondary battery is prevented from increasing, and it has excellent charge / discharge characteristics and high energy density. A lithium secondary battery can be obtained.

以下、この発明に係るリチウム二次電池について実施例を挙げて具体的に説明すると共に、この実施例に係るリチウム二次電池においては、充放電によってその厚みが増加するのが防止されて、充放電特性やエネルギー密度が向上することを、比較例を挙げて明らかにする。なお、本発明のリチウム二次電池は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the lithium secondary battery according to the present invention will be described in detail with reference to examples, and in the lithium secondary battery according to this example, the thickness is prevented from increasing due to charging / discharging. A comparative example will clarify that the discharge characteristics and energy density are improved. The lithium secondary battery of the present invention is not limited to those shown in the following examples, and can be implemented with appropriate modifications within a range that does not change the gist thereof.

(実施例1,2及び比較例1)
実施例1,2及び比較例1においては、下記のようにして作製した負極と正極と非水電解液とを用いるようにした。
(Examples 1 and 2 and Comparative Example 1)
In Examples 1 and 2 and Comparative Example 1, a negative electrode, a positive electrode, and a non-aqueous electrolyte prepared as described below were used.

[負極の作製]
負極の活物質として平均粒径が15μmのケイ素粉末(純度99.9%)を用いると共に、バインダーとしてガラス転移温度が190℃,密度が1.1g/cm3の熱可塑性ポリイミドを用い、上記の活物質とバインダーとが90:10の重量比になるように分散媒のN−メチル−2−ピロリドンに混合させて、負極合剤スラリーを調製した。
[Production of negative electrode]
A silicon powder (purity 99.9%) having an average particle diameter of 15 μm is used as the negative electrode active material, and a thermoplastic polyimide having a glass transition temperature of 190 ° C. and a density of 1.1 g / cm 3 is used as the binder. The active material and the binder were mixed with N-methyl-2-pyrrolidone as a dispersion medium so that the weight ratio was 90:10 to prepare a negative electrode mixture slurry.

次いで、この負極合剤スラリーを、表面粗さRaが0.3μm,厚みが20μmのCu−Ni−Si−Mg(Ni:3wt%,Si:0.65wt%,Mg:0.15wt%)合金箔からなる負極集電体の両面に塗布し、これを乾燥させ、負極集電体上に5.6mg/cm2の負極合剤層を形成した後、これを380mm×52mmの長方形状に切り抜き、圧延した後、アルゴン雰囲気中において400℃で10時間熱処理して負極を作製した。 Next, this negative electrode mixture slurry was made of a Cu—Ni—Si—Mg (Ni: 3 wt%, Si: 0.65 wt%, Mg: 0.15 wt%) alloy having a surface roughness Ra of 0.3 μm and a thickness of 20 μm. This was applied to both sides of a negative electrode current collector made of foil, dried, and a negative electrode mixture layer of 5.6 mg / cm 2 was formed on the negative electrode current collector. Then, this was cut into a rectangular shape of 380 mm × 52 mm After rolling, a negative electrode was produced by heat treatment at 400 ° C. for 10 hours in an argon atmosphere.

そして、この負極の端部に、厚みが70μm,長さが35mm,幅が4mmのニッケル平板からなる負極集電タブをぐさり法により取り付けた。   And the negative electrode current collection tab which consists of a nickel flat plate whose thickness is 70 micrometers, length is 35 mm, and width is 4 mm was attached to the edge part of this negative electrode by the spotting method.

[正極の作製]
正極の活物質として、平均粒径が13μm,BET比表面積が0.35m2/gのLiCoO2粉末と、平均粒径が11μm,BET比表面積が0.50m2/gのLiMn1/3Ni1/3Co1/32粉末とを、70:30の重量比になるように混合させたものを用いた。
[Production of positive electrode]
As an active material for the positive electrode, the average particle diameter of 13 .mu.m, and LiCoO 2 powder having a BET specific surface area of 0.35 m 2 / g, an average particle diameter of 11 [mu] m, LiMn 1/3 Ni of BET specific surface area of 0.50 m 2 / g a 1/3 Co 1/3 O 2 powder, 70: was used by mixing such that the 30 weight ratio of.

そして、上記の活物質粉末と、導電剤の炭素材料粉末と、バインダーのポリフッ化ビニリデンとを、94:3:3の重量比になるようにして、分散媒のN−メチル−2−ピロリドンに加え、これを混練して正極合剤スラリー調製した。   Then, the active material powder, the carbon material powder of the conductive agent, and the polyvinylidene fluoride as the binder are made to have a weight ratio of 94: 3: 3 to the dispersion medium N-methyl-2-pyrrolidone. In addition, this was kneaded to prepare a positive electrode mixture slurry.

次いで、この正極合剤スラリーを、厚みが15μm,長さが402mm,幅が50mmのアルミニウム箔からなる正極集電体の片面に、長さ340mm,幅50mmの範囲で塗布すると共に、この正極集電体の反対側の面に、長さ271mm,幅50mmの範囲で塗布し、これを乾燥させて圧延し、正極集電体上に48mg/cm2の正極合剤層が形成された正極を作製した。 Next, this positive electrode mixture slurry was applied to one side of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, a length of 402 mm, and a width of 50 mm within a range of 340 mm in length and 50 mm in width. A positive electrode in which a positive electrode mixture layer of 48 mg / cm 2 is formed on a positive electrode current collector is coated on the opposite surface of the electric body in a range of 271 mm in length and 50 mm in width, dried and rolled. Produced.

そして、この正極において、正極合剤層が設けられていない正極集電体の部分に、厚み70μm,長さ35mm,幅4mmのアルミニウム平板からなる正極集電タブを超音波溶着法により取り付けた。   And in this positive electrode, the positive electrode current collection tab which consists of an aluminum flat plate of thickness 70micrometer, length 35mm, and width 4mm was attached to the part of the positive electrode electrical power collector in which the positive mix layer was not provided by the ultrasonic welding method.

[非水電解液の作製]
非水電解液を作製するにあたっては、エチレンカーボネートとジエチルカーボネートとフルオロエチレンカーボネートとを2:8:1の体積比で混合させた混合溶媒に、溶質として、LiPF6とLiBF4とをそれぞれ0.5モル/リットル溶解させて非水電解液を作製した。
[Preparation of non-aqueous electrolyte]
In preparing the non-aqueous electrolyte, LiPF 6 and LiBF 4 were each added as a solute in a mixed solvent in which ethylene carbonate, diethyl carbonate, and fluoroethylene carbonate were mixed at a volume ratio of 2: 8: 1. A non-aqueous electrolyte was prepared by dissolving 5 mol / liter.

そして、リチウム二次電池を作製するにあたっては、厚みが22μm,長さが430mm,幅が54.5mmのポリエチレン多孔質体からなるセパレータを2枚使用し、図1(A),(B)に示すように、上記の正極1と負極2とが上記のセパレータ3を介して対向するようにして、これらを所定の折り曲げ位置において折り曲げ、正極1に設けられた正極集電タブ1a及び負極2に設けられた負極集電タブ2aがそれぞれ最外周に位置するように捲回して扁平電極体10を作製した。なお、この扁平電極体10においては、その厚みYが2.5mm、幅Zが54.5mmになっており、また平面部の長さXは30mm、平面部の実質的な幅は、正極1と負極2とが対向する部分の幅で、実質的には正極1の幅である50mmになっている。   In producing a lithium secondary battery, two separators made of a polyethylene porous body having a thickness of 22 μm, a length of 430 mm, and a width of 54.5 mm were used, as shown in FIGS. 1 (A) and 1 (B). As shown in the figure, the positive electrode 1 and the negative electrode 2 face each other with the separator 3 interposed therebetween, and these are bent at a predetermined bending position, and the positive electrode current collecting tab 1a and the negative electrode 2 provided on the positive electrode 1 are bent. The flat electrode body 10 was produced by winding so that the provided negative electrode current collecting tabs 2a were positioned on the outermost periphery. In this flat electrode body 10, the thickness Y is 2.5 mm and the width Z is 54.5 mm, the length X of the flat portion is 30 mm, and the substantial width of the flat portion is the positive electrode 1. The width of the portion where the negative electrode 2 and the negative electrode 2 face each other is substantially 50 mm, which is the width of the positive electrode 1.

次いで、図2に示すように、上記の扁平電極体10をアルミニウムラミネートフィルムで構成された電池容器20内に収容させると共に、この電池容器20内に上記の非水電解液を加え、その後、上記の正極集電タブ1aと負極集電タブ2aとを外部に取り出すようにして、上記の電池容器20の開口部を封口させて、リチウム二次電池を作製した。   Next, as shown in FIG. 2, the flat electrode body 10 is accommodated in a battery container 20 made of an aluminum laminate film, and the nonaqueous electrolyte is added to the battery container 20. The positive electrode current collecting tab 1a and the negative electrode current collecting tab 2a were taken out to the outside, and the opening of the battery container 20 was sealed to produce a lithium secondary battery.

そして、実施例1,2及び比較例1においては、上記のように作製したリチウム二次電池を充放電させるにあたり、上記の扁平電極体10の実質的な平面部である30mm×50mmの大きさの部分に対して、実施例1では6.7×104N/m2の圧力を、実施例2では2.4×104N/m2の圧力を、比較例1では2.4×10N/m2の圧力を作用させた状態で、それぞれ25℃において、電流値200mAで4.3Vまで充電させ、さらに4.3Vに保持したまま電流値が50mAになるまで充電させた後、電流値200mAで2.75Vまで放電させて、1サイクルの充放電を行った。 In Examples 1 and 2 and Comparative Example 1, when charging and discharging the lithium secondary battery produced as described above, a size of 30 mm × 50 mm, which is a substantially flat portion of the flat electrode body 10. The pressure of 6.7 × 10 4 N / m 2 in Example 1, 2.4 × 10 4 N / m 2 in Example 2, and 2.4 × in Comparative Example 1 In a state where a pressure of 10 N / m 2 was applied, the battery was charged to 4.3 V at a current value of 200 mA at 25 ° C., and further charged to a current value of 50 mA while being held at 4.3 V. The battery was discharged to 2.75 V at a value of 200 mA and charged and discharged for one cycle.

そして、上記のように1サイクルの充放電を行った後、実施例1,2及び比較例1の各リチウム二次電池の厚みを測定し、充放電を行う前の上記のリチウム二次電池の厚みを基準の100として、1サイクル後における実施例1,2及び比較例1の各リチウム二次電池の厚みを算出し、その結果を下記の表1に示した。   And after charging / discharging 1 cycle as mentioned above, the thickness of each lithium secondary battery of Examples 1, 2 and Comparative Example 1 is measured, and the lithium secondary battery before charging / discharging is performed. The thickness of each of the lithium secondary batteries of Examples 1 and 2 and Comparative Example 1 after one cycle was calculated with the thickness as 100, and the results are shown in Table 1 below.

また、上記の1サイクルの充放電を行った後、実施例1のものにおいては、上記の場合と同様に、扁平電極体10の実質的な平面部である30mm×50mmの大きさの部分に対して6.7×104N/m2の圧力を作用させる一方、実施例2及び比較例1のものにおいては、上記の圧力を作用させないようにして、上記の充放電を100サイクル行い、実施例1,2及び比較例1の各リチウム二次電池の100サイクル後の厚みを測定し、充放電を行う前の上記のリチウム二次電池の厚みを基準の100として、実施例1,2及び比較例1の各リチウム二次電池の100サイクル後の厚みを算出し、その結果を下記の表1に示した。 In addition, after charging and discharging for one cycle as described above, in the case of Example 1, as in the above case, the portion of the flat electrode body 10 having a size of 30 mm × 50 mm, which is a substantially flat portion. On the other hand, while applying a pressure of 6.7 × 10 4 N / m 2 , in the case of Example 2 and Comparative Example 1, the above charge / discharge was performed 100 cycles without applying the above pressure, The thicknesses of the lithium secondary batteries of Examples 1 and 2 and Comparative Example 1 after 100 cycles were measured, and the thicknesses of the lithium secondary batteries before charging and discharging were taken as the standard 100. And the thickness after 100 cycles of each lithium secondary battery of Comparative Example 1 was calculated, and the results are shown in Table 1 below.

また、実施例1,2及び比較例1の各リチウム二次電池について、上記のように100サイクルの充放電を行った時点おける放電容量維持率を算出し、その結果を下記の表1に示した。   Further, for each of the lithium secondary batteries of Examples 1 and 2 and Comparative Example 1, the discharge capacity retention rate at the time when 100 cycles of charge and discharge were performed as described above was calculated, and the results are shown in Table 1 below It was.

Figure 2007258084
Figure 2007258084

この結果、少なくとも1サイクルの充放電時において、扁平電極体の実質的な平面部に対して1.0N×104N/m2以上の圧力を作用させるようにした実施例1,2の各リチウム二次電池においては、扁平電極体の実質的な平面部に対して作用させる圧力が1.0N×104N/m2未満になった比較例1のリチウム二次電池に比べて、1サイクル後及び100サイクル後における厚みの増加が大幅に少なくなっていると共に、100サイクル後における放電容量維持率も大きく向上しており、充放電特性及びエネルギー密度が大幅に改善された。 As a result, each of Examples 1 and 2 in which a pressure of 1.0 N × 10 4 N / m 2 or more was applied to a substantially flat portion of the flat electrode body at the time of charge / discharge of at least one cycle. Compared to the lithium secondary battery of Comparative Example 1 in which the pressure applied to the substantially flat portion of the flat electrode body is less than 1.0 N × 10 4 N / m 2 in the lithium secondary battery, The increase in thickness after the cycle and after the 100th cycle was significantly reduced, and the discharge capacity retention rate after the 100th cycle was also greatly improved, and the charge / discharge characteristics and energy density were greatly improved.

また、実施例1,2のリチウム二次電池を比較した場合、扁平電極体の実質的な平面部に対して6.7N×104N/m2の強い圧力を各充放電サイクル時に作用させた実施例1のリチウム二次電池においては、1サイクル後及び100サイクル後における厚みの増加がさらに少なくなると共に、100サイクル後における放電容量維持率も大きくなっていたが、実施例2のリチウム二次電池のように、1サイクル目の充放電時にだけ、扁平電極体の実質的な平面部に対して2.4N×104N/m2の圧力を作用させた場合においても、100サイクル後における厚みの増加が少なくなっていると共に、100サイクル後における放電容量維持率も大きくなっていた。これは、1サイクル目の充放電時に扁平電極体の変形が規制されることにより、その後、圧力を解除して充放電を行っても、扁平電極体がこの状態で維持されるようになるためであると考えられる。 Further, when comparing the lithium secondary batteries of Examples 1 and 2, a strong pressure of 6.7 N × 10 4 N / m 2 was applied to each substantially flat portion of the flat electrode body during each charge / discharge cycle. In the lithium secondary battery of Example 1, the increase in thickness after 1 cycle and after 100 cycles was further reduced, and the discharge capacity retention rate after 100 cycles was also increased. Even when a pressure of 2.4 N × 10 4 N / m 2 is applied to the substantially flat portion of the flat electrode body only at the time of charge / discharge at the first cycle as in the secondary battery, after 100 cycles In addition, the increase in the thickness was reduced, and the discharge capacity retention rate after 100 cycles was also increased. This is because the deformation of the flat electrode body is restricted at the time of charge / discharge in the first cycle, so that the flat electrode body is maintained in this state even after the pressure is released and the charge / discharge is performed. It is thought that.

実施例1,2及び比較例1において作製した扁平電極体の概略斜視図及び部分断面説明図である。It is the schematic perspective view and partial cross-section explanatory drawing of the flat electrode body produced in Example 1, 2 and the comparative example 1. FIG. 実施例1,2及び比較例1において作製したリチウム二次電池の概略平面図である。1 is a schematic plan view of lithium secondary batteries manufactured in Examples 1 and 2 and Comparative Example 1. FIG.

符号の説明Explanation of symbols

1 正極
1a 正極集電タブ
2 負極
2a 負極集電タブ
3 セパレータ
10 扁平電極体
20 電池容器
X 扁平電極体の平面部の長さ
Y 扁平電極体の厚み
Z 扁平電極体の幅
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode current collection tab 2 Negative electrode 2a Negative electrode current collection tab 3 Separator 10 Flat electrode body 20 Battery container X The length of the flat part of a flat electrode body Y The thickness of a flat electrode body Z The width of a flat electrode body

Claims (4)

活物質にSi又はSi合金を含む負極を用い、正極とこの負極との間にセパレータを介在させて扁平状に巻いた扁平電極体を非水電解質と一緒に電池容器内に収容させたリチウム二次電池において、少なくともこのリチウム二次電池の最初の充放電時に上記の扁平電極体における平面部に1.0×104N/m2以上の圧力が作用するようにしたことを特徴とするリチウム二次電池。 Using a negative electrode containing Si or a Si alloy as an active material, a flat electrode body wound in a flat shape with a separator interposed between the positive electrode and the negative electrode is housed in a battery container together with a non-aqueous electrolyte. A lithium battery characterized in that a pressure of 1.0 × 10 4 N / m 2 or more acts on the flat portion of the flat electrode body at least during the first charge / discharge of the lithium secondary battery. Secondary battery. 請求項1に記載のリチウム二次電池において、最初の充放電時にこのリチウム二次電池を押圧させて、上記の扁平電極体における平面部に1.0×104N/m2以上の圧力を作用させたことを特徴とするリチウム二次電池。 2. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is pressed at the time of first charge and discharge, and a pressure of 1.0 × 10 4 N / m 2 or more is applied to the flat portion of the flat electrode body. A lithium secondary battery characterized by being acted on. 請求項1又は請求項2に記載のリチウム二次電池において、上記の扁平電極体の平面部に作用させる圧力を2.0×104N/m2以上にしたことを特徴とする特徴とするリチウム二次電池。 3. The lithium secondary battery according to claim 1, wherein the pressure applied to the flat portion of the flat electrode body is 2.0 × 10 4 N / m 2 or more. Lithium secondary battery. 請求項1〜請求項3の何れか1項に記載のリチウム二次電池において、上記の電池容器に用いる材質のヤング率が1.0×1011N/m2以上であることを特徴とする特徴とするリチウム二次電池。 4. The lithium secondary battery according to claim 1, wherein a Young's modulus of a material used for the battery container is 1.0 × 10 11 N / m 2 or more. A featured lithium secondary battery.
JP2006083340A 2006-03-24 2006-03-24 Lithium secondary battery Pending JP2007258084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006083340A JP2007258084A (en) 2006-03-24 2006-03-24 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083340A JP2007258084A (en) 2006-03-24 2006-03-24 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2007258084A true JP2007258084A (en) 2007-10-04

Family

ID=38632093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083340A Pending JP2007258084A (en) 2006-03-24 2006-03-24 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2007258084A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266761A (en) * 2008-04-30 2009-11-12 Panasonic Corp Nonaqueous electrolyte secondary battery and its manufacturing method
JP2014116237A (en) * 2012-12-11 2014-06-26 Sei Kk Electrochemical device
JP2016110777A (en) * 2014-12-04 2016-06-20 積水化学工業株式会社 Method for manufacturing lithium ion secondary battery
CN110249473A (en) * 2017-02-24 2019-09-17 三洋电机株式会社 Non-aqueous electrolyte secondary battery
JP7421044B2 (en) 2017-11-02 2024-01-24 国立大学法人 東京大学 Method for manufacturing negative electrode for secondary battery and method for manufacturing secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185224A (en) * 1999-12-28 2001-07-06 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003007305A (en) * 2001-04-19 2003-01-10 Sanyo Electric Co Ltd Electrode for secondary lithium battery and secondary lithium battery
JP2003059538A (en) * 2001-08-20 2003-02-28 Sony Corp Manufacturing method of cell
JP2003157888A (en) * 2001-11-26 2003-05-30 Toshiba Corp Plate-like secondary battery and method of manufacture
JP2003297431A (en) * 2002-04-04 2003-10-17 Sony Corp Battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185224A (en) * 1999-12-28 2001-07-06 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003007305A (en) * 2001-04-19 2003-01-10 Sanyo Electric Co Ltd Electrode for secondary lithium battery and secondary lithium battery
JP2003059538A (en) * 2001-08-20 2003-02-28 Sony Corp Manufacturing method of cell
JP2003157888A (en) * 2001-11-26 2003-05-30 Toshiba Corp Plate-like secondary battery and method of manufacture
JP2003297431A (en) * 2002-04-04 2003-10-17 Sony Corp Battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266761A (en) * 2008-04-30 2009-11-12 Panasonic Corp Nonaqueous electrolyte secondary battery and its manufacturing method
JP2014116237A (en) * 2012-12-11 2014-06-26 Sei Kk Electrochemical device
JP2016110777A (en) * 2014-12-04 2016-06-20 積水化学工業株式会社 Method for manufacturing lithium ion secondary battery
CN110249473A (en) * 2017-02-24 2019-09-17 三洋电机株式会社 Non-aqueous electrolyte secondary battery
CN110249473B (en) * 2017-02-24 2022-07-08 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JP7421044B2 (en) 2017-11-02 2024-01-24 国立大学法人 東京大学 Method for manufacturing negative electrode for secondary battery and method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
US7556881B2 (en) Lithium secondary battery
JP4878687B2 (en) Lithium secondary battery
JP5219339B2 (en) Lithium secondary battery
JP5279018B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4878683B2 (en) Lithium secondary battery
JP2009099523A (en) Lithium secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
JP2007012559A (en) Battery
JP2010108915A (en) Nonaqueous electrolytic secondary battery
JP5150095B2 (en) Non-aqueous electrolyte battery
JP4958405B2 (en) Nonaqueous electrolyte secondary battery
JP2007258084A (en) Lithium secondary battery
JP2011181386A (en) Nonaqueous electrolyte secondary battery
JP2009081067A (en) Non-aqueous secondary battery
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP6567442B2 (en) Lithium secondary battery charge / discharge method
JP2007227239A (en) Anode for a lithium secondary battery and lithium secondary cell
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2007095570A (en) Lithium secondary battery and negative electrode used in that battery
JP3575308B2 (en) Non-aqueous electrolyte secondary battery
JP2008210576A (en) Negative electrode plate for non-aqueous electrolyte secondary battery, and nonaqueous secondary battery using that negative electrode plate
JP2010218855A (en) Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP3691714B2 (en) Lithium secondary battery
JP2007335308A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106