JP5279018B2 - Lithium ion secondary battery and manufacturing method thereof - Google Patents

Lithium ion secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP5279018B2
JP5279018B2 JP2008307642A JP2008307642A JP5279018B2 JP 5279018 B2 JP5279018 B2 JP 5279018B2 JP 2008307642 A JP2008307642 A JP 2008307642A JP 2008307642 A JP2008307642 A JP 2008307642A JP 5279018 B2 JP5279018 B2 JP 5279018B2
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
active material
positive electrode
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008307642A
Other languages
Japanese (ja)
Other versions
JP2010135111A (en
Inventor
竜一 笠原
次郎 入山
徹也 梶田
達治 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2008307642A priority Critical patent/JP5279018B2/en
Publication of JP2010135111A publication Critical patent/JP2010135111A/en
Application granted granted Critical
Publication of JP5279018B2 publication Critical patent/JP5279018B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、正極、セパレータ、負極及びセパレータの順に積層した構造を有する積層素子を外装フィルムに収納したリチウムイオン二次電池およびその製造方法に関する。 The present invention relates to a lithium ion secondary battery in which a laminated element having a structure in which a positive electrode, a separator, a negative electrode, and a separator are laminated in this order is housed in an exterior film, and a method for manufacturing the same .

携帯電話やノートパソコン等のモバイル機器の普及により、その電力源となる二次電池の役割が重要視されている。これらの二次電池には小型、軽量でかつ高容量であり、充放電を繰り返した場合でも充放電容量の劣化が起こりにくいことが求められる。このような特性を満たす二次電池として、現在ではリチウムイオン二次電池が多く使用されている。   With the widespread use of mobile devices such as mobile phones and laptop computers, the role of secondary batteries as power sources is gaining importance. These secondary batteries are required to be small, light and have a high capacity, and to be less susceptible to deterioration of charge / discharge capacity even when charge / discharge is repeated. Currently, many lithium ion secondary batteries are used as secondary batteries satisfying such characteristics.

リチウムイオン二次電池の負極を構成する負極活物質としては、これまでは主としてグラファイトやハードカーボン(難黒鉛化炭素)などの炭素材料を主体とする構成が用いられてきた。炭素材料が主体の負極活物質を用いた場合は、電池の充放電サイクルの繰り返し後の放電容量を増加させることができるという特徴がある。しかし、負極活物質として炭素材料を用いたリチウムイオン二次電池は、従来でもすでに理論的な限界付近までの充放電容量の向上が実現されているために、今後の大幅な充放電容量の増加を期待することはできない。その一方で、リチウムイオン二次電池のさらなる充放電容量の向上に対する要求が強いことから、炭素材料よりも高容量、すなわち高いエネルギー密度を実現できる負極活物質の検討が行われている。   As a negative electrode active material constituting a negative electrode of a lithium ion secondary battery, a structure mainly composed of a carbon material such as graphite or hard carbon (non-graphitizable carbon) has been used so far. When a negative electrode active material mainly composed of a carbon material is used, there is a feature that the discharge capacity after repetition of the charge / discharge cycle of the battery can be increased. However, lithium-ion secondary batteries using carbon materials as the negative electrode active material have already achieved improvements in charge / discharge capacity up to near the theoretical limit. Can't expect. On the other hand, since there is a strong demand for further improvement of the charge / discharge capacity of the lithium ion secondary battery, a negative electrode active material capable of realizing a higher capacity, that is, a higher energy density than that of the carbon material has been studied.

リチウムイオン二次電池の負極活物質としては、高エネルギー密度でしかも軽量であるという特徴から金属リチウムの使用が検討されている。しかし、金属リチウムを用いた場合は充放電サイクルの繰り返しに伴い、充電時に金属リチウム領域の表面にデンドライト(樹枝状晶)が析出する可能性が知られている。デンドライトが析出すると、電池を構成するセパレータを貫通して内部短絡を発生させることがあり、これによって電池の寿命が短くなってしまうという問題があった。このため、単純に金属リチウムを負極活物質として用いることには困難があった。   As a negative electrode active material for a lithium ion secondary battery, the use of metallic lithium is being studied because of its high energy density and light weight. However, when metallic lithium is used, it is known that dendrites (dendritic crystals) may be deposited on the surface of the metallic lithium region during charging as the charge / discharge cycle is repeated. When dendrite is deposited, there is a problem that an internal short circuit may occur through the separator constituting the battery, which shortens the battery life. For this reason, it has been difficult to simply use metallic lithium as the negative electrode active material.

またリチウムイオン二次電池に蓄積可能なエネルギー密度を高める方法として、充電によって電解液中のリチウム(Li)イオンと反応して組成式がLixA(xはLiの含有量、Aは金属元素)のリチウム合金を形成する、いわゆるLi吸蔵物質を負極活物質として用いることが検討されている。このような負極活物質を用いる場合には、単位体積当りのリチウムイオンの吸蔵放出量が炭素材料のみの場合などに比べて大きいために、電池の容量を増大させることが期待されている。非特許文献1には、負極活物質としてケイ素を含有するLi吸蔵物質を用いる例が記載されている。 Further, as a method for increasing the energy density that can be stored in the lithium ion secondary battery, the composition formula is Li x A (x is the Li content, A is the metal element) by reacting with lithium (Li) ions in the electrolytic solution by charging. The so-called Li storage material that forms a lithium alloy is used as a negative electrode active material. When such a negative electrode active material is used, it is expected that the capacity of the battery is increased because the amount of occlusion and release of lithium ions per unit volume is larger than that of a carbon material alone. Non-Patent Document 1 describes an example using a Li storage material containing silicon as a negative electrode active material.

非特許文献1に記載されているケイ素を含有する負極活物質では、単位体積当りのリチウムイオンの吸蔵放出量が比較的多く、このためリチウムイオン二次電池の高容量化を図ることができる。しかし、このように負極活物質としてケイ素を用いた場合は、一般にリチウムイオンの吸蔵、放出が行われる際に、負極活物質自体が膨張収縮を繰り返すことにより、負極材料の微粉化が進行することが判明している。この負極材料の微粉化により、充放電によって不可逆容量が大きくなるという問題が生じ、これにより二次電池としてのサイクル特性が低くなってしまうという問題があった。なおここでサイクル特性とは、二次電池に対して一定回数の充放電を繰り返し行った場合に、充放電可能な容量が初期の充放電容量に対して低下する割合のことをいう。一定回数の充放電の後で、この充放電可能な容量の低下の割合が大きい場合をサイクル特性が低いと称している。   In the negative electrode active material containing silicon described in Non-Patent Document 1, the amount of occlusion and release of lithium ions per unit volume is relatively large, and thus the capacity of the lithium ion secondary battery can be increased. However, when silicon is used as the negative electrode active material in this way, generally, when lithium ions are occluded and released, the negative electrode active material itself repeatedly expands and contracts, whereby the pulverization of the negative electrode material proceeds. Is known. Due to the pulverization of the negative electrode material, there arises a problem that the irreversible capacity is increased due to charge and discharge, thereby causing a problem that cycle characteristics as a secondary battery are lowered. Here, the cycle characteristics refer to the rate at which the chargeable / dischargeable capacity decreases with respect to the initial charge / discharge capacity when the secondary battery is repeatedly charged / discharged a certain number of times. When the rate of decrease in the chargeable / dischargeable capacity is large after a certain number of charge / discharge cycles, the cycle characteristics are referred to as low.

このように、リチウムイオン二次電池のサイクル特性が低いことへの対策として、特許文献1には負極として、ケイ素を含む活物質粒子をバインダと混合し、非酸化性雰囲気下で焼結する材料が提案されている。特許文献1における方法では、バインダとしてポリイミド材料を用いることにより、ケイ素を負極活物質として用いた場合の負極材料の微粉化を抑制することが可能となり、電池のサイクル特性が比較的向上することが確認されている。一方で、活物質粒子間、及び活物質粒子−集電体間の結着力が強固になる。このため正極、セパレータ、負極及びセパレータの順に積層した構造をとる電池では、負極活物質自体の膨張収縮による位置ずれ、あるいはシワの発生により、負極−セパレータ間に隙間が生じ、金属リチウムの析出及び発生したガスが隙間内部に残るため、サイクル特性が低下するという問題を有していた。   As described above, as a countermeasure against the low cycle characteristics of the lithium ion secondary battery, Patent Document 1 discloses, as a negative electrode, a material in which active material particles containing silicon are mixed with a binder and sintered in a non-oxidizing atmosphere. Has been proposed. In the method in Patent Document 1, by using a polyimide material as a binder, it becomes possible to suppress pulverization of the negative electrode material when silicon is used as the negative electrode active material, and the cycle characteristics of the battery can be relatively improved. It has been confirmed. On the other hand, the binding force between the active material particles and between the active material particles and the current collector is strengthened. For this reason, in a battery having a structure in which a positive electrode, a separator, a negative electrode, and a separator are laminated in this order, a gap is generated between the negative electrode and the separator due to misalignment due to expansion and contraction of the negative electrode active material itself, or generation of wrinkles. Since the generated gas remains inside the gap, there is a problem that the cycle characteristics are deteriorated.

また特許文献2では、曲げによるシワ発生の防止対策として、ラミネートフィルム(ラミネート膜ともいう)が外装材を兼ねる薄型電池において、ラミネートフィルム中の金属箔(金属膜ともいう)を集電体(集電部材ともいう)とする構成が提案されている。この構成は、ケイ素を負極活物質として用いた場合にも作製することが出来るが、正極、セパレータ、負極及びセパレータの順に積層した構造をとり、かつ最外層以外の、集電体の両面に活物質が配置している負極を有する電池においては、十分な効果は得られない。   In Patent Document 2, as a measure for preventing wrinkling due to bending, a thin film battery in which a laminate film (also referred to as a laminate film) also serves as an exterior material is used to collect a metal foil (also referred to as a metal film) in the laminate film as a current collector (collector). A configuration called an electric member has been proposed. This structure can also be produced when silicon is used as the negative electrode active material, but has a structure in which a positive electrode, a separator, a negative electrode, and a separator are laminated in this order, and is active on both sides of the current collector other than the outermost layer. In a battery having a negative electrode in which a substance is arranged, a sufficient effect cannot be obtained.

特開2002−260637号公報Japanese Patent Laid-Open No. 2002-260637 特開2006−172766号公報JP 2006-172766 A Hong Li, Xuejie Huang, Liquan Chen, Zhengang Wu, Yong Liang,“A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries”Electrochemical and Solid-State Letters, Volume 2, Issue 11, pp.547-549, (November 1999)Hong Li, Xuejie Huang, Liquan Chen, Zhengang Wu, Yong Liang, “A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries” Electrochemical and Solid-State Letters, Volume 2, Issue 11, pp.547-549, ( (November 1999)

ケイ素を含む活物質粒子をバインダと混合し、非酸化性雰囲気下で焼結する方法では、特許文献1に記載の通り、電池のサイクル特性の改善において一定の効果を有する。その反面、負極活物質自体の膨張収縮による位置ずれ、あるいはシワの発生により、負極−セパレータ間に隙間が生じ、金属リチウムの析出及び発生したガスが隙間内部に残るため、サイクル特性が低下するという問題を有している。中心部に巻き芯を配置し、その周囲に正極、セパレータ、負極を引っ張りながら巻回させる円筒セルでは、位置ずれ及びシワの問題は比較的生じにくいが、正極、セパレータ、負極及びセパレータの順に積層した構造をとる電池では、上記部材を完全に固定させることが難しいため、位置ずれ及びシワが発生しやすくなる問題がある。   The method of mixing active material particles containing silicon with a binder and sintering in a non-oxidizing atmosphere has a certain effect in improving the cycle characteristics of the battery as described in Patent Document 1. On the other hand, due to misalignment due to expansion and contraction of the negative electrode active material itself, or generation of wrinkles, a gap is formed between the negative electrode and the separator, and metal lithium is deposited and the generated gas remains inside the gap. Have a problem. In a cylindrical cell in which a winding core is placed in the center and wound while pulling the positive electrode, separator, and negative electrode around it, misalignment and wrinkle problems are relatively unlikely to occur, but the positive electrode, separator, negative electrode, and separator are stacked in this order. In a battery having such a structure, it is difficult to completely fix the above member, so that there is a problem that misalignment and wrinkles are likely to occur.

また特許文献2では、曲げによるシワ発生の防止対策として、ラミネート膜が外装材を兼ねる薄型電池において、ラミネートフィルム中の金属箔を集電体とする構成が提案されている。この構成では、最外層のラミネートフィルム中の金属箔からなる集電体に関しては、充放電を行っても歪み及びシワは低減できるものの、最外層以外の、集電体の両面に活物質を配置している負極においては、十分な効果は得られない。さらに、ラミネートフィルム中の金属箔を集電体として用いる場合、ラミネートフィルム上に活物質層を形成する工程があるため、どうしても100℃以上の高温乾燥処理が必要であり、ラミネートフィルムに適用できる接着樹脂の種類が限定される。   Patent Document 2 proposes a configuration in which a metal foil in a laminate film is used as a current collector in a thin battery in which a laminate film also serves as an exterior material as a measure for preventing wrinkling due to bending. In this configuration, for the current collector made of the metal foil in the outermost layer laminate film, the distortion and wrinkle can be reduced even when charging and discharging, but the active material is arranged on both sides of the current collector other than the outermost layer. In the case of the negative electrode, sufficient effects cannot be obtained. Furthermore, when the metal foil in the laminate film is used as a current collector, there is a step of forming an active material layer on the laminate film, so a high temperature drying treatment of 100 ° C. or higher is absolutely necessary, and adhesion that can be applied to the laminate film The kind of resin is limited.

本発明の課題は、正極、セパレータ、負極及びセパレータの順に積層した構造を有する積層素子を外装フィルムに収納するリチウムイオン二次電池において、積層素子に充放電による歪み、シワ等の発生しない良好なサイクル特性が得られるリチウムイオン二次電池およびその製造方法を提供することにある。 An object of the present invention is to provide a lithium-ion secondary battery in which a laminated element having a structure in which a positive electrode, a separator, a negative electrode, and a separator are laminated in order is housed in an exterior film. An object of the present invention is to provide a lithium ion secondary battery that can obtain cycle characteristics and a method for manufacturing the lithium ion secondary battery.

本発明のリチウムイオン二次電池は正極集電体上に正極活物質層を有する正極と、負極集電体上に負極活物質層を有する負極とを、セパレータを介して積層した積層素子を外装フィルムに収納したリチウムイオン二次電池において、正極集電体の周縁部および負極集電体の周縁部にそれぞれ正極活物質層、負極活物質層の非形成部を有し、正極集電体の非形成部および負極集電体の非形成部が、セパレータおよび外装フィルムに対して同一位置に接着されている。
これにより、正極及び負極において、非形成部でセパレータ及び外装フィルムと接着するのはそれぞれの集電体となる。また正極集電体及び負極集電体の周縁部は、正極同士及び負極同士を電気的に接続させる箇所を除き、全周においてセパレータ及び外装フィルムと接着されてもよい。これにより充放電を行い負極にリチウムが挿入脱離することにより体積変が生じても、負極の位置ずれ及びシワの発生を抑制することが出来る。これによるメリットとして、負極の位置ずれ及びシワの発生が原因である、電位の不均一ひいては負極上へのリチウム析出を防ぐ。また、正極、セパレータ、及び負極は充放電を繰り返してもシート位置が同じ場所に固定されており、電池内部でガスが生じても活物質内部に残存しにくくなる。以上のメリットから繰り返し充放電による容量の低下を防ぐ効果がある。さらに、正極及び負極は全面でセパレータもしくは外装フィルムにて覆われた状態で位置が固定されることから、正負極の接触によるショートを防止するという副次的な効果も得られる。なお、周縁部の全周ではなく対向する二辺で接着、固定させてもよい。
Lithium ion secondary batteries of the present invention, the laminated element in which a cathode having a cathode active material layer on the positive electrode current collector and a negative electrode having a negative electrode active material layer on an anode current collector, and layered with a separator In the lithium ion secondary battery in which the outer electrode film is housed, the peripheral part of the positive electrode current collector and the peripheral part of the negative electrode current collector have a positive electrode active material layer and a non-forming part of the negative electrode active material layer, respectively. The non-forming part of the body and the non-forming part of the negative electrode current collector are adhered to the same position with respect to the separator and the exterior film.
Thereby, in a positive electrode and a negative electrode, it becomes each collector which adhere | attaches with a separator and an exterior film in a non-formation part . Further, the peripheral edge portion of the positive electrode current collector and the negative electrode current collector, except where electrically connecting the positive electrode to each other and the negative electrode with each other, may be bonded to the separator and the exterior film all around. Thus the negative electrode were charged and discharged, lithium is even when the body volume change by elimination inserted, it is possible to suppress the occurrence of positional displacement and wrinkles of the negative electrode. As a merit of this, non-uniform potential and hence lithium deposition on the negative electrode, which is caused by the displacement of the negative electrode and the generation of wrinkles, is prevented. Also, the positive electrode, the separator, and the negative electrode is the seat position even if charge and discharge are repeated is fixed in the same place, gas is less likely to remain in the active material even if in the battery. From the above merits, there is an effect of preventing a decrease in capacity due to repeated charge and discharge. Further, since the positions of the positive electrode and the negative electrode are fixed in a state where the positive electrode and the negative electrode are entirely covered with the separator or the exterior film, a secondary effect of preventing a short circuit due to contact between the positive electrode and the negative electrode can be obtained. In addition, you may adhere | attach and fix by the two sides which oppose instead of the perimeter of a peripheral part.

ここで本発明による積層素子を用いた電池の構成において、外装フィルムは熱可塑性樹脂からなる接着層を有している。これは、外装フィルムが素子最外層の正極集電体または負極集電体と加熱接着させることにより、積層素子と外装フィルムの一体化をはかるものであり、繰り返し充放電による容量の低下を防ぐ効果がある。   Here, in the configuration of the battery using the laminated element according to the present invention, the exterior film has an adhesive layer made of a thermoplastic resin. This is to integrate the laminated element and the exterior film by heat-adhering the exterior film with the positive electrode current collector or the negative electrode current collector of the outermost layer of the element, and the effect of preventing the decrease in capacity due to repeated charge and discharge There is.

なお負極活物質はリチウムを吸蔵する材料であれば良く、例えば黒鉛、ハードカーボン、及びソフトカーボンに代表される炭素、及びケイ素、スズ、アルミニウム、ゲルマニウム等の単体、酸化物もしくは異種金属との合金、チタン酸リチウムなどが挙げられる。   Note that the negative electrode active material may be any material that occludes lithium, for example, carbon represented by graphite, hard carbon, and soft carbon, and a simple substance such as silicon, tin, aluminum, germanium, an alloy with an oxide or a different metal. And lithium titanate.

また本発明による積層素子を用いた電池の構成において、負極活物質の粒子間、及び負極活物質の粒子と集電体とを結着させるバインダ材料として、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系樹脂、ポリイミド、ポリアミドイミド、及びポリアクリル酸樹脂等を用いることが出来る。   Further, in the configuration of the battery using the laminated element according to the present invention, as a binder material for binding between the negative electrode active material particles and between the negative electrode active material particles and the current collector, polyvinylidene fluoride, polytetrafluoroethylene, etc. Fluorine resin, polyimide, polyamideimide, polyacrylic acid resin, and the like can be used.

すなわち、本発明のリチウムイオン二次電池は、正極集電体上に正極活物質層を有する正極と、負極集電体上に負極活物質層を有する負極とを、セパレータを介して積層した積層素子を外装フィルムに収納したリチウムイオン二次電池において、前記正極集電体の周縁部および前記負極集電体の周縁部にそれぞれ正極活物質層、負極活物質層の非形成部を有し、前記正極集電体の周縁部および前記負極集電体の周縁部において前記セパレータ及び前記外装フィルムと接着されていることを特徴とする。   That is, the lithium ion secondary battery of the present invention is a laminate in which a positive electrode having a positive electrode active material layer on a positive electrode current collector and a negative electrode having a negative electrode active material layer on a negative electrode current collector are stacked via a separator. In the lithium ion secondary battery in which the element is housed in the exterior film, the positive electrode current collector and the negative electrode current collector have a positive electrode active material layer and a negative electrode active material layer non-forming part on the peripheral edge of the positive electrode current collector, The separator and the exterior film are bonded to each other at a peripheral edge of the positive electrode current collector and a peripheral edge of the negative electrode current collector.

さらに、本発明のリチウムイオン二次電池は、前記積層素子の最外層となる正極集電体又は負極集電体が熱可塑性樹脂からなる接着層を有する外装フィルムと接着されていることを特徴とする。   Furthermore, the lithium ion secondary battery of the present invention is characterized in that the positive electrode current collector or the negative electrode current collector, which is the outermost layer of the multilayer element, is bonded to an exterior film having an adhesive layer made of a thermoplastic resin. To do.

さらに、本発明のリチウムイオン二次電池は、前記負極活物質層がケイ素を有することを特徴とする。   Furthermore, the lithium ion secondary battery of the present invention is characterized in that the negative electrode active material layer has silicon.

さらに、本発明のリチウムイオン二次電池は、前記負極が、ケイ素を含有する負極活物質と、加熱により脱水縮合反応を生じる熱硬化性樹脂の混合物を含み、前記熱硬化性樹脂により前記負極活物質の粒子間、及び負極活物質の粒子と集電体とが結着されていることを特徴とする。
また、本発明のリチウムイオン二次電池の製造方法は、正極集電体上に正極活物質層を有する正極と、負極集電体上に負極活物質層を有する負極とを、セパレータを介して積層した積層素子を外装フィルムに収納したリチウムイオン二次電池の製造方法において、周縁部に正極活物質層の非形成部を有する正極集電体と、周縁部に負極活物質層の非形成部を有する負極集電体と、を用いて、正極集電体の非形成部および負極集電体の非形成部を、セパレータおよび外装フィルムに対して同一位置に接着する。
Furthermore, in the lithium ion secondary battery of the present invention, the negative electrode contains a mixture of a negative electrode active material containing silicon and a thermosetting resin that causes a dehydration condensation reaction by heating, and the negative electrode active material is formed by the thermosetting resin. It is characterized in that the particles of the substance and the particles of the negative electrode active material and the current collector are bound.
Further, the method for producing a lithium ion secondary battery of the present invention includes a positive electrode having a positive electrode active material layer on a positive electrode current collector and a negative electrode having a negative electrode active material layer on a negative electrode current collector through a separator. In a method for manufacturing a lithium ion secondary battery in which laminated elements are housed in an exterior film, a positive electrode current collector having a non-forming portion of a positive electrode active material layer at a peripheral portion, and a non-forming portion of a negative electrode active material layer at a peripheral portion And the non-formed part of the positive electrode current collector and the non-formed part of the negative electrode current collector are bonded to the separator and the exterior film at the same position.

本発明では、正極、セパレータ、負極及びセパレータの順に積層した構造を有する素子、及び素子の外側に外装フィルムを配置したチウムイオン二次電池等の非水電解質二次電池において、正極集電体、負極集電体が、それぞれの周縁部の非形成部においてセパレータ及び外装フィルムに対して同一位置に接着した構造を有する。これにより、充放電を行い負極にリチウムが挿入脱離により体積が変化しても、負極の位置ずれ及びシワの発生を抑制出来、負極上へのリチウム析出を防ぐ。また、正極、セパレータ、及び負極は充放電を繰り返してもそれぞれのシート位置が同じ場所に固定されており、電池内部でガス発生が生じても活物質内部に残存しにくくなる。以上のメリットから、リチウムイオン二次電池の充放電容量(もしくは初期放電容量)を減少させることなく、サイクル特性を改善することが出来る。 In the present invention, a positive electrode current collector, a negative electrode, a non-aqueous electrolyte secondary battery such as an element having a structure in which a positive electrode, a separator, a negative electrode, and a separator are stacked in this order, and a lithium ion secondary battery having an exterior film disposed outside the element. The current collector has a structure in which the current collector is bonded to the separator and the exterior film at the same position in the non-formed portion of the peripheral edge. Thereby, even if charge and discharge are performed and the volume of lithium changes due to insertion and removal of the negative electrode, the negative electrode can be prevented from being displaced and wrinkles, and lithium deposition on the negative electrode can be prevented. In addition, the positive electrode, the separator, and the negative electrode are fixed at the same position even when charging and discharging are repeated, and even if gas is generated inside the battery, it is difficult to remain inside the active material. From the above merits, cycle characteristics can be improved without reducing the charge / discharge capacity (or initial discharge capacity) of the lithium ion secondary battery.

本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明によるリチウムイオン二次電池の正断面図である。図2は本発明によるリチウムイオン二次電池の側断面図である。図3は本発明によるリチウムイオン二次電池の平面図である。なお、図1は図3においてX−X線で切断した断面図、図2は図3においてA−A線で切断した断面図である。さらに図4は本発明のリチウムイオン電池に使用する負極の平面図であり、図5は本発明のリチウムイオン電池に使用する正極の平面図であり、図6は本発明のリチウムイオン電池に使用する負極の断面図であり、図7は本発明のリチウムイオン電池に使用する正極の断面図である。   FIG. 1 is a front sectional view of a lithium ion secondary battery according to the present invention. FIG. 2 is a sectional side view of a lithium ion secondary battery according to the present invention. FIG. 3 is a plan view of a lithium ion secondary battery according to the present invention. 1 is a cross-sectional view taken along line XX in FIG. 3, and FIG. 2 is a cross-sectional view taken along line AA in FIG. 4 is a plan view of a negative electrode used in the lithium ion battery of the present invention, FIG. 5 is a plan view of a positive electrode used in the lithium ion battery of the present invention, and FIG. 6 is used in the lithium ion battery of the present invention. FIG. 7 is a cross-sectional view of a positive electrode used in the lithium ion battery of the present invention.

図1、図2に示すように本発明のリチウムイオン二次電池は、銅箔などの負極集電体2および負極集電体上に形成された負極活物質層1を含む負極3と、アルミニウムなどの正極集電体5および正極集電体上に形成された正極活物質層4を含む正極6とを有する。この負極活物質層1および正極活物質層4は、セパレータ7を介して対向配置され積層素子を形成している。セパレータ7はポリプロピレン、ポリエチレンなどのポリオレフィン、またはフッ素樹脂などの多孔性フィルムからなる。セパレータ7の負極活物質層1と正極活物質層4との対向している部分には、非水性の電解質溶液が含浸されている。負極3および正極6には、電極の取り出しのためにそれぞれ負極リードタブ9、正極リードタブ10が接続されており、前記負極3、正極6及びセパレータ7は、アルミラミネートフィルムなどの外装フィルム8によって封止されている。負極リードタブ9および正極リードタブ10の先端部は外装フィルム8の外部に引き出されており、それぞれ負極、正極の電極端子となっている。   As shown in FIGS. 1 and 2, the lithium ion secondary battery of the present invention includes a negative electrode current collector 2 such as a copper foil, a negative electrode 3 including a negative electrode active material layer 1 formed on the negative electrode current collector, aluminum And a positive electrode 6 including a positive electrode active material layer 4 formed on the positive electrode current collector. The negative electrode active material layer 1 and the positive electrode active material layer 4 are disposed to face each other with a separator 7 therebetween, thereby forming a laminated element. The separator 7 is made of a porous film such as a polyolefin such as polypropylene or polyethylene, or a fluororesin. A portion of the separator 7 facing the negative electrode active material layer 1 and the positive electrode active material layer 4 is impregnated with a non-aqueous electrolyte solution. A negative electrode lead tab 9 and a positive electrode lead tab 10 are connected to the negative electrode 3 and the positive electrode 6, respectively, for taking out the electrode. The negative electrode 3, the positive electrode 6 and the separator 7 are sealed with an exterior film 8 such as an aluminum laminate film. Has been. The tip portions of the negative electrode lead tab 9 and the positive electrode lead tab 10 are drawn to the outside of the exterior film 8 and serve as negative electrode and positive electrode terminals, respectively.

負極について図4、図6を参照して説明する。負極3は、負極集電体2の片面もしくは両面に負極活物質層1が形成されている。なお、図6は両面に負極活物質層1が形成されている構成を示している。負極活物質層1は負極集電体2の全面には配置していない。負極3のうち、負極活物質層1の配置していない負極活物質層の非形成部となる周縁部は、図1、図2に示すようにセパレータ7と熱圧着等により接着されている。負極が最外層の外装フィルム8に対向している場合は、負極集電体の片面に負極活物質層を形成し、負極集電体と外装フィルム8と熱圧着等により接着させることができる。なお外装フィルム8の接着層としてポリエチレン、ポリプロピレン、エチレン−メタクリル酸共重合体やエチレン−アクリル酸共重合体と金属イオンで分子間結合させたアイオノマー樹脂、などの熱可塑性樹脂を用いることができる。   The negative electrode will be described with reference to FIGS. In the negative electrode 3, the negative electrode active material layer 1 is formed on one side or both sides of the negative electrode current collector 2. FIG. 6 shows a configuration in which the negative electrode active material layer 1 is formed on both surfaces. The negative electrode active material layer 1 is not disposed on the entire surface of the negative electrode current collector 2. Of the negative electrode 3, a peripheral portion which is a non-formed portion of the negative electrode active material layer where the negative electrode active material layer 1 is not disposed is bonded to the separator 7 by thermocompression bonding or the like as shown in FIGS. 1 and 2. When the negative electrode is opposed to the outermost outer packaging film 8, a negative electrode active material layer can be formed on one surface of the negative electrode current collector and bonded to the negative electrode current collector and the outer film 8 by thermocompression bonding or the like. For the adhesive layer of the exterior film 8, a thermoplastic resin such as polyethylene, polypropylene, an ethylene-methacrylic acid copolymer or an ionomer resin intermolecularly bonded to the ethylene-acrylic acid copolymer with metal ions can be used.

正極6について図5、図7を参照して説明する。正極は負極と同様にセパレータ、外装フィルムと接着している。すなわち、正極6において、正極集電体5の片面もしくは両面に正極活物質層4が形成されているが、正極活物質層4は正極集電体5の全面には配置していない。正極6のうち、正極活物質層4の配置していない正極活物質層の非形成部となる周縁部は、図1、図2に示すようにセパレータ7と接着されている。正極が最外層の外装フィルム8に対向している場合は、正極集電体の片面に正極活物質層を形成し、正極集電体と外装フィルム8と接着させることができる。   The positive electrode 6 will be described with reference to FIGS. The positive electrode is bonded to the separator and the exterior film in the same manner as the negative electrode. That is, in the positive electrode 6, the positive electrode active material layer 4 is formed on one surface or both surfaces of the positive electrode current collector 5, but the positive electrode active material layer 4 is not disposed on the entire surface of the positive electrode current collector 5. Of the positive electrode 6, a peripheral portion that is a non-formed portion of the positive electrode active material layer where the positive electrode active material layer 4 is not disposed is bonded to the separator 7 as shown in FIGS. 1 and 2. When the positive electrode faces the outermost outer packaging film 8, a positive electrode active material layer can be formed on one surface of the positive electrode current collector and adhered to the positive electrode current collector and the outer packaging film 8.

なお図1及び図2では、外装フィルム8と接着しているのは負極3となっているが、正極6を最外層に設計することも可能である。   In FIGS. 1 and 2, the negative electrode 3 is bonded to the exterior film 8, but the positive electrode 6 can be designed as the outermost layer.

負極活物質はリチウムを吸蔵する材料であれば良く、例えば黒鉛、ハードカーボン、及びソフトカーボンに代表される炭素、及びケイ素、スズ、アルミニウム、ゲルマニウム等の単体、酸化物もしくは異種金属との合金、チタン酸リチウムなどが挙げられる。その中でケイ素を有することが望ましい。ケイ素を有する材料であれば、例えば炭素、酸化ケイ素、ケイ素−金属間化合物、ケイ素−酸化金属間化合物など、ケイ素と他の化合物との複合材料においても同様に適用出来る。   The negative electrode active material may be any material that occludes lithium, for example, carbon represented by graphite, hard carbon, and soft carbon, and a simple substance such as silicon, tin, aluminum, germanium, an alloy with an oxide or a different metal, Examples include lithium titanate. It is desirable to have silicon in it. As long as it is a material containing silicon, it can be similarly applied to composite materials of silicon and other compounds such as carbon, silicon oxide, silicon-metal compound, silicon-metal oxide compound, and the like.

リチウムイオン二次電池の負極を構成する負極活物質層は、ケイ素、ケイ素−金属間化合物、および炭素等からなる複合粒子とバインダを、溶剤に分散させて混練して負極集電体上に塗布し、高温雰囲気で乾燥することにより作製される。ここでバインダはポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系樹脂、ポリイミド、ポリアミドイミド、及びポリアクリル酸樹脂等を用いることが出来る。また溶剤としてはN−メチル−2−ピロリドン(NMP)などが好適である。なお、負極にケイ素を含有する負極活物質を用いる場合には、バインダとして加熱により脱水縮合反応を生じる熱硬化性樹脂の混合物を含むことが望ましい。この時熱硬化性樹脂により前記負極活物質の粒子間、及び負極活物質の粒子と集電体とが結着されている。ここで、加熱により脱水縮合反応を生じる熱硬化性樹脂が負極のバインダとしての役割を担っている。熱硬化性樹脂をバインダとすることで、本発明による集電体とセパレータ及び外装フィルムと接着させても、活物質が微粉化せず、また集電体から剥離することなく強固な結着力を維持することが出来る。   The negative electrode active material layer constituting the negative electrode of the lithium ion secondary battery is a composite particle composed of silicon, silicon-intermetallic compound, and carbon, and a binder dispersed in a solvent and kneaded and applied onto the negative electrode current collector. And is produced by drying in a high temperature atmosphere. Here, fluorine-based resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyimide, polyamideimide, and polyacrylic acid resin can be used as the binder. As the solvent, N-methyl-2-pyrrolidone (NMP) is suitable. In addition, when using the negative electrode active material containing silicon for a negative electrode, it is desirable to contain the mixture of the thermosetting resin which produces a dehydration condensation reaction by heating as a binder. At this time, the particles of the negative electrode active material and the particles of the negative electrode active material and the current collector are bound by the thermosetting resin. Here, a thermosetting resin that generates a dehydration condensation reaction by heating plays a role as a binder for the negative electrode. By using a thermosetting resin as a binder, even if the current collector according to the present invention is bonded to the separator and the exterior film, the active material is not pulverized and has a strong binding force without peeling from the current collector. Can be maintained.

負極活物質層には、導電性を付与するために必要に応じてカーボンブラックやアセチレンブラックなどを混合してもよい。また作製した負極における電極密度は1.0g/cm3以上、2.0g/cm3以下の範囲とすることが好適である。この電極密度が低すぎる場合には充放電容量が小さくなり、従来の炭素材料のみの負極活物質の場合に対するメリットが小さい。逆に高すぎる場合には、この負極を含む電極に電解液を含浸させることが困難となるために、やはり充放電容量が低下してしまう。なお負極集電体の厚さは、その強度を自ら保持することが可能な厚さとするべきであるので、一般に4〜100μmの範囲であることが必要である。またそのエネルギー密度を高めるためには、5〜30μmの範囲であることがさらに好ましい。 In order to impart conductivity to the negative electrode active material layer, carbon black or acetylene black may be mixed as necessary. The electrode density in the produced negative electrode is preferably in the range of 1.0 g / cm 3 or more and 2.0 g / cm 3 or less. When this electrode density is too low, the charge / discharge capacity is reduced, and the merit of the conventional negative electrode active material made of only a carbon material is small. On the other hand, if it is too high, it becomes difficult to impregnate the electrode including the negative electrode with the electrolytic solution, so that the charge / discharge capacity is also lowered. In addition, since the thickness of the negative electrode current collector should be a thickness that allows the strength to be maintained by itself, it is generally necessary to be in the range of 4 to 100 μm. Moreover, in order to raise the energy density, it is more preferable that it is the range of 5-30 micrometers.

一方、正極活物質層に含まれる活物質としては、マンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウムおよびこれらの混合物、ならびに前記化合物のマンガン、コバルト、ニッケルの部分をアルミニウム、マグネシウム、チタン、亜鉛などでその一部もしくは全部を置換したもの、さらにはリン酸鉄リチウムなどを用いることができる。   On the other hand, as the active material contained in the positive electrode active material layer, lithium manganate, lithium cobaltate, lithium nickelate and a mixture thereof, and manganese, cobalt, nickel portions of the above compounds are aluminum, magnesium, titanium, zinc, etc. In which a part or all of them are substituted, and further, lithium iron phosphate and the like can be used.

また、リチウムイオン二次電池に用いられる非水系電解液は、以下の有機溶媒の中から選択される1種または2種以上の溶媒を混合し、これらの有機溶媒に溶解するリチウム塩を溶解させて電解液として用いる。ここで使用可能な有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)などの鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類、γ−ブチロラクトンなどのγ−ラクトン類、1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)などの鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル類が挙げられる。   Moreover, the non-aqueous electrolyte solution used for a lithium ion secondary battery mixes the 1 type (s) or 2 or more types of solvent selected from the following organic solvents, and dissolves the lithium salt melt | dissolved in these organic solvents. Used as electrolyte. Examples of organic solvents that can be used here include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). Chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, and γ-lactones such as γ-butyrolactone, , 2-Ethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), and cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran.

またそれ以外に使用可能な有機溶媒としては、ジメチルスルホキシド、1,3−ジオキソラン、ジオキソラン誘導体、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、N−メチルピロリドンなどの非プロトン性有機溶媒が挙げられる。   Other usable organic solvents include dimethyl sulfoxide, 1,3-dioxolane, dioxolane derivatives, formamide, acetamide, dimethylformamide, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane. , Sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone And aprotic organic solvents such as

さらに前記の有機溶媒に溶解して用いられるリチウム塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiCF3CO2、Li(CF3SO2)2、LiN(CF3SO2)2、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類などが挙げられる。また、これらの有機溶媒とリチウム塩による非水系電解液の代わりにポリマー電解質を用いてもよい。 Still lithium salt used is dissolved in the organic solvent, for example LiPF 6, LiAsF 6, LiAlCl 4 , LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li (CF 3 SO 2) 2, LiN (CF 3 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, and imides. Further, a polymer electrolyte may be used in place of the nonaqueous electrolytic solution using these organic solvent and lithium salt.

以上の方法により作製した正極および負極、および非水系電解液やポリマー電解質を用いて製造された、リチウムイオン二次電池における放電終止電圧値(放電時の放電電圧の低下に伴い、放電を停止させる電圧)は、1.5V以上、2.7V以下に設定することが望ましい。放電終止電圧値を1.5Vよりも低く設定した場合には、電池による充放電の繰り返しによる充放電容量の劣化、即ち電池のサイクル特性が低くなるという問題が生じる。またこの場合には回路設計における難易度も高くなる。一方、放電終止電圧値を2.7Vよりも高く設定した場合には放電容量の値が小さくなってしまい、このためリチウムイオン二次電池として十分な充放電容量を得ることができなくなる。   Discharge end voltage value in a lithium ion secondary battery manufactured using the positive electrode and negative electrode produced by the above method, and a non-aqueous electrolyte or polymer electrolyte (the discharge is stopped as the discharge voltage during discharge decreases) Voltage) is preferably set to 1.5 V or more and 2.7 V or less. When the end-of-discharge voltage value is set lower than 1.5V, there arises a problem that the charge / discharge capacity is deteriorated due to repeated charge / discharge by the battery, that is, the cycle characteristics of the battery are lowered. In this case, the degree of difficulty in circuit design also increases. On the other hand, when the discharge end voltage value is set higher than 2.7 V, the value of the discharge capacity becomes small, so that a sufficient charge / discharge capacity as a lithium ion secondary battery cannot be obtained.

本発明の実施例について以下に説明する。   Examples of the present invention will be described below.

(実施例1)
ケイ素とニッケルとを重量比1:5の割合で混合し、1500℃、13.3Paにて溶融、急冷させて、ケイ素とニッケルの金属間化合物であるケイ素−ニッケル合金の粉末を作製した。次いでこの粉末をさらに粉砕して微細な粒状体として、同様に微細な粒状体としたケイ素単体と混合し、1000℃、0.01Pa以下の高温低圧雰囲気にて焼結させてケイ素とケイ素−ニッケル合金の複合粒子とした。この材料にグラファイト20重量部を混合して100重量部とした後、混合材料を900℃の窒素雰囲気にてそれぞれ焼結し、ケイ素とケイ素−ニッケル合金、炭素の三者からなる複合粒子を作製した。この複合粒子を粉砕し、レーザ回折・散乱法により測定される粒径D50が10μmとなるように調製を行った。
Example 1
Silicon and nickel were mixed at a weight ratio of 1: 5, and melted and rapidly cooled at 1500 ° C. and 13.3 Pa to produce a silicon-nickel alloy powder which is an intermetallic compound of silicon and nickel. Next, this powder is further pulverized into fine granules, mixed with silicon alone, which is also made into fine granules, and sintered in a high-temperature and low-pressure atmosphere of 1000 ° C. and 0.01 Pa or less to produce silicon and silicon-nickel. Alloy composite particles were obtained. After mixing 20 parts by weight of graphite with this material to make 100 parts by weight, the mixed material is sintered in a nitrogen atmosphere at 900 ° C. to produce composite particles composed of silicon, silicon-nickel alloy, and carbon. did. The composite particles were pulverized and prepared such that the particle size D 50 measured by a laser diffraction / scattering method was 10 μm.

その後、前記活物質粒子にバインダ溶液としてポリアミック酸−NMP溶液、導電剤としてカーボン粉末(非晶質炭素粉末)を混合し、溶剤としてNMPを加えて溶解、分散させて負極電極材料のスラリーを作製した。この材料を負極集電体である厚さ10μmの銅箔上に、150×80mmの長方形の形状に塗布し、乾燥炉にて125℃、5分間の乾燥処理を行った後にロールプレスにて圧縮成型を行い、再び乾燥炉にて300℃、10分間の乾燥処理を行って負極活物質層を形成した。この300℃処理によってポリアミック酸からポリイミドへの反応が進行し、バインダの硬化が進む。ここで負極集電体に対し活物質層両面塗布品を1枚、片面塗布品を2枚、それぞれ作製した。さらにこの銅箔からなる、面上に形成された負極活物質層を含む負極集電体を、210×100mmの長方形の形状に打ち抜いて負極とした。このとき負極集電体の周縁部は端面から短辺側で10mm長辺側で30mm負極活物質層の非形成部となるように打ち抜いた。   Thereafter, a polyamic acid-NMP solution as a binder solution and a carbon powder (amorphous carbon powder) as a conductive agent are mixed into the active material particles, and NMP is added as a solvent to dissolve and disperse to prepare a slurry of a negative electrode material. did. This material is applied to a negative electrode current collector 10 μm thick copper foil in a rectangular shape of 150 × 80 mm, dried at 125 ° C. for 5 minutes in a drying furnace, and then compressed by a roll press. The negative electrode active material layer was formed by performing molding and again performing a drying treatment at 300 ° C. for 10 minutes in a drying furnace. By this 300 ° C. treatment, the reaction from polyamic acid to polyimide proceeds, and the curing of the binder proceeds. Here, one active material layer double-sided coated product and two single-sided coated products were respectively prepared for the negative electrode current collector. Further, a negative electrode current collector made of this copper foil and including a negative electrode active material layer formed on the surface was punched into a 210 × 100 mm rectangular shape to form a negative electrode. At this time, the peripheral edge portion of the negative electrode current collector was punched out so as to be a non-formed portion of the 30 mm negative electrode active material layer on the short side 10 mm from the end surface and on the long side.

また、正極については、コバルト酸リチウムからなる活物質粒子にバインダとしてポリフッ化ビニリデンを混合し、溶剤としてNMPを加えて溶解、分散させて正極電極材料のスラリーを作製した。この材料を正極集電体である厚さ20μmのアルミニウム箔の面上に、150×80mmの長方形の形状に塗布し、乾燥炉にて125℃、5分間の乾燥処理を行った後にロールプレスにて圧縮成型を行い、正極活物質層を形成した。ここで正極集電体に対し活物質層両面塗布品を2枚、それぞれ作製した。さらにこのアルミニウム箔からなる、面上に形成された正極活物質層を含む正極集電体を、210×100mmの長方形の形状に打ち抜いて正極とした。このとき正極集電体の周縁部は端面から短辺側で10mm長辺側で30mm正極活物質層の非形成部となるように打ち抜いた。   As for the positive electrode, active material particles made of lithium cobalt oxide were mixed with polyvinylidene fluoride as a binder, and NMP was added as a solvent to dissolve and disperse to prepare a slurry of the positive electrode material. This material was applied in a rectangular shape of 150 × 80 mm on the surface of an aluminum foil having a thickness of 20 μm, which is a positive electrode current collector, and subjected to a drying process at 125 ° C. for 5 minutes in a drying furnace, and then applied to a roll press. Then, compression molding was performed to form a positive electrode active material layer. Here, two active material layer double-sided coated products were respectively prepared for the positive electrode current collector. Further, a positive electrode current collector made of this aluminum foil and including a positive electrode active material layer formed on the surface was punched into a rectangular shape of 210 × 100 mm to form a positive electrode. At this time, the peripheral portion of the positive electrode current collector was punched out so as to be a non-formation portion of the positive electrode active material layer of 10 mm on the short side and 10 mm on the long side from the end surface.

次いでポリプロピレンの多孔性フィルムからなる210×110mmの長方形の形状のセパレータを用意した。下側から負極、セパレータ、正極、セパレータの順に重ね、最外層に負極活物質層片面塗布品が来るように積層した。次に短辺側の負極集電体同士を重ね合わせて、電極の引き出しのためのニッケルからなる負極リードタブを、超音波接合によって融着した。同様に正極側についても、短辺側の正極集電体同士を重ね合わせて、電極の引き出しのためのアルミニウムからなる正極リードタブを、超音波接合によって融着し積層素子を形成した。   Next, a 210 × 110 mm rectangular separator made of a porous polypropylene film was prepared. The negative electrode, the separator, the positive electrode, and the separator were stacked in this order from the lower side, and the negative electrode active material layer single-sided coated product was stacked on the outermost layer. Next, the negative electrode current collectors on the short side were overlapped with each other, and a negative electrode lead tab made of nickel for drawing out the electrodes was fused by ultrasonic bonding. Similarly, on the positive electrode side, the positive electrode current collectors on the short side were overlapped with each other, and a positive electrode lead tab made of aluminum for drawing out the electrodes was fused by ultrasonic bonding to form a laminated element.

この積層素子の上下から、接着層が積層素子側となるようアルミラミネートフィルムからなる外装フィルムを重ね合わせたのち、外装フィルム、正極集電体、セパレータ、及び負極集電体の外周部が重なり合っている箇所を、四辺ともにヒートシールにより熱融着(封止)させた。四辺中三辺熱融着させた後、電解液を注液し、最後に真空下にて最後の一辺を熱融着させた。ここで電解液はEC、DEC、EMCの三者を体積比で3:5:2の割合で混合した溶媒に、LiPF6を1mol/lの濃度で溶解させたものを用いた。2本の負極および正極リードタブの先端は、外装フィルムから互いに反対側に外部に突出している。この方法により、ラミネート型電池を計5台作製し、実施例1とした。 After overlaying the exterior film made of an aluminum laminate film so that the adhesive layer is on the laminate element side from the top and bottom of this laminate element, the outer periphery of the exterior film, the positive electrode current collector, the separator, and the negative electrode current collector overlap. The four sides were heat-sealed (sealed) by heat sealing. After three sides of the four sides were heat-sealed, the electrolyte solution was poured, and finally the last side was heat-sealed under vacuum. Here, the electrolytic solution used was a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a solvent in which EC, DEC, and EMC were mixed at a volume ratio of 3: 5: 2. The tips of the two negative electrodes and the positive electrode lead tab protrude outward from the exterior film to the opposite sides. According to this method, a total of five laminate-type batteries were produced as Example 1.

(初回放電容量、サイクル特性の評価)
作製した実施例1の5台のラミネート型のリチウムイオン二次電池に対して、まず20℃において、定格である4.2Vまで満充電(充電電流が0.05Cになるまで充電)を行い、次いで2.7Vまで1Cで放電を行い、このときの放電容量を測定した。この放電容量が実施例1の電池における初回放電容量、即ち充放電容量とした。次いで45℃において、各電池に対して4.2Vまで充電、2.7Vまで放電の1Cレートによる100回の充放電の繰り返しを行って、その100サイクル後の放電容量を20℃で測定した。(なお1Cとは、公称容量(mAh)を1時間で放電する電流値をいう。)ここで初回放電容量に対する100サイクル後の放電容量の比率を計算し、これをサイクル特性とした。実施例1のこれら5台の電池における、初回放電容量およびサイクル特性のそれぞれの評価結果(平均値)を表1に示す。
(Evaluation of initial discharge capacity and cycle characteristics)
The five laminated lithium ion secondary batteries of Example 1 were first fully charged at 20 ° C. to the rated 4.2 V (charged until the charging current reached 0.05 C), Next, the battery was discharged at 1 C up to 2.7 V, and the discharge capacity at this time was measured. This discharge capacity was defined as the initial discharge capacity in the battery of Example 1, that is, the charge / discharge capacity. Next, at 45 ° C., each battery was charged to 4.2 V and charged and discharged 100 times at a 1 C rate of discharge to 2.7 V, and the discharge capacity after 100 cycles was measured at 20 ° C. (Note that 1C refers to a current value at which the nominal capacity (mAh) is discharged in 1 hour.) Here, the ratio of the discharge capacity after 100 cycles to the initial discharge capacity was calculated and used as the cycle characteristics. Table 1 shows the evaluation results (average values) of the initial discharge capacity and the cycle characteristics in these five batteries of Example 1.

(実施例2)
実施例1において、この積層素子の上下から、接着層が積層素子側となるよう外装フィルムを重ね合わせたのち、外装フィルム、正極集電体、セパレータ、及び負極集電体の外周部が重なり合っている四辺のうち、端子タブを取り出す二辺についてのみ、上記外周部をヒートシールにより熱融着させた。残り二辺については外装フィルムのみ熱融着を行った。残り二辺のうち一辺を熱融着した後、電解液を注液し、最後に真空下にて最後の一辺を熱融着させた。そのほかの方法については実施例1と同様である。この方法により、ラミネート型電池を計5台作製し、実施例2とした。実施例2のこれら5台の電池における、初回放電容量およびサイクル特性のそれぞれの評価結果(平均値)を表1に示す。
(Example 2)
In Example 1, after stacking the exterior film from above and below the laminated element so that the adhesive layer is on the laminated element side, the outer peripheral portions of the exterior film, the positive electrode current collector, the separator, and the negative electrode current collector overlap. Among the four sides, only the two sides from which the terminal tabs were taken out were heat-sealed with the outer peripheral portion by heat sealing. For the remaining two sides, only the exterior film was heat-sealed. After heat-sealing one of the remaining two sides, an electrolytic solution was injected, and finally the last side was heat-sealed under vacuum. Other methods are the same as those in the first embodiment. According to this method, a total of five laminate-type batteries were produced as Example 2. Table 1 shows the evaluation results (average values) of the initial discharge capacity and the cycle characteristics in these five batteries of Example 2.

(実施例3)
実施例1において、バインダ溶液としてポリアミック酸−NMP溶液に換えてポリアクリル酸−NMP溶液を使用した。そのほかの方法については実施例1と同様である。なお300℃処理によってポリアクリル酸からポリアクリルへの反応が進行し、バインダの硬化が進む。この方法により、ラミネート型電池を計5台作製し、実施例3とした。実施例3のこれら5台の電池における、初回放電容量およびサイクル特性のそれぞれの評価結果(平均値)を表1に示す。
(Example 3)
In Example 1, a polyacrylic acid-NMP solution was used as the binder solution instead of the polyamic acid-NMP solution. Other methods are the same as those in the first embodiment. In addition, the reaction from polyacrylic acid to polyacrylic progresses by 300 degreeC process, and hardening of a binder progresses. A total of five laminate-type batteries were produced by this method, and Example 3 was obtained. Table 1 shows the evaluation results (average values) of the initial discharge capacity and the cycle characteristics in these five batteries of Example 3.

(実施例4)
実施例1において、バインダ溶液としてポリアミック酸−NMP溶液に換えてポリフッ化ビニリデン(PVDF)−NMP溶液を使用した。なおPVDFは熱硬化性でないので300℃処理は行っていない。そのほかの方法については実施例1と同様である。この方法により、ラミネート型電池を計5台作製し、実施例4とした。実施例4のこれら5台の電池における、初回放電容量およびサイクル特性のそれぞれの評価結果(平均値)を表1に示す。
Example 4
In Example 1, a polyvinylidene fluoride (PVDF) -NMP solution was used instead of the polyamic acid-NMP solution as the binder solution. Since PVDF is not thermosetting, it is not treated at 300 ° C. Other methods are the same as those in the first embodiment. A total of five laminate-type batteries were produced by this method, and Example 4 was obtained. Table 1 shows the evaluation results (average values) of the initial discharge capacity and the cycle characteristics in these five batteries of Example 4.

(実施例5)
実施例1において、ケイ素とケイ素−ニッケル合金、炭素の三者からなる複合粒子ではなく、グラファイトを100重量部とした負極活物質を用い、レーザ回折・散乱法により測定される粒径D50が10μmとなるように調製を行った。実施例5のこれら5台の電池における、初回放電容量およびサイクル特性のそれぞれの評価結果(平均値)を表1に示す。
(Example 5)
In Example 1, not a composite particle consisting of silicon, silicon-nickel alloy, and carbon, but a negative electrode active material containing 100 parts by weight of graphite, and a particle size D50 measured by a laser diffraction / scattering method is 10 μm. Preparation was performed so that Table 1 shows the evaluation results (average values) of the initial discharge capacity and the cycle characteristics in these five batteries of Example 5.

(比較例1)
実施例1において、この積層素子の上下から、接着層が積層素子側となるよう外装フィルムを重ね合わせたのち、外装フィルム、正極集電体、セパレータ、及び負極集電体の外周部が重なり合っている四辺について、いずれも外装フィルムのみ熱融着を行い、集電体及びセパレータを含めた熱融着は行わなかった。まず外装フィルム三辺を熱融着した後、電解液を注液し、最後に真空下にて最後の一辺を熱融着させた。そのほかの方法については実施例1と同様である。この方法により、ラミネート型電池を計5台作製し、比較例1とした。比較例1のこれら5台の電池における、初回放電容量およびサイクル特性のそれぞれの評価結果(平均値)を表1に示す。
(Comparative Example 1)
In Example 1, after stacking the exterior film from above and below the laminated element so that the adhesive layer is on the laminated element side, the outer peripheral portions of the exterior film, the positive electrode current collector, the separator, and the negative electrode current collector overlap. For all four sides, only the exterior film was thermally fused, and the thermal fusion including the current collector and the separator was not performed. First, after heat-sealing the three sides of the exterior film, an electrolytic solution was poured, and finally the last side was heat-sealed under vacuum. Other methods are the same as those in the first embodiment. By this method, a total of five laminate-type batteries were produced and used as Comparative Example 1. Table 1 shows the evaluation results (average values) of the initial discharge capacity and the cycle characteristics in these five batteries of Comparative Example 1.

(比較例2)
比較例1において、ケイ素とケイ素−ニッケル合金、炭素の三者からなる複合粒子ではなく、グラファイトを100重量部とした負極活物質を用い、レーザ回折・散乱法により測定される粒径D50が10μmとなるように調製を行った。比較例4のこれら5台の電池における、初回放電容量およびサイクル特性のそれぞれの評価結果(平均値)を表1に示す。
(Comparative Example 2)
In Comparative Example 1, not a composite particle composed of silicon, a silicon-nickel alloy, and carbon, but a negative electrode active material containing 100 parts by weight of graphite, and a particle size D50 measured by a laser diffraction / scattering method is 10 μm. Preparation was performed so that Table 1 shows the evaluation results (average values) of the initial discharge capacity and the cycle characteristics in these five batteries of Comparative Example 4.

本発明のリチウムイオン二次電池は、表1における比較例1の電池が有する初回放電容量と同等であることが期待される。つまり初回放電容量に関しては、表1の比較例1に近い水準である1,500mAh以上であれば優位性ありと判定した。同様に100サイクル時のサイクル特性に関しては、表1に示した比較例1における25%以上であることを優位性ありと判定した。表1によると、前記実施例1の場合は初回放電容量、サイクル特性の両方においてそれぞれ1,500mAh以上、70%以上の条件を満たしており、従ってこの場合は従来技術に対して優位性があると判定される。   The lithium ion secondary battery of the present invention is expected to be equivalent to the initial discharge capacity of the battery of Comparative Example 1 in Table 1. In other words, the initial discharge capacity was determined to be superior if it was 1,500 mAh or higher, which is a level close to Comparative Example 1 in Table 1. Similarly, regarding the cycle characteristics at 100 cycles, it was determined that the advantage was 25% or more in Comparative Example 1 shown in Table 1. According to Table 1, in the case of Example 1, both the initial discharge capacity and the cycle characteristics satisfy the conditions of 1,500 mAh or more and 70% or more, respectively. Therefore, in this case, there is an advantage over the prior art. It is determined.

Figure 0005279018
Figure 0005279018

表1における実施例1〜2、比較例1の評価結果によると、以下のようになる。即ち、リチウムイオン二次電池の外装フィルム、正極集電体、セパレータ、及び負極集電体の外周部が重なり合っている四辺のうち、上記外周部をヒートシールにより熱融着により接着した際に、100サイクル後のサイクル特性の著しい改善効果があることを示している。外周部の四辺の内二辺のみ接着してもサイクル特性の効果は大きいが、四辺とも接着すればさらに維持率は上昇するので、接着部分を大きくするほどサイクル特性が良好であるといえる。この場合には初回放電容量が1,500mAh以上、100サイクル後のサイクル特性が70%以上の特性が同時に得られるが、これらの値は従来のリチウムイオン二次電池の負極活物質の構成では得られなかったものである。   According to the evaluation results of Examples 1 and 2 and Comparative Example 1 in Table 1, the results are as follows. That is, when the outer peripheral part of the outer film of the lithium ion secondary battery, the positive electrode current collector, the separator, and the outer peripheral part of the negative electrode current collector overlap each other by heat sealing by heat sealing, It shows that there is a significant improvement effect of the cycle characteristics after 100 cycles. Even if only two of the four sides of the outer peripheral portion are bonded, the effect of the cycle characteristics is great. However, if the four sides are bonded together, the maintenance factor is further increased. Therefore, it can be said that the larger the bonded portion is, the better the cycle characteristics are. In this case, the initial discharge capacity of 1,500 mAh or more and the cycle characteristics after 100 cycles of 70% or more can be obtained at the same time, but these values are obtained in the structure of the negative electrode active material of the conventional lithium ion secondary battery. It was not possible.

また、表1における実施例1、3、4の評価結果によると、以下のようになる。即ち、実施例1及び3は、リチウムイオン二次電池の負極中のバインダがそれぞれポリイミド、ポリアクリルであり、熱硬化性を有する樹脂であり、この場合には初回放電容量が1,500mAh以上、100サイクル後のサイクル特性が70%以上の特性が同時に得られるが、これらの値は従来のリチウムイオン二次電池の負極活物質の構成では得られなかったものである。一方、負極中のバインダが、実施例4では熱硬化性でないPVDFであり、負極活物質にケイ素を含む場合、バインダの強度としては不十分であるため前述したポリイミド、ポリアクリルと異なり初回放電容量、及びサイクル特性は充分ではない。   Moreover, according to the evaluation results of Examples 1, 3, and 4 in Table 1, it is as follows. That is, in Examples 1 and 3, the binder in the negative electrode of the lithium ion secondary battery is polyimide and polyacryl, respectively, and is a thermosetting resin. In this case, the initial discharge capacity is 1,500 mAh or more, Although a cycle characteristic of 70% or more after 100 cycles can be obtained at the same time, these values were not obtained with the structure of the negative electrode active material of the conventional lithium ion secondary battery. On the other hand, when the binder in the negative electrode is PVDF that is not thermosetting in Example 4 and silicon is included in the negative electrode active material, the binder has insufficient strength, so unlike the above-described polyimide and polyacryl, the initial discharge capacity. And the cycle characteristics are not sufficient.

さらに、実施例5、比較例2では負極活物質としてグラファイトを用いているが、この場合はリチウムイオン二次電池の外装フィルム、正極集電体、セパレータ、及び負極集電体の外周部が重なり合っている四辺のうち、上記外周部をヒートシールにより熱融着により接着により、サイクル特性の改善は少ないことを示している。即ち、グラファイトはケイ素と違い、リチウムの挿入脱離による体積変化が少ないため、充放電を行っても負極シートの位置ずれ、シワの発生が少なく、サイクル特性の劣化を引き起こす要因が少ないためと考えられる。   Further, in Example 5 and Comparative Example 2, graphite is used as the negative electrode active material. In this case, the outer film of the lithium ion secondary battery, the positive electrode current collector, the separator, and the outer periphery of the negative electrode current collector overlap each other. Among the four sides, the outer peripheral portion is bonded by heat sealing by heat sealing, which indicates that the improvement in cycle characteristics is small. In other words, graphite, unlike silicon, has little volume change due to insertion and removal of lithium, so there are few negative electrode sheet misalignment and wrinkle generation even when charging and discharging, and there are few factors that cause deterioration of cycle characteristics. It is done.

以上示したように、本発明の実施の形態に基づき、特に、ケイ素を含有する負極活物質と、加熱により脱水縮合反応を生じる熱硬化性樹脂の混合物を含む負極からなる二次電池において、正極及び負極集電体が、それぞれの周縁部においてセパレータ及び外装フィルムと接着した構造を有する構成とすることにより、初回放電容量および100サイクル後のサイクル特性の両方において、従来のリチウムイオン二次電池よりも優れた特性を得ることができる。また、上記説明は、本発明の実施の形態に係る場合の効果について説明するためのものであって、これによって特許請求の範囲に記載の発明を限定し、あるいは請求の範囲を減縮するものではない。また、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。   As described above, according to the embodiment of the present invention, in particular, in a secondary battery comprising a negative electrode active material containing silicon and a negative electrode including a mixture of a thermosetting resin that causes a dehydration condensation reaction upon heating, a positive electrode And the negative electrode current collector having a structure in which the separator and the exterior film are bonded to each peripheral edge, so that both the initial discharge capacity and the cycle characteristics after 100 cycles than the conventional lithium ion secondary battery. Excellent characteristics can be obtained. Further, the above description is for explaining the effect in the case of the embodiment of the present invention, and is not intended to limit the invention described in the claims or to reduce the scope of the claims. Absent. Moreover, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.

本発明のリチウムイオン二次電池の正断面図。The front sectional view of the lithium ion secondary battery of the present invention. 本発明のリチウムイオン二次電池の側断面図。The side sectional view of the lithium ion secondary battery of the present invention. 本発明のリチウムイオン二次電池の平面図。The top view of the lithium ion secondary battery of this invention. 本発明のリチウムイオン二次電池用負極の平面図。The top view of the negative electrode for lithium ion secondary batteries of this invention. 本発明のリチウムイオン二次電池用正極の平面図。The top view of the positive electrode for lithium ion secondary batteries of this invention. 本発明のリチウムイオン二次電池用負極の断面図。Sectional drawing of the negative electrode for lithium ion secondary batteries of this invention. 本発明のリチウムイオン二次電池用正極の断面図。Sectional drawing of the positive electrode for lithium ion secondary batteries of this invention.

符号の説明Explanation of symbols

1 負極活物質層
2 負極集電体
3 負極
4 正極活物質層
5 正極集電体
6 正極
7 セパレータ
8 外装フィルム
9 負極リードタブ
10 正極リードタブ
DESCRIPTION OF SYMBOLS 1 Negative electrode active material layer 2 Negative electrode collector 3 Negative electrode 4 Positive electrode active material layer 5 Positive electrode collector 6 Positive electrode 7 Separator 8 Outer film 9 Negative electrode lead tab 10 Positive electrode lead tab

Claims (8)

正極集電体上に正極活物質層を有する正極と、負極集電体上に負極活物質層を有する負極とを、セパレータを介して積層した積層素子を外装フィルムに収納したリチウムイオン二次電池において、
前記正極集電体の周縁部および前記負極集電体の周縁部にそれぞれ正極活物質層、負極活物質層の非形成部を有し、前記正極集電体の前記非形成部および前記負極集電体の前記非形成部が、前記セパレータおよび前記外装フィルムに対して同一位置に接着されていることを特徴とするリチウムイオン二次電池。
Lithium ion secondary battery in which a laminated element in which a positive electrode having a positive electrode active material layer on a positive electrode current collector and a negative electrode having a negative electrode active material layer on a negative electrode current collector are stacked via a separator is housed in an exterior film In
The positive active material layer, respectively on the periphery of the peripheral portion and the negative electrode current collector of the positive electrode current collector, has a non-formation portion of the negative electrode active material layer, wherein the non-formation portion and the negative electrode current of the cathode current collector the non-forming portion, a lithium ion secondary battery, characterized by being bonded to the same position relative to the separator and the outer film of the collector.
前記正極集電体および前記負極集電体の各々は、対向する二辺を有する外形をなし、該対向する二辺に沿って前記非形成部が設けられている、請求項1に記載のリチウムイオン二次電池。2. The lithium according to claim 1, wherein each of the positive electrode current collector and the negative electrode current collector has an outer shape having two opposite sides, and the non-forming portion is provided along the two opposite sides. Ion secondary battery. 前記非形成部は、前記正極集電体および前記負極集電体の全周にわたって設けられている、請求項1に記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 1, wherein the non-forming portion is provided over the entire circumference of the positive electrode current collector and the negative electrode current collector. 前記接着が加熱接着である、請求項1ないし3のいずれか1項に記載のリチウムイオン二次電池。The lithium ion secondary battery according to any one of claims 1 to 3, wherein the adhesion is heat adhesion. 前記積層素子の最外層となる正極集電体又は負極集電体が熱可塑性樹脂からなる接着層を有する外装フィルムと接着されていることを特徴とする請求項1ないし4のいずれか1項に記載のリチウムイオン二次電池。 Positive electrode current collector or the negative electrode current collector becomes the outermost layer of the laminated element, any one of claims 1, characterized in that it is bonded to the outer film 4 having an adhesive layer made of a thermoplastic resin The lithium ion secondary battery described in 1. 前記負極活物質層がケイ素を有することを特徴とする請求項1ないし5のいずれか1項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 5, wherein the negative electrode active material layer includes silicon. 前記負極活物質層はケイ素を含有する負極活物質と、加熱により脱水縮合反応を生じる熱硬化性樹脂の混合物を含み、前記熱硬化性樹脂により前記負極活物質の粒子間、及び負極活物質の粒子と集電体とが結着されていることを特徴とする請求項1ないしのいずれか1項に記載のリチウムイオン二次電池。 The negative electrode active material layer includes a mixture of a negative electrode active material containing silicon and a thermosetting resin that causes a dehydration condensation reaction upon heating. lithium-ion secondary battery according to any one of claims 1 to 6, characterized in that the particles and the current collector are bound. 正極集電体上に正極活物質層を有する正極と、負極集電体上に負極活物質層を有する負極とを、セパレータを介して積層した積層素子を外装フィルムに収納したリチウムイオン二次電池の製造方法において、Lithium ion secondary battery in which a laminated element in which a positive electrode having a positive electrode active material layer on a positive electrode current collector and a negative electrode having a negative electrode active material layer on a negative electrode current collector are stacked via a separator is housed in an exterior film In the manufacturing method of
周縁部に正極活物質層の非形成部を有する前記正極集電体と、周縁部に負極活物質層の非形成部を有する前記負極集電体と、を用いて、Using the positive electrode current collector having a non-formation part of the positive electrode active material layer at the peripheral part and the negative electrode current collector having a non-formation part of the negative electrode active material layer at the peripheral part,
前記正極集電体の前記非形成部および前記負極集電体の前記非形成部を、前記セパレータおよび前記外装フィルムに対して同一位置に接着することを特徴とするリチウムイオン二次電池の製造方法。The method for producing a lithium ion secondary battery, wherein the non-formation part of the positive electrode current collector and the non-formation part of the negative electrode current collector are bonded to the separator and the exterior film at the same position. .
JP2008307642A 2008-12-02 2008-12-02 Lithium ion secondary battery and manufacturing method thereof Expired - Fee Related JP5279018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008307642A JP5279018B2 (en) 2008-12-02 2008-12-02 Lithium ion secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008307642A JP5279018B2 (en) 2008-12-02 2008-12-02 Lithium ion secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010135111A JP2010135111A (en) 2010-06-17
JP5279018B2 true JP5279018B2 (en) 2013-09-04

Family

ID=42346212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008307642A Expired - Fee Related JP5279018B2 (en) 2008-12-02 2008-12-02 Lithium ion secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5279018B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10350180B2 (en) 2010-01-14 2019-07-16 Crescita Therapeutics Inc. Solid-forming local anesthetic formulations for pain control

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341948B (en) * 2009-03-05 2014-04-16 日产自动车株式会社 Bipolar secondary cell and method for producing the same
EP2602848A4 (en) * 2010-08-02 2015-05-20 Nissan Motor Negative electrode for lithium-ion secondary battery, and manufacturing method for same
JP5450478B2 (en) * 2011-02-28 2014-03-26 株式会社日立製作所 Non-aqueous secondary battery negative electrode and non-aqueous secondary battery
JP6060897B2 (en) * 2011-03-28 2017-01-18 日本電気株式会社 Secondary battery
WO2012132152A1 (en) * 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and production method therefor
JP5717193B2 (en) * 2011-08-19 2015-05-13 Necエナジーデバイス株式会社 battery
JP5879550B2 (en) * 2011-08-22 2016-03-08 パナソニックIpマネジメント株式会社 Thin secondary battery
JP5382079B2 (en) * 2011-08-26 2014-01-08 日産自動車株式会社 Secondary battery
WO2013047778A1 (en) * 2011-09-29 2013-04-04 オートモーティブエナジーサプライ株式会社 Battery and method for manufacturing same
JP5851785B2 (en) * 2011-09-29 2016-02-03 オートモーティブエナジーサプライ株式会社 Battery and manufacturing method thereof
JP5785843B2 (en) * 2011-10-07 2015-09-30 オートモーティブエナジーサプライ株式会社 Battery and manufacturing method thereof
JP2013143336A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Manufacturing method of packed electrode, packed electrode, secondary battery, and heat sealing device
JP2013254629A (en) * 2012-06-06 2013-12-19 Toyota Industries Corp Power storage device and secondary battery
WO2015079365A1 (en) * 2013-11-28 2015-06-04 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
JP6348807B2 (en) * 2014-09-10 2018-06-27 株式会社日立製作所 Lithium ion secondary battery
CN109219902A (en) * 2016-05-31 2019-01-15 株式会社村田制作所 Electric energy storage device
JP7406545B2 (en) 2019-03-26 2023-12-27 マクセル株式会社 Sheet battery and its manufacturing method
JP7303895B2 (en) * 2019-10-25 2023-07-05 シャープ株式会社 laminate battery
KR20210056836A (en) * 2019-11-11 2021-05-20 주식회사 엘지화학 Negative electrode including a plurality of current collectos disposed in parallel and secondary battery comprising the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273641A (en) * 1998-03-24 1999-10-08 Yuasa Corp Flexible thin battery
JP4281129B2 (en) * 1998-10-28 2009-06-17 三菱電機株式会社 Lithium ion secondary battery
JP2003249269A (en) * 2002-02-21 2003-09-05 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2004362908A (en) * 2003-06-04 2004-12-24 Hitachi Metals Ltd Metal mask and manufacturing method thereof
JP4670275B2 (en) * 2004-08-12 2011-04-13 日産自動車株式会社 Bipolar battery and battery pack
JP5315653B2 (en) * 2006-12-08 2013-10-16 日産自動車株式会社 Bipolar battery manufacturing method
JP5468723B2 (en) * 2006-12-19 2014-04-09 Necエナジーデバイス株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10350180B2 (en) 2010-01-14 2019-07-16 Crescita Therapeutics Inc. Solid-forming local anesthetic formulations for pain control
US10603293B2 (en) 2010-01-14 2020-03-31 Crescita Therapeutics Inc. Solid-forming local anesthetic formulations for pain control
US10751305B2 (en) 2010-01-14 2020-08-25 Crescita Therapeutics Inc. Solid-forming topical formulations for pain control

Also Published As

Publication number Publication date
JP2010135111A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5279018B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5468723B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6288186B2 (en) Lithium ion secondary battery
JP5800354B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5288448B2 (en) Nonaqueous electrolyte secondary battery
JP5360871B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP6286829B2 (en) Lithium ion secondary battery
JP6052179B2 (en) Lithium ion secondary battery
JP5441143B2 (en) Lithium secondary battery for mobile devices
JP2013065453A (en) Lithium secondary battery
JP5561803B2 (en) Nonaqueous electrolyte secondary battery
JP5158578B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO2012098639A1 (en) Nonaqueous electrolyte secondary battery
JP2011086448A (en) Lithium ion secondary battery
JP5213011B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2010033830A (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5312751B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4368119B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5267976B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5625848B2 (en) Lithium ion secondary battery and manufacturing method thereof
WO2014007183A1 (en) Lithium ion secondary battery
JP5424322B2 (en) Non-aqueous electrolyte secondary battery
JP2008210576A (en) Negative electrode plate for non-aqueous electrolyte secondary battery, and nonaqueous secondary battery using that negative electrode plate
JP2010219010A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5279018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees