JP2008210576A - Negative electrode plate for non-aqueous electrolyte secondary battery, and nonaqueous secondary battery using that negative electrode plate - Google Patents

Negative electrode plate for non-aqueous electrolyte secondary battery, and nonaqueous secondary battery using that negative electrode plate Download PDF

Info

Publication number
JP2008210576A
JP2008210576A JP2007044362A JP2007044362A JP2008210576A JP 2008210576 A JP2008210576 A JP 2008210576A JP 2007044362 A JP2007044362 A JP 2007044362A JP 2007044362 A JP2007044362 A JP 2007044362A JP 2008210576 A JP2008210576 A JP 2008210576A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
secondary battery
electrolyte secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007044362A
Other languages
Japanese (ja)
Inventor
Masanobu Sato
雅信 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007044362A priority Critical patent/JP2008210576A/en
Publication of JP2008210576A publication Critical patent/JP2008210576A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode plate for a nonaqueous electrolyte secondary battery using at least one kind of negative electrode active material particles selected from silicon and silicon alloy which is excellent in cycle characteristics, and to provide the nonaqueous electrolyte secondary battery using that negative electrode plate. <P>SOLUTION: In the negative electrode plate having a negative electrode mixture layer 25 containing at least one kind of the negative electrode active material particles 22 selected from silicon and silicon alloy, a conductive auxiliary agent 24, and a binder 23, the content of the binder 23 in the negative electrode mixture layer 25 is 20 wt.% or more and 80 wt.% or less, and a lead wire of the negative electrode is formed on the surface of the negative electrode mixture layer 25. The binder 23 is preferably made of a rubber-based binder or a polymer material having flexibility. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解質二次電池用負極極板及びその負極極板を用いた非水電解質二次電池に関し、特にケイ素及びケイ素合金から選択された少なくとも1種の負極活物質粒子を用いた、サイクル特性に優れた非水電解質二次電池用負極極板及びその負極極板を用いた非水電解質二次電池に関する。   The present invention relates to a negative electrode plate for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the negative electrode plate, and particularly using at least one negative electrode active material particle selected from silicon and a silicon alloy. The present invention relates to a negative electrode plate for a non-aqueous electrolyte secondary battery excellent in cycle characteristics and a non-aqueous electrolyte secondary battery using the negative electrode plate.

近年、携帯電話機、ノート型パーソナルコンピュータ、PDA、携帯型デジタルメディアプレイヤー等の移動・携帯型電子機器が数多く登場しており、その駆動電源としての電池はこれらの機器の高機能化、小型化及び軽量化の要請から更なる高容量化が望まれている。また、これらの電池は、特に経済性の観点から繰り返し何度も使用できる二次電池であることが極めて重要である。そして、二次電池分野では他の電池に比べて高エネルギー密度である非水電解質二次電池が注目され、この非水電解質二次電池の占める割合は二次電池市場において大きな伸びを示している。   In recent years, a large number of mobile and portable electronic devices such as mobile phones, notebook personal computers, PDAs, and portable digital media players have appeared, and the battery as a driving power source has been improved in function, size and size of these devices. Due to the demand for weight reduction, further increase in capacity is desired. In addition, it is extremely important that these batteries are secondary batteries that can be used repeatedly many times from the viewpoint of economy. In the field of secondary batteries, non-aqueous electrolyte secondary batteries having a higher energy density than other batteries have attracted attention, and the proportion of these non-aqueous electrolyte secondary batteries has greatly increased in the secondary battery market. .

このような非水電解質二次電池は一般的には以下のようにして作製されている。すなわち、細長いシート状の銅箔等からなる導電性金属箔からなる集電体の両面に負極活物質を含有する負極合剤を塗布した負極極板と、細長いシート状のアルミニウム箔等からなる正極集電体の両面に正極活物質を含有する正極合剤を塗布した正極極板との間に、微多孔性ポリエチレンフィルム等からなるセパレータを配置し、負極及び正極をセパレータにより互いに絶縁した状態で円柱状の巻き芯に渦巻状に巻回して、円筒形の巻回電極体を作製する。角形の電池の場合は更にこの円筒形の巻回電極体をプレス機で押し潰して角形の電池外装体に挿入できるような形に成型する。次いで、これらの円筒形ないし角形の巻回電極体をそれぞれ対応する電池外装体内に収容し、非水電解質を注入して非水電解質二次電池としている。   Such a nonaqueous electrolyte secondary battery is generally manufactured as follows. That is, a negative electrode plate in which a negative electrode mixture containing a negative electrode active material is applied to both surfaces of a current collector made of a conductive metal foil made of a long and thin sheet-like copper foil, and a positive electrode made of a long and thin sheet-like aluminum foil A separator made of a microporous polyethylene film or the like is disposed between a positive electrode plate coated with a positive electrode mixture containing a positive electrode active material on both sides of the current collector, and the negative electrode and the positive electrode are insulated from each other by the separator. A cylindrical wound electrode body is produced by spirally winding around a cylindrical winding core. In the case of a prismatic battery, the cylindrical wound electrode body is further crushed by a press machine and molded into a shape that can be inserted into a prismatic battery outer body. Next, these cylindrical or rectangular wound electrode bodies are accommodated in the corresponding battery casings, respectively, and a nonaqueous electrolyte is injected to form a nonaqueous electrolyte secondary battery.

このような非水電解質二次電池における正極活物質としては、リチウムイオンを可逆的に吸蔵・放出することが可能な化合物、例えばLiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiMn、LiNiCoMn(x+y+z=1)、LiFePOなどが一種単独もしくは複数種を混合して用いられている。 As a positive electrode active material in such a non-aqueous electrolyte secondary battery, a compound capable of reversibly occluding and releasing lithium ions, for example, Li x MO 2 (where M is at least one of Co, Ni, and Mn). A lithium transition metal composite oxide represented by a seed, that is, LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiMn 2 O 4 LiNi x Co y Mn z O 2 (x + y + z = 1), LiFePO 4 and the like are used singly or in combination.

また、この非水電解質二次電池に使用される負極活物質としては、黒鉛、非晶質炭素などの炭素質材料がリチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、更に初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有していることから広く用いられている。しかしながら、炭素材料からなる負極活物質を用いた場合には、LiCの組成までしかリチウムを挿入できず、理論容量372mAh/gが限度であるため、電池の高容量化への障害となっている。 In addition, as a negative electrode active material used in this non-aqueous electrolyte secondary battery, dendrites grow while carbonaceous materials such as graphite and amorphous carbon have discharge potentials comparable to lithium metals and lithium alloys. Therefore, it is widely used because it has excellent properties such as high safety, excellent initial efficiency, good potential flatness, and high density. However, when a negative electrode active material made of a carbon material is used, lithium can only be inserted up to the composition of LiC 6 and the theoretical capacity is 372 mAh / g, which is an obstacle to increasing the capacity of the battery. Yes.

そこで、質量当たり及び体積当たりのエネルギー密度が高い負極活物質として、リチウムと合金化するケイ素ないしケイ素合金を用いる非水電解質二次電池が開発されている(下記特許文献1〜4参照)。この場合、ケイ素はLi4.4Siの組成までLiを挿入できるため、理論容量が4200mAh/gとなり、負極活物質として炭素材料を用いた場合よりも遙かに大きな容量を期待し得る。しかしながら、負極活物質としてケイ素粒子、ケイ素合金粒子等を用いた場合には、充放電サイクルに伴って負極活物質の大きな膨張収縮が起こるため、負極活物質が微粉化を起こしたり導電性ネットワークから欠け落ちたりする結果、電池のサイクル特性が低下する問題を生じていた。 Therefore, nonaqueous electrolyte secondary batteries using silicon or silicon alloys that are alloyed with lithium have been developed as negative electrode active materials having high energy density per mass and volume (see Patent Documents 1 to 4 below). In this case, since silicon can insert Li up to the composition of Li 4.4 Si, the theoretical capacity is 4200 mAh / g, and a capacity much larger than that in the case of using a carbon material as the negative electrode active material can be expected. However, when silicon particles, silicon alloy particles, or the like are used as the negative electrode active material, the negative electrode active material undergoes large expansion / contraction with the charge / discharge cycle. As a result of chipping off, there has been a problem that the cycle characteristics of the battery deteriorate.

このような負極活物質としてケイ素ないしケイ素合金を使用した従来の非水電解質二次電池のサイクル特性の低下の原因を図3を用いて説明する。なお、図3は従来例の負極極板の模式部分拡大断面図であり、図3(a)は放電後の状態、図3(b)は充電後の状態、図3(c)は再放電後の状態を示す。   The cause of the deterioration of the cycle characteristics of a conventional nonaqueous electrolyte secondary battery using silicon or a silicon alloy as the negative electrode active material will be described with reference to FIG. 3 is a schematic partial enlarged cross-sectional view of a conventional negative electrode plate. FIG. 3 (a) shows a state after discharging, FIG. 3 (b) shows a state after charging, and FIG. 3 (c) shows a re-discharge. Shown later.

すなわち、図3(a)に示したように、従来例の非水電解質二次電池の負極極板50は、銅箔からなる集電体51の表面に、ケイ素ないしケイ素合金からなる負極活物質52と、結着剤としての高分子物質53と、カーボン等の導電性助剤54との混合物からなる負極合剤層55が形成されている。この負極活物質52は、充電工程中にリチウムイオンを取り込むため、図3(b)に示したように、膨張する。その後、放電工程を経ると、図3(c)に示したように、リチウムイオンを取り込んだ負極活物質52は、リチウムイオンを放出するため、収縮する。   That is, as shown in FIG. 3A, the negative electrode plate 50 of the nonaqueous electrolyte secondary battery of the conventional example has a negative electrode active material made of silicon or a silicon alloy on the surface of a current collector 51 made of copper foil. 52, a negative electrode mixture layer 55 made of a mixture of a polymer material 53 as a binder and a conductive auxiliary agent 54 such as carbon is formed. Since the negative electrode active material 52 takes in lithium ions during the charging process, the negative electrode active material 52 expands as shown in FIG. After that, when the discharge process is performed, as shown in FIG. 3C, the negative electrode active material 52 that has taken in lithium ions contracts because lithium ions are released.

この負極活物質52の充電時の膨張及び放電時の収縮が大きいため、充放電サイクルを繰り返すと、負極活物質52間の導電パス及び負極活物質52と集電体51間の導電パスが共に徐々に失われていくため、サイクル特性の減少に繋がっているわけである。   Since the negative electrode active material 52 is greatly expanded and contracted during discharge, when the charge / discharge cycle is repeated, both the conductive path between the negative electrode active material 52 and the conductive path between the negative electrode active material 52 and the current collector 51 are obtained. Since it is gradually lost, it leads to a decrease in cycle characteristics.

このような負極活物質としてケイ素ないしケイ素合金を使用した従来技術の問題点を解決するために、下記特許文献1には、ケイ素と、銅、ニッケル及びコバルトから選択された少なくとも1種の複合粉末であって、前記複合粉末が鱗片状の粒子からなるリチウム電池用負極材料の発明が開示されている。また、下記特許文献2には、表面粗さの大きい集電体の表面にケイ素、ケイ素合金等の活物質粒子と、導電性金属粉末と、結着剤としてのポリイミド、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等との混合物の層を形成し、非酸化性雰囲気下において焼結したリチウム二次電池用負極の発明が開示されている。   In order to solve the problems of the prior art using silicon or a silicon alloy as such a negative electrode active material, Patent Document 1 below discloses at least one composite powder selected from silicon, copper, nickel and cobalt. And the invention of the negative electrode material for lithium batteries in which the composite powder is composed of scaly particles is disclosed. Further, in Patent Document 2 below, active material particles such as silicon and silicon alloy, conductive metal powder, polyimide as a binder, polyvinylidene fluoride, polytetra An invention of a negative electrode for a lithium secondary battery in which a layer of a mixture with fluoroethylene or the like is formed and sintered in a non-oxidizing atmosphere is disclosed.

なお、下記特許文献3には、ゴム製支持体にイオン導電性の分散剤及び電子導電性の分散剤が分散している蓄電性ゴム中に負極活物質を分散させた電極用蓄電性ゴムを集電体と接着して使用したリチウム電池の発明が開示されているが、負極活物質としてケイ素ないしケイ素合金を使用した際の問題点を示唆する記載はない。また、下記特許文献4には、炭素粒子と、気相法で作成された炭素繊維と弗素ゴムからなる結着剤とが混合されてなる負極を用いた非水電解質二次電池の発明が開示されているが、同じく負極活物質としてケイ素ないしケイ素合金を使用した際の問題点を示唆する記載はない。   Patent Document 3 listed below discloses an electrode storage rubber in which a negative electrode active material is dispersed in a storage rubber in which an ion conductive dispersant and an electron conductive dispersant are dispersed in a rubber support. Although an invention of a lithium battery used by being bonded to a current collector is disclosed, there is no description suggesting a problem when silicon or a silicon alloy is used as a negative electrode active material. Patent Document 4 below discloses an invention of a non-aqueous electrolyte secondary battery using a negative electrode in which carbon particles, a carbon fiber prepared by a vapor phase method, and a binder made of fluorine rubber are mixed. However, there is no description suggesting a problem when silicon or a silicon alloy is used as the negative electrode active material.

特開2002−124254号公報JP 2002-124254 A 特開2002−260637号公報Japanese Patent Laid-Open No. 2002-260637 特開2006−173583号公報JP 2006-173583 A 特開10− 27601号公報JP-A-10-27601

上述特許文献1及び2に開示されているように、負極活物質としてケイ素ないしケイ素合金を使用した非水電解質二次電池では、一応のサイクル特性の改善ができることが認められるが、依然としてユーザーの要望に添えるだけの十分なサイクル特性の改善は行い得ていない。   As disclosed in the above-mentioned Patent Documents 1 and 2, it is recognized that the non-aqueous electrolyte secondary battery using silicon or a silicon alloy as the negative electrode active material can improve the cycle characteristics temporarily. The cycle characteristics cannot be improved enough to attach to the above.

発明者は、このような負極活物質としてケイ素ないしケイ素合金を使用した非水電解質二次電池のサイクル特性を改善すべく種々実験を重ねた結果、結着剤としてのゴム系結着剤ないし高分子化合物の含有割合を従来のものよりも多くすると共に、負極極板の電位の取り出しを、集電体からではなく、活物質合剤の表面に形成したリードによって取り出すことにより解決し得ることを見出し、本発明を完成するに至ったのである。   The inventor has conducted various experiments to improve the cycle characteristics of a non-aqueous electrolyte secondary battery using silicon or a silicon alloy as the negative electrode active material, and as a result, has found that a rubber-based binder or a high binder as a binder. It is possible to solve the problem by increasing the content ratio of the molecular compound as compared with the conventional one and taking out the potential of the negative electrode plate not by the current collector but by the lead formed on the surface of the active material mixture. The headline and the present invention have been completed.

すなわち、本発明は、負極活物質としてケイ素ないしケイ素合金を使用した、サイクル特性に優れた非水電解質二次電池用負極極板及びその負極極板を用いた非水電解質二次電池を提供することを目的とする。   That is, the present invention provides a negative electrode plate for a nonaqueous electrolyte secondary battery excellent in cycle characteristics using silicon or a silicon alloy as a negative electrode active material, and a nonaqueous electrolyte secondary battery using the negative electrode plate. For the purpose.

上記目的を達成するため、本発明の非水電解質二次電池用負極極板は、ケイ素及びケイ素合金から選択された少なくとも1種の負極活物質粒子と、導電性助剤と、結着剤とを含む負極合剤層を有する非水電解質二次電池用負極極板において、前記負極合剤層中の結着剤含有量は20質量%以上80質量%以下であり、前記負極のリード線は前記負極合剤層の表面に形成されていることを特徴とする。   In order to achieve the above object, a negative electrode plate for a non-aqueous electrolyte secondary battery according to the present invention includes at least one negative electrode active material particle selected from silicon and a silicon alloy, a conductive auxiliary agent, a binder, In the negative electrode plate for a non-aqueous electrolyte secondary battery having a negative electrode mixture layer containing, the binder content in the negative electrode mixture layer is 20% by mass or more and 80% by mass or less, and the lead wire of the negative electrode is It is formed on the surface of the negative electrode mixture layer.

本発明の非水電解質二次電池用負極極板によれば、負極合剤層中の結着剤含有量を20質量%以上80質量%以下とするとともに負極のリード線を負極合剤層の表面に直接形成することによって、サイクル特性が良好となるという効果を奏する。   According to the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, the binder content in the negative electrode mixture layer is set to 20% by mass or more and 80% by mass or less, and the negative electrode lead wire is connected to the negative electrode mixture layer. By forming directly on the surface, the cycle characteristics are improved.

なお、本発明の非水電解質二次電池用負極極板は、従来例のような集電体を設けることは必ずしも必要ではなく、負極のリード線を負極合剤層の表面に直接形成することが必要不可欠である。負極のリード線を集電体に形成すると、充放電時の負極活物質としてのケイ素ないしケイ素合金の膨張・収縮により、負極活物質と集電体との間の電気的導通が悪化し、抵抗が大きくなってサイクル特性が悪化する。これに対し、本発明のように負極のリード線を負極合剤層の表面に直接形成すると、負極リード線の幅は集電体の幅よりも大幅に狭いので、充放電時のケイ素ないしケイ素合金の膨張・収縮が大きくても、負極リード線がその膨張・収縮に追従できるため、負極活物質と負極リード線との間の電気的導通が悪化することが少なくなる。   The negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention does not necessarily have to be provided with a current collector as in the conventional example, and the negative electrode lead wire is formed directly on the surface of the negative electrode mixture layer. Is indispensable. When the negative electrode lead wire is formed on the current collector, the electrical continuity between the negative electrode active material and the current collector deteriorates due to the expansion / contraction of silicon or a silicon alloy as the negative electrode active material during charge / discharge. Becomes larger and the cycle characteristics deteriorate. On the other hand, when the negative electrode lead wire is directly formed on the surface of the negative electrode mixture layer as in the present invention, the width of the negative electrode lead wire is significantly narrower than the width of the current collector. Even if the expansion / contraction of the alloy is large, the negative electrode lead wire can follow the expansion / contraction, so that the electrical continuity between the negative electrode active material and the negative electrode lead wire is reduced.

また、負極合剤層中の結着剤含有量が20質量%未満であると、充放電時の負極活物質としてのケイ素ないしケイ素合金の膨張・収縮により負極活物質間の電気的導通が悪化し、抵抗が大きくなってサイクル特性が悪化するので好ましくない。更に、負極合剤層中の結着剤含有量が80質量%を超えると、サイクル特性は良好であるが、結着剤は導電性ではないために抵抗が大きくなること、及び、活物質としてのケイ素ないしケイ素合金の含有割合が少なくなるため電池容量の低下につながるので好ましくない。   Further, when the binder content in the negative electrode mixture layer is less than 20% by mass, electrical conduction between the negative electrode active materials is deteriorated due to expansion / contraction of silicon or a silicon alloy as the negative electrode active material during charge / discharge. However, the resistance increases and the cycle characteristics deteriorate, which is not preferable. Furthermore, when the binder content in the negative electrode mixture layer exceeds 80% by mass, the cycle characteristics are good, but since the binder is not conductive, the resistance increases, and as an active material Since the content ratio of silicon or silicon alloy is reduced, the battery capacity is reduced, which is not preferable.

なお、本発明の非水電解質二次電池で使用し得るケイ素合金としては、ケイ素と他の1種以上の元素との固溶体、ケイ素と他の1種以上の金属との金属間化合物、ケイ素と他の1種以上の元素との共晶合金等がある。これらのケイ素合金の具体例としては、SiNi、SiTi等がある。 The silicon alloy that can be used in the non-aqueous electrolyte secondary battery of the present invention includes a solid solution of silicon and one or more other elements, an intermetallic compound of silicon and one or more other metals, silicon and Eutectic alloys with one or more other elements. Specific examples of these silicon alloys include Si 2 Ni and Si 2 Ti.

本発明の非水電解質二次電池用負極極板においては、前記導電性助剤は、炭素材料、銅、銅合金から選択された少なくとも1種の粉末からなることが好ましい。   In the negative electrode plate for a nonaqueous electrolyte secondary battery according to the present invention, the conductive auxiliary agent is preferably made of at least one powder selected from a carbon material, copper, and a copper alloy.

かかる態様の非水電解質二次電池用負極極板によれば、炭素材料は従来から負極の導電性助剤として汎用的に使用されているものであり、また、銅ないし銅合金も従来から負極の集電体として汎用的に使用されているものであるため、特に電池特性に悪影響を及ぼすことなく負極活物質間の電気的導通を高めることができる。   According to the negative electrode plate for a non-aqueous electrolyte secondary battery of this aspect, the carbon material has been conventionally used as a conductive aid for the negative electrode, and copper or copper alloys have also been conventionally used as the negative electrode. Therefore, the electrical continuity between the negative electrode active materials can be enhanced without adversely affecting the battery characteristics.

また、本発明の非水電解質二次電池用負極極板においては、前記結着剤は、ゴム系の結着剤又は柔軟性を有する高分子材料からなることが好ましい。   In the negative electrode plate for a non-aqueous electrolyte secondary battery according to the present invention, the binder is preferably made of a rubber-based binder or a flexible polymer material.

このうち、ゴム系の結着剤としては好ましくはスチレン−ブタジエンゴム、ニトリルゴム、クロロプレンゴム等が使用できる。また、柔軟性を有する高分子材料としては、ポリイミド樹脂、ポリプロピレン樹脂及びポリエチレン樹脂等を使用し得るが、耐熱性及び強度の観点からポリイミド樹脂が望ましい。   Of these, styrene-butadiene rubber, nitrile rubber, chloroprene rubber and the like can be preferably used as the rubber-based binder. Moreover, as a polymeric material which has a softness | flexibility, although a polyimide resin, a polypropylene resin, a polyethylene resin, etc. can be used, a polyimide resin is desirable from a heat resistant and intensity | strength viewpoint.

かかる態様の非水電解質二次電池用負極極板によれば、これらの結着剤はいずれも弾力性を有しているため、充放電時のケイ素ないしケイ素合金の膨張・収縮に追従できるので、負極活物質間の電気的導通が悪化することがなく、サイクル特性が良好となる。   According to the negative electrode plate for a non-aqueous electrolyte secondary battery of this aspect, since these binders have elasticity, they can follow the expansion / contraction of silicon or silicon alloy during charge / discharge. The electrical continuity between the negative electrode active materials is not deteriorated, and the cycle characteristics are improved.

また、本発明の非水電解質二次電池用負極極板においては、前記負極合剤層は、導電性金属箔の片面又は両面に形成されているものとしてもよい。   In the negative electrode plate for a nonaqueous electrolyte secondary battery of the present invention, the negative electrode mixture layer may be formed on one side or both sides of a conductive metal foil.

かかる態様の非水電解質二次電池用負極極板においても、負極リードが負極合剤層の表面に直接形成されていれば、充放電時のケイ素ないしケイ素合金の膨張・収縮が大きくても、負極リード線がその膨張・収縮に追従できるため、負極活物質と負極リード線との間の電気的導通が悪化することが少なくなる。   Even in the negative electrode plate for a non-aqueous electrolyte secondary battery in such an embodiment, if the negative electrode lead is directly formed on the surface of the negative electrode mixture layer, even if the expansion or contraction of silicon or silicon alloy during charge / discharge is large, Since the negative electrode lead wire can follow the expansion / contraction, the electrical continuity between the negative electrode active material and the negative electrode lead wire is reduced.

更に、本発明の非水電解質二次電池は、前記いずれかに記載の非水電解質二次電池用負極極板と、正極極板と、セパレータ及び非水電解質を備えることを特徴とする。   Furthermore, the nonaqueous electrolyte secondary battery of the present invention is characterized by comprising the negative electrode plate for a nonaqueous electrolyte secondary battery described above, a positive electrode plate, a separator, and a nonaqueous electrolyte.

本発明の非水電解質二次電池は、正極活物質としてリチウムイオンを可逆的に吸蔵・放出することが可能な化合物を使用した正極極板であれば適宜選択して使用できる。このような正極活物質としては、例えばLiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物や、Mの一部をZr、Mg、Al等で置換したリチウム遷移金属複合酸化物を一種単独もしくは複数種を混合して使用できる。これらのリチウム遷移金属複合酸化物の具体例としては、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiMn、LiNiCoMn(x+y+z=1)、LiFePOなどが挙げられる。 The nonaqueous electrolyte secondary battery of the present invention can be appropriately selected and used as long as it is a positive electrode plate using a compound capable of reversibly occluding and releasing lithium ions as a positive electrode active material. As such a positive electrode active material, for example, a lithium transition metal composite oxide represented by Li x MO 2 (wherein M is at least one of Co, Ni, and Mn), a part of M may be Zr, Lithium transition metal composite oxides substituted with Mg, Al, etc. can be used singly or in combination. Specific examples of these lithium transition metal complex oxide, LiCoO 2, LiNiO 2, LiNi y Co 1-y O 2 (y = 0.01~0.99), LiMnO 2, LiMn 2 O 4, LiNi x Examples include Co y Mn z O 2 (x + y + z = 1) and LiFePO 4 .

また、本発明の非水電解質二次電池で使用し得る有機溶媒としては、カーボネート類、ラクトン類、エーテル類、エステル類などが挙げられる。これら溶媒の2種類以上を混合して用いることもできる。具体例としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)等のカーボネート類、γ−ブチロラクトン、γ−バレロラクトン、γ−ジメトキシエタン、テトラヒドロフラン、1、4−ジオキサン、ジエチルカーボネートなどを挙げることができ、充放電効率を高める点から、ECとDMC、DEC、EMC等の鎖状カーボネートの混合溶媒が好適である。   Examples of the organic solvent that can be used in the nonaqueous electrolyte secondary battery of the present invention include carbonates, lactones, ethers, and esters. Two or more of these solvents can be used in combination. Specific examples include carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC). , Γ-butyrolactone, γ-valerolactone, γ-dimethoxyethane, tetrahydrofuran, 1,4-dioxane, diethyl carbonate and the like. From the point of increasing charge and discharge efficiency, EC and DMC, DEC, EMC, etc. A mixed solvent of chain carbonate is preferred.

更に、非水溶媒に溶解させる電解質塩としては、非水電解質二次電池において一般的に用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF(ヘキサフルオロリン酸リチウム)が好ましく用いられる。前記非水溶媒に対する溶質の溶解量は、0.5〜2.0mol/Lとするのが好ましい。 Further, as the electrolyte salt dissolved in the nonaqueous solvent, a lithium salt generally used in a nonaqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated. Among these, LiPF 6 (lithium hexafluorophosphate) is preferably used. The amount of solute dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.

かかる態様の非水電解質二次電池によれば、負極活物質としてケイ素ないしケイ素合金を使用したサイクル特性が良好な非水電解質二次電池が得られる。   According to such a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery having good cycle characteristics using silicon or a silicon alloy as a negative electrode active material can be obtained.

以下、本願発明を実施するための最良の形態を実施例及び図面に基づいて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples and drawings. However, the following examples illustrate non-aqueous electrolyte secondary batteries for embodying the technical idea of the present invention, and are not intended to specify the present invention to these examples. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.

[負極極板の作製]
[実施例1、2及び比較例3]
まず、実施例1、2及び比較例3で使用する集電体なしの負極極板の製造装置を図1の模式側面図を用いて説明する。この負極極板の製造装置10は、負極活物質合剤を供給するためのダイコーター11と、ヒータ12付きのコンベヤー13と、スクレイパー14と、巻き取り手段15とを備えている。この負極極板の製造装置10は、従来例のように集電体を使用しないため、ダイコーター11によりコンベヤー13の表面に一定の厚さに塗布された負極合剤を120℃〜300℃に加熱し得る維持されたヒータ12の部分で急速に加熱し、溶媒としてのNMPを気化させる。このように溶媒を急速に乾燥すると、コンベヤー13と負極合剤の接着を防止することができる。次いで、スクレイパー14によって乾燥された負極合剤をコンベヤー13の表面から剥離し、巻き取り手段15でロール状に巻き取る。
[Production of negative electrode plate]
[Examples 1 and 2 and Comparative Example 3]
First, the manufacturing apparatus of the negative electrode plate without a collector used in Examples 1 and 2 and Comparative Example 3 will be described with reference to the schematic side view of FIG. The negative electrode plate manufacturing apparatus 10 includes a die coater 11 for supplying a negative electrode active material mixture, a conveyor 13 with a heater 12, a scraper 14, and a winding means 15. Since this negative electrode plate manufacturing apparatus 10 does not use a current collector as in the conventional example, the negative electrode mixture applied to the surface of the conveyor 13 with a certain thickness by the die coater 11 is set to 120 ° C. to 300 ° C. The heated portion of the heater 12 that can be heated is rapidly heated to vaporize NMP as a solvent. When the solvent is rapidly dried in this manner, adhesion between the conveyor 13 and the negative electrode mixture can be prevented. Next, the negative electrode mixture dried by the scraper 14 is peeled off from the surface of the conveyor 13 and taken up in a roll shape by the winding means 15.

なお、巻き取り手段15でロール状に巻き取られた負極合剤は、別途圧延及びスリット工程を経た後、必要に応じて焼結工程を経て、活物質合剤の表面に負極リードとなるニッケル製タブを圧着することにより、集電体なしの負極極板を作製する。   The negative electrode mixture wound in a roll shape by the winding means 15 is subjected to a separate rolling and slitting process, followed by a sintering process as necessary, and nickel which becomes a negative electrode lead on the surface of the active material mixture A negative electrode plate without a current collector is produced by pressure-bonding the manufactured tab.

実施例1の負極極板としては、導電性金属粉末としての平均粒径10μのフレーク状銅粉末と、活物質粒子としての平均粒径50μのケイ素粉末とを、質量比で3:1となるように秤量し、乳鉢中で乾式混合した。この混合物の80質量部を、結着剤としてのポリイミド樹脂20質量部を含む8質量%のN−メチル−2−ピロリドン(NMP)溶液に混合し、負極合剤スラリーとした。   As the negative electrode plate of Example 1, a flaky copper powder having an average particle diameter of 10 μ as a conductive metal powder and a silicon powder having an average particle diameter of 50 μ as an active material particle are in a mass ratio of 3: 1. And weighed dry in a mortar. 80 parts by mass of this mixture was mixed with an 8% by mass N-methyl-2-pyrrolidone (NMP) solution containing 20 parts by mass of a polyimide resin as a binder to obtain a negative electrode mixture slurry.

この負極合剤スラリーを図1に示した負極極板の製造装置10を用いてダイコーター11によってコンベヤー13の表面に一定の厚さとなるように塗布し、ヒータ12によって150℃に急速に加熱することにより乾燥し、巻き取り手段15で巻き取った。   The negative electrode mixture slurry is applied to the surface of the conveyor 13 by the die coater 11 so as to have a certain thickness using the negative electrode plate manufacturing apparatus 10 shown in FIG. 1, and rapidly heated to 150 ° C. by the heater 12. And then wound up by the winding means 15.

その後、図示しない圧延装置を用いて厚さ56μmに圧延し、次いで380mm×52mmの短冊状に切り抜いた後、アルゴン雰囲気中で400℃で10時間熱処理してポリイミド樹脂を焼結した。次いで、得られた負極合剤のみからなる負極極板の表面に負極リードとしてNiタブを圧着し、実施例1の負極極板を得た。得られた実施例1の負極極板の負極活物質塗布質量は60mg/cmである。 Then, after rolling to 56 micrometers thickness using the rolling apparatus which is not shown in figure, and then cutting out to 380 mm x 52 mm strip shape, it heat-processed at 400 degreeC for 10 hours in argon atmosphere, and sintered the polyimide resin. Subsequently, Ni tab was crimped | bonded as a negative electrode lead to the surface of the negative electrode plate which consists only of the obtained negative mix, and the negative electrode plate of Example 1 was obtained. The negative electrode active material coating mass of the obtained negative electrode plate of Example 1 is 60 mg / cm 2 .

また、実施例1と同じフレーク状銅粉末とケイ素粉末の混合物の含有割合を70質量部、ポリイミド樹脂の含有割合を30質量%とした以外は全て実施例1の場合と同様にして、実施例2の負極極板を作製した。   Further, the same examples as in Example 1 except that the content ratio of the mixture of the flaky copper powder and the silicon powder as in Example 1 was 70 parts by mass and the content ratio of the polyimide resin was 30% by mass. 2 negative electrode plates were prepared.

更に、実施例1と同じフレーク状銅粉末とケイ素粉末の混合物の含有割合を90質量部、ポリイミド樹脂の含有割合を10質量%とした以外は全て実施例1の場合と同様にして、比較例1の負極極板を作製した。
[比較例2及び3]
比較例2及び3の負極極板としては、従来例のものと同様にして集電体箔膜の両面に上に負極活物質合剤を塗布して作製した。まず、導電性金属粉末としての平均粒径10μのフレーク状銅粉末と活物質粒子としての平均粒径50μのケイ素粉末とを、質量比で3:1となるように秤量し、乳鉢中で乾式混合した。この混合物の90質量部を結着剤としてのポリイミド樹脂10質量部を含む8質量%のNMP溶液に混合し、負極合剤スラリーとした。
Furthermore, the same as in Example 1 except that the content ratio of the mixture of flaky copper powder and silicon powder was 90 parts by mass and the content ratio of the polyimide resin was 10% by mass, as in Example 1, Comparative Example 1 negative electrode plate was produced.
[Comparative Examples 2 and 3]
The negative electrode plates of Comparative Examples 2 and 3 were prepared by applying a negative electrode active material mixture on both sides of the current collector foil film in the same manner as in the conventional example. First, a flaky copper powder having an average particle diameter of 10 μ as a conductive metal powder and a silicon powder having an average particle diameter of 50 μ as an active material particle are weighed to a mass ratio of 3: 1 and dried in a mortar. Mixed. 90 parts by mass of this mixture was mixed with an 8% by mass NMP solution containing 10 parts by mass of a polyimide resin as a binder to obtain a negative electrode mixture slurry.

この負極合剤スラリーを集電体である厚み10μmの電解銅箔の両面に塗布し、乾燥させた後に厚さ66μmとなるように圧延し、次いで短辺の長さが52mm、長辺の長さが380mmの短冊状に切り抜いた後、アルゴン雰囲気中で400℃で10時間熱処理してポリイミド樹脂を焼結した。更に、集電体である電解銅箔に負極リードとしてNiタブを圧着し、比較例2の負極極板を得た。なお、この比較例2の負極極板の負極活物質塗布質量も、実施例1、2及び比較例1の場合と同様に、60mg/cmとなるように調整した。 This negative electrode mixture slurry was applied to both sides of a 10 μm thick electrolytic copper foil as a current collector, dried and then rolled to a thickness of 66 μm, and then the short side length was 52 mm and the long side length was Was cut into strips having a length of 380 mm and then heat-treated at 400 ° C. for 10 hours in an argon atmosphere to sinter the polyimide resin. Furthermore, Ni tab was crimped | bonded to the electrolytic copper foil which is a collector as a negative electrode lead, and the negative electrode plate of comparative example 2 was obtained. In addition, the negative electrode active material application mass of the negative electrode plate of Comparative Example 2 was also adjusted to 60 mg / cm 2 as in Examples 1 and 2 and Comparative Example 1.

更に、比較例2と同じフレーク状銅粉末とケイ素粉末の混合物の含有割合を80質量部、ポリイミド樹脂の含有割合を20質量%とした以外は全て比較例2の場合と同様にして、比較例3の負極極板を作製した。   Further, the same as in Comparative Example 2 except that the content ratio of the mixture of the flaky copper powder and the silicon powder as in Comparative Example 2 was 80 parts by mass, and the content ratio of the polyimide resin was 20% by mass. 3 negative electrode plates were prepared.

[正極極板の作製]
正極極板としては正極活物質としてのLiCoO粉末と、正極導電剤としての炭素材料粉末と、正極結着剤としてのポリフッ化ビニリデンとを、活物質と導電剤と結着剤との質量比が94:3:3となるように加えた後、混練し、正極合剤スラリーとした。このスラリーを厚さ15μmのアルミニウム製の集電体の両面にドクターブレード法により塗布した。その後、乾燥した後に圧縮ローラーを用いて厚さが150μmになるように圧縮し、短辺の長さが50mm、長辺の長さが350mmの短冊状の正極極板を作製した。
[Preparation of positive electrode plate]
As the positive electrode plate, the LiCoO 2 powder as the positive electrode active material, the carbon material powder as the positive electrode conductive agent, and the polyvinylidene fluoride as the positive electrode binder, the mass ratio of the active material, the conductive agent and the binder Was added so as to be 94: 3: 3, and then kneaded to obtain a positive electrode mixture slurry. This slurry was applied to both sides of an aluminum current collector having a thickness of 15 μm by a doctor blade method. Then, after drying, it compressed so that thickness might be set to 150 micrometers using a compression roller, and produced the strip-shaped positive electrode plate whose length of a short side is 50 mm, and whose length of a long side is 350 mm.

[電解液の作製]
ECとDECとを体積比で3:7で混合した溶媒に対し、LiPFを1モル/Lとなるように溶解し、電解液を作製した。
[Preparation of electrolyte]
LiPF 6 was dissolved at 1 mol / L in a solvent in which EC and DEC were mixed at a volume ratio of 3: 7 to prepare an electrolytic solution.

[電池の作製]
上記の正極、負極及び非水電解質を用い、また、セパレータとしてポリエチレン製微多孔膜を用い、実施例1、2及び比較例1〜3に係る5種類の角形の非水電解質二次電池を作製した。得られた非水電解質二次電池の設計容量は全て1000mAhである。
[Production of battery]
Using the positive electrode, the negative electrode, and the nonaqueous electrolyte, and using a polyethylene microporous membrane as a separator, five types of prismatic nonaqueous electrolyte secondary batteries according to Examples 1 and 2 and Comparative Examples 1 to 3 were produced. did. The design capacity of the obtained nonaqueous electrolyte secondary battery is all 1000 mAh.

[サイクル特性の評価]
上記の実施例1、2及び比較例1〜3のそれぞれの電池について、下記に示す充放電試験条件でサイクル特性を評価した。なお充放電は何れも25℃で行った。
(1)1サイクル目の充電条件
1It=1000mAの定電流で電池電圧が4.2Vになるまで定電流充電を行い、その後は4.2Vの定電圧で電流が20mAとなるまで充電した。
(2)1サイクル目の放電条件
1Itの定電流で電池電圧が2.75Vとなるまで放電した。
(3)2サイクル目以降の充電条件
1Itの定電流で電池電圧が4.2Vとなるまで充電し、その後4.2Vの定電圧で電流が20mAとなるまで充電した。
(4)2サイクル目以降の放電条件
1Itの定電流で電池電圧が2.75Vとなるまで放電した。
[Evaluation of cycle characteristics]
About each battery of said Example 1, 2 and Comparative Examples 1-3, cycling characteristics were evaluated on the charging / discharging test conditions shown below. In addition, all charging / discharging was performed at 25 degreeC.
(1) Charging conditions in the first cycle The battery was charged at a constant current of 1 It = 1000 mA until the battery voltage reached 4.2 V, and then charged at a constant voltage of 4.2 V until the current reached 20 mA.
(2) Discharge condition of 1st cycle It discharged until the battery voltage became 2.75V with the constant current of 1 It.
(3) Charging conditions after the second cycle The battery was charged with a constant current of 1 It until the battery voltage reached 4.2 V, and then charged with a constant voltage of 4.2 V until the current reached 20 mA.
(4) Discharge conditions after the second cycle The battery was discharged at a constant current of 1 It until the battery voltage reached 2.75V.

サイクル特性は、それぞれの電池について1サイクル目の放電容量の80%に達するまでのサイクル数として求めた。その結果を表1にまとめて示す。

Figure 2008210576
The cycle characteristics were determined as the number of cycles until each battery reached 80% of the discharge capacity at the first cycle. The results are summarized in Table 1.
Figure 2008210576

表1に示した結果から、以下のことが分かる。実施例1の結果と比較例3の結果を対比すると、両者とも負極合剤層中のポリイミド含有量は20質量%で同じであるが、集電体を使用しておらず、負極活物質合剤層に直接負極リードとしてのNiタブを圧着した実施例1の電池の方が集電体層を有する比較例3の電池よりもサイクル特性は2倍近く良い結果が得られている。   From the results shown in Table 1, the following can be understood. Comparing the results of Example 1 with the results of Comparative Example 3, the polyimide content in the negative electrode mixture layer is the same at 20% by mass, but no current collector was used, and the negative electrode active material composition was the same. The battery of Example 1 in which the Ni tab as the negative electrode lead was directly bonded to the agent layer had a cycle characteristic nearly twice as good as that of the battery of Comparative Example 3 having the current collector layer.

これは、充放電サイクルを繰り返していくと、比較例1では、図3に示したように、ケイ素活物質の充放電時の膨張・収縮により集電体とケイ素活物質との間の電気的導通が悪くなっていくため、抵抗が高くなり、サイクル寿命が低下してしまう。それに対し、実施例1の非水電解質二次電池は、集電体としての銅箔を使用してはおらず、負極極板の負極活物質合剤層に直接負極リード(Niタブ)をとっており、この負極リードの幅は比較例3の集電体の幅よりも大幅に小さい。したがって、負極リードは、ケイ素活物質に膨張・収縮が生じてもその膨張・収縮に追従できるので、ケイ素活物質とリードとの間の電気的導通が途切れ難く、サイクル特性の良好化につながったものと認められる。   When the charge / discharge cycle is repeated, in Comparative Example 1, as shown in FIG. 3, the electrical current between the current collector and the silicon active material is increased by the expansion / contraction of the silicon active material during charge / discharge. Since continuity deteriorates, the resistance increases and the cycle life decreases. In contrast, the nonaqueous electrolyte secondary battery of Example 1 does not use a copper foil as a current collector, and directly takes a negative electrode lead (Ni tab) on the negative electrode active material mixture layer of the negative electrode plate. The width of the negative electrode lead is much smaller than the width of the current collector of Comparative Example 3. Therefore, the negative electrode lead can follow the expansion / contraction even if the silicon active material expands / contracts, so that the electrical continuity between the silicon active material and the lead is hardly interrupted, leading to improved cycle characteristics. It is accepted.

また、実施例1、2及び比較例1の電池は、いずれも集電体を有していないが、負極合剤層中の結着剤としてのポリイミド含有量が相違しているものである。この実施例1、2及び比較例1の結果を対比すると、ポリイミド含有量が10質量%である比較例1の電池のサイクル特性は、ポリイミド含有量が20質量%である実施例1の電池の1/4にまで低下している。更に、ポリイミド含有量が30%と最も多い実施例2の電池は最も良好なサイクル特性を与えている。   The batteries of Examples 1 and 2 and Comparative Example 1 do not have a current collector, but have different polyimide contents as a binder in the negative electrode mixture layer. Comparing the results of Examples 1 and 2 and Comparative Example 1, the cycle characteristics of the battery of Comparative Example 1 having a polyimide content of 10% by mass are the same as those of the battery of Example 1 having a polyimide content of 20% by mass. It has fallen to 1/4. Further, the battery of Example 2 having the highest polyimide content of 30% gives the best cycle characteristics.

このように、結着剤としてのポリイミド含有量が多い方が良好なサイクル特性を与えることが分かるが、このことは比較例2及び比較例3の結果からも確認できる。すなわち、比較例2及び比較例3の電池は、何れも集電体を有しているものであるが、負極合剤層中の結着剤としてのポリイミド含有量が相違しているものである。この比較例2及び3の結果を対比すると、ポリイミド含有量が10質量%である比較例2の電池のサイクル特性は、ポリイミド含有量が20質量%である比較例3の電池の1/2にまで低下している。   Thus, although it turns out that the one where there is much polyimide content as a binder gives favorable cycling characteristics, this can also be confirmed from the result of the comparative example 2 and the comparative example 3. FIG. That is, the batteries of Comparative Example 2 and Comparative Example 3 both have current collectors, but have different polyimide contents as the binder in the negative electrode mixture layer. . Comparing the results of Comparative Examples 2 and 3, the cycle characteristics of the battery of Comparative Example 2 having a polyimide content of 10% by mass are ½ that of the battery of Comparative Example 3 having a polyimide content of 20% by mass. It has dropped to.

したがって、本発明においては、結着剤としては負極合剤層中に20質量%以上存在していると、その含有割合に比例してサイクル特性が良好になる。しかしながら、ポリイミド樹脂等の結着剤は、絶縁性であり、しかも電極反応に関与しない成分であるので、結着剤層の含有割合が多すぎると負極合剤層の抵抗が高くなるし、しかも電池容量の低下につながるため、結着剤の含有量は80質量%以下が好ましい。   Therefore, in the present invention, when the binder is present in the negative electrode mixture layer in an amount of 20% by mass or more, the cycle characteristics are improved in proportion to the content. However, since the binder such as polyimide resin is an insulating component and does not participate in the electrode reaction, if the content ratio of the binder layer is too large, the resistance of the negative electrode mixture layer increases, and Since the battery capacity is reduced, the binder content is preferably 80% by mass or less.

このような集電体を使用していない実施例の非水電解質二次電池が集電体を使用した比較例1の非水電解質二次電池よりもサイクル特性が良好となる原因を図2を用いて説明する。なお、図2は実施例の負極極板の模式部分拡大断面図であり、図2(a)は放電後の状態、図2(b)は充電後の状態、図2(c)は再放電後の状態を示す。   FIG. 2 shows the reason why the non-aqueous electrolyte secondary battery of the example not using the current collector has better cycle characteristics than the non-aqueous electrolyte secondary battery of Comparative Example 1 using the current collector. It explains using. 2 is a schematic partial enlarged cross-sectional view of the negative electrode plate of the example, FIG. 2 (a) is a state after discharging, FIG. 2 (b) is a state after charging, and FIG. 2 (c) is a re-discharge. Shown later.

すなわち、図2(a)に示したように、本発明の非水電解質二次電池の負極極板20は、集電体を有しておらず、ケイ素ないしケイ素合金からなる負極活物質粒子22と、ゴム系の結着剤又は柔軟性を有する高分子材料からなる結着剤23と、銅粉末等の導電性助剤24との混合物からなる負極合剤層25からなる。このケイ素ないしケイ素合金からなる負極活物質粒子22は、充電工程中にリチウムイオンを取り込むため、図2(b)に示したように、膨張する。その後、放電工程を経ると、図2(c)に示したように、リチウムイオンを取り込んだ負極活物質粒子22は、リチウムイオンを放出するため、収縮する。   That is, as shown in FIG. 2 (a), the negative electrode plate 20 of the nonaqueous electrolyte secondary battery of the present invention does not have a current collector, and negative electrode active material particles 22 made of silicon or a silicon alloy. And a negative electrode mixture layer 25 made of a mixture of a rubber-based binder or a binder 23 made of a flexible polymer material and a conductive auxiliary agent 24 such as copper powder. Since the negative electrode active material particles 22 made of silicon or silicon alloy take in lithium ions during the charging process, they expand as shown in FIG. After that, when the discharge process is performed, as shown in FIG. 2C, the negative electrode active material particles 22 that have taken in the lithium ions are contracted to release the lithium ions.

しかしながら、本発明の負極極板ではゴム系の結着剤又は柔軟性を有する高分子材料が20質量%以上と多量に含有されているため、負極活物質粒子22が充放電に伴って膨張・収縮を繰り返しても、負極活物質粒子22間及び負極活物質粒子22と導電性助剤24間の電気的導通が悪化することが少ないため、サイクル特性が良好になる。しかも、本発明の負極極板では負極リード線(図示せず)が負極合剤層25の表面に直接形成されているため、充放電時のケイ素ないしケイ素合金の膨張・収縮が大きくても、負極リード線がその膨張・収縮に追従できるため、負極活物質と負極リード線との間の電気的導通が悪化することがない。   However, since the negative electrode plate of the present invention contains a rubber-based binder or a flexible polymer material in a large amount of 20% by mass or more, the negative electrode active material particles 22 expand / Even if the contraction is repeated, the electrical continuity between the negative electrode active material particles 22 and between the negative electrode active material particles 22 and the conductive auxiliary agent 24 is hardly deteriorated, so that the cycle characteristics are improved. Moreover, since the negative electrode lead wire (not shown) is directly formed on the surface of the negative electrode mixture layer 25 in the negative electrode plate of the present invention, even if the expansion or contraction of silicon or silicon alloy during charging / discharging is large, Since the negative electrode lead wire can follow the expansion and contraction, electrical conduction between the negative electrode active material and the negative electrode lead wire does not deteriorate.

なお、実施例1及び2では集電体を使用しない負極極板の例を示したが、負極活物質合剤を集電体の片面ないし両面に塗布して作製した負極極板であっても、負極リード線を負極活物質合剤の表面に直接形成していれば、同様の作用・効果を奏する。また、実施例1及び2では、負極活物質としてケイ素からなるものを用いた例を示したが、従来から知られているケイ素合金を用いてもよい。   In Examples 1 and 2, an example of a negative electrode plate that does not use a current collector is shown, but a negative electrode plate prepared by applying a negative electrode active material mixture to one or both surfaces of a current collector may also be used. If the negative electrode lead wire is directly formed on the surface of the negative electrode active material mixture, the same effects and advantages are obtained. In Examples 1 and 2, an example in which a negative electrode active material made of silicon was used, but a conventionally known silicon alloy may be used.

また、実施例1及び2で使用した負極極板は結着剤としてポリイミド樹脂を用いているが、結着剤は弾力性を有しているものであれば適宜使用できる。このような弾力性を有していると言う観点からは、ゴム系の結着剤又は柔軟性を有する高分子材料を使用することができる。このうち、ゴム系の結着剤としてはスチレン−ブタジエンゴム、ニトリルゴム、クロロプレンゴム等を使用することができる。また、柔軟性を有する高分子材料としては、ポリイミド樹脂の外には、ポリプロピレン樹脂及びポリエチレン樹脂等が好ましい。   The negative electrode plates used in Examples 1 and 2 use polyimide resin as a binder, but any binder can be used as long as it has elasticity. From the viewpoint of having such elasticity, a rubber-based binder or a flexible polymer material can be used. Of these, styrene-butadiene rubber, nitrile rubber, chloroprene rubber, and the like can be used as the rubber-based binder. Moreover, as a polymeric material which has a softness | flexibility, a polypropylene resin, a polyethylene resin, etc. are preferable besides a polyimide resin.

更に、実施例1及び2で使用した負極極板は導電性助剤としてフレーク状の銅粉末を使用した例を示したが、粒状銅粉末からなるものや炭素質材料からなるものも使用することができ、また、銅粉末と炭素質材料の両者を同時に併用することもできる。   Furthermore, although the negative electrode plate used in Examples 1 and 2 showed an example in which flaky copper powder was used as a conductive auxiliary agent, one made of granular copper powder or one made of carbonaceous material should also be used. In addition, both copper powder and carbonaceous material can be used at the same time.

集電体なしの負極極板の製造装置の模式側面図である。It is a model side view of the manufacturing apparatus of the negative electrode plate without a collector. 本発明の負極極板の模式部分拡大断面図であり、図2(a)は放電後の状態、図2(b)は充電後の状態、図2(c)は再放電後の状態を示す。2 is a schematic partial enlarged cross-sectional view of the negative electrode plate of the present invention, FIG. 2 (a) shows a state after discharging, FIG. 2 (b) shows a state after charging, and FIG. 2 (c) shows a state after re-discharge. . 従来例の負極極板の模式部分拡大断面図であり、図3(a)は放電後の状態、図3(b)は充電後の状態、図3(c)は再放電後の状態を示す。FIG. 3A is a schematic partial enlarged sectional view of a negative electrode plate of a conventional example, FIG. 3A shows a state after discharging, FIG. 3B shows a state after charging, and FIG. 3C shows a state after re-discharging. .

符号の説明Explanation of symbols

20:負極極板、22:負極活物質粒子、23:結着剤、24:導電性助剤、25:負極合剤層   20: Negative electrode plate, 22: Negative electrode active material particles, 23: Binder, 24: Conductive auxiliary agent, 25: Negative electrode mixture layer

Claims (5)

ケイ素及びケイ素合金から選択された少なくとも1種の負極活物質粒子と、導電性助剤と、結着剤とを含む負極合剤層を有する非水電解質二次電池用負極極板において、
前記負極合剤層中の結着剤含有量は20質量%以上80質量%以下であり、
前記負極のリード線は前記負極合剤層の表面に形成されていることを特徴とする非水電解質二次電池用負極極板。
In a negative electrode plate for a non-aqueous electrolyte secondary battery having a negative electrode mixture layer containing at least one negative electrode active material particle selected from silicon and a silicon alloy, a conductive auxiliary agent, and a binder,
The binder content in the negative electrode mixture layer is 20% by mass or more and 80% by mass or less,
A negative electrode plate for a non-aqueous electrolyte secondary battery, wherein the negative electrode lead wire is formed on a surface of the negative electrode mixture layer.
前記導電性助剤は、炭素材料、銅、銅合金から選択された少なくとも1種の粉末からなることを特徴とする請求項1に記載の非水電解質二次電池用負極極板。   The negative electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive auxiliary agent comprises at least one powder selected from a carbon material, copper, and a copper alloy. 前記結着剤は、ゴム系の結着剤又は柔軟性を有する高分子材料からなることを特徴とする請求項1に記載の非水電解質二次電池用負極極板。   The negative electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the binder is made of a rubber-based binder or a polymer material having flexibility. 前記負極合剤層は、導電性金属箔の片面又は両面に形成されていることを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池用負極極板。   The said negative electrode mixture layer is formed in the single side | surface or both surfaces of electroconductive metal foil, The negative electrode plate for nonaqueous electrolyte secondary batteries in any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜4のいずれかに記載の非水電解質二次電池用負極極板と、正極極板と、セパレータ及び非水電解質を備えることを特徴とする非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising the negative electrode plate for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, a positive electrode plate, a separator, and a nonaqueous electrolyte.
JP2007044362A 2007-02-23 2007-02-23 Negative electrode plate for non-aqueous electrolyte secondary battery, and nonaqueous secondary battery using that negative electrode plate Pending JP2008210576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007044362A JP2008210576A (en) 2007-02-23 2007-02-23 Negative electrode plate for non-aqueous electrolyte secondary battery, and nonaqueous secondary battery using that negative electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044362A JP2008210576A (en) 2007-02-23 2007-02-23 Negative electrode plate for non-aqueous electrolyte secondary battery, and nonaqueous secondary battery using that negative electrode plate

Publications (1)

Publication Number Publication Date
JP2008210576A true JP2008210576A (en) 2008-09-11

Family

ID=39786721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044362A Pending JP2008210576A (en) 2007-02-23 2007-02-23 Negative electrode plate for non-aqueous electrolyte secondary battery, and nonaqueous secondary battery using that negative electrode plate

Country Status (1)

Country Link
JP (1) JP2008210576A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080603A1 (en) * 2012-11-21 2014-05-30 株式会社豊田自動織機 Negative electrode active material and electricity storage device
JP2014103128A (en) * 2014-03-10 2014-06-05 Toyota Industries Corp Copper-containing layered polysilane, negative electrode active material and power storage device
CN107534133A (en) * 2015-03-27 2018-01-02 国立研究开发法人产业技术综合研究所 Negative electrode of lithium ion battery and lithium ion battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080603A1 (en) * 2012-11-21 2014-05-30 株式会社豊田自動織機 Negative electrode active material and electricity storage device
JP2014103025A (en) * 2012-11-21 2014-06-05 Toyota Industries Corp Negative electrode active material and power storage device
US9831494B2 (en) 2012-11-21 2017-11-28 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode active material and electric storage apparatus
JP2014103128A (en) * 2014-03-10 2014-06-05 Toyota Industries Corp Copper-containing layered polysilane, negative electrode active material and power storage device
CN107534133A (en) * 2015-03-27 2018-01-02 国立研究开发法人产业技术综合研究所 Negative electrode of lithium ion battery and lithium ion battery
EP3276708A4 (en) * 2015-03-27 2018-03-21 National Institute of Advanced Industrial Science and Technology Lithium ion battery negative electrode and lithium ion battery

Similar Documents

Publication Publication Date Title
JP5279018B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5219339B2 (en) Lithium secondary battery
JP5156406B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4321115B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6219302B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP5360871B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP2009099523A (en) Lithium secondary battery
JP2007073334A (en) Lithium secondary battery
JP2007165078A (en) Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2004288520A (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2007273183A (en) Negative electrode and secondary battery
JP2008186704A (en) Positive electrode plate for non-aqueous secondary battery and non-aqueous secondary battery
JP4270894B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
US20220384781A1 (en) Negative electrode and secondary battery including the same
JP4988169B2 (en) Lithium secondary battery
JP2006253126A (en) Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell
JP2007207490A (en) Lithium secondary battery
JP5561803B2 (en) Nonaqueous electrolyte secondary battery
JP4953557B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4958405B2 (en) Nonaqueous electrolyte secondary battery
JP2006172860A (en) Negative electrode for lithium secondary battery and its manufacturing method, and lithium secondary battery
JP2010033830A (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2009081067A (en) Non-aqueous secondary battery
WO2013024739A1 (en) Active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for active material for non-aqueous electrolyte secondary battery
JP5267976B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same