JP2007246705A - Foamable styrenic resin particle and method for producing styrenic resin foamed molded article - Google Patents

Foamable styrenic resin particle and method for producing styrenic resin foamed molded article Download PDF

Info

Publication number
JP2007246705A
JP2007246705A JP2006072653A JP2006072653A JP2007246705A JP 2007246705 A JP2007246705 A JP 2007246705A JP 2006072653 A JP2006072653 A JP 2006072653A JP 2006072653 A JP2006072653 A JP 2006072653A JP 2007246705 A JP2007246705 A JP 2007246705A
Authority
JP
Japan
Prior art keywords
styrene resin
mass
resin particles
particles
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006072653A
Other languages
Japanese (ja)
Other versions
JP5014653B2 (en
Inventor
Masatoshi Yamashita
昌利 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2006072653A priority Critical patent/JP5014653B2/en
Publication of JP2007246705A publication Critical patent/JP2007246705A/en
Application granted granted Critical
Publication of JP5014653B2 publication Critical patent/JP5014653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide foamable styrenic resin particles which give foamed molded articles having sufficient strengths and having glossy surfaces in short molding cycles. <P>SOLUTION: The foamable styrenic resin particles are characterized in that a methylphenylsilicone oil having a refractive index of ≥1.45 at 25°C and a higher fatty acid metal salt are coated on the particles in amounts of 0.01 to 0.2 pts.mass and 0.05 to 0.2 pts.mass per 100 pts.mass of foamable styrenic resin particle main bodies which comprise a foaming agent-containing styrenic resin and give foamed particles having a foamed particle surface layer portion average pore diameter D satisfying a relation of 40 μm≤D≤150 μm, when foamed in a bulky foaming ratio of 60, and the coating quantity of a higher fatty acid triglyceride not having a hydroxyl group in the molecule is <0.05 pt.mass. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発泡剤を含有するスチレン系樹脂からなる発泡成形品製造用の発泡性スチレン系樹脂粒子に関し、特に、成形サイクルが短く、且つ十分な強度を持ち、光沢のある表面を持った発泡成形品が得られる発泡性スチレン系樹脂粒子、これを用いるスチレン系樹脂発泡成形品の製造方法に関する。   The present invention relates to an expandable styrene resin particle for producing a foam molded article comprising a styrene resin containing a foaming agent, and in particular, a foam having a short molding cycle, sufficient strength, and a glossy surface. The present invention relates to an expandable styrene resin particle from which a molded product can be obtained, and a method for producing a styrene resin foam molded product using the same.

従来、発泡成形品製造時の成形サイクルの短縮化を企図した発泡性スチレン系樹脂粒子の提案としては、例えば、特許文献1〜5に記載された技術が知られている。
特許文献1には、脂肪族カルボン酸と脂肪族アルコールのエステル(このエステルは、分子中に水酸基を有せず、常温で固体状である。)または該エステルと微粉滑剤の混合物を発泡性スチレン系樹脂粒子表面に被覆してなる新規発泡性スチレン系樹脂粒子が開示されている。
Conventionally, for example, the techniques described in Patent Documents 1 to 5 are known as proposals of expandable styrene-based resin particles intended to shorten the molding cycle at the time of manufacturing a foam molded product.
Patent Document 1 discloses an ester of an aliphatic carboxylic acid and an aliphatic alcohol (this ester does not have a hydroxyl group in the molecule and is solid at normal temperature) or a mixture of the ester and a fine powder lubricant. A novel expandable styrene resin particle formed by coating the surface of a resin particle is disclosed.

特許文献2には、発泡性ポリスチレン粒子100質量部の表面を、0.005〜0.05質量部の液状ポリシロキサン及び0.01〜0.20質量部のR−CO−NHR(R=C〜C22のアルキル基、R=H又はC〜Cアルキル基又はヒドロオキシアルキル基)で被覆したことを特徴とする発泡性ポリスチレン粒子が開示されている。 Patent Document 2 discloses that the surface of 100 parts by mass of expandable polystyrene particles is 0.005 to 0.05 parts by mass of liquid polysiloxane and 0.01 to 0.20 parts by mass of R 1 —CO—NHR 2 (R 1 = alkyl group of C 6 -C 22, expandable polystyrene particles are disclosed, wherein the coated with R 2 = H or C 1 -C 4 alkyl or hydro-oxy group).

特許文献3には、揮発性膨張剤を含有する発泡性スチレン系樹脂粒子の表面に、融点が45〜180℃であり、予備発泡時の樹脂粒子同士のブロッキング防止と発泡成形時の冷却時間を短縮させる効果のある表面改質剤を被覆する方法において、該表面改質剤を発泡性スチレン系樹脂粒子表面に付着させるバインダーとしてシリコンオイルを用いることを特徴とする表面改質発泡性スチレン系樹脂粒子の製造方法が開示されている。また、特許文献3の表1中の実施例には、ステアリン酸亜鉛と表面改質剤とメチルフェニルポリシロキサンとを含むコーティング剤を表面に付着させてなる発泡性スチレン系樹脂粒子が開示されている。   In Patent Document 3, the surface of expandable styrene resin particles containing a volatile expansion agent has a melting point of 45 to 180 ° C., and prevents blocking between resin particles during preliminary foaming and cooling time during foam molding. A surface-modified foaming styrenic resin characterized by using silicon oil as a binder for adhering the surface modifying agent to the surface of foamable styrenic resin particles in a method of coating a surface modifying agent having an effect of shortening A method for producing particles is disclosed. Further, Examples in Table 1 of Patent Document 3 disclose expandable styrene resin particles in which a coating agent containing zinc stearate, a surface modifier, and methylphenylpolysiloxane is adhered to the surface. Yes.

特許文献4には、発泡剤を含有する発泡性ポリスチレン系樹脂粒子であって、ポリジメチルシロキサンを粒子の表面層付近において最も多量となるように含有してなるとともに、表面がフェニル基を含むシリコンオイルによって被覆されていることを特徴とする発泡性ポリスチレン系樹脂粒子が開示されている。また、特許文献4の第1表中の実施例には、発泡剤と共にポリジメチルシロキサンを発泡性ポリスチレン系樹脂粒子に含浸させた後、フェニル基を含むシリコンオイルを粒子表面に塗布したものが例示されている。   Patent Document 4 discloses expandable polystyrene-based resin particles containing a foaming agent, containing polydimethylsiloxane in the largest amount in the vicinity of the surface layer of the particles, and having a surface containing a phenyl group. An expandable polystyrene resin particle characterized by being covered with oil is disclosed. Further, the examples in Table 1 of Patent Document 4 are examples in which polydimethylsiloxane is impregnated with expandable polystyrene resin particles together with a foaming agent, and then silicon oil containing phenyl groups is applied to the particle surfaces. Has been.

特許文献5には、熱可塑性樹脂(A)、フェニル基をシリコン上の置換基として有するポリシロキサン(B)、臭素系難燃剤(C)および発泡剤(D)を必須な成分として含有することを特徴とする発泡性難燃性樹脂組成物が開示されている。
特開昭53−97060号公報 特開昭49−3966号公報 特開昭60−203647号公報 特開平3−177438号公報 特開平7−62133号公報
Patent Document 5 contains, as essential components, a thermoplastic resin (A), polysiloxane (B) having a phenyl group as a substituent on silicon, a brominated flame retardant (C), and a foaming agent (D). A foamable flame retardant resin composition is disclosed.
JP-A-53-97060 Japanese Patent Laid-Open No. 49-3966 Japanese Patent Laid-Open No. 60-203647 JP-A-3-177438 JP-A-7-62133

しかしながら、前述した従来技術には、次のような問題があった。
特許文献1記載の従来技術では、発泡時に発泡粒子の表面気泡に亀裂を入れて成形時の発泡剤拡散を促進するため、成形サイクルは短くなるが、表面気泡の亀裂のために成形品の強度が低下し、割れやすくなる問題がある。
また、前記亀裂のために成形品表面の光沢が無くなり、外観が悪化する問題がある。
また、混合物を多量に被覆すると、成形時の発泡力低下により発泡粒子同士の融着性が悪化する問題がある。
However, the above-described conventional technique has the following problems.
In the prior art described in Patent Document 1, since the surface bubbles of the foamed particles are cracked at the time of foaming to promote the diffusion of the foaming agent at the time of molding, the molding cycle is shortened. There is a problem that it is lowered and easily broken.
In addition, the surface of the molded article loses its gloss due to the cracks, and the appearance is deteriorated.
Further, when a large amount of the mixture is coated, there is a problem that the fusion property between the expanded particles is deteriorated due to a decrease in the foaming force at the time of molding.

特許文献2記載の従来技術では、ポリシロキサンによるブロッキング防止と脂肪酸アミドによる融着性向上の組み合わせであり、特定のメチルフェニルシリコーンオイルによる成形サイクル短縮、及び低圧での融着性向上については、なんら示唆されていない。また、実施例の表2中のRun6では、メチルフェニルポリシロキサンもジメチルポリシロキサンと同様に融着を阻害している。なお、その場合の成形蒸気圧力、成形サイクルについては記載が無く、使用発泡剤についても実施例でペンタンを用いていることが記載されているのみである。   In the prior art described in Patent Document 2, it is a combination of blocking prevention by polysiloxane and improvement of fusion property by fatty acid amide. About shortening of molding cycle by specific methylphenyl silicone oil and improvement of fusion property at low pressure Not suggested. Further, in Run 6 in Table 2 of the examples, methylphenylpolysiloxane also inhibits fusion in the same manner as dimethylpolysiloxane. In this case, there is no description about the molding steam pressure and the molding cycle, and it is only described that pentane is used in the examples for the foaming agent used.

特許文献3記載の従来技術では、ブロッキング防止と成形時冷却時間短縮効果のある表面改質剤を発泡性スチレン系樹脂粒子表面に被覆する際、シリコンオイルを表面改質剤のバインダーとして用いている。この従来技術では、表面改質剤の剥離が少なく成形サイクルを短縮できるが、表面改質剤により成形品の表面気泡に微細な亀裂が入るため、成形品の光沢が無くなり、強度も低下し、割れやすくなる問題がある。
また、特許文献3の第3頁には、バインダーのシリコンオイルとして、25℃の粘度が3000センチストークス以下、好ましくは10〜1000センチストークスのシリコンオイル、中でも水酸基を有しないメチルフェニルポリシロキサンが特に好ましいとの記載があるが、0.1質量%を超える添加は成形時の発泡粒子同士の融着性が阻害されると記載されており、特定のメチルフェニルシリコーンオイルによる成形サイクル短縮、及び低圧での融着性向上については、なんら示唆されていない。また、実施例における成形条件は、0.7kgf/cmGの水蒸気で10秒加熱することが記載されている。
In the prior art described in Patent Document 3, silicon oil is used as a binder for the surface modifier when coating the surface modifier having the effect of preventing blocking and shortening the cooling time during molding on the surface of the expandable styrene resin particles. . In this prior art, the surface modifier is less peeled and the molding cycle can be shortened, but the surface modifier causes fine cracks in the surface bubbles of the molded product, so the gloss of the molded product is lost and the strength is also reduced. There is a problem that breaks easily.
Further, on page 3 of Patent Document 3, as the silicone oil of the binder, a silicone oil having a viscosity at 25 ° C. of 3000 centistokes or less, preferably 10 to 1000 centistokes, particularly methylphenylpolysiloxane having no hydroxyl group is particularly preferred. Although there is a description that it is preferable, it is described that the addition of more than 0.1% by mass inhibits the fusibility between expanded particles at the time of molding, shortening the molding cycle with a specific methylphenyl silicone oil, and low pressure There is no suggestion about improvement of the fusion property in the case. In addition, the molding conditions in the examples describe heating for 10 seconds with 0.7 kgf / cm 2 G of water vapor.

特許文献4記載の従来技術では、ポリジメチルシロキサンを発泡性スチレン系樹脂粒子の表層付近に最も多量となるように含有させ、かつフェニル基を含むシリコンオイルを表面に被覆することで、公知のサイクル短縮剤のように発泡成形品の表面気泡に微細な亀裂を発生させないため、成形品強度及び光沢が低下する恐れがない。しかし、ポリジメチルシロキサンを粒子表層付近に最も多量となるように含浸させなければならないため、実験室ではともかく、工業生産では、ポリジメチルシロキサンの含浸条件の調整が難しく、再現性が十分に得られない問題がある。
また、含浸条件の調整が難しいことに加えて、ポリジメチルシロキサンの含浸に長時間を要するため、生産性が悪い。実施例ではポリジメチルシロキサン(KF−96、粘度100cs)の含浸に100℃×12時間を要している。
また、ポリジメチルシロキサンを含浸させずにメチルフェニルシリコンオイルを表面に被覆した例示(比較例2)では、成形サイクルは短縮されておらず、特定のメチルフェニルシリコンオイルによる成形サイクル短縮、及び低圧での融着性向上については、なんら示唆されていない。
In the prior art described in Patent Document 4, polydimethylsiloxane is contained in the vicinity of the surface layer of the expandable styrenic resin particles so as to be the most abundant, and a silicon oil containing a phenyl group is coated on the surface, so that a known cycle can be obtained. Unlike the shortening agent, fine cracks are not generated in the surface bubbles of the foam-molded product, so that the strength and gloss of the molded product are not reduced. However, since polydimethylsiloxane must be impregnated in the vicinity of the particle surface layer so that it is the largest amount, in industrial production, it is difficult to adjust the impregnation conditions of polydimethylsiloxane and sufficient reproducibility is obtained. There is no problem.
In addition, it is difficult to adjust the impregnation conditions, and it takes a long time to impregnate polydimethylsiloxane, so that productivity is poor. In the examples, impregnation with polydimethylsiloxane (KF-96, viscosity 100 cs) requires 100 ° C. × 12 hours.
Further, in the example (Comparative Example 2) in which methylphenyl silicone oil is coated on the surface without impregnating with polydimethylsiloxane, the molding cycle is not shortened, the molding cycle is shortened with a specific methylphenyl silicone oil, and the pressure is low. There is no suggestion of improving the fusing property.

特許文献5記載の従来技術は、発明の目的が難燃性の向上であり、特定のメチルフェニルシリコーンオイルによる成形サイクル短縮、及び低圧での融着性向上については、なんら示唆されていない。
また臭素系難燃剤、及びトルエンを含有した発泡性スチレン系樹脂粒子に、この特定のメチルフェニルシリコーンオイルを被覆すると、成形サイクル短縮効果が小さく、成形品の融着性が悪化する傾向があり好ましくない。
In the prior art described in Patent Document 5, the object of the invention is to improve the flame retardancy, and there is no suggestion about shortening the molding cycle with a specific methylphenyl silicone oil and improving the fusion property at low pressure.
Further, when this specific methylphenyl silicone oil is coated on the expandable styrene resin particles containing bromine-based flame retardant and toluene, the effect of shortening the molding cycle is small, and the fusion property of the molded product tends to deteriorate. Absent.

本発明は、前記事情に鑑みてなされ、成形サイクルが短く、且つ十分な強度を持ち、光沢のある表面を持った発泡成形品が得られる発泡性スチレン系樹脂粒子の提供を目的とする。   This invention is made | formed in view of the said situation, and it aims at provision of the expandable styrene-type resin particle from which the molding cycle is short, has sufficient intensity | strength, and can obtain the foaming molded article with the glossy surface.

本発明は、前記目的を達成するため、発泡剤を含有するスチレン系樹脂からなり、嵩発泡倍数60倍に発泡させたときの発泡粒子表層部の平均気泡径Dが、40μm≦D≦150μmの関係を満たす発泡性スチレン系樹脂粒子本体100質量部に対して、25℃での屈折率が1.45以上であるメチルフェニルシリコーンオイル0.01〜0.2質量部と、高級脂肪酸の金属塩0.05〜0.2質量部とが粒子表面に被覆され、かつ、分子中に水酸基を有しない高級脂肪酸トリグリセライドの被覆量が0.05質量部未満であることを特徴とする発泡性スチレン系樹脂粒子を提供する。   In order to achieve the above object, the present invention is made of a styrene resin containing a foaming agent, and the average cell diameter D of the surface layer of the expanded particles when expanded to a bulk expansion ratio of 60 times is 40 μm ≦ D ≦ 150 μm. 0.01 to 0.2 parts by mass of methylphenyl silicone oil having a refractive index at 25 ° C. of 1.45 or more with respect to 100 parts by mass of the expandable styrene resin particle main body satisfying the relationship, and a metal salt of a higher fatty acid Expandable styrene-based, characterized in that 0.05 to 0.2 parts by mass is coated on the particle surface, and the coating amount of higher fatty acid triglyceride having no hydroxyl group in the molecule is less than 0.05 parts by mass Resin particles are provided.

本発明の発泡性スチレン系樹脂粒子において、前記発泡性スチレン系樹脂粒子を加熱して得られた予備発泡粒子を成形型のキャビティ内に充填し、蒸気圧0.05MPaGで型内発泡成形して得られた発泡倍数60倍の発泡成形品の曲げ強度(JIS A9511)が0.25MPa以上であることが好ましい。より好ましくは0.29MPa以上である。   In the expandable styrenic resin particles of the present invention, pre-expanded particles obtained by heating the expandable styrene resin particles are filled in a cavity of a mold, and subjected to in-mold foam molding at a vapor pressure of 0.05 MPaG. It is preferable that the bending strength (JIS A9511) of the obtained foamed molded product having a foam expansion ratio of 60 times is 0.25 MPa or more. More preferably, it is 0.29 MPa or more.

本発明の発泡性スチレン系樹脂粒子において、前記発泡性スチレン系樹脂粒子を加熱して得られた予備発泡粒子を成形型のキャビティ内に充填し、蒸気圧0.05MPaGで型内発泡成形して得られた発泡倍数60倍の発泡成形品の表面光沢度(JIS Z8741、60°/60°)が25以上であることが好ましい。より好ましくは30以上である。   In the expandable styrenic resin particles of the present invention, pre-expanded particles obtained by heating the expandable styrene resin particles are filled in a cavity of a mold, and subjected to in-mold foam molding at a vapor pressure of 0.05 MPaG. It is preferable that the surface glossiness (JIS Z8741, 60 ° / 60 °) of the obtained foamed molded product having an expansion ratio of 60 times is 25 or more. More preferably, it is 30 or more.

本発明の発泡性スチレン系樹脂粒子において、嵩発泡倍数X倍に発泡させたときの発泡粒子表層部の平均気泡径D’を、次式(1)   In the expandable styrenic resin particles of the present invention, the average cell diameter D ′ of the surface layer of the expanded particles when expanded to a bulk expansion ratio X times is expressed by the following formula (1):

Figure 2007246705
Figure 2007246705

(式中、Dは嵩発泡倍数60倍に換算した発泡粒子表層部の平均気泡径(μm)を表し、D’は嵩発泡倍数X倍に発泡させたときの発泡粒子表層部の平均気泡径(μm)を表す)を用いて嵩発泡倍数60倍に換算した発泡粒子表層部の平均気泡径Dが、40μm≦D≦150μmの関係を満たすことが好ましい。 (In the formula, D represents the average cell diameter (μm) of the foamed particle surface layer part converted to a bulk foaming magnification of 60 times, and D ′ is the average cell diameter of the foamed particle surface layer part when foamed to the bulk foaming factor X times) It is preferable that the average cell diameter D of the surface portion of the expanded particle converted to a bulk expansion ratio of 60 times using (represents (μm)) satisfies the relationship of 40 μm ≦ D ≦ 150 μm.

本発明の発泡性スチレン系樹脂粒子において、トルエン及び臭素系難燃剤を含有せず、発泡助剤としてシクロヘキサンをスチレン系樹脂100質量部に対し0.5〜1.5質量部の範囲で含むことが好ましい。   The expandable styrene resin particles of the present invention do not contain toluene and bromine flame retardant, and contain cyclohexane as a foaming aid in the range of 0.5 to 1.5 parts by mass with respect to 100 parts by mass of the styrene resin. Is preferred.

また本発明は、前述した本発明に係る発泡性スチレン系樹脂粒子を加熱して得られた予備発泡粒子を成形型のキャビティ内に充填し、型内発泡成形してスチレン系樹脂発泡成形品を得ることを特徴とするスチレン系樹脂発泡成形品の製造方法を提供する。   The present invention also provides a pre-expanded particle obtained by heating the expandable styrenic resin particles according to the present invention described above, filled in a cavity of a molding die, and subjected to in-mold foam molding to obtain a styrene resin foam molded product. A method for producing a styrenic resin foam-molded article is provided.

本発明のスチレン系樹脂発泡成形品の製造方法において、発泡倍数が20〜90倍の範囲内であることが好ましい。   In the method for producing a styrene resin foam molded article of the present invention, the expansion ratio is preferably in the range of 20 to 90 times.

本発明の発泡性スチレン系樹脂粒子は、発泡剤を含有するスチレン系樹脂からなり、嵩発泡倍数60倍に発泡させたときの発泡粒子表層部の平均気泡径Dが、40μm≦D≦150μmの関係を満たす発泡性スチレン系樹脂粒子本体100質量部に対して、25℃での屈折率が1.45以上であるメチルフェニルシリコーンオイル0.01〜0.2質量部と、高級脂肪酸の金属塩0.05〜0.2質量部とが粒子表面に被覆され、かつ、分子中に水酸基を有しない高級脂肪酸トリグリセライドの被覆量が0.05質量部未満としたものなので、この発泡性スチレン系樹脂粒子を加熱して得られた予備発泡粒子を成形型のキャビティ内に充填し、型内発泡成形してスチレン系樹脂発泡成形品を得る際に、従来の型内発泡成形で使用するより低圧の蒸気でも発泡粒子同士を十分融着させることができ、低圧の蒸気で成形を行うことにより、成形時の冷却時間が短くなり、短い成形サイクルでも、十分な強度を持ち、表面光沢に優れた発泡成形品を得ることができる。   The expandable styrene resin particles of the present invention are made of a styrene resin containing a foaming agent, and the average cell diameter D of the expanded particle surface layer when expanded to a bulk expansion ratio of 60 times is 40 μm ≦ D ≦ 150 μm. 0.01 to 0.2 parts by mass of methylphenyl silicone oil having a refractive index at 25 ° C. of 1.45 or more with respect to 100 parts by mass of the expandable styrene resin particle main body satisfying the relationship, and a metal salt of a higher fatty acid Since the coating amount of the higher fatty acid triglyceride having 0.05 to 0.2 parts by mass on the particle surface and having no hydroxyl group in the molecule is less than 0.05 parts by mass, this expandable styrenic resin When the pre-expanded particles obtained by heating the particles are filled into the mold cavity and foam-molded in the mold to obtain a styrene resin foam-molded product, the pressure is lower than that used in conventional in-mold foam molding. Foamed particles can be sufficiently fused together with steam, and by molding with low-pressure steam, the cooling time during molding is shortened. Foam with sufficient strength and excellent surface gloss even in a short molding cycle A molded product can be obtained.

本発明の発泡性スチレン系樹脂粒子は、嵩発泡倍数60倍に発泡させたときの発泡粒子表層部の平均気泡径Dが、40μm≦D≦150μmの関係を満たす発泡性スチレン系樹脂粒子本体100質量部に対して、25℃での屈折率が1.45以上であるメチルフェニルシリコーンオイル0.01〜0.2質量部と、高級脂肪酸の金属塩0.05〜0.2質量部とを含む被覆剤が粒子表面に被覆され、かつ、分子中に水酸基を有しない高級脂肪酸トリグリセライドの被覆量が0.05質量部未満であることを特徴としている。   The expandable styrenic resin particles of the present invention have a foamed styrene resin particle main body 100 in which the average cell diameter D of the foamed particle surface layer portion when expanded to a bulk expansion ratio of 60 times satisfies the relationship of 40 μm ≦ D ≦ 150 μm. 0.01 to 0.2 parts by mass of methylphenyl silicone oil having a refractive index of 1.45 or more at 25 ° C. and 0.05 to 0.2 parts by mass of a metal salt of a higher fatty acid with respect to parts by mass It is characterized in that the coating amount of the higher fatty acid triglyceride which is coated on the particle surface and has no hydroxyl group in the molecule is less than 0.05 parts by mass.

本発明の発泡性スチレン系樹脂粒子を構成する樹脂素材としては、例えばスチレンのほか、α−メチルスチレン、ビニルトルエン、パラクロロスチレン等のスチレン誘導体が挙げられる。その他には、例えば、アクリロニトリル、アクリル酸、アクリル酸エステル、メタクリル酸エステル等のスチレンと共重合可能な単量体やジビニルベンゼン等の架橋性単量体を併用することもできるが、スチレン成分が50質量%以上である共重体またはスチレン単独重合体であるのが好ましい。   Examples of the resin material constituting the expandable styrene resin particles of the present invention include styrene derivatives such as α-methylstyrene, vinyltoluene, and parachlorostyrene in addition to styrene. In addition, for example, a monomer copolymerizable with styrene such as acrylonitrile, acrylic acid, acrylic acid ester, methacrylic acid ester, or a crosslinkable monomer such as divinylbenzene can be used in combination. A copolymer or styrene homopolymer of 50% by mass or more is preferable.

また、スチレン系樹脂粒子を得るためには、一般的な懸濁重合法や押出ペレット法等の公知の方法が使用できる。これらのスチレン系樹脂粒子にプロパン、ブタン、ペンタン等の発泡剤を適宜含有させて発泡性スチレン系樹脂粒子とすることができる。また、発泡剤を含有させる方法としては、重合の途中乃至重合終了後に発泡剤を添加して含有させる方法、また、押出途中で発泡剤を添加して含有させる方法等であってもよい。さらに、必要に応じてシクロヘキサンや可塑剤等の発泡助剤、その他公知の添加剤を添加することもできる。さらに、本発明に使用するスチレン系樹脂には、必要に応じて、染料等の着色剤、酸化防止剤、難燃剤、帯電防止剤等の各種添加剤を添加することができる。   Moreover, in order to obtain a styrene-type resin particle, well-known methods, such as a general suspension polymerization method and an extrusion pellet method, can be used. These styrene resin particles can be made into expandable styrene resin particles by appropriately containing a foaming agent such as propane, butane and pentane. Moreover, as a method of containing a foaming agent, the method of adding and containing a foaming agent in the middle of superposition | polymerization thru | or completion | finish of polymerization, the method of adding and making a foaming agent in the middle of extrusion, etc. may be sufficient. Further, if necessary, foaming aids such as cyclohexane and plasticizer, and other known additives can be added. Furthermore, various additives such as a colorant such as a dye, an antioxidant, a flame retardant, and an antistatic agent can be added to the styrenic resin used in the present invention, if necessary.

前記発泡性スチレン系樹脂粒子本体は、嵩発泡倍数60倍に発泡させたときの発泡粒子表層部の平均気泡径Dが、40μm≦D≦150μmの関係を満たしている。前記Dが40μm未満であると、得られる発泡性スチレン系樹脂粒子を加熱して得られた予備発泡粒子を成形型のキャビティ内に充填し、型内発泡成形(以下、予備発泡−型内発泡成形と記す。)し、スチレン系樹脂発泡成形品を得る際に、発泡粒子同士の融着率が低下し、得られるスチレン系樹脂発泡成形品の曲げ強度が低くなる。一方、前記Dが150μmを超えると、得られる発泡性スチレン系樹脂粒子を予備発泡−型内発泡成形し、スチレン系樹脂発泡成形品を得る際に、成形サイクル短縮効果が小さく、また気泡径が大きすぎるために曲げ強度の劣る発泡成形品となる。より好ましくは50μm≦D≦130μmの関係を満たすものである。   The foamable styrenic resin particle main body satisfies the relationship of 40 μm ≦ D ≦ 150 μm in the average cell diameter D of the surface layer portion of the expanded particle when expanded to a bulk expansion ratio of 60 times. When D is less than 40 μm, pre-expanded particles obtained by heating the resulting expandable styrene resin particles are filled in a cavity of a mold, and in-mold foam molding (hereinafter referred to as pre-foam-in-mold foam). When the styrene resin foam molded product is obtained, the fusion rate between the foamed particles is lowered, and the bending strength of the resulting styrene resin foam molded product is lowered. On the other hand, when D exceeds 150 μm, when the foamable styrene resin particles obtained are prefoamed and subjected to in-mold foam molding to obtain a styrene resin foam molded article, the molding cycle shortening effect is small, and the cell diameter is small. Since it is too large, it becomes a foam-molded product having inferior bending strength. More preferably, the relationship of 50 μm ≦ D ≦ 130 μm is satisfied.

本発明の発泡性スチレン系樹脂粒子において、発泡粒子の嵩発泡倍数が60倍に満たない、或いは60倍を超える場合は、前述した式(1)を用い、嵩発泡倍数X倍に発泡させたときの発泡粒子表層部の平均気泡径D’(μm)を嵩発泡倍数60倍に発泡させたときの発泡粒子表層部の平均気泡径D(μm)に換算して求めることができる。発泡による体積変化は3次元の変化なので、3乗根することにより1次元の気泡径を求めることができる。   In the expandable styrenic resin particles of the present invention, when the expanded foam volume of the expanded particles is less than 60 times or exceeds 60 times, the above-described formula (1) is used to expand the expanded foam volume to X times. The average cell diameter D ′ (μm) of the foamed particle surface layer part can be converted into the average cell diameter D (μm) of the foamed particle surface layer part when foamed to a bulk expansion ratio of 60 times. Since the volume change due to foaming is a three-dimensional change, the one-dimensional bubble diameter can be obtained by taking the cube root.

本発明の発泡性スチレン系樹脂粒子の被覆剤に用いるメチルフェニルシリコーンオイルは、JIS K0062に基づいて、アッベ屈折計を用いて測定した、25℃での屈折率が1.45以上、好ましくは1.49以上のものである。本発明では、屈折率が1.45以上のメチルフェニルシリコーンオイルを発泡性スチレン系樹脂粒子本体100質量部に対して0.01〜0.2質量部を粒子表面に被覆する。これによって、発泡性スチレン系樹脂粒子を予備発泡−型内発泡成形する際、成形蒸気圧が通常の型内発泡成形条件(例えば、0.07MPaG)よりも低くした低圧成形時(例えば、0.06MPaG〜0.05MPaG)であっても、発泡粒子同士が十分に融着し、曲げ強度などの機械的性質が良好な発泡成形品を製造することができる。その結果、成形蒸気圧を通常の成形条件よりも下げて発泡成形を行うことで、成形後の冷却時間を短縮でき、成形サイクルを短縮することができる。メチルフェニルシリコーンオイルの量が0.01質量部未満であると、低圧成形時の発泡粒子同士の融着率が不十分となり、成形サイクルの短縮化が不可能になる。またメチルフェニルシリコーンオイルの量が0.2質量部を超えると、前述した効果が頭打ちとなり、コストが上昇すること、およびベタツキが大きくなり、被覆した発泡性樹脂粒子の流動性が悪くなることから、好ましくない。   The methylphenyl silicone oil used for the coating agent for the expandable styrene resin particles of the present invention has a refractive index of 1.45 or more, preferably 1 measured at 25 ° C. using an Abbe refractometer based on JIS K0062. .49 or more. In the present invention, 0.01 to 0.2 parts by mass of methylphenyl silicone oil having a refractive index of 1.45 or more is coated on the particle surface with respect to 100 parts by mass of the foamable styrene resin particle body. As a result, when the expandable styrenic resin particles are subjected to pre-expansion-in-mold foam molding, the molding vapor pressure is lower than the normal in-mold foam molding conditions (for example, 0.07 MPaG) (for example, 0.00. Even if it is 06 MPaG to 0.05 MPaG), the foamed particles can be sufficiently fused together to produce a foamed molded article having good mechanical properties such as bending strength. As a result, by performing the foam molding with the molding vapor pressure lower than the normal molding conditions, the cooling time after molding can be shortened and the molding cycle can be shortened. When the amount of methylphenyl silicone oil is less than 0.01 parts by mass, the fusion rate between the expanded particles at the time of low-pressure molding becomes insufficient, and the molding cycle cannot be shortened. Further, if the amount of methylphenyl silicone oil exceeds 0.2 parts by mass, the above-mentioned effects reach a peak, resulting in an increase in cost and stickiness, and the fluidity of the coated foamed resin particles becomes poor. It is not preferable.

このようなメチルフェニルシリコーンオイルは、ジメチルポリシロキサンのメチル基の一部をフェニル基に置換したもので、一般にフェニル基の含有量が増加する程、屈折率は大きくなる関係にあるため、ある一定量以上のフェニル基を含有するメチルフェニルシリコーンオイルが、低圧成形時の融着促進に効果を有するものと考えられる。また、メチルフェニルシリコーンオイルは、無色透明で、25℃での粘度が500mm/s以下が好ましく、これを越えると発泡性スチレン系樹脂粒子表面に均一に被覆することが困難になる。また、屈折率が1.45未満のメチルフェニルシリコーンオイル、及びジメチルシリコーンオイル(市販品の屈折率は1.38〜1.40程度である)では、低圧成形時の融着促進効果が得られず、成形サイクルも短縮できない。 Such a methylphenyl silicone oil is obtained by substituting a part of the methyl group of dimethylpolysiloxane with a phenyl group. Generally, as the phenyl group content increases, the refractive index increases, so there is a certain constant. It is considered that methyl phenyl silicone oil containing an amount of phenyl groups or more has an effect on promoting fusion during low-pressure molding. The methylphenyl silicone oil is colorless and transparent, and preferably has a viscosity at 25 ° C. of 500 mm 2 / s or less. If the methylphenyl silicone oil exceeds this, it becomes difficult to uniformly coat the surface of the expandable styrene resin particles. Also, methyl phenyl silicone oil having a refractive index of less than 1.45 and dimethyl silicone oil (the refractive index of commercially available products is about 1.38 to 1.40) can provide an effect of promoting fusion during low-pressure molding. In addition, the molding cycle cannot be shortened.

本発明の発泡性スチレン系樹脂粒子の被覆剤に用いる高級脂肪酸の金属塩としては、例えば、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、ステアリン酸アルミニウム、ステアリン酸リチウム、ラウリン酸亜鉛、ラウリン酸バリウムなどが挙げられ、これらの中でもステアリン酸亜鉛が好ましい。この高級脂肪酸の金属塩は、発泡性スチレン系樹脂粒子本体100質量部に対して、0.05〜0.2質量部の範囲内で粒子表面に被覆する。この高級脂肪酸の金属塩を前記範囲内の量で被覆することによって、発泡成形時に発泡粒子同士の融着を損なうことなく、予備発泡粒子の流動性を向上させることができる。一方、高級脂肪酸の金属塩の量が前記範囲未満であると、予備発泡粒子の流動性が悪くなり、また発泡時に結合する粒子が出やすく、成形型内への充填不良が発生する恐れがある。また高級脂肪酸の金属塩の量が前記範囲を超えると、発泡成形品の発泡粒子同士の融着率が悪くなり、曲げ強度が不十分となる恐れがあり、これは特に低圧成形時に顕著となる。   Examples of the metal salt of higher fatty acid used in the coating agent for expandable styrene resin particles of the present invention include magnesium stearate, calcium stearate, zinc stearate, barium stearate, aluminum stearate, lithium stearate, zinc laurate. And barium laurate. Among these, zinc stearate is preferable. The metal salt of the higher fatty acid covers the particle surface within a range of 0.05 to 0.2 parts by mass with respect to 100 parts by mass of the expandable styrene resin particle main body. By coating the metal salt of this higher fatty acid in an amount within the above range, the fluidity of the pre-expanded particles can be improved without impairing the fusion between the expanded particles during foam molding. On the other hand, if the amount of the metal salt of the higher fatty acid is less than the above range, the fluidity of the pre-expanded particles is deteriorated, and particles that are bonded at the time of foaming are likely to be produced, which may cause poor filling in the mold. . If the amount of the higher fatty acid metal salt exceeds the above range, the fusion rate between the foamed particles of the foamed molded product may be deteriorated, and the bending strength may be insufficient. This is particularly noticeable during low pressure molding. .

本発明の発泡性スチレン系樹脂粒子に添加する発泡剤としては、沸点がスチレン系樹脂の軟化点以下であって、常圧でガス状もしくは液状の有機化合物が適しており、例えば、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン、n−ヘキサン、石油エーテル等の炭化水素、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテル等の低沸点のエーテル化合物、炭酸ガス、窒素等の無機ガス等が用いられる。これらの発泡剤は、一種のみを使用してもよく、また、二種以上を併用してもよい。これらのうち、好ましい発泡剤は沸点が−45〜40℃の炭化水素であり、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン等が好ましい。   As a foaming agent to be added to the expandable styrene resin particles of the present invention, a gaseous or liquid organic compound having a boiling point below the softening point of the styrene resin and normal pressure is suitable. For example, propane, n -Hydrocarbons such as butane, isobutane, n-pentane, isopentane, neopentane, cyclopentane, cyclopentadiene, n-hexane, petroleum ether, low boiling point ether compounds such as dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, An inorganic gas such as carbon dioxide or nitrogen is used. These foaming agents may use only 1 type and may use 2 or more types together. Among these, preferable blowing agents are hydrocarbons having a boiling point of −45 to 40 ° C., and propane, n-butane, isobutane, n-pentane, isopentane and the like are preferable.

本発明の発泡性スチレン系樹脂粒子は、分子中に水酸基を有しない高級脂肪酸トリグリセライドの含有量を発泡性スチレン系樹脂粒子本体100質量部に対して0.05質量部未満とする必要がある。前記トリグリセライドは、発泡性スチレン系樹脂粒子の被覆材中に実質的に含まないことが望ましい。前記トリグリセライドを被覆材中に0.05質量部以上含有すると、成形サイクルの短縮効果は得られるものの、製造される発泡成形品の表面光沢度及び曲げ強度が大きく低下してしまう。   In the expandable styrene resin particles of the present invention, the content of the higher fatty acid triglyceride having no hydroxyl group in the molecule needs to be less than 0.05 parts by mass with respect to 100 parts by mass of the expandable styrene resin particle main body. It is desirable that the triglyceride is not substantially contained in the covering material for the expandable styrene resin particles. When 0.05 parts by mass or more of the triglyceride is contained in the covering material, the effect of shortening the molding cycle can be obtained, but the surface glossiness and bending strength of the foamed molded article to be produced are greatly reduced.

本発明の発泡性スチレン系樹脂粒子において、トルエン及び臭素系難燃剤を含有せず、発泡助剤としてシクロヘキサンをスチレン系樹脂100質量部に対し0.5〜1.5質量部の範囲で含むことが好ましい。ここで、臭素系難燃剤としては、例えば、ヘキサブロモシクロドデカン(HBCD)、テトラブロモブタン、ヘキサブロモシクロヘキサン等の臭素化脂肪族炭化水素系化合物、テトラブロモビスフェノールA、テトラブロモビスフェノールF、2,4,6−トリブロモフェノール等の臭素化フェノール類、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ジグリシジルエーテル等の臭素化フェノール誘導体が挙げられる。発泡性スチレン系樹脂粒子にトルエンを添加すると、発泡成形品の発泡粒子同士の融着率が低下する場合がある。発泡助剤としてシクロヘキサンを用いれば、前記融着率の低下が防止できる。また、発泡性スチレン系樹脂粒子に前記HBCD等の臭素系難燃剤を添加すると、気泡が微細化しやすく所望の気泡径に調整し難くなる。   The expandable styrene resin particles of the present invention do not contain toluene and bromine flame retardant, and contain cyclohexane as a foaming aid in the range of 0.5 to 1.5 parts by mass with respect to 100 parts by mass of the styrene resin. Is preferred. Here, examples of brominated flame retardants include brominated aliphatic hydrocarbon compounds such as hexabromocyclododecane (HBCD), tetrabromobutane and hexabromocyclohexane, tetrabromobisphenol A, tetrabromobisphenol F, 2, Examples thereof include brominated phenols such as 4,6-tribromophenol, and brominated phenol derivatives such as tetrabromobisphenol A-bis (2,3-dibromopropyl ether) and tetrabromobisphenol A-diglycidyl ether. When toluene is added to the expandable styrenic resin particles, the fusion rate between the expanded particles of the expanded molded product may be reduced. If cyclohexane is used as the foaming aid, the decrease in the fusion rate can be prevented. Moreover, when brominated flame retardants, such as said HBCD, are added to an expandable styrene-type resin particle, a bubble will become easy to refine | miniaturize and it will become difficult to adjust to a desired bubble diameter.

本発明の発泡性スチレン系樹脂粒子において、発泡時結合防止剤として無機粉体を添加しないことが望ましい。或いは、添加しても発泡性スチレン系樹脂粒子本体100質量部に対して0.05質量部未満とすることが望ましい。リン酸カルシウム、シリカ粉末等の無機粉体を被覆すると、前述したメチルフェニルシリコーンオイルを被覆しても、低圧蒸気成形時の融着率が悪化して、得られる発泡成形品の曲げ強度などの機械的性質が不十分となりやすい。発泡時結合防止剤としては、高級脂肪酸金属塩、特にステアリン酸亜鉛が好ましい。   In the expandable styrenic resin particles of the present invention, it is desirable not to add inorganic powder as a binding inhibitor during foaming. Or even if it adds, it is desirable to set it as less than 0.05 mass part with respect to 100 mass parts of expandable styrene resin particle main bodies. When inorganic powders such as calcium phosphate and silica powder are coated, the fusion rate during low-pressure steam molding deteriorates even when the above-mentioned methylphenyl silicone oil is coated. Properties tend to be insufficient. As the anti-foaming binder, a higher fatty acid metal salt, particularly zinc stearate, is preferred.

本発明の発泡性スチレン系樹脂粒子は、発泡剤と発泡助剤及び必要に応じて添加される添加剤を含む発泡性スチレン系樹脂粒子に、前記メチルフェニルシリコーンオイルと高級脂肪酸の金属塩とを、タンブラー、リボンブレンダー、ナウターミキサー等の混合機もしくは撹拌機を使用して、発泡性スチレン系樹脂粒子と混合して、その表面に被覆することによって製造することができる。被覆する順序は特に限定されないが、先にメチルフェニルシリコーンオイルを発泡性スチレン系樹脂粒子に被覆した後に、高級脂肪酸の金属塩を添加することが好ましい。この際、帯電防止剤等の公知の添加剤を同時に加えても良い。   The expandable styrenic resin particles of the present invention are obtained by adding the methylphenyl silicone oil and a metal salt of a higher fatty acid to the expandable styrenic resin particles containing a foaming agent, a foaming aid, and an additive that is added as necessary. Using a mixer or a stirrer such as a tumbler, ribbon blender, or Nauta mixer, the mixture can be mixed with the expandable styrenic resin particles and coated on the surface thereof. The order of coating is not particularly limited, but it is preferable to add a metal salt of a higher fatty acid after coating methylphenyl silicone oil on expandable styrene resin particles first. At this time, a known additive such as an antistatic agent may be added simultaneously.

本発明の発泡性スチレン系樹脂粒子は、発泡剤を含有するスチレン系樹脂からなり、嵩発泡倍数60倍に発泡させたときの発泡粒子表層部の平均気泡径Dが、40μm≦D≦150μmの関係を満たす発泡性スチレン系樹脂粒子本体100質量部に対して、25℃での屈折率が1.45以上であるメチルフェニルシリコーンオイル0.01〜0.2質量部と、高級脂肪酸の金属塩0.05〜0.2質量部とが粒子表面に被覆され、かつ、分子中に水酸基を有しない高級脂肪酸トリグリセライドの被覆量が0.05質量部未満としたものなので、この発泡性スチレン系樹脂粒子を加熱して得られた予備発泡粒子を成形型のキャビティ内に充填し、型内発泡成形してスチレン系樹脂発泡成形品を得る際に、従来の型内発泡成形で使用するより低圧の蒸気でも発泡粒子同士を十分融着させることができ、低圧の蒸気で成形を行うことにより、成形時の冷却時間が短くなり、短い成形サイクルでも、十分な強度を持ち、表面光沢に優れた発泡成形品を得ることができる。   The expandable styrene resin particles of the present invention are made of a styrene resin containing a foaming agent, and the average cell diameter D of the expanded particle surface layer when expanded to a bulk expansion ratio of 60 times is 40 μm ≦ D ≦ 150 μm. 0.01 to 0.2 parts by mass of methylphenyl silicone oil having a refractive index at 25 ° C. of 1.45 or more with respect to 100 parts by mass of the expandable styrene resin particle main body satisfying the relationship, and a metal salt of a higher fatty acid Since the coating amount of the higher fatty acid triglyceride having 0.05 to 0.2 parts by mass on the particle surface and having no hydroxyl group in the molecule is less than 0.05 parts by mass, this expandable styrenic resin When the pre-expanded particles obtained by heating the particles are filled into the mold cavity and foam-molded in the mold to obtain a styrene resin foam-molded product, the pressure is lower than that used in conventional in-mold foam molding. Foamed particles can be sufficiently fused together with steam, and by molding with low-pressure steam, the cooling time during molding is shortened. Foam with sufficient strength and excellent surface gloss even in a short molding cycle A molded product can be obtained.

また本発明は、前述した本発明に係る発泡性スチレン系樹脂粒子を加熱して得られた予備発泡粒子を成形型のキャビティ内に充填し、型内発泡成形してスチレン系樹脂発泡成形品を得るスチレン系樹脂発泡成形品の製造方法を提供する。   The present invention also provides a pre-expanded particle obtained by heating the expandable styrenic resin particles according to the present invention described above, filled in a cavity of a molding die, and subjected to in-mold foam molding to obtain a styrene resin foam molded product. Provided is a method for producing a styrenic resin foam molded article.

本発明の製造方法において、発泡性スチレン系樹脂粒子の予備発泡を行う予備発泡装置や予備発泡条件は、従来の発泡性スチレン系樹脂粒子の予備発泡と同様に行うことができる。   In the production method of the present invention, the pre-foaming apparatus and pre-foaming conditions for pre-foaming the expandable styrene resin particles can be performed in the same manner as the pre-foaming of the conventional expandable styrene resin particles.

また本発明の製造方法において、予備発泡粒子を型内発泡成形する際に用いる成形装置、成形条件についても、従来の発泡性スチレン系樹脂粒子の型内発泡成形と同様に行うことができる。ただし、本発明の製造方法では、前述した本発明に係る発泡性スチレン系樹脂粒子を原料として用いることによって、通常の型内発泡成形(成形蒸気圧:0.07MPaG)よりも低圧の蒸気(成形蒸気圧:0.06MPaG〜0.05MPaG)で成形を行うことができ、成形時の冷却時間が短くなり、短い成形サイクルでも、十分な強度を持ち、表面光沢に優れた発泡成形品を得ることができる。
本発明の製造方法において、型内発泡成形する際の成形蒸気圧は0.06MPaG〜0.05MPaGが好ましく、0.05MPaGがより好ましい。
Further, in the production method of the present invention, the molding apparatus and molding conditions used when the pre-expanded particles are subjected to in-mold foam molding can be performed in the same manner as in the in-mold foam molding of conventional expandable styrene resin particles. However, in the production method of the present invention, by using the expandable styrene resin particles according to the present invention described above as a raw material, steam (molding) having a pressure lower than that of normal in-mold foam molding (molding vapor pressure: 0.07 MPaG). (Vapor pressure: 0.06 MPaG to 0.05 MPaG), cooling time during molding is shortened, and foam molded products having sufficient strength and excellent surface gloss are obtained even in a short molding cycle. Can do.
In the production method of the present invention, the molding vapor pressure at the time of in-mold foam molding is preferably 0.06 MPaG to 0.05 MPaG, more preferably 0.05 MPaG.

本発明の製造方法において、スチレン系樹脂発泡成形品の発泡倍数の適正範囲は、20〜90倍の範囲内であり、好ましくは30〜80倍の範囲内、より好ましくは50〜70倍の範囲内である。この発泡倍数が20倍未満であると、成形サイクル短縮効果が小さく、90倍を超えると、得られるスチレン系樹脂発泡成形品が収縮し易くなる。   In the production method of the present invention, the appropriate range of the expansion ratio of the styrene-based resin foam molded article is in the range of 20 to 90 times, preferably in the range of 30 to 80 times, more preferably in the range of 50 to 70 times. Is within. If the expansion ratio is less than 20 times, the effect of shortening the molding cycle is small, and if it exceeds 90 times, the resulting styrene resin foam-molded product tends to shrink.

本発明の製造方法によれば、前記発泡性スチレン系樹脂粒子を加熱して得られた予備発泡粒子を成形型のキャビティ内に充填し、蒸気圧0.05MPaGの低圧蒸気成形により、発泡倍数60倍のスチレン系樹脂発泡成形品を製造した際に、得られるスチレン系樹脂発泡成形品の曲げ強度(JIS A9511)が0.25MPa以上のものを製造可能である。   According to the production method of the present invention, the pre-expanded particles obtained by heating the expandable styrenic resin particles are filled in a cavity of a molding die, and the expansion ratio is 60 by low pressure steam molding with a vapor pressure of 0.05 MPaG. When a double styrene resin foam molded article is produced, it is possible to produce a styrene resin foam molded article having a bending strength (JIS A9511) of 0.25 MPa or more.

また、本発明の製造方法によれば、前記発泡性スチレン系樹脂粒子を加熱して得られた予備発泡粒子を成形型のキャビティ内に充填し、蒸気圧0.05MPaGの低圧蒸気成形により、発泡倍数60倍のスチレン系樹脂発泡成形品を製造した際に、得られるスチレン系樹脂発泡成形品の表面光沢度(JIS Z8741、60°/60°)が25以上のものを製造可能である。   In addition, according to the production method of the present invention, the pre-expanded particles obtained by heating the expandable styrene resin particles are filled in a cavity of a mold, and foaming is performed by low-pressure steam molding with a vapor pressure of 0.05 MPaG. When a styrene resin foam molded article having a multiple of 60 times is produced, it is possible to produce a styrene resin foam molded article having a surface glossiness (JIS Z8741, 60 ° / 60 °) of 25 or more.

本発明の発泡成形品は、成形サイクルを短縮して製造可能であることから、低コストで提供でき、外観的にも優れている。本発明の発泡成形品は、例えば、魚箱などの各種容器、建材用断熱ボード等の各種の用途に用いられる。   Since the foam-molded article of the present invention can be produced with a shortened molding cycle, it can be provided at low cost and is excellent in appearance. The foamed molded product of the present invention is used for various applications such as various containers such as fish boxes and heat insulating boards for building materials.

後述する実施例1〜7、比較例1〜12に示した通り、発泡性スチレン系樹脂粒子をそれぞれ製造し、それぞれの発泡性スチレン系樹脂粒子を予備発泡−型内発泡成形してスチレン系樹脂発泡成形品を製造し、下記の各測定方法に従って、発泡粒子表層部の平均気泡径、成形品の融着率、成形品の曲げ強度、成形品の光沢度、最短冷却時間を測定し、水漏れ試験を行った。   As shown in Examples 1 to 7 and Comparative Examples 1 to 12, which will be described later, expandable styrene resin particles are produced, and the respective expandable styrene resin particles are pre-expanded and subjected to in-mold foam molding to produce styrene resins. Produce a foam molded product, and measure the average cell diameter of the foam particle surface layer part, the fusion rate of the molded product, the bending strength of the molded product, the glossiness of the molded product, and the minimum cooling time according to the following measurement methods. A leak test was performed.

<嵩発泡倍数の測定方法>
嵩発泡倍数は予備発泡粒子(予備発泡後、23℃で24時間熟成させたもの)を試料としてメスシリンダー(例3000ml容量)内に自然落下させたのち、メスシリンダーの底をたたいて試料容積を一定にさせ、その容積と質量を測定し次式により算出した。質量は0.1g単位で測定し、樹脂比重はスチレン系樹脂の場合1.0とした。嵩発泡倍数は小数点以下1桁目を四捨五入した。
嵩発泡倍数(倍)=メスシリンダー中の試料容積(ml)/試料質量(g)×樹脂比重
<発泡倍数の測定方法>
発泡倍数は発泡成形品(成形後、40℃で20時間以上乾燥させたもの)から切り出した試験片(例75×300×35mm)の寸法と質量をそれぞれ有効数字3桁以上になるように測定し、次式により算出した。樹脂比重は、スチレン系樹脂の場合1.0とした。発泡倍数は小数点以下1桁目を四捨五入した。
発泡倍数(倍)=試験片体積(cm)/試験片質量(g)×樹脂比重
<発泡粒子表層部の平均気泡径測定方法>
嵩発泡倍数60倍に発泡させた発泡粒子の中から、任意に選択した10個について、剃刀刃を用いて、それぞれ発泡粒子の中心付近を通る平面で二等分し、その一方の切断面を走査型電子顕微鏡(日立製作所製S−3000N)を用いて25〜200倍に拡大撮影した画像を作成した。
次に、発泡粒子切断面の画像上に、発泡粒子の中心から半径の90%に相当する距離を半径とする円を描き、この円の外側に存在する気泡を発泡粒子表層部の気泡と定義し、この気泡についてASTM D2842−69の試験方法に準拠して測定した。すなわち、各画像について円の外側の任意の部分に長さ60mmの直線を引き、この直線上にある気泡の個数を数え、次式によりこの気泡の平均弦長(t)を算出した。なお、直線の長さが60mmに満たない場合は、30mm又は20mmの気泡数を数え60mm分の気泡数に換算した。
平均弦長 t(μm)=(60×1000)/(気泡数×画像の拡大倍率)
次に次式により、この気泡の平均気泡径(D)を算出した。
平均気泡径 D(μm)=t/0.616
各画像について、円の外側の任意の6カ所について計測し、計10画像分の平均値を平均気泡径とした。
<Measurement method of bulk expansion ratio>
The bulk expansion ratio was determined by dropping the pre-expanded particles (pre-expanded and aged at 23 ° C. for 24 hours) into a graduated cylinder (example: 3000 ml capacity) and then tapping the bottom of the graduated cylinder. The volume and mass were measured and the following formula was calculated. The mass was measured in units of 0.1 g, and the specific gravity of the resin was 1.0 in the case of styrene resin. The bulk expansion factor was rounded to the first decimal place.
Bulk expansion ratio (times) = sample volume (ml) / sample mass (g) in the graduated cylinder x resin specific gravity <Measurement method of expansion ratio>
The expansion ratio was measured so that the size and mass of a test piece (example 75 × 300 × 35 mm) cut out from a foamed molded product (after molding and dried at 40 ° C. for 20 hours or more) were each at least 3 significant figures. And calculated by the following formula. The specific gravity of the resin was 1.0 in the case of styrene resin. The foaming multiple was rounded off to the first decimal place.
Foaming multiple (times) = test piece volume (cm 3 ) / test piece mass (g) × resin specific gravity <average cell diameter measurement method of foamed particle surface layer>
About 10 arbitrarily selected foam particles expanded to a bulk expansion ratio of 60 times, using a razor blade, each is divided into two equal parts by a plane passing near the center of the foam particles, and one of the cut surfaces is divided. Using a scanning electron microscope (S-3000N manufactured by Hitachi, Ltd.), an image that was magnified 25 to 200 times was created.
Next, a circle with a radius corresponding to 90% of the radius from the center of the foam particle is drawn on the image of the cut surface of the foam particle, and bubbles existing outside the circle are defined as bubbles on the surface layer of the foam particle. These bubbles were measured in accordance with the test method of ASTM D2842-69. That is, for each image, a straight line having a length of 60 mm was drawn on an arbitrary portion outside the circle, the number of bubbles on the straight line was counted, and the average chord length (t) of the bubbles was calculated by the following equation. When the length of the straight line was less than 60 mm, the number of bubbles of 30 mm or 20 mm was counted and converted to the number of bubbles of 60 mm.
Average chord length t (μm) = (60 × 1000) / (number of bubbles × magnification of image)
Next, the average bubble diameter (D) of the bubbles was calculated by the following formula.
Average bubble diameter D (μm) = t / 0.616
About each image, it measured about arbitrary 6 places outside a circle, and made the average value for a total of 10 images the average bubble diameter.

<融着率の測定方法>
幅300mm、長さ400mm、厚み35mmの平板形状の発泡成形品の表面に、一対の長辺の中心同士を結ぶ直線に沿ってカッターナイフで深さ約2mmの切り込み線を入れた後、この切り込み線に沿って発泡成形品を手で二分割し、その破断面における発泡粒子について、100〜150個の任意の範囲について粒子内で破断している粒子の数(a)と粒子どうしの界面で破断している粒子の数(b)とを数え、式[(a)/((a)十(b))]×100に代入して得られた値を融着率(%)とした。
融着性の評価として、融着率70%以上を良好(○)、融着率70%未満を不良(×)とした。
<Measurement method of fusion rate>
After making a cut line with a depth of about 2 mm with a cutter knife along the straight line connecting the centers of a pair of long sides on the surface of a flat foam molded product having a width of 300 mm, a length of 400 mm and a thickness of 35 mm, this cut The foamed molded product is divided into two along the line by hand, and the foamed particles in the fracture surface at the interface between the number of particles (a) broken within the particles in an arbitrary range of 100 to 150 and between the particles The number of broken particles (b) was counted, and the value obtained by substituting into the formula [(a) / ((a) tens (b))] × 100 was defined as the fusion rate (%).
As evaluation of the fusing property, a fusing rate of 70% or more was judged as good (◯), and a fusing rate of less than 70% was judged as poor (x).

<曲げ強度>
発泡倍数60倍の発泡成形品を作製し、最大曲げ強さはJIS A9511:1999「発泡プラスチック保温材」記載の方法に準じて測定した。すなわち、テンシロン万能試験機UCT−10T(オリエンテック社製)を用い、試験体サイズは75×300×35mmで圧縮速度を10mm/min、先端治具は加圧くさび10R、支持台10Rで、支点間距離は200mmとして測定した。
測定方法試験装置:テンシロン万能試験機UCT−10T(オリエンテック社製)。
試験片:75×300×35mm。試験片の数は3個とする。
試験速度:10mm/min。
先端治具:加圧くさび…10R、支持台…10R。
支点間距離:200mm。JIS A9511規格に準じて、発泡成形品の曲げ強度を測定した。
曲げ強度測定に用いた試験片は、実施例・比較例で得られた成形品(300×400×35mm)から切り出して作製した。成形圧(水蒸気吹き込みゲージ圧)を0.07MPaG、0.06MPaG及び0.05MPaGとした場合のそれぞれの発泡成形品の曲げ強度を測定し、以下の基準で評価した
○:0.29MPa以上
△:0.25MPa以上0.29MPa未満
×:0.25MPa未満
<Bending strength>
A foamed molded article having a foaming ratio of 60 times was prepared, and the maximum bending strength was measured according to the method described in JIS A9511: 1999 “Foamed plastic heat insulating material”. That is, using Tensilon universal testing machine UCT-10T (Orientec Co., Ltd.), the specimen size is 75 x 300 x 35 mm, the compression speed is 10 mm / min, the tip jig is the pressure wedge 10R, and the support base 10R, the fulcrum The distance was measured as 200 mm.
Measuring method test apparatus: Tensilon universal testing machine UCT-10T (Orientec Co., Ltd.).
Test piece: 75 × 300 × 35 mm. The number of test pieces shall be three.
Test speed: 10 mm / min.
Tip jig: pressure wedge 10R, support base 10R.
Distance between fulcrums: 200 mm. The bending strength of the foamed molded product was measured according to JIS A9511 standard.
The test piece used for the bending strength measurement was cut out from the molded product (300 × 400 × 35 mm) obtained in Examples and Comparative Examples. The bending strength of each foamed molded article when the molding pressure (water vapor blowing gauge pressure) was 0.07 MPaG, 0.06 MPaG, and 0.05 MPaG was measured, and evaluated according to the following criteria: ○: 0.29 MPa or more Δ: 0.25 MPa or more and less than 0.29 MPa ×: less than 0.25 MPa

<成形品の光沢度の評価>
完全に平滑な測定面を得るために、成形用型窩の移動型の表面に、顕微鏡用スライドグラス(松浪硝子工業株式会社製、レギュラースライドグラス、長さ76mm、幅26mm)5枚を市販の両面テープを用いて、型窩の蒸気導入スリットを避けた位置に貼り付けて、実施例・比較例に示す成形蒸気圧0.05MPaGの成形条件にて成形した。得られた成形品を常温で約70時間乾燥させてから、ピンセットを用いて慎重にスライドグラスを剥がし、光沢度測定用の完全に平滑な成形品表面を得た。次に、光沢計(ミノルタ株式会社製GM−060)を用いて、この光沢度測定用部位の任意の15点について、JIS Z8741に基づく60°/60°の光沢度を測定し、その平均値を光沢度とした。
光沢度は次の基準により評価した。
○:30以上
△:25以上30未満
×:25未満
<Evaluation of gloss of molded products>
In order to obtain a completely smooth measurement surface, five microscope slide glasses (manufactured by Matsunami Glass Industrial Co., Ltd., regular slide glass, length 76 mm, width 26 mm) are commercially available on the movable surface of the molding cavity. Using a double-sided tape, it was affixed at a position avoiding the steam introduction slit of the mold cavity, and was molded under the molding conditions of molding vapor pressure of 0.05 MPaG shown in Examples and Comparative Examples. The obtained molded product was dried at room temperature for about 70 hours, and then the slide glass was carefully peeled off using tweezers to obtain a completely smooth molded product surface for gloss measurement. Next, using a gloss meter (GM-060 manufactured by Minolta Co., Ltd.), the glossiness of 60 ° / 60 ° based on JIS Z8741 is measured for any 15 points of this glossiness measurement site, and the average value thereof is measured. Was the glossiness.
The glossiness was evaluated according to the following criteria.
○: 30 or more Δ: 25 or more and less than 30 ×: less than 25

<最短冷却時間>
3成形条件中、80%以上の融着率が得られる最も短い冷却時間を最短冷却時間とした。
<Minimum cooling time>
Among the three molding conditions, the shortest cooling time at which a fusion rate of 80% or more was obtained was taken as the shortest cooling time.

<成形品の水漏れ試験>
成形機の型窩を、外寸300×400×100mmで25mmの均一な厚みを有する箱形の成形品(内寸250×350×75mm)が得られるものに取り替えて、成形蒸気圧0.07MPaGの前述成形条件にて成形して、箱形の成形品を得た。得られた成形品を常温で6時間放置した後、新聞紙の上に成形品を置き、この成形品に水溶性の赤インクで着色した水道水5リットルを入れて常温で更に72時間放置した後、成形品を取り除いて新聞紙を観察した。
成形品の水漏れは次の基準で評価した。
○:全く漏れていない
△:新聞紙に点状に僅かに着色が見られる
×:新聞紙に濡れており、全体が着色している
<Water leakage test of molded products>
Replace the mold cavity of the molding machine with an outer dimension of 300 x 400 x 100 mm and a box-shaped molded product (inner dimension of 250 x 350 x 75 mm) with a uniform thickness of 25 mm, and a molding vapor pressure of 0.07 MPaG The above-mentioned molding conditions were used to obtain a box-shaped molded product. After the molded product thus obtained is left at room temperature for 6 hours, the molded product is placed on a newspaper, and 5 liters of tap water colored with water-soluble red ink is added to the molded product and left at room temperature for a further 72 hours. The molded article was removed and the newspaper was observed.
The leakage of the molded product was evaluated according to the following criteria.
○: No leakage at all △: Slightly colored spotted on newspapers ×: Wet on newspapers, the whole is colored

[実施例1]
撹拌機を備えた内容積52リットルの反応器に、蒸留水18kg、ピロリン酸マグネシウム65g、ドデシルベンゼンスルホン酸ナトリウム2.5gを入れ、粒子径が約0.6mmで重量平均分子量が30万のスチレン樹脂種粒子(積水化成品工業株式会社製、SS−152)5.0kgを加えて撹拌し懸濁させた。
次いで予め用意した蒸留水1500g、ピロリン酸マグネシウム5.0g、ドデシルベンゼンスルホン酸ナトリウム1.0gの分散液に、重合開始剤としてベンゾイルパーオキサイド50.7g及びt−ブチルパーオキシベンゾエート16.9g、気泡調整剤としてジドデシル3,3’−チオジプロピオネート0.34gをスチレン2160gに溶解して添加し、ホモミキサーにかけて調製した懸濁液を71℃に保持した反応器に加えた。
撹拌しながら71℃で1時間保持し、スチレン樹脂種粒子に重合開始剤と気泡調整剤を吸収させた後、反応器内にスチレンを4920g/hrの速度で連続的に3.0時間供給するとともに、スチレン供給終了時に懸濁液が105℃となるように反応器を連続的に昇温した。引き続き120℃まで昇温して30分保持した後、蒸留水2000gにピロリン酸マグネシウム6.5g、ドデシルベゼンスルホン酸ナトリウム0.6gを加えた分散液に、発泡助剤としてシクロヘキサン175.3g、ジイソブチルアジペート(DIBA)153.4gを加えてホモミキサーにかけた懸濁液を反応器内に圧入した。その後、100℃まで冷却して工業用ブタン(イソブタン/ノルマルブタン=35/65)1975gを圧入して100℃で3時間保持した後、20℃まで冷却して取り出し、洗浄、脱水、乾燥した。さらに発泡後の気泡径が完全に安定するまで18℃で5日間熟成させて、粒子径約1.0mmの発泡性スチレン樹脂粒子を得た。この発泡性スチレン樹脂粒子を嵩発泡倍数60倍に発泡した発泡粒子表層部の平均気泡径は71μmであった。
この発泡性スチレン樹脂粒子10kgに対して、ステアリン酸亜鉛(大日化学工業株式会社製ダイワックスZF)13.0g、メチルフェニルシリコーンオイル(GE東芝シリコーン株式会社製TSF4300、25℃における粘度140mm/s、屈折率1.498)5.0gを内容積約30リットルのタンブラーミキサーを用いて、毎分30回転で約15分間混合して、樹脂粒子の表面に被覆した。
得られた発泡性スチレン樹脂粒子を内容積約40リットルの小型バッチ式予備発泡機を用いて、常圧下で水蒸気により加熱し、嵩発泡倍数60倍に予備発泡した。得られた予備発泡粒子を目開き10mmの篩に通して、篩上に残った発泡時結合粒子の質量を、発泡に用いた発泡性樹脂粒子の質量で除して予備発泡時結合量を算出した。結合量は0.3%であった。
結合粒子を取り除いた予備発泡粒子を網袋に入れ、23℃で24時間熟成させた後、300×400×35mmの型窩を取り付けた発泡成形機(株式会社積水工機製作所製ACE−3SP)を用いて、下記3条件で成形を行った。水冷工程終了後から取出設定面圧0.02MPaになるまでの放冷時間を冷却時間とした。冷却時間は、1条件について各3枚成形してその平均値をとった。
成形条件(ACE−3SP QS成形モード)
成形蒸気圧 3条件(ゲージ圧0.07、0.06、0.05MPa)
金型加熱3秒
一方加熱(圧力設定0.03MPa)
逆一方加熱2秒
両面加熱10秒
水冷5秒
取出設定面圧0.02MPa
得られた幅300mm、長さ400mm、厚み35mmの成形品を、40℃の乾燥室内で20時間乾燥させ発泡倍数60倍の発泡成形品を得て、成形品の融着率、曲げ強度、光沢度等を測定した。結果を表1,2に示す。
[Example 1]
Styrene having a particle size of about 0.6 mm and a weight average molecular weight of 300,000 is placed in a reactor having an internal volume of 52 liters equipped with a stirrer and 18 kg of distilled water, 65 g of magnesium pyrophosphate and 2.5 g of sodium dodecylbenzenesulfonate. 5.0 kg of resin seed particles (SS-152, manufactured by Sekisui Plastics Co., Ltd.) were added and suspended by stirring.
Next, in a dispersion of 1500 g of distilled water prepared in advance, 5.0 g of magnesium pyrophosphate and 1.0 g of sodium dodecylbenzenesulfonate, 50.7 g of benzoyl peroxide and 16.9 g of t-butylperoxybenzoate as a polymerization initiator, air bubbles As a regulator, 0.34 g of didodecyl 3,3′-thiodipropionate was dissolved in 2160 g of styrene and added, and the suspension prepared by applying a homomixer was added to a reactor maintained at 71 ° C.
The mixture is held at 71 ° C. for 1 hour with stirring, and after the styrene resin seed particles have absorbed the polymerization initiator and the air conditioner, styrene is continuously fed into the reactor at a rate of 4920 g / hr for 3.0 hours. At the same time, the temperature of the reactor was continuously raised so that the suspension became 105 ° C. at the end of the styrene supply. Subsequently, the temperature was raised to 120 ° C. and held for 30 minutes, and then 175.3 g of cyclohexane as a foaming aid was added to a dispersion obtained by adding 6.5 g of magnesium pyrophosphate and 0.6 g of sodium dodecylbezenesulfonate to 2000 g of distilled water. A suspension obtained by adding 153.4 g of diisobutyl adipate (DIBA) and applying it to a homomixer was pressed into the reactor. Then, after cooling to 100 ° C., 1975 g of industrial butane (isobutane / normal butane = 35/65) was injected and held at 100 ° C. for 3 hours, then cooled to 20 ° C., taken out, washed, dehydrated and dried. Further, the foamed styrene resin particles having a particle diameter of about 1.0 mm were obtained by aging at 18 ° C. for 5 days until the bubble diameter after foaming was completely stabilized. The average cell diameter of the surface layer of the expanded particles obtained by expanding the expandable styrene resin particles to a bulk expansion ratio of 60 times was 71 μm.
For this expandable styrene resin particles 10 kg, zinc stearate (Dainichi Kagaku Kogyo Co., Ltd. die wax ZF) 13.0 g, methylphenyl silicone oil (GE Toshiba Silicone Co., Ltd. TSF4300,25 viscosity at ° C. 140 mm 2 / s, refractive index 1.498) 5.0 g was mixed for about 15 minutes at 30 revolutions per minute using a tumbler mixer having an internal volume of about 30 liters to coat the surface of the resin particles.
The obtained expandable styrene resin particles were heated with steam under normal pressure using a small batch type pre-foaming machine having an internal volume of about 40 liters, and pre-foamed to a bulk foaming ratio of 60 times. The obtained pre-foamed particles are passed through a sieve having an opening of 10 mm, and the mass of the bonded particles remaining on the sieve is divided by the mass of the foamable resin particles used for foaming to calculate the pre-foamed bonded amount. did. The amount of binding was 0.3%.
The pre-foamed particles from which the binding particles have been removed are placed in a net bag and aged at 23 ° C. for 24 hours, and then a foam molding machine with a 300 × 400 × 35 mm mold cavity (ACE-3SP, manufactured by Sekisui Koki Co., Ltd.) Was molded under the following three conditions. The cooling time was defined as the cooling time from the end of the water cooling process until the extraction set surface pressure reached 0.02 MPa. For the cooling time, three sheets were molded for one condition and the average value was taken.
Molding conditions (ACE-3SP QS molding mode)
Molding vapor pressure 3 conditions (gauge pressure 0.07, 0.06, 0.05 MPa)
Mold heating 3 seconds One side heating (pressure setting 0.03MPa)
Reverse one heating 2 seconds Double-side heating 10 seconds Water cooling 5 seconds Extraction set surface pressure 0.02 MPa
The obtained molded product having a width of 300 mm, a length of 400 mm, and a thickness of 35 mm is dried in a drying chamber at 40 ° C. for 20 hours to obtain a foamed molded product having a expansion ratio of 60 times, and the fusion rate, bending strength, and gloss of the molded product are obtained. The degree was measured. The results are shown in Tables 1 and 2.

[実施例2]
メチルフェニルシリコーンオイルの被覆量を5.0gから1.0gに変えた以外は、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Example 2]
The same operation as in Example 1 was performed, except that the coating amount of methylphenyl silicone oil was changed from 5.0 g to 1.0 g. The results are shown in Tables 1 and 2.

[実施例3]
メチルフェニルシリコーンオイルの被覆量を5.0gから15.0gに変えた以外は、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Example 3]
The same operation as in Example 1 was performed, except that the coating amount of methylphenyl silicone oil was changed from 5.0 g to 15.0 g. The results are shown in Tables 1 and 2.

[実施例4]
被覆するメチルフェニルシリコーンオイルを信越化学工業株式会社製KF−56(25℃における粘度15mm/s、屈折率1.500)に変えた以外は、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Example 4]
The same operation as in Example 1 was performed, except that the methylphenyl silicone oil to be coated was changed to KF-56 manufactured by Shin-Etsu Chemical Co., Ltd. (viscosity 15 mm 2 / s at 25 ° C., refractive index 1.500) and evaluated in the same manner. did. The results are shown in Tables 1 and 2.

[実施例5]
被覆するメチルフェニルシリコーンオイルを東レダウコーニング株式会社製SH710(25℃における粘度500mm/s、屈折率1.533)に変えた以外は、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Example 5]
The same operations as in Example 1 were carried out and evaluated in the same manner except that the methylphenyl silicone oil to be coated was changed to SH710 manufactured by Toray Dow Corning Co., Ltd. (viscosity 500 mm 2 / s at 25 ° C., refractive index 1.533). The results are shown in Tables 1 and 2.

[実施例6]
撹拌機を備えた内容積52リットルの反応器に、蒸留水18kg、ピロリン酸マグネシウム65g、ドデシルベンゼンスルホン酸ナトリウム2.5gを入れ、実施例1で用いたスチレン樹脂種粒子5.0kgを加えて撹拌し懸濁させた。
次いで予め用意した蒸留水1500g、ピロリン酸マグネシウム5.0g、ドデシルベンゼンスルホン酸ナトリウム1.0gの分散液に、重合開始剤としてベンゾイルパーオキサイド47.3g及びt−ブチルパーオキシベンゾエート16.9g、気泡調整剤としてジドデシル3,3’−チオジプロピオネート0.51gをスチレン2160gに溶解して添加し、ホモミキサーにかけて調製した懸濁液を69℃に保持した反応器に加えた。
撹拌しながら69℃で1時間保持し、スチレン樹脂種粒子に重合開始剤と気泡調整剤を吸収させた後、反応器内にスチレンを4920g/hrの速度で連続的に3.0時間供給するとともに、スチレン供給終了時に懸濁液が105℃となるように反応器を連続的に昇温した。引き続き120℃まで昇温して30分保持した後、蒸留水2000gにピロリン酸マグネシウム6.5g、ドデシルベゼンスルホン酸ナトリウム0.6gを加えた分散液に、発泡助剤としてシクロヘキサン175.3g、ジイソブチルアジペート(DIBA)153.4gを加えてホモミキサーにかけた懸濁液を反応器内に圧入した。その後、100℃まで冷却して工業用ブタン(イソブタン/ノルマルブタン=35/65)1975gを圧入して100℃で3時間保持した後、20℃まで冷却して取り出し、洗浄、脱水、乾燥した。さらに発泡後の気泡径が完全に安定するまで18℃で5日間熟成させて、粒子径約1.0mmの発泡性スチレン樹脂粒子を得た。この発泡性スチレン樹脂粒子を嵩発泡倍数60倍に発泡した発泡粒子表層部の平均気泡径は53μmであった。
この発泡性スチレン樹脂粒子について、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Example 6]
Into a reactor having an internal volume of 52 liters equipped with a stirrer, 18 kg of distilled water, 65 g of magnesium pyrophosphate and 2.5 g of sodium dodecylbenzenesulfonate were added, and 5.0 kg of the styrene resin seed particles used in Example 1 were added. Stir and suspend.
Next, in a dispersion of 1500 g of distilled water prepared in advance, 5.0 g of magnesium pyrophosphate and 1.0 g of sodium dodecylbenzenesulfonate, 47.3 g of benzoyl peroxide and 16.9 g of t-butylperoxybenzoate as a polymerization initiator, bubbles As a modifier, 0.51 g of didodecyl 3,3′-thiodipropionate was dissolved in 2160 g of styrene and added, and the suspension prepared by applying a homomixer was added to a reactor maintained at 69 ° C.
The mixture is held at 69 ° C. for 1 hour with stirring, and after the styrene resin seed particles have absorbed the polymerization initiator and the air conditioner, styrene is continuously fed into the reactor at a rate of 4920 g / hr for 3.0 hours. At the same time, the temperature of the reactor was continuously raised so that the suspension became 105 ° C. at the end of the styrene supply. Subsequently, the temperature was raised to 120 ° C. and held for 30 minutes, and then 175.3 g of cyclohexane as a foaming aid was added to a dispersion obtained by adding 6.5 g of magnesium pyrophosphate and 0.6 g of sodium dodecylbezenesulfonate to 2000 g of distilled water. A suspension obtained by adding 153.4 g of diisobutyl adipate (DIBA) and applying it to a homomixer was pressed into the reactor. Then, after cooling to 100 ° C., 1975 g of industrial butane (isobutane / normal butane = 35/65) was injected and held at 100 ° C. for 3 hours, then cooled to 20 ° C., taken out, washed, dehydrated and dried. Further, the foamed styrene resin particles having a particle diameter of about 1.0 mm were obtained by aging at 18 ° C. for 5 days until the bubble diameter after foaming was completely stabilized. The average cell diameter of the surface layer of the expanded particles obtained by expanding the expandable styrene resin particles to a bulk expansion ratio of 60 times was 53 μm.
About this expandable styrene resin particle, operation similar to Example 1 was performed and evaluated similarly. The results are shown in Tables 1 and 2.

[実施例7]
撹拌機を備えた内容積52リットルの反応器に、蒸留水18kg、ピロリン酸マグネシウム65g、ドデシルベンゼンスルホン酸ナトリウム2.5gを入れ、実施例1で用いたスチレン樹脂種粒子5.0kgを加えて撹拌し懸濁させた。
次いで予め用意した蒸留水1500g、ピロリン酸マグネシウム5.0g、ドデシルベンゼンスルホン酸ナトリウム1.0gの分散液に、重合開始剤としてベンゾイルパーオキサイド67.6g及びt−ブチルパーオキシベンゾエート16.9g、気泡調整剤としてジドデシル3,3’−チオジプロピオネート0.17gをスチレン2160gに溶解して添加し、ホモミキサーにかけて調製した懸濁液を75℃に保持した反応器に加えた。
撹拌しながら75℃で1時間保持し、スチレン樹脂種粒子に重合開始剤と気泡調整剤を吸収させた後、反応器内にスチレンを5900g/hrの速度で連続的に2.5時間供給するとともに、スチレン供給終了時に懸濁液が105℃となるように反応器を連続的に昇温した。引き続き120℃まで昇温して30分保持した後、蒸留水2000gにピロリン酸マグネシウム6.5g、ドデシルベゼンスルホン酸ナトリウム0.6gを加えた分散液に、発泡助剤としてシクロヘキサン175.3g、ジイソブチルアジペート(DIBA)153.4gを加えてホモミキサーにかけた懸濁液を反応器内に圧入した。その後、100℃まで冷却して工業用ブタン(イソブタン/ノルマルブタン=35/65)1975gを圧入して100℃で3時間保持した後、20℃まで冷却して取り出し、洗浄、脱水、乾燥した。さらに発泡後の気泡径が完全に安定するまで18℃で5日間熟成させて、粒子径約1.0mmの発泡性スチレン樹脂粒子を得た。この発泡性スチレン樹脂粒子を嵩発泡倍数60倍に発泡した発泡粒子表層部の平均気泡径は126μmであった。
この発泡性スチレン樹脂粒子について、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Example 7]
Into a reactor having an internal volume of 52 liters equipped with a stirrer, 18 kg of distilled water, 65 g of magnesium pyrophosphate and 2.5 g of sodium dodecylbenzenesulfonate were added, and 5.0 kg of the styrene resin seed particles used in Example 1 were added. Stir and suspend.
Next, in a dispersion of 1500 g of distilled water prepared in advance, 5.0 g of magnesium pyrophosphate and 1.0 g of sodium dodecylbenzenesulfonate, 67.6 g of benzoyl peroxide and 16.9 g of t-butylperoxybenzoate as a polymerization initiator, bubbles As a conditioner, 0.17 g of didodecyl 3,3′-thiodipropionate was dissolved in 2160 g of styrene and added, and the suspension prepared by applying a homomixer was added to a reactor maintained at 75 ° C.
The mixture is held at 75 ° C. for 1 hour with stirring, and after the styrene resin seed particles have absorbed the polymerization initiator and the bubble regulator, styrene is continuously fed into the reactor at a rate of 5900 g / hr for 2.5 hours. At the same time, the temperature of the reactor was continuously raised so that the suspension became 105 ° C. at the end of the styrene supply. Subsequently, the temperature was raised to 120 ° C. and held for 30 minutes, and then 175.3 g of cyclohexane as a foaming aid was added to a dispersion obtained by adding 6.5 g of magnesium pyrophosphate and 0.6 g of sodium dodecylbezenesulfonate to 2000 g of distilled water. A suspension obtained by adding 153.4 g of diisobutyl adipate (DIBA) and applying it to a homomixer was pressed into the reactor. Then, after cooling to 100 ° C., 1975 g of industrial butane (isobutane / normal butane = 35/65) was injected and held at 100 ° C. for 3 hours, then cooled to 20 ° C., taken out, washed, dehydrated and dried. Further, the foamed styrene resin particles having a particle diameter of about 1.0 mm were obtained by aging at 18 ° C. for 5 days until the bubble diameter after foaming was completely stabilized. The average cell diameter of the surface layer of the expanded particles obtained by expanding the expandable styrene resin particles to a bulk expansion ratio of 60 times was 126 μm.
About this expandable styrene resin particle, operation similar to Example 1 was performed and evaluated similarly. The results are shown in Tables 1 and 2.

[比較例1]
メチルフェニルシリコーンオイルを被覆しなかった以外は、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Comparative Example 1]
The same operation as in Example 1 was performed, except that methylphenyl silicone oil was not coated, and the same evaluation was performed. The results are shown in Tables 1 and 2.

[比較例2]
メチルフェニルシリコーンオイルを被覆しなかった以外は、実施例7と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Comparative Example 2]
The same operation as in Example 7 was performed, except that methylphenyl silicone oil was not coated, and the same evaluation was performed. The results are shown in Tables 1 and 2.

[比較例3]
メチルフェニルシリコーンオイルの被覆量を5.0gから0.2gに変えた以外は、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Comparative Example 3]
The same operation as in Example 1 was performed, except that the coating amount of methylphenyl silicone oil was changed from 5.0 g to 0.2 g. The results are shown in Tables 1 and 2.

[比較例4]
メチルフェニルシリコーンオイルの被覆量を5.0gから50.0gに変えた以外は、実施例1と同様の操作を行い発泡性スチレン樹脂粒子に被覆した結果、ベタツキが大きく樹脂粒子の流動性が非常に悪くなったため、これについては発泡、成形評価を取りやめた。
[Comparative Example 4]
Except that the coating amount of methylphenyl silicone oil was changed from 5.0 g to 50.0 g, the same operation as in Example 1 was carried out to coat the expandable styrene resin particles. As a result, the stickiness was large and the fluidity of the resin particles was extremely high. As a result, the evaluation of foaming and molding was canceled.

[比較例5]
メチルフェニルシリコーンオイルを、ジメチルシリコーンオイル(信越化学工業株式会社製KF−96−100cs、25℃における粘度100mm/s、屈折率1.403)に代えた以外は、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Comparative Example 5]
The same operation as in Example 1 except that methylphenyl silicone oil was replaced with dimethyl silicone oil (KF-96-100cs, manufactured by Shin-Etsu Chemical Co., Ltd., viscosity 100 mm 2 / s at 25 ° C., refractive index 1.403). And evaluated in the same manner. The results are shown in Tables 1 and 2.

[比較例6]
メチルフェニルシリコーンオイルを、屈折率の低いもの(東レダウコーニング製SH510、25℃における粘度100mm/s、屈折率1.425)に代えた以外は、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Comparative Example 6]
The same operation as in Example 1 was performed except that methylphenyl silicone oil was replaced with one having a low refractive index (SH510 manufactured by Toray Dow Corning, viscosity 100 mm 2 / s at 25 ° C., refractive index 1.425). evaluated. The results are shown in Tables 1 and 2.

[比較例7]
ステアリン酸亜鉛の被覆量を13.0gから1.0gに変更した以外は、実施例3と同様の操作を行い予備発泡した結果、篩上に残った発泡時結合量は10.1%と非常に多くなり、篩を通過したものにも、双子や三つ子状に結合した粒子が多数認められる為、成形評価は取りやめた。
[Comparative Example 7]
Except that the coating amount of zinc stearate was changed from 13.0 g to 1.0 g, pre-foaming was carried out in the same manner as in Example 3. As a result, the binding amount remaining on the sieve was 10.1%, which was extremely low. Since many particles bound in twins and triplets were observed even after passing through the sieve, the molding evaluation was canceled.

[比較例8]
ステアリン酸亜鉛の被覆量を13.0gから35.0gに変更した以外は、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Comparative Example 8]
The same operation as in Example 1 was performed, except that the coating amount of zinc stearate was changed from 13.0 g to 35.0 g. The results are shown in Tables 1 and 2.

[比較例9]
気泡調整剤の添加量を0.51gから1.01gに変更した以外は、実施例6と同様の操作を行い粒子径約1.0mmの発泡性スチレン樹脂粒子を得た。この発泡性スチレン樹脂粒子を嵩発泡倍数60倍に発泡した発泡粒子表層部の平均気泡径は35μmであった。
この発泡性スチレン樹脂粒子について、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Comparative Example 9]
Except having changed the addition amount of the bubble regulator from 0.51 g to 1.01 g, the same operation as Example 6 was performed and the expandable styrene resin particle of about 1.0 mm particle diameter was obtained. The average cell diameter of the surface layer of the expanded particles obtained by expanding the expandable styrene resin particles to a bulk expansion ratio of 60 times was 35 μm.
About this expandable styrene resin particle, operation similar to Example 1 was performed and evaluated similarly. The results are shown in Tables 1 and 2.

[比較例10]
撹拌機を備えた内容積52リットルの反応器に、蒸留水18kg、ピロリン酸マグネシウム65g、ドデシルベンゼンスルホン酸ナトリウム2.5gを入れ、実施例1で用いたスチレン樹脂種粒子5.0kgを加えて撹拌し懸濁させた。
次いで予め用意した蒸留水1500g、ピロリン酸マグネシウム5.0g、ドデシルベンゼンスルホン酸ナトリウム1.0gの分散液に、重合開始剤としてベンゾイルパーオキサイド76.1g及びt−ブチルパーオキシベンゾエート16.9gをスチレン2160gに溶解して添加し、ホモミキサーにかけて調製した懸濁液を76℃に保持した反応器に加えた。
撹拌しながら76℃で1時間保持し、スチレン樹脂種粒子に重合開始剤と気泡調整剤を吸収させた後、反応器内にスチレンを5900g/hrの速度で連続的に2.5時間供給するとともに、スチレン供給終了時に懸濁液が106℃となるように反応器を連続的に昇温した。引き続き120℃まで昇温して30分保持した後、蒸留水2000gにピロリン酸マグネシウム6.5g、ドデシルベゼンスルホン酸ナトリウム0.6gを加えた分散液に、発泡助剤としてシクロヘキサン175.3g、ジイソブチルアジペート(DIBA)153.4gを加えてホモミキサーにかけた懸濁液を反応器内に圧入した。その後、100℃まで冷却して工業用ブタン(イソブタン/ノルマルブタン=35/65)1975gを圧入して100℃で3時間保持した後、20℃まで冷却して取り出し、洗浄、脱水、乾燥した。さらに発泡後の気泡径が完全に安定するまで18℃で5日間熟成させて、粒子径約1.0mmの発泡性スチレン樹脂粒子を得た。この発泡性スチレン樹脂粒子を嵩発泡倍数60倍に発泡した発泡粒子表層部の平均気泡径は182μmであった。
この発泡性スチレン樹脂粒子について、実施例1と同様の操作を行い同様に評価した。結果を表1,2に示す。
[Comparative Example 10]
Into a reactor having an internal volume of 52 liters equipped with a stirrer, 18 kg of distilled water, 65 g of magnesium pyrophosphate and 2.5 g of sodium dodecylbenzenesulfonate were added, and 5.0 kg of the styrene resin seed particles used in Example 1 were added. Stir and suspend.
Next, 76.1 g of benzoyl peroxide and 16.9 g of t-butylperoxybenzoate were used as a polymerization initiator in a dispersion of 1500 g of distilled water prepared in advance, 5.0 g of magnesium pyrophosphate and 1.0 g of sodium dodecylbenzenesulfonate. It was dissolved in 2160 g and added, and the suspension prepared by applying a homomixer was added to the reactor maintained at 76 ° C.
The mixture is held at 76 ° C. for 1 hour with stirring to absorb the polymerization initiator and the bubble regulator in the styrene resin seed particles, and then styrene is continuously fed into the reactor at a rate of 5900 g / hr for 2.5 hours. At the same time, the temperature of the reactor was continuously raised so that the suspension became 106 ° C. at the end of the styrene supply. Subsequently, the temperature was raised to 120 ° C. and held for 30 minutes, and then 175.3 g of cyclohexane as a foaming aid was added to a dispersion obtained by adding 6.5 g of magnesium pyrophosphate and 0.6 g of sodium dodecylbezenesulfonate to 2000 g of distilled water. A suspension obtained by adding 153.4 g of diisobutyl adipate (DIBA) and applying it to a homomixer was pressed into the reactor. Then, after cooling to 100 ° C., 1975 g of industrial butane (isobutane / normal butane = 35/65) was injected and held at 100 ° C. for 3 hours, then cooled to 20 ° C., taken out, washed, dehydrated and dried. Further, the foamed styrene resin particles having a particle diameter of about 1.0 mm were obtained by aging at 18 ° C. for 5 days until the bubble diameter after foaming was completely stabilized. The average cell diameter of the surface layer of the expanded particles obtained by expanding the expandable styrene resin particles to a bulk expansion ratio of 60 times was 182 μm.
About this expandable styrene resin particle, operation similar to Example 1 was performed and evaluated similarly. The results are shown in Tables 1 and 2.

[比較例11]
発泡助剤(シクロヘキサン175.3g、DIBA153.4g)の他に、ジメチルシリコーンオイル(信越化学工業株式会社製KF−96−100cs、25℃における比重0.965)21.1g加えてホモミキサーにかけた懸濁液を反応器に圧入し、工業用ブタン圧入後100℃で12時間保持した以外は、実施例1と同様の操作を行い粒子径約1.0mmのジメチルシリコーンオイルが粒子表層付近に含浸された発泡性スチレン樹脂粒子を得た。この発泡性スチレン樹脂粒子を嵩発泡倍数60倍に発泡した発泡粒子表層部の平均気泡径は68μmであった。
この発泡性スチレン樹脂粒子10kgに対して、比較例6で用いたメチルフェニルシリコーンオイル(SH510)5.0gを内容積約30リットルのタンブラーミキサーを用いて、毎分30回転で約5分間混合して樹脂粒子の表面に被覆した後、ベヘン酸トリグリセライド14.0g、エチレンビスステアリン酸アミド6.0gを添加して更に15分間混合して、樹脂粒子の表面に被覆した。
得られた発泡性スチレン樹脂粒子について、実施例1と同様の評価を行った。この発泡性スチレン樹脂粒子から得られた成形品は、光沢度が低く、水漏れ試験において容器底部の全面から水漏れが認められた。結果を表1,2に示す。
[Comparative Example 11]
In addition to the foaming aid (cyclohexane 175.3 g, DIBA 153.4 g), 21.1 g of dimethyl silicone oil (KF-96-100cs manufactured by Shin-Etsu Chemical Co., Ltd., specific gravity 0.965 at 25 ° C.) was added and subjected to a homomixer. The suspension was press-fitted into the reactor and the same operation as in Example 1 was carried out except that the butane was press-fit for industrial use and maintained at 100 ° C. for 12 hours, and dimethyl silicone oil having a particle size of about 1.0 mm was impregnated near the particle surface layer. Thus obtained expandable styrene resin particles were obtained. The average cell diameter of the surface layer of the expanded particles obtained by expanding the expandable styrene resin particles to a bulk expansion ratio of 60 times was 68 μm.
To 10 kg of the expandable styrene resin particles, 5.0 g of methylphenyl silicone oil (SH510) used in Comparative Example 6 was mixed for about 5 minutes at 30 rpm with a tumbler mixer having an internal volume of about 30 liters. After coating the surface of the resin particles, 14.0 g of behenic acid triglyceride and 6.0 g of ethylenebisstearic acid amide were added and mixed for another 15 minutes to coat the surface of the resin particles.
The obtained expandable styrene resin particles were evaluated in the same manner as in Example 1. The molded product obtained from the expandable styrene resin particles had low gloss, and water leakage was observed from the entire bottom surface of the container in the water leakage test. The results are shown in Tables 1 and 2.

[比較例12]
実施例1で得られた発泡性スチレン樹脂粒子10kgに対して、メチルフェニルシリコーンオイル(信越化学工業株式会社製KF−54、25℃における粘度400mm/s、屈折率1.505)5.0g、ステアリン酸亜鉛10.0g、硬化牛脂油60.0g(日本油脂株式会社製、牛脂極度硬化油、融点約59℃、主成分はステアリン酸トリグリセライド及びパルミチン酸トリグリセライド混合物)を内容積約30リットルのタンブラーミキサーを用いて、毎分30回転で約15分間混合して、樹脂粒子の表面に被覆した。
得られた発泡性スチレン樹脂粒子について、実施例1と同様の評価を行った。この発泡性スチレン樹脂粒子からは短い冷却時間で成形品を得ることができるが、得られた成形品は強度が著しく劣り、光沢度の低いものであった。結果を表1,2に示す。
[Comparative Example 12]
5.0 g of methylphenylsilicone oil (KF-54 manufactured by Shin-Etsu Chemical Co., Ltd., viscosity 400 mm 2 / s at 25 ° C., refractive index 1.505) with respect to 10 kg of expandable styrene resin particles obtained in Example 1. , Zinc stearate 10.0 g, hydrogenated beef tallow oil 60.0 g (manufactured by Nippon Oil & Fats Co., Ltd., beef tallow extremely hardened oil, melting point about 59 ° C., main component is a mixture of stearic acid triglyceride and palmitic acid triglyceride) with an internal volume of about 30 liters Using a tumbler mixer, mixing was performed at 30 rpm for about 15 minutes to coat the surface of the resin particles.
The obtained expandable styrene resin particles were evaluated in the same manner as in Example 1. A molded product can be obtained from the expandable styrene resin particles in a short cooling time. However, the obtained molded product was remarkably inferior in strength and low in gloss. The results are shown in Tables 1 and 2.

Figure 2007246705
Figure 2007246705

Figure 2007246705
Figure 2007246705

表1,2の結果から、本発明に係る実施例1〜7で製造した発泡性スチレン樹脂粒子は、予備発泡−型内発泡成形する際に、従来の型内発泡成形で使用するより低圧の蒸気でも発泡粒子同士を十分融着させることができ、低圧の蒸気で成形を行うことにより、成形時の冷却時間が短くなり、短い成形サイクルで、十分な強度を持ち、表面光沢に優れた発泡成形品が得られることがわかる。

From the results of Tables 1 and 2, the expandable styrene resin particles produced in Examples 1 to 7 according to the present invention had a lower pressure than that used in the conventional in-mold foam molding when pre-foaming-in-mold foam molding was performed. Vaporized particles can be sufficiently fused with steam, and by molding with low-pressure steam, the cooling time during molding is shortened, foaming with sufficient strength and excellent surface gloss is achieved with a short molding cycle. It turns out that a molded article is obtained.

Claims (7)

発泡剤を含有するスチレン系樹脂からなり、嵩発泡倍数60倍に発泡させたときの発泡粒子表層部の平均気泡径Dが、40μm≦D≦150μmの関係を満たす発泡性スチレン系樹脂粒子本体100質量部に対して、25℃での屈折率が1.45以上であるメチルフェニルシリコーンオイル0.01〜0.2質量部と、高級脂肪酸の金属塩0.05〜0.2質量部とが粒子表面に被覆され、かつ、分子中に水酸基を有しない高級脂肪酸トリグリセライドの被覆量が0.05質量部未満であることを特徴とする発泡性スチレン系樹脂粒子。   Expandable styrene resin particle main body 100 made of a styrene resin containing a foaming agent and satisfying the relationship of 40 μm ≦ D ≦ 150 μm in average cell diameter D of the surface layer of the expanded particle when expanded to a bulk expansion ratio of 60 times 0.01 to 0.2 parts by mass of methylphenyl silicone oil having a refractive index of 1.45 or more at 25 ° C. and 0.05 to 0.2 parts by mass of a metal salt of a higher fatty acid with respect to parts by mass Expandable styrenic resin particles characterized in that the coating amount of the higher fatty acid triglyceride coated on the particle surface and having no hydroxyl group in the molecule is less than 0.05 parts by mass. 前記発泡性スチレン系樹脂粒子を加熱して得られた予備発泡粒子を成形型のキャビティ内に充填し、蒸気圧0.05MPaGで型内発泡成形して得られた発泡倍数60倍の発泡成形品の曲げ強度(JIS A9511)が0.25MPa以上であることを特徴とする請求項1に記載の発泡性スチレン系樹脂粒子。   A foam molded article having a foam expansion ratio of 60 times obtained by filling pre-expanded particles obtained by heating the expandable styrene resin particles in a cavity of a mold and foam-molding in the mold at a vapor pressure of 0.05 MPaG. The expandable styrenic resin particles according to claim 1, wherein the bending strength (JIS A9511) is 0.25 MPa or more. 前記発泡性スチレン系樹脂粒子を加熱して得られた予備発泡粒子を成形型のキャビティ内に充填し、蒸気圧0.05MPaGで型内発泡成形して得られた発泡倍数60倍の発泡成形品の表面光沢度(JIS Z8741、60°/60°)が25以上であることを特徴とする請求項1又は2に記載の発泡性スチレン系樹脂粒子。   A foam molded article having a foam expansion ratio of 60 times obtained by filling pre-expanded particles obtained by heating the expandable styrene resin particles in a cavity of a mold and foam-molding in the mold at a vapor pressure of 0.05 MPaG. The surface glossiness (JIS Z8741, 60 ° / 60 °) is 25 or more, and the expandable styrenic resin particles according to claim 1 or 2. 嵩発泡倍数X倍に発泡させたときの発泡粒子表層部の平均気泡径D’を、次式(1)
Figure 2007246705
(式中、Dは嵩発泡倍数60倍に換算した発泡粒子表層部の平均気泡径(μm)を表し、D’は嵩発泡倍数X倍に発泡させたときの発泡粒子表層部の平均気泡径(μm)を表す)
を用いて嵩発泡倍数60倍に換算した発泡粒子表層部の平均気泡径Dが、40μm≦D≦150μmの関係を満たすことを特徴とする請求項1〜3のいずれかに記載の発泡性スチレン系樹脂粒子。
The average cell diameter D ′ of the surface portion of the expanded particle when expanded to a bulk expansion ratio X times is expressed by the following formula (1).
Figure 2007246705
(In the formula, D represents the average cell diameter (μm) of the foamed particle surface layer part converted to a bulk foaming magnification of 60 times, and D ′ is the average cell diameter of the foamed particle surface layer part when foamed to the bulk foaming factor X times) (Represents (μm))
The foamable styrene according to any one of claims 1 to 3, wherein the average cell diameter D of the surface layer portion of the expanded particle converted to a bulk expansion ratio 60 times using the above satisfies a relationship of 40 µm ≤ D ≤ 150 µm. Resin particles.
トルエン及び臭素系難燃剤を含有せず、発泡助剤としてシクロヘキサンをスチレン系樹脂100質量部に対し0.5〜1.5質量部の範囲で含むことを特徴とする請求項1〜4のいずれかに記載の発泡性スチレン系樹脂粒子。   It does not contain toluene and a brominated flame retardant, and contains cyclohexane as a foaming aid in a range of 0.5 to 1.5 parts by mass with respect to 100 parts by mass of a styrene resin. Expandable styrene resin particles according to the above. 請求項1〜5のいずれかに記載の発泡性スチレン系樹脂粒子を加熱して得られた予備発泡粒子を成形型のキャビティ内に充填し、型内発泡成形してスチレン系樹脂発泡成形品を得ることを特徴とするスチレン系樹脂発泡成形品の製造方法。   The pre-expanded particles obtained by heating the expandable styrene resin particles according to any one of claims 1 to 5 are filled in a cavity of a molding die, and in-mold foam molding is performed to obtain a styrene resin foam molded product. A process for producing a styrene-based resin foam-molded article, characterized by comprising 発泡倍数が20〜90倍の範囲内であることを特徴とする請求項6に記載のスチレン系樹脂発泡成形品の製造方法。

The method for producing a styrene-based resin foam molded article according to claim 6, wherein the expansion ratio is in the range of 20 to 90 times.

JP2006072653A 2006-03-16 2006-03-16 Expandable styrene resin particles and method for producing styrene resin foam molded article Active JP5014653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072653A JP5014653B2 (en) 2006-03-16 2006-03-16 Expandable styrene resin particles and method for producing styrene resin foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072653A JP5014653B2 (en) 2006-03-16 2006-03-16 Expandable styrene resin particles and method for producing styrene resin foam molded article

Publications (2)

Publication Number Publication Date
JP2007246705A true JP2007246705A (en) 2007-09-27
JP5014653B2 JP5014653B2 (en) 2012-08-29

Family

ID=38591340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072653A Active JP5014653B2 (en) 2006-03-16 2006-03-16 Expandable styrene resin particles and method for producing styrene resin foam molded article

Country Status (1)

Country Link
JP (1) JP5014653B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153261A (en) * 2010-01-28 2011-08-11 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particles, polystyrene-based resin prefoamed particles, polystyrene-based resin foam molding, and method of producing the same
JP2014070150A (en) * 2012-09-28 2014-04-21 Sekisui Plastics Co Ltd Polystyrene-based foamed molding, production method thereof, and foamed resin-made container
JP2018058957A (en) * 2016-10-03 2018-04-12 株式会社カネカ Foamable polystyrene resin particle
JP2018119109A (en) * 2017-01-27 2018-08-02 株式会社カネカ Foamable polystyrene resin particle
JP2019031587A (en) * 2017-08-04 2019-02-28 株式会社カネカ Foamable polystyrene resin particle
JP2019065074A (en) * 2017-09-28 2019-04-25 株式会社カネカ Expandable polystyrene resin particle, polystyrene pre-expanded particle, and foam molding
JP2020152843A (en) * 2019-03-20 2020-09-24 株式会社カネカ Foamable polystyrene resin particle, polystyrene preliminary foam particle, and foam molding
JP2021134302A (en) * 2020-02-28 2021-09-13 積水化成品工業株式会社 Styrenic resin foam-molded material, expandable styrenic resin particle, pre-expanded styrenic resin particle and production method for expandable styrenic resin particle
WO2022030230A1 (en) * 2020-08-07 2022-02-10 株式会社カネカ Foamable polystyrene resin particles, polystyrene pre-foamed particles, and foamed molded product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493966A (en) * 1972-04-26 1974-01-14
JPS60203647A (en) * 1984-03-28 1985-10-15 Badische Yuka Co Ltd Manufacture of surface-modified expandable styrene resin beads
JPH023435A (en) * 1988-06-14 1990-01-09 Kanegafuchi Chem Ind Co Ltd Formable styrene resin particle and preparation thereof
JPH11124462A (en) * 1997-10-23 1999-05-11 Sekisui Plastics Co Ltd Foamable styrenic resin particle and foamed molded product
JP2003277541A (en) * 2002-03-26 2003-10-02 Sekisui Plastics Co Ltd Pre-expanded styrene resin particle, method for producing the same, and expanded resin molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493966A (en) * 1972-04-26 1974-01-14
JPS60203647A (en) * 1984-03-28 1985-10-15 Badische Yuka Co Ltd Manufacture of surface-modified expandable styrene resin beads
JPH023435A (en) * 1988-06-14 1990-01-09 Kanegafuchi Chem Ind Co Ltd Formable styrene resin particle and preparation thereof
JPH11124462A (en) * 1997-10-23 1999-05-11 Sekisui Plastics Co Ltd Foamable styrenic resin particle and foamed molded product
JP2003277541A (en) * 2002-03-26 2003-10-02 Sekisui Plastics Co Ltd Pre-expanded styrene resin particle, method for producing the same, and expanded resin molding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153261A (en) * 2010-01-28 2011-08-11 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particles, polystyrene-based resin prefoamed particles, polystyrene-based resin foam molding, and method of producing the same
JP2014070150A (en) * 2012-09-28 2014-04-21 Sekisui Plastics Co Ltd Polystyrene-based foamed molding, production method thereof, and foamed resin-made container
JP2018058957A (en) * 2016-10-03 2018-04-12 株式会社カネカ Foamable polystyrene resin particle
JP2018119109A (en) * 2017-01-27 2018-08-02 株式会社カネカ Foamable polystyrene resin particle
JP7049767B2 (en) 2017-01-27 2022-04-07 株式会社カネカ Effervescent polystyrene resin particles
JP7009109B2 (en) 2017-08-04 2022-01-25 株式会社カネカ Effervescent polystyrene resin particles
JP2019031587A (en) * 2017-08-04 2019-02-28 株式会社カネカ Foamable polystyrene resin particle
JP6999343B2 (en) 2017-09-28 2022-01-18 株式会社カネカ Effervescent polystyrene resin particles, polystyrene pre-expanded particles and foam molded products
JP2019065074A (en) * 2017-09-28 2019-04-25 株式会社カネカ Expandable polystyrene resin particle, polystyrene pre-expanded particle, and foam molding
JP2020152843A (en) * 2019-03-20 2020-09-24 株式会社カネカ Foamable polystyrene resin particle, polystyrene preliminary foam particle, and foam molding
JP2021134302A (en) * 2020-02-28 2021-09-13 積水化成品工業株式会社 Styrenic resin foam-molded material, expandable styrenic resin particle, pre-expanded styrenic resin particle and production method for expandable styrenic resin particle
JP7425628B2 (en) 2020-02-28 2024-01-31 積水化成品工業株式会社 Method for producing styrenic resin foam molded articles, expandable styrenic resin particles, pre-expanded styrenic resin particles, and expandable styrenic resin particles
WO2022030230A1 (en) * 2020-08-07 2022-02-10 株式会社カネカ Foamable polystyrene resin particles, polystyrene pre-foamed particles, and foamed molded product

Also Published As

Publication number Publication date
JP5014653B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5014653B2 (en) Expandable styrene resin particles and method for producing styrene resin foam molded article
JP4837407B2 (en) Expandable polystyrene resin particles, polystyrene resin foam particles, polystyrene resin foam moldings, polystyrene resin foam slices, and methods for producing the same
JP4933913B2 (en) Expandable styrene resin particles and production method thereof, styrene resin foam particles and styrene resin foam molded article
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP5641785B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP2013075941A (en) Foamable polystyrenic resin particle, production method thereof, foamed particle and foamed molding
JP6059621B2 (en) Expandable styrene-modified thermoplastic polyester resin particles and method for producing the same, styrene-modified thermoplastic polyester resin pre-expanded particles, and styrene-modified thermoplastic polyester resin foam molding
JP4066337B2 (en) Expandable styrene resin particles for building materials and foamed molded articles thereof
JP5433422B2 (en) Flame retardant foamable styrene resin particles and method for producing the same
JP2014193950A (en) Foam molding
JP2013032449A (en) Foamable polystyrene-based resin particle, foamed particle, and foamed molding
JP2011026511A (en) Flame-retardant foamable polystyrene-based resin particle, method for producing the same, preliminarily-foamed particle of flame-retardant polystyrene-based resin and expansion molding of flame-retardant polystyrene-based resin
JP2011026506A (en) Low volatile expandable polystyrene-based resin particle, manufacturing method therefor, low volatile polystyrene-based resin pre-expanded particle, and low volatile polystyrene-based resin expansion molded article
JP5492616B2 (en) Expandable polystyrene resin particles, pre-expanded particles, and expanded molded articles
JP4653321B2 (en) Expandable rubber-modified acrylonitrile / styrene-based resin particles, process for producing the same, and foam molded article
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
JP2011246644A (en) Automobile interior material and method for manufacturing the same
JP5914080B2 (en) Expandable styrene resin particles and method for producing the same
JP4777677B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin foam particles and foamed molded article
JP6343485B2 (en) Polystyrene foamed molded product and method for producing the same
JP2012188543A (en) Resin particle, foamable resin particle, method for producing the same, foamed particle and formed molding
JP5809508B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5810007B2 (en) Styrenic resin particles, method for producing the same, expandable particles, expanded particles and expanded molded article
JP6209116B2 (en) Composite resin particles and production method thereof, expandable composite resin particles, pre-expanded composite resin particles, and composite resin foam molded article
JP2023048098A (en) Molded body and shock absorbing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5014653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150