JP7425628B2 - Method for producing styrenic resin foam molded articles, expandable styrenic resin particles, pre-expanded styrenic resin particles, and expandable styrenic resin particles - Google Patents

Method for producing styrenic resin foam molded articles, expandable styrenic resin particles, pre-expanded styrenic resin particles, and expandable styrenic resin particles Download PDF

Info

Publication number
JP7425628B2
JP7425628B2 JP2020032686A JP2020032686A JP7425628B2 JP 7425628 B2 JP7425628 B2 JP 7425628B2 JP 2020032686 A JP2020032686 A JP 2020032686A JP 2020032686 A JP2020032686 A JP 2020032686A JP 7425628 B2 JP7425628 B2 JP 7425628B2
Authority
JP
Japan
Prior art keywords
styrenic resin
resin particles
expandable
mass
foam molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020032686A
Other languages
Japanese (ja)
Other versions
JP2021134302A (en
Inventor
早織 吉田
賢治 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2020032686A priority Critical patent/JP7425628B2/en
Publication of JP2021134302A publication Critical patent/JP2021134302A/en
Application granted granted Critical
Publication of JP7425628B2 publication Critical patent/JP7425628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、スチレン系樹脂発泡成形体、発泡性スチレン系樹脂粒子、予備発泡スチレン系樹脂粒子、および発泡性スチレン系樹脂粒子の製造方法に関する。 The present invention relates to a method for producing a styrenic resin foam molded article, expandable styrenic resin particles, pre-expanded styrenic resin particles, and expandable styrenic resin particles.

発泡成形体は、軽量かつ断熱性および機械的強度に優れることから、住宅および自動車等に用いられる断熱材、建築資材等に用いられる保温材、魚箱および食品容器等の輸送用梱包材、緩衝材等に幅広く使用されている。中でも、発泡性粒子を原料として製造される型内発泡成形体が、所望の形状を得やすい等の利点から多く使用されている。 Foam molded products are lightweight and have excellent heat insulation and mechanical strength, so they can be used as heat insulators used in houses and automobiles, heat insulators used in construction materials, packaging materials for transportation such as fish boxes and food containers, and cushioning materials. Widely used for materials etc. Among these, in-mold foam molded products manufactured using expandable particles as raw materials are often used because of their advantages such as ease of obtaining a desired shape.

発泡成形体の外観としては、その使用目的から、高い白度が要求されることが多く、また、好ましくは、光沢があり、美麗であることが好ましい。 The appearance of a foamed molded product is often required to have high whiteness due to its intended use, and is preferably glossy and beautiful.

発泡成形体は、一般に、その融着促進のために、原料である発泡性ポリスチレン系樹脂粒子の表面に表面添加剤が用いられている(特許文献1、2)。しかし、従来の表面添加剤においては、発泡、成形時の熱で表面を過度に可塑化してしまうことが多い。このため、高倍で発泡、成形する際に、気泡膜が破れやすくなり、発泡倍率を下げざるを得なかったり、白度が低下したり、光沢が損なわれたりするという問題がある。 In general, a foamed molded article uses a surface additive on the surface of expandable polystyrene resin particles as a raw material in order to promote fusion (Patent Documents 1 and 2). However, with conventional surface additives, the surface often becomes excessively plasticized by heat during foaming and molding. For this reason, when foaming and molding at a high magnification, the cell membrane is likely to be torn, resulting in problems such as having to lower the foaming ratio, reducing whiteness, and impairing gloss.

一方、白度の低下や、光沢の低下を抑制するために、原料である発泡性ポリスチレン系樹脂粒子の表面への表面添加剤の添加を低減させると、発泡成形体における融着がし難くなり、機械的強度や成形性が低下してしまうという問題がある。 On the other hand, in order to suppress the decline in whiteness and gloss, reducing the addition of surface additives to the surface of the raw material expandable polystyrene resin particles makes it difficult for fusion to occur in the foam molded product. However, there is a problem in that mechanical strength and moldability deteriorate.

特許第6223097号公報Patent No. 6223097 特開2014-70150号公報Japanese Patent Application Publication No. 2014-70150

本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、融着率が高く、機械的強度や成形性に優れ、且つ、高倍で発泡、成形が行われても気泡膜破れが発生しにくく、白度や光沢といった外観美麗性に優れる、スチレン系樹脂発泡成形体を提供することにある。また、そのようなスチレン系樹脂発泡成形体を成形させるために用い得る、発泡性スチレン系樹脂粒子、予備発泡スチレン系樹脂粒子を提供することにある。さらに、そのような発泡性スチレン系樹脂粒子の製造方法を提供することにある。 The present invention was made to solve the above-mentioned conventional problems, and its main purpose is to have a high fusion rate, excellent mechanical strength and moldability, and even when foaming and molding are performed at high magnification. It is an object of the present invention to provide a styrenic resin foam molded product that is less likely to break the cell membrane and has an excellent appearance such as whiteness and gloss. Another object of the present invention is to provide expandable styrenic resin particles and pre-expanded styrenic resin particles that can be used to mold such a styrenic resin foam molded article. Another object of the present invention is to provide a method for producing such expandable styrenic resin particles.

本発明の実施形態によるスチレン系樹脂発泡成形体は、
発泡性スチレン系樹脂粒子から成形されるスチレン系樹脂発泡成形体であって、
該発泡性スチレン系樹脂粒子が、重量平均分子量が19万~49万であり、
該発泡性スチレン系樹脂粒子が、ポリスチレン系樹脂と発泡剤とを含み、
該発泡性スチレン系樹脂粒子が、5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種によって、該発泡性スチレン系樹脂粒子100質量%に対して0.01質量%~0.3質量%の量で被覆されている。
The styrenic resin foam molded article according to the embodiment of the present invention is
A styrenic resin foam molded article formed from expandable styrenic resin particles,
The expandable styrenic resin particles have a weight average molecular weight of 190,000 to 490,000,
The expandable styrenic resin particles include a polystyrene resin and a blowing agent,
The expandable styrenic resin particles are made of at least one selected from aliphatic compounds that are liquid at 5° C. and silicones containing phenyl groups in an amount of 0.01% by mass based on 100% by mass of the expandable styrenic resin particles. Coated in an amount of ~0.3% by weight.

一つの実施形態においては、上記スチレン系樹脂発泡成形体は、白度が90~99である。 In one embodiment, the styrenic resin foam molded article has a whiteness of 90 to 99.

本発明の実施形態による発泡性スチレン系樹脂粒子は、
ポリスチレン系樹脂と発泡剤とを含む発泡性スチレン系樹脂粒子であって、
重量平均分子量が19万~49万であり、
5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種によって、該発泡性スチレン系樹脂粒子100質量%に対して0.01質量%~0.3質量%の量で被覆されている。
Expandable styrenic resin particles according to embodiments of the present invention are
Expandable styrenic resin particles containing a polystyrene resin and a blowing agent,
The weight average molecular weight is 190,000 to 490,000,
At least one selected from aliphatic compounds that are liquid at 5°C and silicones containing phenyl groups in an amount of 0.01% by mass to 0.3% by mass based on 100% by mass of the expandable styrenic resin particles. Covered.

本発明の実施形態による予備発泡スチレン系樹脂粒子は、
上記発泡性スチレン系樹脂粒子を予備発泡させてなる予備発泡スチレン系樹脂粒子であって、
表層の平均気泡径が0.04mm~0.15mmである。
Pre-expanded styrenic resin particles according to embodiments of the present invention include:
Pre-expanded styrenic resin particles obtained by pre-foaming the expandable styrenic resin particles,
The average cell diameter of the surface layer is 0.04 mm to 0.15 mm.

本発明の実施形態による発泡性スチレン系樹脂粒子の製造方法は、
上記発泡性スチレン系樹脂粒子の製造方法であって、
スチレン系単量体を重合させる工程と、
重合と同時または重合後に発泡剤を含浸させる工程と、
5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種を添加する工程と、
を含む。
A method for producing expandable styrenic resin particles according to an embodiment of the present invention includes:
The method for producing the expandable styrenic resin particles, comprising:
a step of polymerizing a styrenic monomer;
a step of impregnating a blowing agent simultaneously with or after polymerization;
Adding at least one selected from aliphatic compounds and silicones containing phenyl groups that are liquid at 5°C;
including.

本発明の実施形態によれば、融着率が高く、機械的強度や成形性に優れ、且つ、高倍で発泡、成形が行われても気泡膜破れが発生しにくく、白度や光沢といった外観美麗性に優れる、スチレン系樹脂発泡成形体を提供できる。また、そのようなスチレン系樹脂発泡成形体を成形させるために用い得る、発泡性スチレン系樹脂粒子、予備発泡スチレン系樹脂粒子を提供することができる。さらに、そのような発泡性スチレン系樹脂粒子の製造方法を提供することができる。 According to the embodiment of the present invention, the fusion rate is high, the mechanical strength and moldability are excellent, and even when foaming and molding are performed at high magnification, bubble membrane breakage does not easily occur, and the appearance is white and glossy. It is possible to provide a styrenic resin foam molded article with excellent beauty. Further, it is possible to provide expandable styrenic resin particles and pre-expanded styrenic resin particles that can be used to mold such a styrenic resin foam molded article. Furthermore, a method for producing such expandable styrenic resin particles can be provided.

以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.

本明細書において「(メタ)アクリル」とある場合は、アクリルおよび/またはメタクリルを意味し、「(メタ)アクリレート」とある場合は、アクリレートおよび/またはメタクリレートを意味する。 In this specification, "(meth)acrylic" means acrylic and/or methacrylic, and "(meth)acrylate" means acrylate and/or methacrylate.

A.スチレン系樹脂発泡成形体
本発明の実施形態によるスチレン系樹脂発泡成形体は、発泡性スチレン系樹脂粒子から成形されるスチレン系樹脂発泡成形体である。一つの好ましい実施形態としては、発泡性スチレン系樹脂粒子を予備発泡させてなる予備発泡スチレン系樹脂粒子から成形されるスチレン系樹脂発泡成形体である。
A. Styrenic resin foam molded article The styrenic resin foam molded article according to the embodiment of the present invention is a styrenic resin foam molded article molded from expandable styrenic resin particles. One preferred embodiment is a styrenic resin foam molded article formed from pre-expanded styrenic resin particles obtained by pre-foaming expandable styrenic resin particles.

スチレン系樹脂発泡成形体は、予備発泡スチレン系樹脂粒子をさらに発泡させた発泡スチレン系樹脂粒子(以下、単に「発泡粒子」と称する場合がある)を含む。 The styrenic resin foam molded article includes expanded styrenic resin particles (hereinafter sometimes simply referred to as "foamed particles") that are obtained by further foaming pre-expanded styrenic resin particles.

スチレン系樹脂発泡成形体は、代表的には、互いに融着した複数の発泡粒子により構成されている。 A styrenic resin foam molded article is typically composed of a plurality of foamed particles fused together.

本発明の実施形態によるスチレン系樹脂発泡成形体は、白度や光沢といった外観美麗性に優れる。 The styrenic resin foam molded article according to the embodiment of the present invention has excellent appearance beauty such as whiteness and gloss.

スチレン系樹脂発泡成形体の白度は、好ましくは90~99であり、より好ましくは92~99であり、さらに好ましくは94~99であり、特に好ましくは95~99であり、最も好ましくは96~99である。スチレン系樹脂発泡成形体の白度が上記範囲内にあれば、外観美麗性に優れ、多くの用途に展開可能となる。 The whiteness of the styrenic resin foam molded product is preferably 90 to 99, more preferably 92 to 99, even more preferably 94 to 99, particularly preferably 95 to 99, most preferably 96 ~99. If the whiteness of the styrenic resin foam molded product is within the above range, it will have an excellent appearance and can be used in many applications.

スチレン系樹脂発泡成形体は、代表的には、目的に応じた所定の形状を有する型内に予備発泡スチレン系樹脂粒子を仕込み、型内発泡成形を行うことにより作製され得る。より詳細には、型内発泡成形は、(i)予備発泡スチレン系樹脂粒子を多数の小孔を有する閉鎖金型内に充填すること、(ii)熱媒体(例えば、加圧水蒸気等)で予備発泡スチレン系樹脂粒子を加熱発泡させて発泡粒子を得ること、(iii)当該加熱発泡により、発泡粒子間の空隙を埋めると共に、発泡粒子を相互に融着させることにより一体化させること、を含む。スチレン系樹脂発泡成形体の密度は、目的に応じて適切に設定され得る。スチレン系樹脂発泡成形体の密度は、例えば、金型内に充填する予備発泡スチレン系樹脂粒子の嵩発泡倍率を予め調整すること、あるいは、金型内への予備発泡スチレン系樹脂粒子の充填量を調整することにより調整することができる。 A styrenic resin foam molded article can typically be produced by placing pre-expanded styrenic resin particles into a mold having a predetermined shape depending on the purpose and performing in-mold foam molding. More specifically, in-mold foam molding involves (i) filling pre-expanded styrenic resin particles into a closed mold having a large number of small holes; (iii) heating and foaming foamed styrene resin particles to obtain foamed particles; (iii) filling voids between foamed particles through the heating and foaming, and integrating the foamed particles by fusing them to each other; . The density of the styrenic resin foam molded product can be appropriately set depending on the purpose. The density of the styrenic resin foam molded product can be determined, for example, by adjusting in advance the bulk expansion ratio of the pre-expanded styrene resin particles filled into the mold, or by adjusting the amount of pre-expanded styrenic resin particles filled into the mold. It can be adjusted by adjusting.

加熱発泡の温度(実質的には、熱媒体の温度)は、好ましくは90℃~150℃であり、より好ましくは110℃~130℃である。加熱発泡時間は、好ましくは5秒~50秒であり、より好ましくは10秒~50秒である。加熱発泡の成形蒸気圧(熱媒体の吹き込みゲージ圧)は、好ましくは0.04MPa~0.1MPaであり、より好ましくは0.06MPa~0.08MPaである。加熱発泡がこのような条件であれば、発泡粒子を相互に良好に融着させることができる。 The temperature of heating and foaming (substantially the temperature of the heating medium) is preferably 90°C to 150°C, more preferably 110°C to 130°C. The heating and foaming time is preferably 5 seconds to 50 seconds, more preferably 10 seconds to 50 seconds. The molding vapor pressure (blow gauge pressure of heating medium) for heating and foaming is preferably 0.04 MPa to 0.1 MPa, more preferably 0.06 MPa to 0.08 MPa. If heating and foaming are carried out under such conditions, the foamed particles can be well fused to each other.

必要に応じて、スチレン系樹脂発泡成形体の成形前に予備発泡スチレン系樹脂粒子を熟成させてもよい。予備発泡スチレン系樹脂粒子の熟成温度は、好ましくは20℃~60℃である。熟成温度が低すぎると、過度に長い熟成時間が必要とされる場合がある。熟成温度が高すぎると、予備発泡スチレン系樹脂粒子中の発泡剤が散逸して成形性が低下する場合がある。 If necessary, the pre-expanded styrenic resin particles may be aged before forming the styrenic resin foam molded product. The aging temperature of the pre-expanded styrenic resin particles is preferably 20°C to 60°C. If the aging temperature is too low, excessively long aging times may be required. If the aging temperature is too high, the blowing agent in the pre-expanded styrenic resin particles may dissipate and the moldability may deteriorate.

スチレン系樹脂発泡成形体における発泡粒子の嵩発泡倍率は、好ましくは3倍~100倍であり、より好ましくは30倍~90倍であり、さらに好ましくは50倍~80倍であり、特に好ましくは50倍を超えて75倍以下であり、特に好ましくは55倍~70倍である。 The bulk expansion ratio of the foam particles in the styrenic resin foam molded product is preferably 3 times to 100 times, more preferably 30 times to 90 times, still more preferably 50 times to 80 times, particularly preferably It is more than 50 times and 75 times or less, particularly preferably 55 times to 70 times.

B.発泡性スチレン系樹脂粒子
本発明の実施形態によるスチレン系樹脂発泡成形体を形成させる発泡性スチレン系樹脂粒子は、重量平均分子量が19万~49万であり、ポリスチレン系樹脂と発泡剤とを含み、5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種によって、該発泡性スチレン系樹脂粒子100質量%に対して0.01質量%~0.3質量%の量で被覆されている。このような特定の発泡性スチレン系樹脂粒子は、本発明の実施形態による発泡性スチレン系樹脂粒子である。
B. Expandable styrenic resin particles The expandable styrenic resin particles forming the styrenic resin foam molded article according to the embodiment of the present invention have a weight average molecular weight of 190,000 to 490,000, and contain a polystyrene resin and a blowing agent. , an aliphatic compound that is liquid at 5°C, and a silicone containing a phenyl group in an amount of 0.01% by mass to 0.3% by mass based on 100% by mass of the expandable styrenic resin particles. covered with. Such specific expandable styrenic resin particles are expandable styrenic resin particles according to embodiments of the present invention.

発泡性スチレン系樹脂粒子は、全体として粒子の形状を有する。発泡性スチレン系樹脂粒子の平均粒子径は、好ましくは0.3mm~3.0mmであり、より好ましくは0.3mm~1.7mmである。平均粒子径は、JIS Z 8815に準拠して測定され得る。具体的には、平均粒子径は、JIS Z 8815の篩分け試験による粒度分布から積算値50%の粒径として測定した値とされる。発泡性スチレン系樹脂粒子の形状としては、本発明の効果を損なわない範囲で、任意の適切な形状を採用することができる。このような形状の具体例としては、例えば、球状、略球状、楕円球状(卵状)、円柱状、略円柱状などが挙げられる。 The expandable styrenic resin particles have a particle shape as a whole. The average particle diameter of the expandable styrenic resin particles is preferably 0.3 mm to 3.0 mm, more preferably 0.3 mm to 1.7 mm. The average particle diameter can be measured according to JIS Z 8815. Specifically, the average particle diameter is a value measured as a particle diameter of 50% of the integrated value from the particle size distribution according to the sieving test of JIS Z 8815. As the shape of the expandable styrenic resin particles, any suitable shape can be adopted as long as the effects of the present invention are not impaired. Specific examples of such shapes include, for example, spherical, approximately spherical, ellipsoidal (ovoid), cylindrical, and approximately cylindrical.

発泡性スチレン系樹脂粒子は、重量平均分子量が19万~49万である。発泡性スチレン系樹脂粒子の重量平均分子量は、好ましくは20万~48万であり、より好ましくは20万~47万であり、さらに好ましくは20万~46万であり、特に好ましくは20万~45万である。発泡性スチレン系樹脂粒子の重量平均分子量が上記範囲内にあれば、融着率が高く、機械的強度や成形性に優れ、且つ、高倍で発泡、成形が行われても気泡膜破れが発生しにくく、白度や光沢といった外観美麗性に優れる、スチレン系樹脂発泡成形体を提供し得る。 The expandable styrene resin particles have a weight average molecular weight of 190,000 to 490,000. The weight average molecular weight of the expandable styrenic resin particles is preferably 200,000 to 480,000, more preferably 200,000 to 470,000, still more preferably 200,000 to 460,000, particularly preferably 200,000 to 460,000. It is 450,000. If the weight average molecular weight of the expandable styrene resin particles is within the above range, the fusion rate will be high, the mechanical strength and moldability will be excellent, and even if foaming and molding are performed at high magnification, bubble membrane breakage will occur. It is possible to provide a styrenic resin foam molded product that is difficult to clean and has an excellent appearance such as whiteness and gloss.

発泡性スチレン系樹脂粒子は、5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種によって、該発泡性スチレン系樹脂粒子100質量%に対して0.01質量%~0.3質量%の量で被覆されている。上記脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種による被覆量は、発泡性スチレン系樹脂粒子100質量%に対して、好ましくは0.01質量%~0.25質量%であり、より好ましくは0.01質量%~0.2質量%であり、さらに好ましくは0.01質量%~0.15質量%であり、特に好ましくは0.01質量%~0.1質量%である。上記脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種による被覆量が上記範囲内にあれば、融着率が高く、機械的強度や成形性に優れ、且つ、高倍で発泡、成形が行われても気泡膜破れが発生しにくく、白度や光沢といった外観美麗性に優れる、スチレン系樹脂発泡成形体を提供し得る。特に、光沢に優れるスチレン系樹脂発泡成形体を提供し得る。 The expandable styrenic resin particles are made of at least one selected from aliphatic compounds that are liquid at 5°C and silicones containing phenyl groups in an amount of 0.01% by mass to 0.01% by mass based on 100% by mass of the expandable styrenic resin particles. It is coated in an amount of 0.3% by weight. The coating amount of at least one selected from the aliphatic compound and the silicone containing a phenyl group is preferably 0.01% by mass to 0.25% by mass based on 100% by mass of the expandable styrenic resin particles, More preferably 0.01% by mass to 0.2% by mass, further preferably 0.01% by mass to 0.15% by mass, particularly preferably 0.01% by mass to 0.1% by mass. . If the coating amount of at least one selected from the above aliphatic compounds and silicones containing phenyl groups is within the above range, the fusion rate will be high, mechanical strength and moldability will be excellent, and foaming and molding will be possible at high magnification. It is possible to provide a styrenic resin foam molded product that is less likely to break the cell membrane even when the foaming process is carried out, and has an excellent appearance such as whiteness and gloss. In particular, a styrenic resin foam molded product with excellent gloss can be provided.

5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種としては、本発明の効果を損なわない範囲で、任意の適切な5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種を採用することができる。5℃において液体である脂肪族化合物は、1種のみであってもよいし、2種以上であってもよい。5℃において液体であるフェニル基含有シリコーンは、1種のみであってもよいし、2種以上であってもよい。 At least one selected from aliphatic compounds that are liquid at 5°C and silicones containing phenyl groups may be any suitable aliphatic compounds and phenyl groups that are liquid at 5°C within the range that does not impair the effects of the present invention. At least one type selected from silicones including: The number of aliphatic compounds that are liquid at 5° C. may be one type or two or more types. The number of phenyl group-containing silicones that are liquid at 5° C. may be one type or two or more types.

5℃において液体である脂肪族化合物としては、例えば、
(i)炭素数6~18の脂肪酸を主成分とする脂肪酸とグリセリンのトリグリセリド、ジグリセリド、モノグリセリド;
(ii)ヤシ油、パーム油、オリーブ油、アマニ油、エゴマ油、魚油、ひまし油などの脂肪油;
(iii)リノール酸、リノレン酸などの不飽和脂肪酸;
(iv)アジピン酸ジイソブチルなどのジカルボン酸エステル;
(v)流動パラフィン;
(vi)グリセリンジアセトモノラウレートなどのアセチル化モノグリセライド;
などが挙げられる。
Examples of aliphatic compounds that are liquid at 5°C include:
(i) Triglycerides, diglycerides, and monoglycerides of fatty acids and glycerin whose main components are fatty acids having 6 to 18 carbon atoms;
(ii) fatty oils such as coconut oil, palm oil, olive oil, linseed oil, perilla oil, fish oil, castor oil;
(iii) unsaturated fatty acids such as linoleic acid and linolenic acid;
(iv) dicarboxylic acid ester such as diisobutyl adipate;
(v) liquid paraffin;
(vi) an acetylated monoglyceride such as glycerin diacetomonolaurate;
Examples include.

なお、炭素数6~18の脂肪酸を主成分とする脂肪酸とグリセリンのトリグリセリド、ジグリセリドを構成する脂肪酸が有する脂肪族炭化水素基は、同種のものであってもよいし、少なくとも2つが異種のものであってもよい。 In addition, the aliphatic hydrocarbon groups possessed by the fatty acids constituting the triglyceride and diglyceride of fatty acids and glycerin whose main components are fatty acids having 6 to 18 carbon atoms may be of the same type, or at least two of them may be of different types. It may be.

上記(i)の炭素数6~18の脂肪酸を主成分とする脂肪酸とグリセリンのトリグリセリド、ジグリセリド、モノグリセリドとしては、具体的には、例えば、カプリル酸トリグリセリド、カプリン酸トリグリセリド、カプリル酸とカプリン酸から成る脂肪酸とグリセリンとのトリグリセリド、2-エチルヘキシルトリグリセリド、グリセリンジアセトモノラウレートの脂肪酸グリセリドなどが挙げられる。 Specifically, the triglycerides, diglycerides, and monoglycerides of fatty acids and glycerin whose main components are fatty acids having 6 to 18 carbon atoms include, for example, caprylic acid triglyceride, capric acid triglyceride, and caprylic acid and capric acid. Examples include triglyceride of fatty acid and glycerin, 2-ethylhexyl triglyceride, and fatty acid glyceride of glycerin diacetomonolaurate.

5℃において液体であるフェニル基含有シリコーンとしては、例えば、メチルフェニルシリコーンなどが挙げられる。 Examples of phenyl group-containing silicones that are liquid at 5°C include methylphenyl silicone.

なお、5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種における「液体」とは、当業者が通常認識し得る「液体」の概念を意味する。より詳細には、例えば、岩波理化学辞典第5版(岩波書店、2004年12月20日第8刷発行)に記載のように、物質の3態(気体、液体、固体)の1つであり、体積圧縮率は固体と同程度で圧縮しにくいが、剛性率はゼロで、ずれ応力に対して静的には抵抗がなく、流体としてふるまい、流れの勾配に応じて粘性力をもち、しかし、十分速い力学的変化に対しては、液体も固体のようにふるまうものである。 Note that the "liquid" in at least one selected from aliphatic compounds that are liquid at 5° C. and silicones containing phenyl groups means the concept of "liquid" that can be commonly recognized by those skilled in the art. More specifically, it is one of the three states of matter (gas, liquid, and solid), as described in the 5th edition of Iwanami Science and Chemistry Dictionary (Iwanami Shoten, 8th edition published on December 20, 2004). , its volumetric compressibility is comparable to that of a solid and is difficult to compress, but its rigidity is zero, there is no static resistance to shear stress, it behaves as a fluid, and it has viscous force depending on the flow gradient, but , liquids behave like solids for sufficiently fast mechanical changes.

5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種によって、上記被覆量で、発泡性スチレン系樹脂粒子が被覆されることにより、融着率が高く、機械的強度や成形性に優れ、且つ、高倍で発泡、成形が行われても気泡膜破れが発生しにくく、白度や光沢といった外観美麗性に優れる、スチレン系樹脂発泡成形体を提供し得る。 By coating the expandable styrenic resin particles in the above coating amount with at least one selected from aliphatic compounds that are liquid at 5°C and silicones containing phenyl groups, a high fusion rate and mechanical strength are achieved. To provide a styrenic resin foam molded product which has excellent moldability and moldability, is resistant to cell film breakage even when foaming and molding are carried out at high magnification, and has excellent external beauty such as whiteness and gloss.

発泡性スチレン系樹脂粒子は、上記5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種と併用して、ブロッキング防止剤(例えば、ステアリン酸亜鉛、ステアリン酸マグネシウムなどの粉末状金属石鹸;シリカ、炭酸カルシウムなどの無機粉末;ポリジメチルシロキサンなどのフェニル基を含まないシリコーン;など)や、帯電防止剤(例えば、ポリエチレングリコール、N-ヒドロキシエチル-N-2-ヒドロキシアルキルアミン、グリセリン、プロピレングリコール、ステアリン酸モノグリセリドなど)等によって被覆されていてもよい。 The expandable styrenic resin particles are used in combination with at least one selected from aliphatic compounds that are liquid at 5°C and silicones containing phenyl groups, and are treated with antiblocking agents (for example, zinc stearate, magnesium stearate, etc.). Powdered metal soaps; inorganic powders such as silica and calcium carbonate; silicones that do not contain phenyl groups such as polydimethylsiloxane; etc.), antistatic agents (e.g. polyethylene glycol, N-hydroxyethyl-N-2-hydroxyalkyl) amine, glycerin, propylene glycol, stearic acid monoglyceride, etc.).

発泡性スチレン系樹脂粒子は、ポリスチレン系樹脂と発泡剤を含む。 The expandable styrenic resin particles contain a polystyrene resin and a foaming agent.

B-1.ポリスチレン系樹脂
ポリスチレン系樹脂は、該ポリスチレン系樹脂を構成する単量体成分としてスチレン系単量体を含む高分子化合物である。スチレン系単量体は、スチレンまたはスチレン誘導体を含む。スチレン誘導体としては、例えば、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i-プロピルスチレン、ジメチルスチレン、ブロモスチレンなどが挙げられる。スチレン系単量体は、1種のみであってもよいし、2種以上であってもよい。スチレン系単量体は、好ましくは、少なくともスチレンを含有する。スチレン系単量体の全量に対するスチレンの含有割合は、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは90質量%以上であり、特に好ましくは95質量%以上である。
B-1. Polystyrene Resin Polystyrene resin is a polymer compound containing a styrene monomer as a monomer component constituting the polystyrene resin. Styrenic monomers include styrene or styrene derivatives. Examples of styrene derivatives include α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, and bromostyrene. The number of styrenic monomers may be one, or two or more. The styrenic monomer preferably contains at least styrene. The content ratio of styrene to the total amount of styrenic monomers is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95% by mass or more. It is.

ポリスチレン系樹脂は、該ポリスチレン系樹脂を構成する単量体成分の主成分としてスチレン系単量体を含んでいればよく、スチレン系単量体と共重合成分との共重合体であってもよい。共重合成分の代表例としては、代表的には、ビニル単量体が挙げられる。本明細書において「主成分」とは、全成分中の該成分の含有割合が、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは90質量%以上であり、特に好ましくは95質量%以上である。 The polystyrene resin only needs to contain a styrene monomer as a main component of the monomer components constituting the polystyrene resin, and even if it is a copolymer of a styrene monomer and a copolymer component. good. A typical example of the copolymer component is a vinyl monomer. In this specification, the term "main component" means that the content of the component in all components is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more. , particularly preferably 95% by mass or more.

ビニル単量体としては、例えば、多官能単量体、(メタ)アクリル酸エステル単量体、マレイン酸エステル単量体、フマル酸エステル単量体などが挙げられる。ビニル単量体は、1種のみであってもよいし、2種以上であってもよい。 Examples of the vinyl monomer include polyfunctional monomers, (meth)acrylic acid ester monomers, maleic acid ester monomers, fumaric acid ester monomers, and the like. The number of vinyl monomers may be one, or two or more.

多官能単量体の具体例としては、例えば、o-ジビニルベンゼン、m-ジビニルベンゼン、p-ジビニルベンゼン等のジビニルベンゼン;エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;などが挙げられる。多官能単量体を用いることにより、ポリスチレン系樹脂に分岐構造を付与することができる。ポリスチレン系樹脂を構成する全単量体成分中の多官能単量体の含有量は、好ましくは0質量%~0.1質量%であり、より好ましくは0.005質量%~0.05質量%である。 Specific examples of polyfunctional monomers include divinylbenzenes such as o-divinylbenzene, m-divinylbenzene, and p-divinylbenzene; alkylenes such as ethylene glycol di(meth)acrylate and polyethylene glycol di(meth)acrylate; Examples include glycol di(meth)acrylate; and the like. By using a polyfunctional monomer, a branched structure can be imparted to the polystyrene resin. The content of the polyfunctional monomer in all monomer components constituting the polystyrene resin is preferably 0% by mass to 0.1% by mass, more preferably 0.005% by mass to 0.05% by mass. %.

(メタ)アクリル酸エステル単量体の具体例としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ヘキシルなどが挙げられる。これら(メタ)アクリル酸エステル単量体の中でも、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸エチルが好ましく、アクリル酸ブチルがさらに好ましい。(メタ)アクリル酸エステル単量体を用いることにより、スチレン系樹脂のガラス転移温度(Tg)を低くすることができる。ポリスチレン系樹脂を構成する全単量体成分中のアクリル酸エステル単量体の含有量は、好ましくは0質量%~4.0質量%であり、より好ましくは0.1質量%~3.0質量%である。 Specific examples of (meth)acrylate monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, and (meth)acrylate. Examples include pentyl, 2-ethylhexyl (meth)acrylate, and hexyl (meth)acrylate. Among these (meth)acrylic acid ester monomers, butyl acrylate, 2-ethylhexyl acrylate, and ethyl acrylate are preferred, and butyl acrylate is more preferred. By using the (meth)acrylic acid ester monomer, the glass transition temperature (Tg) of the styrenic resin can be lowered. The content of acrylic acid ester monomer in all monomer components constituting the polystyrene resin is preferably 0% by mass to 4.0% by mass, more preferably 0.1% by mass to 3.0% by mass. Mass%.

マレイン酸エステル単量体としては、例えば、マレイン酸ジメチルなどが挙げられる。 Examples of maleic acid ester monomers include dimethyl maleate.

フマル酸エステル単量体としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸エチルなどが挙げられる。 Examples of the fumarate monomer include dimethyl fumarate, diethyl fumarate, and ethyl fumarate.

1つの実施形態においては、ポリスチレン系樹脂は、ポリスチレン系樹脂とポリオレフィン系樹脂との複合樹脂であってもよい。複合樹脂におけるポリスチレン系樹脂とポリオレフィン系樹脂との含有比(ポリスチレン系樹脂/ポリオレフィン系樹脂:質量比)は、好ましくは50/50~90/10であり、より好ましくは60/40~85/15である。ポリスチレン系樹脂の含有量が少なすぎると、発泡性および/または成形加工性が不十分になる場合がある。ポリスチレン系樹脂の含有量が多すぎると、耐衝撃性および/または柔軟性が不十分になる場合がある。 In one embodiment, the polystyrene resin may be a composite resin of a polystyrene resin and a polyolefin resin. The content ratio of polystyrene resin and polyolefin resin in the composite resin (polystyrene resin/polyolefin resin: mass ratio) is preferably 50/50 to 90/10, more preferably 60/40 to 85/15. It is. If the content of polystyrene resin is too low, foamability and/or moldability may become insufficient. If the content of polystyrene resin is too high, impact resistance and/or flexibility may become insufficient.

ポリオレフィン系樹脂としては、本発明の効果を損なわない範囲で、任意の適切なオレフィン系樹脂を採用することができる。ポリオレフィン系樹脂は、1種のみであってもよいし、2種以上であってもよい。具体例としては、例えば、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-メチルメタクリレート共重合体、これら重合体の架橋体等のポリエチレン系樹脂;プロピレン単独重合体、プロピレン-酢酸ビニル共重合体、エチレン-プロピレンランダム共重合体、プロピレン-1-ブテン共重合体、エチレン-プロピレン-ブテンランダム共重合体等のポリプロピレン系樹脂;などが挙げられる。これらのポリオレフィン系樹脂の中でも、好ましくは、エチレン-酢酸ビニル共重合体、高密度ポリエチレン、直鎖状低密度ポリエチレン、およびこれらの混合物である。なお、低密度は、好ましくは0.91g/cm~0.94g/cmであり、より好ましくは0.91g/cm~0.93g/cmである。高密度は、好ましくは0.95g/cm~0.97g/cmであり、より好ましくは0.95g/cm~0.96g/cmである。中密度は、低密度と高密度との間の密度である。 As the polyolefin resin, any suitable olefin resin can be used as long as the effects of the present invention are not impaired. The number of polyolefin resins may be one, or two or more. Specific examples include branched low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, and crosslinked products of these polymers. Polypropylene resins such as propylene homopolymer, propylene-vinyl acetate copolymer, ethylene-propylene random copolymer, propylene-1-butene copolymer, ethylene-propylene-butene random copolymer, etc. ; etc. Among these polyolefin resins, ethylene-vinyl acetate copolymers, high-density polyethylene, linear low-density polyethylene, and mixtures thereof are preferred. Note that the low density is preferably 0.91g/cm 3 to 0.94g/cm 3 , more preferably 0.91g/cm 3 to 0.93g/cm 3 . The high density is preferably between 0.95g/cm 3 and 0.97g/cm 3 , more preferably between 0.95g/cm 3 and 0.96g/cm 3 . Medium density is a density between low density and high density.

B-2.発泡剤
発泡剤は、1種のみであってもよいし、2種以上であってもよい。
B-2. Foaming agent Only one type of foaming agent may be used, or two or more types may be used.

発泡剤としては、本発明の効果を損なわない範囲で、任意の適切な発泡剤を用いることができる。発泡剤は、好ましくは、沸点がスチレン系樹脂の軟化点以下であり、常圧でガス状または液状の有機化合物である。具体例としては、例えば、プロパン、n-ブタン、イソブタン、ペンタン(n-ペンタン、イソペンタンまたはネオペンタン)、n-ヘキサン等の脂肪族炭化水素;シクロペンタン、シクロペンタジエン等の脂環式炭化水素;アセトン、メチルエチルケトン等のケトン類;メタノール、エタノール、イソプロピルアルコール等のアルコール類;ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテル等の低沸点のエーテル化合物;トリクロロモノフルオロメタン、ジクロロジフルオロメタン等のハロゲン含有炭化水素;などが挙げられる。発泡剤として、炭酸ガス、窒素、アンモニア等の無機ガスを用いてもよい。これらの中でも、発泡剤としては、脂肪族炭化水素が好ましい。オゾン層の破壊を防止することができ、かつ、空気と速く置換するので発泡成形体の経時変化を抑制することができるからである。発泡剤としては、より好ましくは、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、およびこれらの組み合わせである。 As the foaming agent, any appropriate foaming agent can be used as long as it does not impair the effects of the present invention. The blowing agent is preferably an organic compound whose boiling point is lower than the softening point of the styrene resin and which is gaseous or liquid at normal pressure. Specific examples include aliphatic hydrocarbons such as propane, n-butane, isobutane, pentane (n-pentane, isopentane or neopentane), n-hexane; alicyclic hydrocarbons such as cyclopentane and cyclopentadiene; acetone , Ketones such as methyl ethyl ketone; Alcohols such as methanol, ethanol, and isopropyl alcohol; Low boiling point ether compounds such as dimethyl ether, diethyl ether, dipropyl ether, and methyl ethyl ether; Halogen-containing such as trichloromonofluoromethane and dichlorodifluoromethane Hydrocarbons; and the like. As the blowing agent, an inorganic gas such as carbon dioxide, nitrogen, or ammonia may be used. Among these, aliphatic hydrocarbons are preferred as the blowing agent. This is because deterioration of the ozone layer can be prevented, and since air is replaced quickly, deterioration of the foamed molded product over time can be suppressed. More preferred blowing agents are propane, n-butane, isobutane, n-pentane, isopentane, and combinations thereof.

発泡性スチレン系樹脂粒子中における発泡剤の含有量は、予備発泡スチレン系樹脂粒子およびスチレン系樹脂発泡成形体を形成するに十分な量である限り、目的に応じて適切に設定され得る。発泡剤の含有量は、ポリスチレン系樹脂100質量部に対して、好ましくは2質量部~16質量部であり、より好ましくは3質量部~8質量部である。 The content of the blowing agent in the expandable styrenic resin particles can be appropriately set depending on the purpose as long as it is sufficient to form pre-expanded styrenic resin particles and a styrenic resin foam molded article. The content of the blowing agent is preferably 2 parts by mass to 16 parts by mass, more preferably 3 parts by mass to 8 parts by mass, based on 100 parts by mass of the polystyrene resin.

B-3.その他
発泡性スチレン系樹脂粒子は、発泡剤とともに発泡助剤を含んでいてもよい。発泡助剤としては、例えば、アジピン酸ジイソブチル、トルエン、シクロヘキサン、エチルベンゼン、流動パラフィン、ヤシ油などが挙げられる。発泡助剤は、1種のみであってもよいし、2種以上であってもよい。
B-3. Others The expandable styrenic resin particles may contain a foaming aid as well as a foaming agent. Examples of the foaming aid include diisobutyl adipate, toluene, cyclohexane, ethylbenzene, liquid paraffin, and coconut oil. The number of foaming aids may be one, or two or more.

発泡性スチレン系樹脂粒子は、添加剤をさらに含んでいてもよい。添加剤としては、例えば、輻射伝熱抑制成分、スチレン系樹脂以外の樹脂、架橋剤、可塑剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤、帯電防止剤、展着剤、気泡調整剤、耐候剤、老化防止剤、防曇剤、香料などが挙げられる。添加剤の種類、数、組み合わせ、含有量等は、目的に応じて適切に設定され得る。添加剤は、1種のみであってもよいし、2種以上であってもよい。 The expandable styrenic resin particles may further contain additives. Examples of additives include radiation heat transfer suppressing components, resins other than styrene resins, crosslinking agents, plasticizers, fillers, flame retardants, flame retardant aids, lubricants, colorants, antistatic agents, spreading agents, Examples include bubble control agents, weathering agents, anti-aging agents, antifogging agents, and fragrances. The type, number, combination, content, etc. of additives can be appropriately set depending on the purpose. The number of additives may be one, or two or more.

B-4.発泡性スチレン系樹脂粒子の製造方法
発泡性スチレン系樹脂粒子の製造方法の一つの実施形態としては、スチレン系単量体を重合させる工程と、重合と同時または重合後に発泡剤を含浸させる工程と、5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種を添加する工程と、を含む。
B-4. Method for producing expandable styrenic resin particles One embodiment of the method for producing expandable styrenic resin particles includes a step of polymerizing a styrenic monomer, and a step of impregnating a blowing agent simultaneously with or after the polymerization. , a step of adding at least one selected from aliphatic compounds that are liquid at 5° C. and silicones containing phenyl groups.

スチレン系単量体の重合方法としては、代表的には、懸濁重合法が挙げられる。懸濁重合法は、スチレン系単量体に重合開始剤を溶解して、懸濁剤を分散した水とともに、反応槽中で昇温し重合した後冷却して、発泡性スチレン系樹脂粒子を得る方法である。 A typical example of a method for polymerizing styrenic monomers is suspension polymerization. In the suspension polymerization method, a polymerization initiator is dissolved in a styrenic monomer, and the temperature is raised in a reaction tank together with water in which a suspending agent is dispersed. After polymerization, the polymerization is cooled to form expandable styrenic resin particles. This is the way to get it.

重合の途中および/または重合終了後に発泡剤を添加する方法は1段法と呼ばれる。発泡剤を添加せずに重合して得られた粒子をふるい分けして必要な粒径範囲の粒子のみを、反応槽の懸濁剤を分散した水中で昇温して、ここで発泡剤を添加して粒子に含浸させる方法は2段法(後含浸法)と呼ばれる。また、小粒子のスチレン系樹脂粒子(種粒子)を、懸濁剤を分散した水の入っている反応槽に投入し、昇温した後、重合開始剤を溶解した単量体を連続的に反応槽に供給して重合し、目的とする粒子径まで成長させる方法はシード重合法と呼ばれる。シード重合法において、発泡剤は重合の途中および/または重合終了後に添加される。1段法、2段法(後含浸法)、シード重合法のいずれの方法によっても、発泡性スチレン系樹脂粒子を製造することができる。また、いずれの方法によっても、真球状の発泡性スチレン系樹脂粒子が得られ得るという利点がある。 A method in which a blowing agent is added during and/or after the polymerization is called a one-stage method. Particles obtained by polymerization without adding a blowing agent are sieved and only particles in the required particle size range are heated in water in which a suspending agent is dispersed in a reaction tank, and a blowing agent is added here. The method of impregnating the particles with impregnation is called a two-step method (post-impregnation method). In addition, small styrene resin particles (seed particles) are put into a reaction tank containing water in which a suspending agent is dispersed, and after raising the temperature, monomers with a polymerization initiator dissolved therein are continuously added. The method of supplying particles to a reaction tank, polymerizing them, and growing them to a desired particle size is called a seed polymerization method. In the seed polymerization method, a blowing agent is added during and/or after the polymerization is completed. Expandable styrenic resin particles can be produced by any of the one-stage method, two-stage method (post-impregnation method), and seed polymerization method. Furthermore, either method has the advantage that truly spherical expandable styrenic resin particles can be obtained.

スチレン系単量体の重合における重合開始剤としては、本発明の効果を損なわない範囲で、任意の適切なラジカル発生型重合開始剤を用いることができる。このような重合開始剤としては、例えば、ベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシベンゾート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、ジクミルパーオキサイド、t-ブチルパーオキシピバレート、t-ブチルパーオキシイソプロピルカーボネート、2,2-t-ブチルパーオキシブタン、t-ブチルパーオキシ-3,3,5-トリメチルヘキサノエート、ジ-t-ブチルパーオキシヘキサイハイドロテレフタレート等の有機過酸化物;アゾビスジメチルバレロニトリル等のアゾ化合物;などが挙げられる。これらの重合開始剤は、1種のみであってもよいし、2種以上であってもよい。 As the polymerization initiator for the polymerization of styrenic monomers, any suitable radical-generating polymerization initiator can be used as long as the effects of the present invention are not impaired. Examples of such polymerization initiators include benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxybenzoate, t-butylperoxy-2-ethylhexyl monocarbonate, dicumyl Peroxide, t-butylperoxypivalate, t-butylperoxyisopropyl carbonate, 2,2-t-butylperoxybutane, t-butylperoxy-3,3,5-trimethylhexanoate, di-t -Organic peroxides such as butylperoxyhexahydroterephthalate; azo compounds such as azobisdimethylvaleronitrile; and the like. The number of these polymerization initiators may be one, or two or more.

重合開始剤としては、分子量を調整し、残存単量体量を減少させるために、10時間の半減期を得るための分解温度が50~80℃の範囲にある重合開始剤と、10時間の半減期を得るための分解温度が80~120℃の範囲にある重合開始剤とを併用してもよい。重合開始剤は、種粒子に均一に吸収させる必要があることから、液状物として添加することが好ましい。重合開始剤を直接水性懸濁液中に添加すると、種粒子に均一に吸収されにくくなるので、重合開始剤は水性媒体に懸濁または乳化させた状態で添加するか、あるいは少量のスチレン系単量体に溶解し、無機系懸濁安定剤および/またはアニオン界面活性剤とを加え水性懸濁液として添加することが望ましい。 As a polymerization initiator, in order to adjust the molecular weight and reduce the amount of residual monomer, a polymerization initiator with a decomposition temperature in the range of 50 to 80°C to obtain a half-life of 10 hours, and a polymerization initiator with a decomposition temperature in the range of 50 to 80 ° C. A polymerization initiator having a decomposition temperature in the range of 80 to 120°C to obtain a half-life may be used in combination. Since the polymerization initiator needs to be uniformly absorbed into the seed particles, it is preferable to add it as a liquid. If the polymerization initiator is directly added to the aqueous suspension, it will be difficult to absorb it uniformly into the seed particles. Therefore, the polymerization initiator should be added suspended or emulsified in the aqueous medium, or a small amount of styrene monomer may be added. It is desirable to dissolve the compound in an aqueous suspension and add an inorganic suspension stabilizer and/or an anionic surfactant to form an aqueous suspension.

5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種を添加する工程としては、代表的には、脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種を、上記重合により得られた発泡性スチレン系樹脂粒子の表面に塗布する。5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種を添加する方法としては、例えば、上記重合により得られた発泡性スチレン系樹脂粒子と、脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種とを、タンブラー、リボンブレンダー、ナウターミキサー等の混合機もしくは撹拌機を使用して、混合する方法が挙げられる。 The step of adding at least one kind selected from an aliphatic compound and a silicone containing a phenyl group, which are liquid at 5° C., typically includes adding at least one kind selected from an aliphatic compound and a silicone containing a phenyl group, It is applied to the surface of the expandable styrenic resin particles obtained by the above polymerization. As a method for adding at least one selected from aliphatic compounds and silicones containing phenyl groups that are liquid at 5°C, for example, the foamable styrenic resin particles obtained by the above polymerization and the aliphatic compounds and phenyl groups may be added. A method of mixing at least one silicone selected from the group consisting of silicones, using a mixer or a stirrer such as a tumbler, ribbon blender, or Nauta mixer.

発泡性スチレン系樹脂粒子の製造方法の別の実施形態においては、発泡性スチレン系樹脂粒子は、溶融押出法により製造され得る。溶融押出法は、ポリスチレン系樹脂ペレットを樹脂供給装置に供給し、樹脂供給装置内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤を含有した溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から押し出し、その後冷却して、発泡性スチレン系樹脂粒子を得る方法である。ダイの小孔から冷却用液体中に直接押し出し、押し出した直後に押出物を回転刃で切断し、切断された粒子を冷却用液体中で冷却する方法はホットカット法と呼ばれる。ダイの小孔から一旦空気中にストランド状に押し出し、ストランドが発泡する前に冷却用水槽中に導き、ストランドを冷却用水槽中で冷却した後、切断し円柱状の粒子とする方法はストランドカット法(コールドカット法)と呼ばれる。ホットカット法、ストランドカット法(コールドカット法)のいずれの方法によっても、発泡性スチレン系樹脂粒子を製造することができる。ホットカット法によれば、ほぼ球状の発泡性スチレン系樹脂粒子が得られ得るという利点がある。 In another embodiment of the method for producing expandable styrenic resin particles, the expandable styrenic resin particles can be produced by a melt extrusion method. In the melt extrusion method, polystyrene resin pellets are fed to a resin supply device, a blowing agent is press-fitted and kneaded into the melted polystyrene resin in the resin feed device, and the molten resin containing the blowing agent is transferred to the tip of the resin feed device. This is a method in which expandable styrenic resin particles are obtained by extruding through small holes in an attached die and then cooling. A method of extruding particles directly into a cooling liquid through small holes in a die, cutting the extrudate with a rotating blade immediately after extrusion, and cooling the cut particles in the cooling liquid is called a hot-cut method. Strand cutting is a method in which the strands are extruded into the air through a small hole in a die, introduced into a cooling water tank before foaming, and then cut into cylindrical particles after being cooled in the cooling water tank. method (cold cut method). Expandable styrenic resin particles can be produced by either the hot cut method or the strand cut method (cold cut method). The hot cut method has the advantage that substantially spherical expandable styrenic resin particles can be obtained.

C.予備発泡スチレン系樹脂粒子
スチレン系樹脂発泡成形体の一つの好ましい実施形態としては、発泡性スチレン系樹脂粒子を予備発泡させてなる予備発泡スチレン系樹脂粒子から成形されるスチレン系樹脂発泡成形体である。
C. Pre-expanded styrenic resin particles One preferred embodiment of the styrenic resin foam molded product is a styrenic resin foam molded product molded from pre-expanded styrenic resin particles obtained by pre-foaming expandable styrenic resin particles. be.

予備発泡スチレン系樹脂粒子は、表層の平均気泡径が0.04mm~0.15mmであり、好ましくは0.04mm~0.14mmであり、さらに好ましくは0.04mm~0.13mmであり、特に好ましくは0.04mm~0.12mmであり、最も好ましくは0.04mm~0.11mmである。予備発泡スチレン系樹脂粒子の表層の平均気泡径が上記範囲にあれば、融着率が高く、機械的強度や成形性に優れ、且つ、高倍で発泡、成形が行われても気泡膜破れが発生しにくく、白度や光沢といった外観美麗性に優れる、スチレン系樹脂発泡成形体を提供でき、特に、白度に優れるスチレン系樹脂発泡成形体を提供できる。 The pre-expanded styrene resin particles have an average cell diameter in the surface layer of 0.04 mm to 0.15 mm, preferably 0.04 mm to 0.14 mm, more preferably 0.04 mm to 0.13 mm, and particularly Preferably it is 0.04 mm to 0.12 mm, most preferably 0.04 mm to 0.11 mm. If the average cell diameter of the surface layer of the pre-expanded styrene resin particles is within the above range, the fusion rate will be high, the mechanical strength and moldability will be excellent, and the cell membrane will not break even when foaming and molding are performed at high magnification. It is possible to provide a styrenic resin foam molded product that is difficult to generate and has an excellent appearance such as whiteness and gloss, and in particular, a styrenic resin foam molded product that is excellent in whiteness.

すなわち、本発明の実施形態による予備発泡スチレン系樹脂粒子は、上記B項に記載の発泡性スチレン系樹脂粒子を予備発泡させてなる。予備発泡は、発泡性スチレン系樹脂粒子を、水蒸気等を用いて所望の嵩発泡倍率(嵩密度)に発泡させることを含む。予備発泡スチレン系樹脂粒子の嵩発泡倍率は、好ましくは3倍~100倍であり、より好ましくは30倍~90倍であり、さらに好ましくは50倍~70倍である。嵩密度は、嵩発泡倍率の逆数である。嵩発泡倍率および嵩密度は、例えば以下のようにして求められる。 That is, the pre-expanded styrenic resin particles according to the embodiment of the present invention are obtained by pre-foaming the expandable styrenic resin particles described in Section B above. Pre-foaming includes foaming the expandable styrenic resin particles to a desired bulk expansion ratio (bulk density) using water vapor or the like. The bulk expansion ratio of the pre-expanded styrenic resin particles is preferably 3 times to 100 times, more preferably 30 times to 90 times, even more preferably 50 times to 70 times. Bulk density is the reciprocal of bulk expansion ratio. The bulk foaming ratio and bulk density are determined, for example, as follows.

発泡性スチレン系樹脂粒子を測定試料としてW(g)採取する。この測定試料をメスシリンダー内に自然落下させ、メスシリンダー内に落下させた測定試料の体積V(cm)をJIS K 6911に準拠した見掛け密度測定器を用いて測定する。測定資料の質量および体積から、下記式に基づいて嵩発泡倍数および嵩密度を求めることができる。
嵩発泡倍数(倍=cm/g)=測定試料の体積(V)/測定試料の質量(W)
嵩密度(g/cm)=測定試料の質量(W)/測定試料の体積(V)
W (g) of expandable styrene resin particles is collected as a measurement sample. This measurement sample is allowed to fall naturally into a graduated cylinder, and the volume V (cm 3 ) of the measurement sample dropped into the graduated cylinder is measured using an apparent density measuring device based on JIS K 6911. From the mass and volume of the measurement material, the bulk foaming ratio and bulk density can be determined based on the following formula.
Bulk foaming ratio (times = cm 3 /g) = Volume of measurement sample (V) / Mass of measurement sample (W)
Bulk density (g/cm 3 )=mass of measurement sample (W)/volume of measurement sample (V)

1つの代表的な実施形態においては、予備発泡スチレン系樹脂粒子は、スチレン系樹脂発泡成形体の成形に用いることができる。別の実施形態においては、予備発泡スチレン系樹脂粒子は、そのままで緩衝剤、断熱材等として用いることができる。予備発泡スチレン系樹脂粒子をそのまま用いる場合、予備発泡スチレン系樹脂粒子は、好ましくは、多数の予備発泡スチレン系樹脂粒子を袋体に充填した充填体として用いられ得る。 In one representative embodiment, the pre-expanded styrenic resin particles can be used to mold a styrenic resin foam molded article. In another embodiment, the pre-expanded styrenic resin particles can be used as is as a buffer, a heat insulator, etc. When the pre-expanded styrenic resin particles are used as they are, the pre-expanded styrenic resin particles can preferably be used as a filler in which a bag is filled with a large number of pre-expanded styrenic resin particles.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法および評価方法は以下の通りである。 EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. In addition, the measurement method and evaluation method of each characteristic are as follows.

<発泡性スチレン系樹脂粒子の重量平均分子量>
重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定したポリスチレン(PS)換算平均分子量を意味する。具体的には、試料3mgをテトラヒドロフラン(THF)10mLに加えて72時間静置して溶解させ(完全溶解)、得られた溶液を、倉敷紡績社製の非水系0.45μmのクロマトディスク(13N)で濾過して測定した。予め測定し作成しておいた標準ポリスチレンの検量線から試料の平均分子量を求めた。またクロマトグラフの条件は下記の通りとする。
(測定条件)
使用装置:高速GPC装置、東ソー社製、HLC-8320GPC EcoSECシステム(RI検出器内蔵)
ガードカラム:東ソー社製、TSKguardcolumn SuperHZ-H(4.6mmID×2cmL)×1本
カラム:東ソー社製、TSKgel SuperHZM-H(4.6mmID×15cmL)×2本
カラム温度:40℃
システム温度:40℃
移動相:テトラヒドロフラン
移動相流量:試料側=0.175mL/分、リファレンス側=0.175mL/分
検出器:RI検出器、試料濃度=0.3g/L
注入量:50μL
測定時間:0分~25分
ランタイム:25分
サンプリングピッチ:200msec
(検量線の作成)
検量線用標準ポリスチレン試料としては、東ソー社製の商品名「TSK standard POLYSTYRENE」の重量平均分子量が、5,480,000、3,840,000、355,000、102,000、37,900、9,100、2,630、500のものと、昭和電工社製の商品名「Shodex STANDARD」の重量平均分子量が1,030,000のものである、標準ポリスチレン試料を用いた。
検量線の作成方法は以下の通りである。上記検量線用標準ポリスチレン試料をグループA(重量平均分子量が1,030,000のもの)、グループB(重量平均分子量が、3,840,000、102,000、9,100、500のもの)、およびグループC(重量平均分子量が5,480,000、355,000、37,900、2,630のもの)にグループ分けした。グループAを5mg秤量した後に、テトラヒドロフラン20mLに溶解し(A溶液)、グループBも各々5mg~10mg秤量した後に、テトラヒドロフラン50mLに溶解し(B溶液)、グループCも各々1mg~5mg秤量した後に、テトラヒドロフラン40mLに溶解した(C溶液)。標準ポリスチレン検量線は、作成したA溶液、B溶液、およびC溶液のそれぞれを50μL注入して、測定後に得られた保持時間から較正曲線(三次式)をHLC-8320GPC専用データ解析プログラムGPCワークステーション(EcoSEC-WS)にて作成することにより得られ、その検量線を用いて測定した。
<Weight average molecular weight of expandable styrenic resin particles>
The weight average molecular weight means the average molecular weight in terms of polystyrene (PS) measured using gel permeation chromatography (GPC). Specifically, 3 mg of the sample was added to 10 mL of tetrahydrofuran (THF) and allowed to stand for 72 hours to dissolve (completely dissolved). ) was filtered and measured. The average molecular weight of the sample was determined from a standard polystyrene calibration curve that had been measured and prepared in advance. The chromatographic conditions are as follows.
(Measurement condition)
Equipment used: High-speed GPC device, manufactured by Tosoh Corporation, HLC-8320GPC EcoSEC system (built-in RI detector)
Guard column: TSKguardcolumn SuperHZ-H (4.6 mm ID x 2 cmL) x 1, manufactured by Tosoh Co., Ltd. Column: TSKgel SuperHZM-H (4.6 mm ID x 15 cm L) x 2, manufactured by Tosoh Co., Ltd. Column temperature: 40 ° C.
System temperature: 40℃
Mobile phase: Tetrahydrofuran Mobile phase flow rate: Sample side = 0.175 mL/min, reference side = 0.175 mL/min Detector: RI detector, sample concentration = 0.3 g/L
Injection volume: 50μL
Measurement time: 0 minutes to 25 minutes Run time: 25 minutes Sampling pitch: 200 msec
(Creating a calibration curve)
As standard polystyrene samples for the calibration curve, the weight average molecular weights of the product name "TSK standard POLYSTYRENE" manufactured by Tosoh Corporation are 5,480,000, 3,840,000, 355,000, 102,000, 37,900, Standard polystyrene samples having a weight average molecular weight of 9,100, 2,630, and 500, and a product manufactured by Showa Denko under the trade name "Shodex STANDARD" having a weight average molecular weight of 1,030,000 were used.
The method for creating the calibration curve is as follows. The above standard polystyrene samples for the calibration curve are group A (weight average molecular weight is 1,030,000) and group B (weight average molecular weight is 3,840,000, 102,000, 9,100, 500). , and Group C (weight average molecular weights of 5,480,000, 355,000, 37,900, and 2,630). After weighing 5 mg of group A, it was dissolved in 20 mL of tetrahydrofuran (A solution), after weighing 5 mg to 10 mg of each group B, it was dissolved in 50 mL of tetrahydrofuran (solution B), and after weighing 1 mg to 5 mg of each group C, It was dissolved in 40 mL of tetrahydrofuran (solution C). The standard polystyrene calibration curve is created by injecting 50 μL of each of the prepared A solution, B solution, and C solution, and calculating the calibration curve (cubic equation) from the retention time obtained after measurement using the HLC-8320 GPC dedicated data analysis program GPC workstation. (EcoSEC-WS), and the calibration curve was used for measurement.

<予備発泡スチレン系樹脂粒子の表層の平均気泡径>
平均気泡径は、ASTM D2842-69の試験方法に準拠して測定した。具体的には、嵩発泡倍数60倍に発泡させた予備発泡スチレン系樹脂粒子の中から、任意に選択した10個について、剃刀刃を用いて予備発泡スチレン系樹脂粒子の中心付近を通る平面で2等分し、その一方の切断面を走査型電子顕微鏡(JOEL社製、商品名「JSM-6360LV」)を用いて、予備発泡スチレン系樹脂粒子の中心から半径の50%に相当する円の外側を100倍に拡大して撮影した。
次に、撮影した画像をA4用紙上に印刷し、任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を下記式により算出した。
平均弦長t(μm)=60/(気泡数×写真の倍率)
なお、直線を描くにあたっては、できるだけ直線が気泡に点接触することなく貫通した状態となるようにした。また、一部の気泡が直線に点接触してしまう場合には、この気泡も気泡数に含め、さらに、直線の両端部が気泡を貫通することなく、気泡内に位置した状態となる場合には、直線の両端部が位置している気泡も気泡数に含めた。そして、算出された平均弦長tに基づいて次式により気泡径を算出した。
平均気泡径(μm)D=t/0.616
更に、撮影した画像の任意の3箇所において上述と同様の要領で気泡径を算出し、計5画像分の気泡径の相加平均値を予備発泡スチレン系樹脂粒子の平均気泡径とした。
<Average cell diameter in the surface layer of pre-expanded styrene resin particles>
Average cell size was measured according to the test method of ASTM D2842-69. Specifically, 10 arbitrarily selected pre-expanded styrene resin particles that were foamed to a bulk expansion ratio of 60 times were cut using a razor blade on a plane that passes near the center of the pre-expanded styrene resin particles. Divide into two equal parts, and use a scanning electron microscope (manufactured by JOEL, product name: JSM-6360LV) to cut one of the cut surfaces into a circle corresponding to 50% of the radius from the center of the pre-expanded styrene resin particles. The outside part was photographed with 100x magnification.
Next, print the photographed image on A4 paper, draw a straight line with a length of 60 mm at any location, and calculate the average chord length (t) of the bubbles from the number of bubbles existing on this straight line using the following formula. did.
Average chord length t (μm) = 60/(number of bubbles x magnification of photo)
In drawing the straight line, the straight line was made to penetrate through the bubbles as much as possible without making point contact with the bubbles. In addition, if some of the bubbles come into point contact with a straight line, this bubble is also included in the number of bubbles, and in addition, if both ends of the straight line are located within the bubble without penetrating the bubble, The bubbles located at both ends of the straight line were also included in the number of bubbles. Then, the bubble diameter was calculated using the following formula based on the calculated average chord length t.
Average bubble diameter (μm) D=t/0.616
Furthermore, the bubble diameter was calculated in the same manner as described above at three arbitrary locations in the photographed images, and the arithmetic average value of the bubble diameters for a total of five images was taken as the average bubble diameter of the pre-expanded styrene resin particles.

<スチレン系樹脂発泡成形体の白度測定>
スチレン系樹脂発泡成形体の白色度は以下の方法で測定した。白度を、JIS Z8729 -2004「色の表示方法-L *a *b *表色系」に基づく色差測定により評価した。測定には、色彩色差計(コニカミノルタ社製、型式:CR-400)、および、標準合わせに標準白板校正板(Y:94.3、x:0.3144、y:0.3208)を用いた。校正した色彩色差計を用いて平板形状のスチレン系樹脂発泡成形体の表面の任意の点20箇所で測定し、明度L*値の平均値を白度とした。
評価は以下の通りとした。
93以上:◎
90~92:〇
90未満:×
<Measurement of whiteness of styrene resin foam moldings>
The whiteness of the styrene resin foam molded product was measured by the following method. Whiteness was evaluated by color difference measurement based on JIS Z8729-2004 "Color display method - L*a*b*color system". A color difference meter (manufactured by Konica Minolta, model: CR-400) and a standard white calibration plate (Y: 94.3, x: 0.3144, y: 0.3208) were used for measurement. there was. Measurements were made at 20 arbitrary points on the surface of the flat styrene resin foam molded product using a calibrated color difference meter, and the average value of the lightness L* values was taken as the whiteness.
The evaluation was as follows.
93 or more: ◎
90-92: 〇 Less than 90: ×

<スチレン系樹脂発泡成形体の光沢度測定>
実施例・比較例で得られたスチレン系樹脂発泡成形体を24℃設定の恒温室内で24時間静置させた。次に、光沢計(堀場製作所社製グロスチェッカIG-331)を用いて、平板形状のスチレン系樹脂発泡成形体の表面の任意の20点箇所について、60°計(入射角60°、受光角60°)での光沢度測定を行い、その平均値を光沢度とした。
評価は以下の通りとした。
27以上:◎
24~26:〇
24未満:×
<Glossiness measurement of styrene resin foam moldings>
The styrenic resin foam molded bodies obtained in Examples and Comparative Examples were allowed to stand for 24 hours in a constant temperature room set at 24°C. Next, using a gloss meter (Gloss Checker IG-331 manufactured by Horiba, Ltd.), measure 20 arbitrary points on the surface of the flat styrene resin foam molded product using a 60° meter (incident angle 60°, light receiving angle The glossiness was measured at an angle of 60°), and the average value was taken as the glossiness.
The evaluation was as follows.
27 or more: ◎
24-26: 〇 Less than 24: ×

<スチレン系樹脂発泡成形体の融着率評価>
幅300mm、長さ400mm、厚み30mmの平板形状のスチレン系樹脂発泡成形体の表面に、一対の長辺の中心同士を結ぶ直線に沿ってカッターナイフで深さ約2mmの切り込み線を入れた後、この切り込み線に沿って該スチレン系樹脂発泡成形体を手で二分割し、その破断面における発泡粒子について、100~150個の任意の範囲について粒子内で破断している粒子の数(a)と粒子同士の界面で破断している粒子の数(b)とを数え、式[(a)/((a)十(b))]×100に代入して得られた値を融着率(%)とした。
融着性の評価は以下の通りとした。
90%以上:◎
80%以上90%未満:〇
80%未満:×
<Evaluation of fusion rate of styrene resin foam moldings>
After making a cut line about 2 mm deep with a cutter knife along a straight line connecting the centers of a pair of long sides on the surface of a flat plate-shaped styrene resin foam molded product with a width of 300 mm, a length of 400 mm, and a thickness of 30 mm. , the styrenic resin foam molded product is manually divided into two parts along this score line, and the number of broken particles within the particles (a ) and the number of particles broken at the interface between particles (b), and substituted into the formula [(a)/((a) 10(b))] x 100, and the obtained value was fused. It was expressed as a percentage (%).
The evaluation of fusion properties was as follows.
90% or more: ◎
80% or more but less than 90%: 〇 Less than 80%: ×

<総合評価>
白度、光沢度、融着率の3項目において以下の条件で評価した。
3項目とも◎の場合:◎
3項目中に×がなく、○が1つ以上あるの場合:〇
3項目中1つでも×がある場合:×
<Comprehensive evaluation>
Evaluation was made in three items: whiteness, glossiness, and fusion rate under the following conditions.
If all three items are ◎: ◎
If there is no × in the 3 items and there is one or more ○: 〇 If there is an × in at least one of the 3 items: ×

〔実施例1〕
<発泡性スチレン系樹脂粒子の製造>
内容量100リットルの攪拌機付き重合容器に、水40000質量部、懸濁安定剤としてリン酸三カルシウム100質量部、およびアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム3.2質量部を供給し、攪拌しながら、スチレン40000質量部、重合開始剤としてベンゾイルパーオキサイド102質量部、およびt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート24質量部を添加し、90℃に昇温して重合した。そして、この温度で6時間保持し、さらに、125℃に昇温してから2時間後に冷却し、スチレン系樹脂粒子を得た。得られたスチレン系樹脂粒子を篩分けし、種粒子として粒子径0.5mm~0.71mmのスチレン系樹脂粒子(平均粒子径0.63mm)を得た。なお、撹拌の回転数については上記粒子径が得られるように調整した。
次に、内容積25リットルの撹拌機付き重合容器に、種粒子2150質量部、ピロリン酸マグネシウム30質量部、およびドデシルベンゼンスルホン酸ナトリウム1.0質量部を供給し、撹拌しつつ72℃に加熱して、分散液を作製した。続いて、ベンゾイルパーオキサイド31質量部およびt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート4質量部を、スチレン786質量部およびアクリル酸ブチル137質量部の単量体混合物に溶解させた溶液を、全て、上記分散液中に撹拌しつつ供給した。そして分散液中に上記溶液を供給し終えてから、72℃で60分間維持した。
次いで、87℃まで1時間で昇温させながら、スチレン2346質量部を一定供給し、次いで、87℃で1時間30分保持しながら、スチレン3744質量部にジビニルベンゼンを2.2質量部溶解した単量体混合物を一定供給し、さらに30分保持した。
次いで、125℃まで昇温し、且つ30分保持することで、未反応の単量体を反応させた。次いで、100℃まで冷却し、重合容器内にシクロヘキサン92質量部、アジピン酸ジイソブチル82質量部、混合ブタン640質量部を圧入して2時間に亘って保持した後、重合容器内を25℃に冷却して、発泡性粒子(重量平均分子量38万)を得た。得られた発泡性粒子100質量部に対し、ポリエチレングリコール0.03質量部、ステアリン酸亜鉛0.13質量部、脂肪酸トリグリセリド(炭素数8の脂肪酸(カプリル酸)85%、炭素数10の脂肪酸(カプリン酸)15%の脂肪酸組成を持つ脂肪酸とグリセリンのトリグリセリドである。5℃において液体である。)0.03質量部を塗布し、発泡性スチレン系樹脂粒子(1)を得た。
得られた発泡性スチレン系樹脂粒子(1)を、13℃の恒温室にて5日間放置した。そして、発泡性スチレン系樹脂粒子(1)を加熱して、嵩密度0.0166g/cmに予備発泡させ、予備発泡スチレン系樹脂粒子(1)を得た。
得られた予備発泡スチレン系樹脂粒子(1)を20℃で24時間熟成させ、続いて、室温雰囲気下、24時間放置した後、型内発泡成形を行った。型内発泡成形には積水工機社製のACE-3SP成形機を用い、幅300mm、長さ400mm、厚み30mmの平板形状に発泡成形した。加熱時間は一方加熱時間8秒、逆一方加熱時間2秒、両面加熱時間5秒とし、成形圧(蒸気吹き込みゲージ圧)を0.06MPaとした。これにより、スチレン系樹脂発泡成形体(1)を得た。
結果を表1に示した。
[Example 1]
<Production of expandable styrenic resin particles>
40,000 parts by mass of water, 100 parts by mass of tricalcium phosphate as a suspension stabilizer, and 3.2 parts by mass of sodium dodecylbenzenesulfonate as an anionic surfactant were supplied to a 100-liter polymerization vessel equipped with a stirrer, and the mixture was stirred. Meanwhile, 40,000 parts by mass of styrene, 102 parts by mass of benzoyl peroxide as a polymerization initiator, and 24 parts by mass of t-butylperoxy-2-ethylhexyl monocarbonate were added, and the mixture was heated to 90° C. for polymerization. The temperature was maintained at this temperature for 6 hours, and then the temperature was raised to 125°C, and 2 hours later, the mixture was cooled to obtain styrene resin particles. The obtained styrene resin particles were sieved to obtain styrene resin particles having a particle size of 0.5 mm to 0.71 mm (average particle size 0.63 mm) as seed particles. Note that the stirring rotation speed was adjusted so that the above particle size could be obtained.
Next, 2150 parts by mass of seed particles, 30 parts by mass of magnesium pyrophosphate, and 1.0 parts by mass of sodium dodecylbenzenesulfonate were supplied to a polymerization container with an internal volume of 25 liters equipped with a stirrer, and heated to 72°C while stirring. A dispersion liquid was prepared. Subsequently, a solution in which 31 parts by mass of benzoyl peroxide and 4 parts by mass of t-butylperoxy-2-ethylhexyl monocarbonate were dissolved in a monomer mixture of 786 parts by mass of styrene and 137 parts by mass of butyl acrylate was added to the solution. , was fed into the above dispersion while stirring. After the above solution was supplied into the dispersion, the temperature was maintained at 72° C. for 60 minutes.
Next, 2,346 parts by mass of styrene was constantly supplied while raising the temperature to 87°C for 1 hour, and then, 2.2 parts by mass of divinylbenzene was dissolved in 3,744 parts by mass of styrene while maintaining the temperature at 87°C for 1 hour and 30 minutes. A constant feed of the monomer mixture was maintained for an additional 30 minutes.
Next, the temperature was raised to 125° C. and maintained for 30 minutes to cause unreacted monomers to react. Next, the mixture was cooled to 100°C, 92 parts by mass of cyclohexane, 82 parts by mass of diisobutyl adipate, and 640 parts by mass of mixed butane were pressurized into the polymerization container and held for 2 hours, and then the inside of the polymerization container was cooled to 25°C. As a result, expandable particles (weight average molecular weight: 380,000) were obtained. For 100 parts by mass of the obtained expandable particles, 0.03 parts by mass of polyethylene glycol, 0.13 parts by mass of zinc stearate, fatty acid triglyceride (85% fatty acid with 8 carbon atoms (caprylic acid), fatty acid with 10 carbon atoms (85%), Capric acid) is a triglyceride of fatty acid and glycerin having a fatty acid composition of 15%.It is liquid at 5°C.) was applied in an amount of 0.03 parts by mass to obtain expandable styrenic resin particles (1).
The obtained expandable styrenic resin particles (1) were left in a constant temperature room at 13° C. for 5 days. The expandable styrenic resin particles (1) were then heated to pre-foam to a bulk density of 0.0166 g/cm 3 to obtain pre-expanded styrenic resin particles (1).
The obtained pre-expanded styrenic resin particles (1) were aged at 20° C. for 24 hours, and then left in an atmosphere at room temperature for 24 hours, followed by in-mold foam molding. For in-mold foam molding, an ACE-3SP molding machine manufactured by Sekisui Koki Co., Ltd. was used, and foam molding was carried out into a flat plate shape with a width of 300 mm, a length of 400 mm, and a thickness of 30 mm. The heating time was 8 seconds on one side, 2 seconds on the other side, and 5 seconds on both sides, and the molding pressure (steam blowing gauge pressure) was 0.06 MPa. Thereby, a styrenic resin foam molded article (1) was obtained.
The results are shown in Table 1.

〔実施例2〕
発泡性スチレン系樹脂粒子の重量平均分子量をジビニルベンゼンの量を1.1質量部に変更して30万に調整した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(2)、予備発泡スチレン系樹脂粒子(2)、スチレン系樹脂発泡成形体(2)を得た。
結果を表1に示した。
[Example 2]
Expandable styrenic resin particles (2) were prepared in the same manner as in Example 1, except that the weight average molecular weight of the expandable styrenic resin particles was adjusted to 300,000 by changing the amount of divinylbenzene to 1.1 parts by mass. Pre-expanded styrenic resin particles (2) and styrenic resin foam molded articles (2) were obtained.
The results are shown in Table 1.

〔実施例3〕
中鎖脂肪酸トリグリセリドの量を0.01質量部に変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(3)、予備発泡スチレン系樹脂粒子(3)、スチレン系樹脂発泡成形体(3)を得た。
結果を表1に示した。
[Example 3]
Expandable styrenic resin particles (3), pre-expanded styrenic resin particles (3), and styrenic resin foam molding were carried out in the same manner as in Example 1 except that the amount of medium-chain fatty acid triglyceride was changed to 0.01 part by mass. Body (3) was obtained.
The results are shown in Table 1.

〔実施例4〕
中鎖脂肪酸トリグリセリドの量を0.1質量部に変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(4)、予備発泡スチレン系樹脂粒子(4)、スチレン系樹脂発泡成形体(4)を得た。
結果を表1に示した。
[Example 4]
Expandable styrenic resin particles (4), pre-expanded styrenic resin particles (4), and styrenic resin foam molding were carried out in the same manner as in Example 1 except that the amount of medium-chain fatty acid triglyceride was changed to 0.1 part by mass. Body (4) was obtained.
The results are shown in Table 1.

〔実施例5〕
中鎖脂肪酸トリグリセリドの量を0.3質量部に変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(5)、予備発泡スチレン系樹脂粒子(5)、スチレン系樹脂発泡成形体(5)を得た。
結果を表1に示した。
[Example 5]
Expandable styrenic resin particles (5), pre-expanded styrenic resin particles (5), and styrenic resin foam molding were carried out in the same manner as in Example 1 except that the amount of medium-chain fatty acid triglyceride was changed to 0.3 parts by mass. Body (5) was obtained.
The results are shown in Table 1.

〔実施例6〕
中鎖脂肪酸トリグリセリドをアジピン酸ジイソブチル(5℃において液体)に変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(6)、予備発泡スチレン系樹脂粒子(6)、スチレン系樹脂発泡成形体(6)を得た。
結果を表1に示した。
[Example 6]
Expandable styrenic resin particles (6), pre-expanded styrenic resin particles (6), and styrenic resin were prepared in the same manner as in Example 1 except that medium chain fatty acid triglyceride was changed to diisobutyl adipate (liquid at 5°C). A foamed molded product (6) was obtained.
The results are shown in Table 1.

〔実施例7〕
中鎖脂肪酸トリグリセリドを流動パラフィン(5℃において液体)に変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(7)、予備発泡スチレン系樹脂粒子(7)、スチレン系樹脂発泡成形体(7)を得た。
結果を表1に示した。
[Example 7]
Expandable styrenic resin particles (7), pre-expanded styrenic resin particles (7), and styrenic resin foam were prepared in the same manner as in Example 1 except that medium chain fatty acid triglyceride was changed to liquid paraffin (liquid at 5°C). A molded body (7) was obtained.
The results are shown in Table 1.

〔実施例8〕
中鎖脂肪酸トリグリセリドをメチルフェニルシリコーン(5℃において液体)に変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(8)、予備発泡スチレン系樹脂粒子(8)、スチレン系樹脂発泡成形体(8)を得た。
結果を表1に示した。
[Example 8]
Expandable styrenic resin particles (8), pre-expanded styrenic resin particles (8), and styrenic resin were prepared in the same manner as in Example 1 except that medium chain fatty acid triglyceride was changed to methylphenyl silicone (liquid at 5°C). A foam molded article (8) was obtained.
The results are shown in Table 1.

〔実施例9〕
発泡性スチレン系樹脂粒子の重量平均分子量をジビニルベンゼンの量を0.3質量部に変更して20万に調整した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(9)、予備発泡スチレン系樹脂粒子(9)、スチレン系樹脂発泡成形体(9)を得た。
結果を表1に示した。
[Example 9]
Expandable styrenic resin particles (9) were prepared in the same manner as in Example 1, except that the weight average molecular weight of the expandable styrenic resin particles was adjusted to 200,000 by changing the amount of divinylbenzene to 0.3 parts by mass. Pre-expanded styrenic resin particles (9) and styrenic resin foam molded articles (9) were obtained.
The results are shown in Table 1.

〔実施例10〕
発泡性スチレン系樹脂粒子の重量平均分子量をジビニルベンゼンの量を2.8質量部に変更して45万に調整し、中鎖脂肪酸トリグリセリドの量を0.1質量部に変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(10)、予備発泡スチレン系樹脂粒子(10)、スチレン系樹脂発泡成形体(10)を得た。
結果を表1に示した。
[Example 10]
Example except that the weight average molecular weight of the expandable styrenic resin particles was adjusted to 450,000 by changing the amount of divinylbenzene to 2.8 parts by mass, and changing the amount of medium chain fatty acid triglyceride to 0.1 part by mass. In the same manner as in Example 1, expandable styrenic resin particles (10), pre-expanded styrenic resin particles (10), and styrenic resin foam molded articles (10) were obtained.
The results are shown in Table 1.

〔比較例1〕
中鎖脂肪酸トリグリセリドの量を0.4質量%に変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(C1)、予備発泡スチレン系樹脂粒子(C1)、スチレン系樹脂発泡成形体(C1)を得た。
結果を表1に示した。
[Comparative example 1]
Expandable styrenic resin particles (C1), pre-expanded styrenic resin particles (C1), and styrenic resin foam molded in the same manner as in Example 1 except that the amount of medium chain fatty acid triglyceride was changed to 0.4% by mass. A body (C1) was obtained.
The results are shown in Table 1.

〔比較例2〕
中鎖脂肪酸トリグリセリドを添加しなかった以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(C2)、予備発泡スチレン系樹脂粒子(C2)、スチレン系樹脂発泡成形体(C2)を得た。
結果を表1に示した。
[Comparative example 2]
Expandable styrenic resin particles (C2), pre-expanded styrenic resin particles (C2), and styrenic resin foam molded articles (C2) were obtained in the same manner as in Example 1 except that medium-chain fatty acid triglyceride was not added. Ta.
The results are shown in Table 1.

〔比較例3〕
中鎖脂肪酸トリグリセリドをステアリン酸トリグリセリド(5℃において固体)に変更した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(C3)、予備発泡スチレン系樹脂粒子(C3)、スチレン系樹脂発泡成形体(C3)を得た。
結果を表1に示した。
[Comparative example 3]
Expandable styrenic resin particles (C3), pre-expanded styrenic resin particles (C3), and styrenic resin were prepared in the same manner as in Example 1 except that medium chain fatty acid triglyceride was changed to stearic acid triglyceride (solid at 5°C). A foamed molded product (C3) was obtained.
The results are shown in Table 1.

〔比較例4〕
発泡性スチレン系樹脂粒子の重量平均分子量をジビニルベンゼンの量を0質量部に変更して18万に調整した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(C4)、予備発泡スチレン系樹脂粒子(C4)、スチレン系樹脂発泡成形体(C4)を得た。
結果を表1に示した。
[Comparative example 4]
Expandable styrenic resin particles (C4), pre-expanded in the same manner as in Example 1 except that the weight average molecular weight of expandable styrenic resin particles was adjusted to 180,000 by changing the amount of divinylbenzene to 0 parts by mass. Styrenic resin particles (C4) and styrenic resin foam molded articles (C4) were obtained.
The results are shown in Table 1.

〔比較例5〕
発泡性スチレン系樹脂粒子の重量平均分子量をジビニルベンゼンの量を3.1質量部に変更して50万に調整した以外は実施例1と同様にして、発泡性スチレン系樹脂粒子(C5)、予備発泡スチレン系樹脂粒子(C5)、スチレン系樹脂発泡成形体(C5)を得た。
結果を表1に示した。
[Comparative example 5]
Expandable styrenic resin particles (C5), Pre-expanded styrenic resin particles (C5) and styrenic resin foam molded articles (C5) were obtained.
The results are shown in Table 1.

Figure 0007425628000001
Figure 0007425628000001

表1から明らかなように、本発明の実施例によれば、融着率が高く、機械的強度や成形性に優れ、且つ、高倍で発泡、成形が行われても気泡膜破れが発生しにくく、白度や光沢といった外観美麗性に優れる、スチレン系樹脂発泡成形体を提供できる。また、そのようなスチレン系樹脂発泡成形体を成形させるために用い得る、発泡性スチレン系樹脂粒子、予備発泡スチレン系樹脂粒子を提供することができる。さらに、そのような発泡性スチレン系樹脂粒子の製造方法を提供することができる。 As is clear from Table 1, the examples of the present invention have a high fusion rate, excellent mechanical strength and moldability, and even when foaming and molding are performed at high magnification, bubble membrane breakage does not occur. It is possible to provide a styrenic resin foam molded product that is hard to maintain and has an excellent appearance such as whiteness and gloss. Further, it is possible to provide expandable styrenic resin particles and pre-expanded styrenic resin particles that can be used to mold such a styrenic resin foam molded article. Furthermore, a method for producing such expandable styrenic resin particles can be provided.

本発明の実施形態による発泡性スチレン系樹脂粒子、予備発泡スチレン系樹脂粒子、およびスチレン系樹脂発泡成形体は、住宅および自動車等に用いる断熱材、建築資材等に用いる保温材、魚箱および食品容器等の輸送用梱包材、緩衝材等に好適に用いられる。発泡性スチレン系樹脂粒子、予備発泡スチレン系樹脂粒子およびスチレン系樹脂発泡成形体は、より具体的には、壁用断熱材、床用断熱材、屋根用断熱材、自動車用断熱材、温水タンク用保温材、配管用保温材、ソーラーシステム用保温材、給湯器用保温材、食品および工業製品等の容器、魚および農産物等の梱包材、盛土材、畳の芯材等に好適に用いられる。
The expandable styrenic resin particles, pre-expanded styrenic resin particles, and styrenic resin foam molded articles according to the embodiments of the present invention can be used as heat insulating materials used in houses and automobiles, heat insulating materials used in construction materials, etc., fish boxes, and food products. Suitable for use in transportation packaging materials such as containers, cushioning materials, etc. More specifically, the expandable styrenic resin particles, pre-expanded styrenic resin particles, and styrenic resin foam molded products are used as wall insulation materials, floor insulation materials, roof insulation materials, automobile insulation materials, and hot water tanks. Suitable for use in thermal insulation materials for industrial use, piping insulation materials, solar system insulation materials, water heater insulation materials, containers for foods and industrial products, packaging materials for fish and agricultural products, etc., embankment materials, core materials for tatami mats, etc.

Claims (2)

発泡性スチレン系樹脂粒子から成形されるスチレン系樹脂発泡成形体であって、
該発泡性スチレン系樹脂粒子が、重量平均分子量が20万~45万であり、
該発泡性スチレン系樹脂粒子が、ポリスチレン系樹脂と発泡剤とを含み、
該発泡性スチレン系樹脂粒子が、5℃において液体である脂肪族化合物およびフェニル基を含むシリコーンから選ばれる少なくとも1種によって、該発泡性スチレン系樹脂粒子100質量%に対して0.01質量%~0.3質量%の量で被覆され、
該5℃において液体である脂肪族化合物はひまし油ではなく、
白度が90~99であり、
光沢度が24以上であり、
融着率が80%以上である
スチレン系樹脂発泡成形体。
A styrenic resin foam molded article formed from expandable styrenic resin particles,
The expandable styrenic resin particles have a weight average molecular weight of 200,000 to 450,000 ,
The expandable styrenic resin particles include a polystyrene resin and a blowing agent,
The expandable styrenic resin particles are made of at least one selected from aliphatic compounds that are liquid at 5° C. and silicones containing phenyl groups in an amount of 0.01% by mass based on 100% by mass of the expandable styrenic resin particles. coated in an amount of ~0.3% by weight,
The aliphatic compound that is liquid at 5°C is not castor oil,
Whiteness is 90-99,
The glossiness is 24 or more,
The fusion rate is 80% or more ,
Styrenic resin foam molding .
白度が93~99である、請求項1に記載のスチレン系樹脂発泡成形体。 The styrenic resin foam molded article according to claim 1, having a whiteness of 93 to 99.
JP2020032686A 2020-02-28 2020-02-28 Method for producing styrenic resin foam molded articles, expandable styrenic resin particles, pre-expanded styrenic resin particles, and expandable styrenic resin particles Active JP7425628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020032686A JP7425628B2 (en) 2020-02-28 2020-02-28 Method for producing styrenic resin foam molded articles, expandable styrenic resin particles, pre-expanded styrenic resin particles, and expandable styrenic resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020032686A JP7425628B2 (en) 2020-02-28 2020-02-28 Method for producing styrenic resin foam molded articles, expandable styrenic resin particles, pre-expanded styrenic resin particles, and expandable styrenic resin particles

Publications (2)

Publication Number Publication Date
JP2021134302A JP2021134302A (en) 2021-09-13
JP7425628B2 true JP7425628B2 (en) 2024-01-31

Family

ID=77660301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020032686A Active JP7425628B2 (en) 2020-02-28 2020-02-28 Method for producing styrenic resin foam molded articles, expandable styrenic resin particles, pre-expanded styrenic resin particles, and expandable styrenic resin particles

Country Status (1)

Country Link
JP (1) JP7425628B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025052A1 (en) 2001-09-12 2003-03-27 Hitachi Chemical Co., Ltd. Expandable particles of reclaimed styrene resin, expanded beads, and molded foam
JP2006316156A (en) 2005-05-12 2006-11-24 Sekisui Plastics Co Ltd Prefoamed particle, its manufacturing method and foamed molded product
JP2007246705A (en) 2006-03-16 2007-09-27 Sekisui Plastics Co Ltd Foamable styrenic resin particle and method for producing styrenic resin foamed molded article
JP2015067757A (en) 2013-09-30 2015-04-13 積水化成品工業株式会社 Foamable polystyrene-based resin, production method thereof, polystyrene-based resin preliminarily-foamed particle and foam molding
JP2015120859A (en) 2013-12-25 2015-07-02 株式会社ジェイエスピー Foam molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025052A1 (en) 2001-09-12 2003-03-27 Hitachi Chemical Co., Ltd. Expandable particles of reclaimed styrene resin, expanded beads, and molded foam
JP2006316156A (en) 2005-05-12 2006-11-24 Sekisui Plastics Co Ltd Prefoamed particle, its manufacturing method and foamed molded product
JP2007246705A (en) 2006-03-16 2007-09-27 Sekisui Plastics Co Ltd Foamable styrenic resin particle and method for producing styrenic resin foamed molded article
JP2015067757A (en) 2013-09-30 2015-04-13 積水化成品工業株式会社 Foamable polystyrene-based resin, production method thereof, polystyrene-based resin preliminarily-foamed particle and foam molding
JP2015120859A (en) 2013-12-25 2015-07-02 株式会社ジェイエスピー Foam molding

Also Published As

Publication number Publication date
JP2021134302A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
JP5664143B2 (en) Expandable composite thermoplastic resin particles, composite thermoplastic resin foam particles, and composite thermoplastic resin foam particles
US9902828B2 (en) High-density polyethylene mixed resin particles, composite resin particles, foamed particles and foamed molded body
WO2007099833A1 (en) Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
JP6251409B2 (en) COMPOSITE RESIN PARTICLE AND METHOD FOR PRODUCING THE SAME, FOAMABLE PARTICLE, FOAMED PARTICLE, FOAM MOLDED ARTICLE, AND AUTOMOBILE INTERIOR MATERIAL
JP5918905B2 (en) Composite resin particles and expandable composite resin particles, pre-expanded particles and foamed molded products
JP6059621B2 (en) Expandable styrene-modified thermoplastic polyester resin particles and method for producing the same, styrene-modified thermoplastic polyester resin pre-expanded particles, and styrene-modified thermoplastic polyester resin foam molding
JP2008274133A (en) Expandable resin particles and method for producing the same
JP6441948B2 (en) Expandable styrene composite polyolefin resin particles and process for producing the same, pre-expanded particles, and expanded molded body
JP7425628B2 (en) Method for producing styrenic resin foam molded articles, expandable styrenic resin particles, pre-expanded styrenic resin particles, and expandable styrenic resin particles
JP5731428B2 (en) Styrene-modified polyethylene resin particles, expandable composite resin particles, pre-expanded particles, foam-molded article and method for producing pre-expanded particles
JP7454476B2 (en) Styrenic resin foam particles, styrenic resin foam molded products, and expandable styrenic resin particles
JP7015226B2 (en) Styrene composite polyethylene resin foamed particles, their manufacturing method and foamed molded product
JP6322148B2 (en) Seed polymerization seed particles, composite resin particles, expandable particles, expanded particles, and composite resin foam moldings
JP7425639B2 (en) Expandable styrenic resin particles, pre-expanded styrenic resin particles, and styrenic resin foam moldings
JP7445480B2 (en) Expandable styrenic resin small particles, pre-expanded styrenic resin small particles, and styrenic resin foam molded products
JP5460227B2 (en) Polypropylene resin in-mold foam molding
JP6031614B2 (en) Carbon black-containing composite resin pre-expanded particles, method for producing the same, and expanded molded article
JP6262114B2 (en) Method for producing composite resin particles
JP6209116B2 (en) Composite resin particles and production method thereof, expandable composite resin particles, pre-expanded composite resin particles, and composite resin foam molded article
JP2022027403A (en) Styrenic resin foam molding, method for producing foamable styrenic resin particle, and method for producing styrenic resin foam molding
JP2023003083A (en) Styrenic resin foamed molding, sliced body, styrenic resin foamed particle, and foamable styrenic resin particle
JP2023124554A (en) Foamable styrenic resin particle, pre-foamed styrenic resin particle, and styrenic resin foam molding
WO2017056743A1 (en) Styrene-modified polyolefin-based resin particles, method for producing same, foamable particles, foamed particles and foam molded body
JP2022115190A (en) Expandable styrene resin particles, pre-expanded styrene resin particles, and styrene resin expansion-molded body
JP2017066359A (en) Styrene modified polyolefin resin particle and manufacturing method therefor, expandable particle, foam particle and foam molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240119

R150 Certificate of patent or registration of utility model

Ref document number: 7425628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150