JP2007222858A - Ceramic honeycomb filter - Google Patents

Ceramic honeycomb filter Download PDF

Info

Publication number
JP2007222858A
JP2007222858A JP2006067078A JP2006067078A JP2007222858A JP 2007222858 A JP2007222858 A JP 2007222858A JP 2006067078 A JP2006067078 A JP 2006067078A JP 2006067078 A JP2006067078 A JP 2006067078A JP 2007222858 A JP2007222858 A JP 2007222858A
Authority
JP
Japan
Prior art keywords
flow path
sealing
honeycomb filter
exhaust gas
inflow side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006067078A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
博史 佐藤
Masakazu Motoi
雅一 許斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006067078A priority Critical patent/JP2007222858A/en
Publication of JP2007222858A publication Critical patent/JP2007222858A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a honeycomb filter which reduces pressure loss by increasing an opening factor at the end surface on the exhaust gas flow-in side without reducing the opening factor at the end surface on the exhaust gas flow-out side. <P>SOLUTION: The honeycomb filter is provided with a sealing channel on the flow-out side which is opened at the end surface on the exhaust gas flow-in side and seals the exhaust gas flow-out side, a sealing channel on the flow-in side which is opened at the end surface on the exhaust gas flow-out side and seals the exhaust gas flow-in side, and an intermediate sealing channel which opens both ends and seals an intermediate part which is separated in a channel direction from a sealing part of the sealing channel on the flow-out side and a sealing part of the sealing channel on the flow-in side. The relation of the number (A) of the sealing channels on the flow-out side, the number (B) of the sealing channels on flow-in side, the number (C) of the intermediate sealing channels and the total (N) of these is expressed by A/N≤1/2 and B≤C≤A. The sealing channel on the flow-out side is in contact with the sealing channel on the flow-in side through at least one surface of a partition wall constituting the sealing channel on the flow-out side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ディーゼルエンジン等から排出される粒子状物質を含む排気ガスを浄化するのに使用されるセラミックハニカムフィルタに関する。   The present invention relates to a ceramic honeycomb filter used for purifying exhaust gas containing particulate matter discharged from a diesel engine or the like.

ディーゼルエンジンの排気ガス中には、炭素質からなる煤と高沸点炭化水素成分からなるSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とするPM(Particulate Matter:粒子状物質)が含まれており、これが大気中に放出されると、人体や環境に悪影響を与える虞がある。このため、ディーゼルエンジンの排気管の途中に、PMを捕集するためのセラミックハニカムフィルタ(以下セラミックハニカムフィルタを略して「ハニカムフィルタ」という)を装着することが従来から行われている。図5は、排気ガス中のPMを捕集、浄化する、従来のハニカムフィルタの一例を示し、(a)は正面模式図、(b)は側断面模式図である。図5(a)、(b)において、ハニカムフィルタ50は、多孔質セラミックハニカム構造体からなり、外周壁1と、この外周壁1の内側に各々直交する隔壁2で仕切られた多数の流出側封止流路3と流入側封止流路4が、排気ガス流入側端面8と排気ガス流出側端面9にて交互に上流側封止部6aと下流側封止部6cとで封止されている。また、ハニカムフィルタの外周壁1は、金属メッシュあるいはセラミックス製のマットなどで形成された把持部材(図示せず)で使用中に動かないように把持され、金属製収納容器(図示せず)内に配置されている。   The exhaust gas of a diesel engine contains PM (Particulate Matter: particulate matter) whose main components are soot made of carbon and SOF content (soluble organic fraction) consisting of high-boiling hydrocarbon components. If it is released into the atmosphere, there is a risk of adverse effects on the human body and the environment. For this reason, a ceramic honeycomb filter for collecting PM (hereinafter referred to as “honeycomb filter” for short) has been conventionally mounted in the middle of the exhaust pipe of a diesel engine. FIG. 5 shows an example of a conventional honeycomb filter that collects and purifies PM in exhaust gas. (A) is a schematic front view, and (b) is a schematic side sectional view. 5 (a) and 5 (b), the honeycomb filter 50 is made of a porous ceramic honeycomb structure, and has a large number of outflow sides partitioned by an outer peripheral wall 1 and partition walls 2 orthogonal to the inner side of the outer peripheral wall 1, respectively. The sealing flow path 3 and the inflow side sealing flow path 4 are alternately sealed by the upstream side sealing portion 6a and the downstream side sealing portion 6c at the exhaust gas inflow side end surface 8 and the exhaust gas outflow side end surface 9. ing. Further, the outer peripheral wall 1 of the honeycomb filter is gripped so as not to move during use by a gripping member (not shown) formed of a metal mesh or a ceramic mat or the like, and is placed in a metal storage container (not shown). Is arranged.

図5に示すハニカムフィルタ50において、排気ガスの浄化は以下の通り行われる。排気ガス(点線矢印で示す)は、排気ガス流入側端面8に開口している流出側封止流路3から流入する。そして排気ガス中に含まれるPMは、隔壁2を通過する際に捕集され、浄化された排気ガスは、排気ガス流出側端面9に開口している流入側封止流路4から流出、大気中に放出される。一方、隔壁2に捕集されたPMが多くなると、隔壁が目詰まりし、排気ガスがハニカムフィルタを通過する際の圧力損失が増加するので、圧力損失が増加する前にPMを燃焼除去してハニカムフィルタを再生する必要がある。しかし、通常のディーゼルエンジンの運転状態では、PMが燃焼するほどの高い排気ガス温度が得られることが少ないため、例えば高比表面積材料であるアルミナに白金族金属や酸化セリウムなどの希土類酸化物を担持した酸化触媒を一体的に担持させた触媒担持型のハニカムフィルタの実用化が進められている。このような触媒担持型のハニカムフィルタを採用すれば、捕集されたPMの燃焼反応が触媒により促進されて、PMを燃焼、除去することが可能となる。   In the honeycomb filter 50 shown in FIG. 5, purification of exhaust gas is performed as follows. Exhaust gas (indicated by a dotted arrow) flows in from the outflow side sealing flow path 3 opened in the exhaust gas inflow side end face 8. Then, PM contained in the exhaust gas is collected when passing through the partition wall 2, and the purified exhaust gas flows out from the inflow side sealed flow path 4 opened in the exhaust gas outflow side end surface 9 Released into. On the other hand, when the amount of PM collected in the partition wall 2 increases, the partition wall is clogged, and the pressure loss when the exhaust gas passes through the honeycomb filter increases. Therefore, the PM is burned and removed before the pressure loss increases. It is necessary to regenerate the honeycomb filter. However, under normal diesel engine operating conditions, exhaust gas temperatures that are high enough to burn PM are rarely obtained. For example, alumina, which is a high specific surface area material, is mixed with rare earth oxides such as platinum group metals and cerium oxide. A catalyst-supporting honeycomb filter in which the supported oxidation catalyst is integrally supported is being put to practical use. If such a catalyst-supporting honeycomb filter is employed, the combustion reaction of the collected PM is promoted by the catalyst, and PM can be burned and removed.

ハニカムフィルタは、PMの捕集効率が高いことと、圧力損失が小さいことが要求されるが、この両方を同時に満足することは容易ではない。ハニカムフィルタの圧力損失は、以下の4つの損失の合計、すなわち、排気ガスが排気ガス流入側端面8から流入する際の入口損失、排気ガスが隔壁2を通過する際の隔壁損失、排気ガスが流路3、4を流れる際の隔壁との摩擦による流路損失、そして、排気ガスが排気ガス流出側端面9から流出する際の出口損失の合計であると考えられている。中でも上記隔壁損失がフィルタ全体の圧力損失の大部分を占めていると考えられているため、圧力損失を低減するためには、隔壁の細孔径と気孔率が大きいことが望ましいが、隔壁の細孔径と気孔率を大きくすることは、PMの捕集効率の低下につながる。したがって、古くから、隔壁の平均細孔径や気孔率の最適値を求める努力が行われてきたが、現在では既に更なる改良の余地はほとんどない状況になっている。   The honeycomb filter is required to have high PM collection efficiency and low pressure loss, but it is not easy to satisfy both of them simultaneously. The pressure loss of the honeycomb filter is the sum of the following four losses, that is, the inlet loss when the exhaust gas flows from the exhaust gas inflow side end face 8, the partition loss when the exhaust gas passes through the partition wall 2, and the exhaust gas It is considered to be the total of the flow path loss due to friction with the partition wall when flowing through the flow paths 3 and 4 and the outlet loss when the exhaust gas flows out from the exhaust gas outflow side end face 9. In particular, since the partition wall loss is considered to occupy most of the pressure loss of the entire filter, in order to reduce the pressure loss, it is desirable that the partition wall has a large pore diameter and porosity. Increasing the pore size and porosity leads to a decrease in PM collection efficiency. Accordingly, since long ago, efforts have been made to obtain optimum values of the average pore diameter and porosity of the partition walls, but at present there is almost no room for further improvement.

一方、ハニカムフィルタの構造、特に隔壁の構造に着目したハニカムフィルタも古くから検討されており、例えば特許文献1には、隔壁に吹抜孔を設けたり、封止部を有しない流路を設けることで、圧力損失を低減したハニカムフィルタが記載されている。しかしながら、このような構造のハニカムフィルタでは、PMの捕集効率は低減する。また、特許文献2には、ハニカムフィルタの排気ガス流入側端面で開口した流路の総開口面積を、排気ガス流出側端面で開口した流路の総開口面積よりも大きくしたハニカムフィルタが記載されている。しかしながら、このような構造のハニカムフィルタでは、排気ガス流出側端面で開口した流路の総開口面積が、図5に示すハニカムフィルタよりも小さくなり、出口損失が大きくなる。さらに、特許文献3には、排気ガス流入側端面で開口した流路の横断面形状を六角形とし、この流路を構成する6面の隔壁を介して、横断面形状を三角形とした排気ガス流出側端面が開口した流路が接する構造のハニカムフィルタが開示されている。このハニカムフィルタは、排気ガス流入側端面で開口した流路の開口面積を大きくし、排気ガス流入側端面での開口率(流路の総開口面積/ハニカムフィルタの端面面積)を60〜70%とすることで、圧力損失を小さくできるとしている。   On the other hand, a honeycomb filter that focuses on the structure of the honeycomb filter, in particular, the structure of the partition wall has been studied for a long time. For example, in Patent Document 1, a blow hole is provided in the partition wall or a flow path having no sealing portion is provided. The honeycomb filter with reduced pressure loss is described. However, in the honeycomb filter having such a structure, the PM collection efficiency is reduced. Patent Document 2 describes a honeycomb filter in which the total opening area of the flow path opened at the exhaust gas inflow side end face of the honeycomb filter is larger than the total opening area of the flow path opened at the exhaust gas outflow side end face. ing. However, in the honeycomb filter having such a structure, the total opening area of the flow path opened at the end face on the exhaust gas outflow side is smaller than that of the honeycomb filter shown in FIG. 5, and the outlet loss is increased. Further, Patent Document 3 discloses an exhaust gas having a hexagonal cross-sectional shape of a flow path opened at an end surface on the exhaust gas inflow side, and a triangular cross-sectional shape through a six-surface partition that constitutes the flow path. A honeycomb filter having a structure in which a flow path having an open end surface is in contact is disclosed. In this honeycomb filter, the opening area of the flow path opened at the end face on the exhaust gas inflow side is increased, and the opening ratio (total opening area of the flow path / end face area of the honeycomb filter) at the end face on the exhaust gas inflow side is 60 to 70%. By doing so, the pressure loss can be reduced.

特公平1−27767号公報Japanese Patent Publication No. 1-27676 特公平3−49608号公報Japanese Patent Publication No. 3-49608 特開平5−68828号公報Japanese Patent Laid-Open No. 5-68828 特開2004−251266号公報JP 2004-251266 A 特公平3−68210号公報Japanese Examined Patent Publication No. 3-68210

上記特許文献3に記載のハニカムフィルタは、現在一般的に使用されている図5に示す流路の横断面形状が四角形であるハニカムフィルタに比べて隔壁の総面積が小さく、したがって排気ガスが隔壁を通過する際の隔壁損失が大きくなると考えられるが、排気ガス流入側端面での開口率を大きくし、入口損失を小さくすることで、ハニカムフィルタの圧力損失を低減できることを見出した点で画期的なものである。しかしながら、特許文献3に記載のハニカムフィルタは以下の問題点がある。   The honeycomb filter described in Patent Document 3 has a smaller partition wall area than the honeycomb filter in which the cross-sectional shape of the flow channel shown in FIG. It is thought that the partition wall loss will increase when passing through the filter, but it is a revolutionary point that the pressure loss of the honeycomb filter can be reduced by increasing the aperture ratio at the exhaust gas inflow end face and reducing the inlet loss. Is something. However, the honeycomb filter described in Patent Document 3 has the following problems.

特許文献3に記載のハニカムフィルタは、排気ガス流入側端面で開口した流路の断面積を大きくした影響で、流路の両端を交互に目封止し、千鳥模様状に封止部を設けた図5に示すハニカムフィルタと比較して、排気ガス流出側端面において開口した流路の断面積が小さく開口率が小さいため、この断面積の大きさによっては出口損失が大きくなり、ハニカムフィルタの圧力損失が大きくなる虞がある。また、流出側端面が開口した流路の断面積が小さいため、この流路を排気ガスが流れる際の流路損失も大きくなり、ハニカムフィルタの圧力損失が大きくなる虞がある。   In the honeycomb filter described in Patent Document 3, both ends of the flow path are alternately plugged due to the effect of increasing the cross-sectional area of the flow path opened at the exhaust gas inflow side end face, and sealing portions are provided in a staggered pattern. Compared with the honeycomb filter shown in FIG. 5, the cross-sectional area of the flow path opened at the end face on the exhaust gas outflow side is small and the aperture ratio is small. Therefore, depending on the size of this cross-sectional area, the outlet loss becomes large. There is a risk of increased pressure loss. In addition, since the cross-sectional area of the flow path having the open end face is small, the flow path loss when the exhaust gas flows through the flow path increases, and the pressure loss of the honeycomb filter may increase.

本発明は、上記問題に鑑みてなされたもので、排気ガス流出側端面での開口率を小さくすることなく排気ガス流入側端面での開口率を大きくすることで、圧力損失を低減したハニカムフィルタを得ることにある。   The present invention has been made in view of the above problems, and has a honeycomb filter with reduced pressure loss by increasing the opening ratio at the exhaust gas inflow side end face without reducing the opening ratio at the exhaust gas outflow side end face. There is in getting.

本発明のハニカムフィルタは、セラミックハニカム構造体の所望の流路を封止部で目封止したハニカムフィルタであって、排気ガス流入側端面で開口して排気ガス流出側を目封止した流出側封止流路と、排気ガス流出側端面で開口して排気ガス流入側を目封止した流入側封止流路と、両端を開口し、かつ、前記流出側封止流路の封止部および前記流入側封止流路の封止部から流路方向に離れた中間部を目封止した中間封止流路を備え、前記流出側封止流路の数(A)と前記流入側封止流路の数(B)と前記中間封止流路の数(C)及びその合計(N)との関係が、A/N≦1/2、かつ、B≦C≦Aであり、前記流出側封止流路は該流路を構成する隔壁の少なくとも1面を介して前記流入側封止流路に接することを特徴とする。   The honeycomb filter of the present invention is a honeycomb filter in which a desired flow path of a ceramic honeycomb structure is plugged with a sealing portion, and an outflow in which an exhaust gas inflow side is opened and plugged in an exhaust gas outflow side. A side sealing channel, an inflow side sealing channel that opens at the end surface of the exhaust gas outflow side and plugs the exhaust gas inflow side, and opens at both ends and seals the outflow side sealing channel And an intermediate sealing channel that plugs an intermediate part that is separated from the sealing part of the inflow side sealing channel in the channel direction, and the number (A) of the outflow side sealing channels and the inflow The relationship between the number of side sealing channels (B), the number of intermediate sealing channels (C), and the total (N) is A / N ≦ 1/2 and B ≦ C ≦ A The outflow side sealed flow path is in contact with the inflow side sealed flow path through at least one surface of a partition wall constituting the flow path.

また本発明のハニカムフィルタは、前記流出側封止流路は、該流路を構成する隔壁の面を介して前記流入側封止流路と前記中間封止流路とにのみ接することが好ましい。   In the honeycomb filter of the present invention, it is preferable that the outflow side sealing flow path is in contact with only the inflow side sealing flow path and the intermediate sealing flow path through a surface of a partition wall constituting the flow path. .

また本発明のハニカムフィルタは、前記流路の横断面形状が略四角形であることが好ましい。   In the honeycomb filter of the present invention, it is preferable that the cross-sectional shape of the flow path is a substantially square shape.

また本発明のハニカムフィルタは、前記ハニカムフィルタの横断面における隔壁が延伸する2方向に、前記流出側封止流路と、前記流入側封止流路と、前記中間封止流路とをこの順番で配置していることが好ましい。   In the honeycomb filter of the present invention, the outflow side sealing flow path, the inflow side sealing flow path, and the intermediate sealing flow path are arranged in two directions in which the partition walls in the cross section of the honeycomb filter extend. It is preferable to arrange in order.

また本発明のハニカムフィルタは、前記中間封止流路における封止部の前端面と前記流入側封止流路における封止部の後端面との流路方向の距離が、前記流入側封止流路における封止部の後端面から前記流出側封止流路における封止部の前端面までの流路方向の距離の35〜60%であることが好ましい。   In the honeycomb filter of the present invention, the distance in the flow direction between the front end surface of the sealing portion in the intermediate sealing flow channel and the rear end surface of the sealing portion in the inflow side sealing flow channel is the inflow side sealing. It is preferably 35 to 60% of the distance in the flow path direction from the rear end face of the sealing part in the flow path to the front end face of the sealing part in the outflow side sealing flow path.

また本発明のハニカムフィルタは、前記流入側封止流路における封止部の前端面を、実質的に前記セラミックハニカム構造体の排気ガス流入側端面から離れて配置していることが好ましい。   In the honeycomb filter of the present invention, it is preferable that the front end face of the sealing portion in the inflow side sealing flow path is disposed substantially away from the exhaust gas inflow side end face of the ceramic honeycomb structure.

また本発明のハニカムフィルタは、前記隔壁に触媒を担持していることが好ましい。   In the honeycomb filter of the present invention, it is preferable that a catalyst is supported on the partition wall.

(本発明の作用効果)
本発明の作用と効果を、図を用いて説明する。図1は、本発明のハニカムフィルタの1例の構造を示す模式図である。図1において、ハニカムフィルタ10は、排気ガス流入側端面8で開口して排気ガス流出側を目封止した流出側封止流路3と、排気ガス流出側端面9で開口して排気ガス流入側を目封止した流入側封止流路4と、流路の両端を開口し、かつ、流出側封止流路3の封止部6cおよび流入側封止流路4の封止部6aから流路方向に離れた中間部を目封止した中間封止流路5を備えている。また、流出側封止流路3、流入側封止流路4、および中間封止流路5は各流路に封止部を1ヶのみ備えている。そして、流出側封止流路3の数(A)と流入側封止流路4の数(B)と中間封止流路5の数(C)との合計(N:N=A+B+C)に対する流出側封止流路3の数(A)の割合(A/N)を1/2としている。なお、流出側封止流路3、流入側封止流路4、および、中間封止流路5の詳細な定義については後述する。本発明のハニカムフィルタは、A/N≦1/2とすることで、排気ガスがハニカムフィルタ10から流出する際の出口損失を、図5に示す両端を千鳥模様状に封止部を有するハニカムフィルタ50と同等以下とすることができる。上記のA/Nの値が1/2より小さくなるほど出口損失を低減することができる。A/Nの値が1/2より大きくなると、両端を千鳥模様状に封止部を有するハニカムフィルタより出口損失が増大し、その結果ハニカムフィルタの圧力損失が大きくなる。
(Operational effect of the present invention)
The operation and effect of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing the structure of an example of the honeycomb filter of the present invention. In FIG. 1, the honeycomb filter 10 is opened at the exhaust gas inflow side end face 8 and plugged at the exhaust gas outflow side, and the exhaust gas inflow side is opened at the exhaust gas outflow side end face 9. The inflow side sealed flow path 4 whose side is plugged, the both ends of the flow path are opened, the sealing portion 6c of the outflow side sealing flow path 3, and the sealing portion 6a of the inflow side sealed flow path 4 The intermediate sealing flow path 5 which plugged the intermediate part which left | separated from the flow path direction from is provided. Moreover, the outflow side sealing flow path 3, the inflow side sealing flow path 4, and the intermediate sealing flow path 5 are provided with only one sealing portion in each flow path. And with respect to the sum (N: N = A + B + C) of the number (A) of the outflow side sealing flow paths 3, the number (B) of the inflow side sealing flow paths 4, and the number (C) of the intermediate sealing flow paths 5. The ratio (A / N) of the number (A) of the outflow side sealing flow paths 3 is ½. The detailed definitions of the outflow side sealing channel 3, the inflow side sealing channel 4, and the intermediate sealing channel 5 will be described later. In the honeycomb filter of the present invention, by setting A / N ≦ 1/2, the exit loss when the exhaust gas flows out of the honeycomb filter 10 is shown, and the honeycomb filter having both ends shown in FIG. It can be equal to or less than that of the filter 50. As the A / N value becomes smaller than ½, the exit loss can be reduced. When the value of A / N is larger than ½, the outlet loss increases as compared with the honeycomb filter having the sealing portions in the staggered pattern at both ends, and as a result, the pressure loss of the honeycomb filter increases.

また本発明では、流出側封止流路の数(A)と流入側封止流路の数(B)と中間封止流路の数(C)及びその合計(N)との関係を、A/N≦1/2、かつ、B≦C≦Aとしている。したがって流入側封止流路の数(B)は1/2×Nより小さくなり、ハニカムフィルタの流入側の開口面積が大きくなることで、排気ガスがハニカムフィルタに流入する際の入口損失が低減し、ハニカムフィルタの圧力損失が小さくなる。さらにB≦Cとすることにより、すなわち、流入側封止流路4の数(B)が少ないほど、ハニカムフィルタの流入側の開口面積が大きくなり、ハニカムフィルタの圧力損失が小さくなる。例えば、図1に示すハニカムフィルタ10では、A/N=1/2とし、流入側封止流路4の数(B)と中間封止流路5の数(C)との合計は1/2×Nとなり、B=1/6×N、C=1/3×Nとしている。一方、中間封止流路5の数(C)を多くして、流出側封止流路3の数(A)より多くなると、排気ガスが有効に通過する隔壁2、詳しくは隔壁2bの総面積が減少し、隔壁損失が増加するため、ハニカムフィルタの圧力損失が大きくなる。よって、C≦Aとする必要がある。   In the present invention, the relationship between the number of outflow side sealed channels (A), the number of inflow side sealed channels (B), the number of intermediate sealed channels (C), and the total (N), A / N ≦ 1/2 and B ≦ C ≦ A. Therefore, the number (B) of the inflow side sealing flow paths is smaller than 1/2 × N, and the opening area on the inflow side of the honeycomb filter is increased, thereby reducing the inlet loss when the exhaust gas flows into the honeycomb filter. In addition, the pressure loss of the honeycomb filter is reduced. Furthermore, by setting B ≦ C, that is, the smaller the number (B) of the inflow side sealing channels 4, the opening area on the inflow side of the honeycomb filter becomes larger, and the pressure loss of the honeycomb filter becomes smaller. For example, in the honeycomb filter 10 shown in FIG. 1, A / N = 1/2, and the total of the number (B) of the inflow side sealing channels 4 and the number (C) of the intermediate sealing channels 5 is 1 / N. 2 × N, where B = 1/6 × N and C = 1/3 × N. On the other hand, when the number (C) of the intermediate sealed flow paths 5 is increased to be larger than the number (A) of the outflow side sealed flow paths 3, the partition walls 2 through which the exhaust gas effectively passes, specifically, the total number of the partition walls 2b. Since the area decreases and the partition wall loss increases, the pressure loss of the honeycomb filter increases. Therefore, it is necessary to satisfy C ≦ A.

上記の本発明の構成、すなわち流出側封止流路の数(A)と流入側封止流路の数(B)と中間封止流路の数(C)及びその合計(N)との関係を、A/N≦1/2、かつ、B≦C≦Aとした構成は、たとえば特許文献4の図10に記されたハニカムフィルタや、特許文献5の図12に記されたハニカムフィルタと類似するものである。しかしながら本発明は以下の点で特許文献4の図10および特許文献5の図12に記されたハニカムフィルタと異なる。   The above-described configuration of the present invention, that is, the number of outflow side sealing channels (A), the number of inflow side sealing channels (B), the number of intermediate sealing channels (C), and the total (N) The configuration in which the relationship is A / N ≦ 1/2 and B ≦ C ≦ A is, for example, the honeycomb filter described in FIG. 10 of Patent Document 4 or the honeycomb filter described in FIG. Is similar. However, the present invention differs from the honeycomb filter described in FIG. 10 of Patent Document 4 and FIG. 12 of Patent Document 5 in the following points.

すなわち、B≦Cの関係が成立しながらも、極端に流入側封止流路4の数(B)を減少させて、中間封止流路5の数(C)を増加させた場合や、流路を構成する隔壁の面を介して中間封止流路5のみと接する流出側封止流路3が多数存在する場合には、排気ガスが有効に通過する隔壁2、詳しくは隔壁2aの総面積が減少し、隔壁損失が増加するが、本発明では、流出側封止流路3は該流路を構成する隔壁2の少なくとも1面を介して流入側封止流路4と接する構成としており、これにより流入側封止流路4の数(B)の最小値は制限され、したがって、中間封止流路5の数(C)の最大値が制限されるので、ハニカムフィルタの圧力損失を小さくすることができる。ここで、流出側封止流路3が該流路を構成する隔壁2の少なくとも1面を介して流入側封止流路4と接するとは、例えば図7(a)において、流出側封止流路3に対して流入側封止流路4がDとして示す流路の少なくとも1つに存在することを意味し、隔壁2の交点10を介して接するEが流入側封止流路4である場合を含まない。同様に例えば流路の横断面形状が円の場合には、図7(b)に示すように、流出側封止流路3に対して流入側封止流路4がDとして示す流路の少なくとも1つに存在することを意味し、Eが流入側封止流路4である場合を含まない。   That is, while the relationship of B ≦ C is established, the number (B) of the inflow side sealing channels 4 is extremely decreased and the number (C) of the intermediate sealing channels 5 is increased. When there are a large number of outflow side sealed flow paths 3 that are in contact with only the intermediate sealed flow path 5 through the surfaces of the partition walls constituting the flow path, the partition wall 2 through which the exhaust gas effectively passes, specifically, the partition wall 2a In the present invention, the outflow side sealing flow path 3 is in contact with the inflow side sealing flow path 4 through at least one surface of the partition wall 2 constituting the flow path, although the total area is reduced and the partition wall loss is increased. As a result, the minimum value of the number (B) of the inflow side sealing channels 4 is limited, and therefore the maximum value of the number (C) of the intermediate sealing channels 5 is limited. Loss can be reduced. Here, the outflow side sealing flow path 3 is in contact with the inflow side sealing flow path 4 via at least one surface of the partition wall 2 constituting the flow path. For example, in FIG. This means that the inflow side sealed flow path 4 is present in at least one of the flow paths indicated by D with respect to the flow path 3, and E in contact through the intersection 10 of the partition wall 2 is the inflow side sealed flow path 4. Does not include cases. Similarly, for example, when the cross-sectional shape of the flow channel is a circle, as shown in FIG. It means that it exists in at least one, and the case where E is the inflow side sealing flow path 4 is not included.

ここで、流出側封止流路3、流入側封止流路4、中間封止流路5と各流路の封止部(6c、6a、6b)の詳細な定義について説明する。各流路の封止部(6c、6a、6b)の流路方向の位置が、排気ガス流入側端面8近傍、排気ガス流出側端面9近傍、および中間部とに明確に3つのグループに分離されている場合、例えば図1に示すハニカムフィルタ10の場合には、排気ガス流入側端面8に接する封止部6aが存在する流路が流入側封止流路4であり、排気ガス流出側端面9に接する封止部6cが存在する流路が流出側封止流路3であることが明確に判断できるが、場合によっては、流出側封止流路3、流入側封止流路4、および、中間封止流路5が明確に区別できないことも考えられる。よって、本発明において、各流路が明確に区別できない場合には各流路(3、4、5)および封止部(6c、6a、6b)の定義を以下のようにする。まず、流出側封止流路3の封止部6cとは、流出側封止流路3、流入側封止流路4、および中間封止流路5のNヶの各封止部6c、6a、6bのうち、図8に示す封止部の前端面(6af、6bf、6cf)の流路方向の位置が、排気ガス流出側端面9に近い順にN/3番目にある封止部の前端面の流路方向の位置をPとし、各封止部の後端面(6ar、6br、6cr)の流路方向の位置が前記Pの位置よりも排気ガス流出側端面9に近い方に存在する封止部とする。次に、中間封止流路5の封止部6bとは、残りの封止部6a、6bがMヶ存在するとし、この封止部6a、6bのうち、封止部の前端面(6af、6bf)の流路方向の位置が、排気ガス流出側端面9に近い順にM/2番目にある封止部の前端面の流路方向の位置をQとし、各封止部の後端面(6ar、6br)の流路方向の位置が前記Qの位置よりも排気ガス流出側端面9に近い方に存在する封止部とする。そして、残りの封止部を上流側封止流路4の封止部6aとする。例えば図8の模式図に示すハニカムフィルタ80において、流出側封止流路3、流入側封止流路4、および中間封止流路5のN=12ヶの各封止部6c、6a、6bのうち、前端面(6cf、6af、6bf)の流路方向の位置が、排気ガス流出側端面9に近い順に4番目(N=12よりN/3=4番目)にある封止部6cxの前端面の流路方向の位置をPとし、各封止部の後端面(6cr、6ar、6br)の流路方向の位置が前記Pの位置よりも排気ガス流出側端面9に近い方に存在する封止部を流出側封止流路3の封止部6cとする。残りの封止部6a、6bがM=6ヶ存在し、この封止部6a、6bのうち、前端面(6af、6bf)の流路方向の位置が、排気ガス流出側端面9に近い順に3番目(M=6よりM/2=3番目)にある封止部6bxの前端面の流路方向の位置をQとし、各封止部の後端面(6ar、6br)の流路方向の位置が前記Qの位置よりも排気ガス流出側端面9に近い方に存在する封止部を中間封止流路5の封止部6bとする。そして、残りの封止部を上流側封止流路4の封止部6aとする。なお、N/3およびM/2の値が整数でないときは、小数点以下1位を四捨五入するものとする。また、封止部の前端面が平面でない場合は、前記前端面の最も流出側端面9に近い部分を前端面の流路方向の位置とし、同様に封止部の後端面が平面でない場合は、前記後端面の最も排気ガス流入側端面8に近い部分を後端面の流路方向の位置とする。   Here, the detailed definition of the outflow side sealing flow path 3, the inflow side sealing flow path 4, the intermediate sealing flow path 5, and the sealing portions (6c, 6a, 6b) of the respective flow paths will be described. The position of the sealing portion (6c, 6a, 6b) of each flow path is clearly separated into three groups in the vicinity of the exhaust gas inflow end face 8, near the exhaust gas outflow end face 9, and the intermediate section. For example, in the case of the honeycomb filter 10 shown in FIG. 1, the flow path in which the sealing portion 6a in contact with the exhaust gas inflow side end face 8 is the inflow side sealing flow path 4, and the exhaust gas outflow side Although it can be clearly determined that the flow path in which the sealing portion 6c in contact with the end surface 9 is the outflow side sealed flow path 3, depending on the case, the outflow side sealed flow path 3 and the inflow side sealed flow path 4 It is also conceivable that the intermediate sealing flow path 5 cannot be clearly distinguished. Therefore, in the present invention, when the respective channels cannot be clearly distinguished, the definitions of the respective channels (3, 4, 5) and the sealing portions (6c, 6a, 6b) are as follows. First, the sealing portion 6c of the outflow side sealing flow path 3 refers to the N sealing portions 6c of the outflow side sealing flow path 3, the inflow side sealing flow path 4, and the intermediate sealing flow path 5, 6a and 6b, the position of the front end face (6af, 6bf, 6cf) of the sealing part shown in FIG. 8 in the flow path direction is N / 3th in order of the exhaust gas outflow side end face 9. The position of the front end face in the flow path direction is P, and the position of the rear end face (6ar, 6br, 6cr) of each sealing portion in the flow path direction is closer to the exhaust gas outflow side end face 9 than the P position. It is set as the sealing part to perform. Next, the sealing portion 6b of the intermediate sealing flow path 5 is assumed that there are M remaining sealing portions 6a and 6b, and of these sealing portions 6a and 6b, the front end surface (6af) of the sealing portion. 6bf), the position in the flow direction of the front end face of the sealing portion located in the M / 2th order in the order closer to the exhaust gas outlet side end face 9 is Q, and the rear end face ( 6ar, 6br) is a sealing portion that is located closer to the exhaust gas outflow side end face 9 than the position Q. And let the remaining sealing part be the sealing part 6a of the upstream side sealing flow path 4. For example, in the honeycomb filter 80 shown in the schematic diagram of FIG. 8, N = 12 sealing portions 6c, 6a of the outflow side sealing channel 3, the inflow side sealing channel 4, and the intermediate sealing channel 5 are provided. 6b, the sealing portion 6cx in which the position of the front end face (6cf, 6af, 6bf) in the flow path direction is fourth (N / 3 = 4th from N = 12) in order from the end face 9 on the exhaust gas outflow side. The position of the front end face in the flow path direction is P, and the position of the rear end face (6cr, 6ar, 6br) of each sealing portion in the flow path direction is closer to the exhaust gas outflow side end face 9 than the position of P. Let the existing sealing part be the sealing part 6 c of the outflow side sealing flow path 3. There are M = 6 remaining sealing portions 6a and 6b, and the positions of the front end surfaces (6af and 6bf) in the flow path direction of the sealing portions 6a and 6b are closer to the exhaust gas outflow side end surface 9. The position in the flow direction of the front end face of the sealing part 6bx that is the third (M / 2 = 3 from M = 6) is Q, and the flow direction of the rear end face (6ar, 6br) of each sealing part is A sealing portion whose position is closer to the exhaust gas outflow side end face 9 than the position of Q is defined as a sealing portion 6 b of the intermediate sealing flow path 5. And let the remaining sealing part be the sealing part 6a of the upstream side sealing flow path 4. When the values of N / 3 and M / 2 are not integers, the first decimal place is rounded off. Further, when the front end surface of the sealing portion is not flat, the portion closest to the outflow side end surface 9 of the front end surface is the position in the flow direction of the front end surface, and similarly when the rear end surface of the sealing portion is not flat. The portion of the rear end surface that is closest to the exhaust gas inflow side end surface 8 is the position of the rear end surface in the flow path direction.

本発明のハニカムフィルタは、図1に示すハニカムフィルタ10のように、流出側封止流路3は該流路を構成する隔壁2の面を介して流入側封止流路4と中間封止流路5とにのみ接していることが好ましい。すなわち、流出側封止流路3は該流路を構成する隔壁2の面を介して流出側封止流路3同士で接していないことが好ましい。これにより、図6(b)に示すように隔壁2を介して流出側封止流路3同士で接した場合の、該隔壁を排気ガスは実質的に通過しないことによる隔壁損失の増加を防ぎ、ハニカムフィルタの圧力損失をより小さくする。なお、本発明では、完全に全ての流出側封止流路3に対して、上記構成を要求するものではない。すなわち、意図的に或いは不可抗力により、一部の流出側封止流路3に対して、該流路を構成する隔壁2の全ての面を介して流入側封止流路4と接していないものが存在しても良く、また、一部の流出側封止流路3に対して、該流路を構成する隔壁2の少なくとも1面を介して他の流出側封止流路3と接するものが存在しても良く、少なくとも流出側封止流路3の80%の流出側封止流路に対して、該流路を構成する隔壁2の少なくとも1面を介して流入側封止流路4と接する、または、隔壁2の面を介して流入側封止流路4と中間封止流路5とにのみ接する構成が成立すればよい。   In the honeycomb filter of the present invention, like the honeycomb filter 10 shown in FIG. 1, the outflow side sealing flow path 3 is intermediately sealed with the inflow side sealing flow path 4 through the surface of the partition wall 2 constituting the flow path. It is preferable that only in contact with the flow path 5. That is, it is preferable that the outflow side sealing flow paths 3 are not in contact with each other through the surface of the partition wall 2 constituting the flow path. As a result, as shown in FIG. 6B, when the outflow side sealed flow paths 3 are in contact with each other via the partition wall 2, an increase in partition wall loss due to substantially no exhaust gas passing through the partition wall is prevented. The pressure loss of the honeycomb filter is further reduced. In the present invention, the above configuration is not required for all the outflow side sealed flow paths 3. That is, a part of the outflow side sealed flow channel 3 that is not in contact with the inflow side sealed flow channel 4 through all the surfaces of the partition walls 2 constituting the flow channel, intentionally or by force majeure. In addition, a part of the outflow side sealed flow path 3 is in contact with another outflow side sealed flow path 3 through at least one surface of the partition wall 2 constituting the flow path. And at least 80% of the outflow side sealed flow path of the outflow side sealed flow path 3 through at least one surface of the partition wall 2 constituting the flow path. 4 or a configuration in which only the inflow side sealing channel 4 and the intermediate sealing channel 5 are in contact with each other through the surface of the partition wall 2 may be established.

また、図1に示すハニカムフィルタ10のように、流路(流出側封止流路3、流入側封止流路4、中間封止流路5)の横断面形状が略四角形であることが好ましい。流路の横断面形状を略四角形とすることで、ハニカムフィルタの押出し成形時に使用する口金の制作を容易にし、製造コストの低減に貢献する。ここで、略四角形とは、正方形、長方形の他、台形、平行四辺形などを含み、流路垂直方向断面において、一つの流路の周りに4つの隔壁交点10が存在するものをいう。   Further, like the honeycomb filter 10 shown in FIG. 1, the cross-sectional shape of the flow paths (outflow side sealing flow path 3, inflow side sealing flow path 4, and intermediate sealing flow path 5) is substantially rectangular. preferable. By making the cross-sectional shape of the flow path into a substantially square shape, it is easy to produce a die used at the time of extrusion molding of the honeycomb filter, and contributes to a reduction in manufacturing cost. Here, the substantially quadrangular shape includes a square shape, a rectangular shape, a trapezoidal shape, a parallelogram shape, and the like, and in the cross section in the vertical direction of the flow path, there are four partition intersections 10 around one flow path.

また本発明のハニカムフィルタは、流路を構成する隔壁2の気孔率は55〜75%で、平均細孔径は10〜40μmとすることが好ましい。隔壁2の気孔率が55%未満、または、平均細孔径が10μm未満の場合は、ハニカムフィルタの排気ガス流入側端面8の開口率を大きくして入口損失が低下しても、排気ガスが隔壁を通過する際の隔壁損失が増加して、ハニカムフィルタの圧力損失が大きくなる虞がある。また、隔壁の気孔率が75%より大きい場合、または、平均細孔径が40μmより大きい場合は、PMの捕集率が低下したり、ハニカムフィルタの強度が弱く、使用中に破損する虞がある。   In the honeycomb filter of the present invention, the partition walls 2 constituting the flow channel preferably have a porosity of 55 to 75% and an average pore diameter of 10 to 40 μm. When the porosity of the partition walls 2 is less than 55% or the average pore diameter is less than 10 μm, even if the opening ratio of the exhaust gas inflow end face 8 of the honeycomb filter is increased and the inlet loss is reduced, the exhaust gas is separated from the partition walls. There is a possibility that the partition wall loss when passing through the filter increases and the pressure loss of the honeycomb filter increases. In addition, when the porosity of the partition walls is larger than 75%, or when the average pore diameter is larger than 40 μm, the PM collection rate is lowered, or the strength of the honeycomb filter is weak and may be damaged during use. .

図2は、本発明のハニカムフィルタの別の1例の構造を示す図である。図2に示すハニカムフィルタ20では、流出側封止流路の数(A)と流入側封止流路の数(B)と中間封止流路の数(C)及びその合計(N)との関係を、A/N≦1/2、かつ、B≦C≦Aとなるように、A/N=1/2、C=1/4×N、B=1/4×Nとしている。そして、流出側封止流路3は該流路を構成する4面の前記隔壁2のうち、2面を介して流入側封止流路4と接すると共に、他の2面の隔壁2を介して中間封止流路5で接している。この構造とすることにより、図2に示すハニカムフィルタ20は、図5に示すような両端を千鳥模様状に封止部を有するハニカムフィルタと比較して、圧力損失を低減することができる。   FIG. 2 is a view showing the structure of another example of the honeycomb filter of the present invention. In the honeycomb filter 20 shown in FIG. 2, the number of outflow side sealing channels (A), the number of inflow side sealing channels (B), the number of intermediate sealing channels (C), and the total (N) Are set to A / N = 1/2, C = 1/4 × N, and B = 1/4 × N so that A / N ≦ 1/2 and B ≦ C ≦ A. The outflow side sealing flow path 3 is in contact with the inflow side sealing flow path 4 through two surfaces of the four partition walls 2 constituting the flow path, and through the other two surfaces of the partition walls 2. The intermediate sealing flow path 5 is in contact. By adopting this structure, the honeycomb filter 20 shown in FIG. 2 can reduce pressure loss as compared with a honeycomb filter having sealing portions in a zigzag pattern at both ends as shown in FIG.

図3は、本発明のハニカムフィルタの別の1例の構造を示す図である。図3に示すハニカムフィルタ30では、流出側封止流路の数(A)と流入側封止流路の数(B)と中間封止流路の数(C)及びその合計(N)との関係を、A/N≦1/2、かつ、B≦C≦Aとなるように、A/N=1/3、C=1/3×N、B=1/3×Nとしている。そして、流出側封止流路3は該流路を構成する4面の隔壁2のうち、2面を介して流入側封止流路4と接すると共に、他の2面の隔壁2を介して中間封止流路5で接している。さらに、図3に示すハニカムフィルタ30においては、図3(a)に示すように、ハニカムフィルタ30の横断面における隔壁2が延伸する2方向、すなわち図の紙面上の上下、左右方向に、流出側封止流路3と、流入側封止流路4と、中間封止流路5とをこの順番で配置している。この構成とすることにより、図3に示すハニカムフィルタ30は、図5に示すような両端を千鳥模様状に封止部を有するハニカムフィルタと比較して、圧力損失を低減することができる。   FIG. 3 is a view showing the structure of another example of the honeycomb filter of the present invention. In the honeycomb filter 30 shown in FIG. 3, the number of outflow side sealing channels (A), the number of inflow side sealing channels (B), the number of intermediate sealing channels (C), and the total (N) Are set to A / N = 1/3, C = 1/3 × N, and B = 1/3 × N so that A / N ≦ 1/2 and B ≦ C ≦ A. The outflow side sealing flow path 3 is in contact with the inflow side sealing flow path 4 through two surfaces of the four partition walls 2 constituting the flow path and through the other two surfaces of the partition walls 2. The intermediate sealing flow path 5 is in contact. Further, in the honeycomb filter 30 shown in FIG. 3, as shown in FIG. 3A, the honeycomb filter 30 flows out in two directions in which the partition walls 2 extend in the cross section of the honeycomb filter 30, that is, in the vertical and horizontal directions on the drawing sheet. The side sealing flow path 3, the inflow side sealing flow path 4, and the intermediate sealing flow path 5 are arranged in this order. With this configuration, the honeycomb filter 30 shown in FIG. 3 can reduce pressure loss as compared with a honeycomb filter having sealing portions in a staggered pattern at both ends as shown in FIG.

また本発明において、中間封止流路5における封止部6bの前端面6bfと流入側封止流路4における封止部6aの後端面6arとの流路方向の距離Xが、流入側封止流路4における封止部6aの後端面6arから流出側封止流路3における封止部6cの前端面6cfまでの流路方向の距離Lの35〜60%であることが好ましいのは、以下の理由による。例えば図2に示すハニカムフィルタ20において、中間封止流路5における封止部6bの前端面6bfと流入側封止流路4における封止部6aの後端面6arとの流路方向の距離Xが大きいほど、中間封止流路5aに流入した排気ガスが、隣接する流出側封止流路3へ通過するために機能する隔壁2aの面積が増大し、隔壁損失が減少する。また反対に、中間封止流路5における封止部6bの前端面6bfと流入側封止流路4における封止部6aの後端面6arとの流路方向の距離Xが短くなるほど、流出側封止流路3から中間封止流路5の封止部6bより下流側の流路5bへ通過するために機能する隔壁2bの面積が増大し、隔壁損失が減少する。したがって、中間封止流路5における封止部6bの前端面6bfと流入側封止流路4における封止部6aの後端面6arとの流路方向の距離Xを、流入側封止流路4における封止部6aの後端面6arから流出側封止流路4における封止部6cの前端面6cfまでの流路方向の距離Lの35〜60%とすることが、圧力損失をより低減したハニカムフィルタを得るために好適である。なお本発明では、上記距離Xは、中間封止流路5における封止部6bの前端面6bfのうち排気ガス流出側端面9から最も離れているものと、流入側封止流路4における封止部6aの後端面6arのうち排気ガス流出側端面9に最も近いものとの流路方向距離とし、上記距離Lは流入側封止流路4における封止部6aの後端面6arのうち排気ガス流出側端面9に最も近いものと、流出側封止流路4における封止部6cの前端面6cfのうち排気ガス流出側端面9から最も離れているものとの流路方向距離と定義する。   In the present invention, the distance X in the flow direction between the front end face 6bf of the sealing portion 6b in the intermediate sealing flow path 5 and the rear end face 6ar of the sealing portion 6a in the inflow side sealing flow path 4 is the inflow side sealing. It is preferably 35 to 60% of the distance L in the flow path direction from the rear end face 6ar of the sealing part 6a in the stop flow path 4 to the front end face 6cf of the sealing part 6c in the outflow side sealing flow path 3. For the following reasons. For example, in the honeycomb filter 20 shown in FIG. 2, the distance X in the flow path direction between the front end face 6 bf of the sealing part 6 b in the intermediate sealing flow path 5 and the rear end face 6 ar of the sealing part 6 a in the inflow side sealing flow path 4. Is larger, the area of the partition wall 2a that functions for the exhaust gas flowing into the intermediate sealing channel 5a to pass to the adjacent outlet-side sealing channel 3 increases, and the partition loss decreases. On the other hand, as the distance X in the flow channel direction between the front end surface 6bf of the sealing portion 6b in the intermediate sealing flow channel 5 and the rear end surface 6ar of the sealing portion 6a in the inflow side sealing flow channel 4 decreases, the outflow side decreases. The area of the partition wall 2b that functions to pass from the sealing channel 3 to the channel 5b downstream of the sealing portion 6b of the intermediate sealing channel 5 increases, and the partition loss decreases. Accordingly, the distance X in the flow direction between the front end surface 6bf of the sealing portion 6b in the intermediate sealing flow channel 5 and the rear end surface 6ar of the sealing portion 6a in the inflow side sealing flow channel 4 is defined as the inflow side sealing flow channel. 35 to 60% of the distance L in the flow path direction from the rear end face 6ar of the sealing part 6a in the flow path 4 to the front end face 6cf of the sealing part 6c in the outflow side sealing flow path 4 further reduces the pressure loss. This is suitable for obtaining a honeycomb filter. In the present invention, the distance X is equal to that of the front end surface 6bf of the sealing portion 6b in the intermediate sealing flow path 5 that is farthest from the exhaust gas outflow side end face 9 and the sealing in the inflow side sealing flow path 4. The distance in the flow path direction from the rear end surface 6ar of the stop portion 6a closest to the exhaust gas outflow side end surface 9 is the distance L, and the distance L is the exhaust gas of the rear end surface 6ar of the sealing portion 6a in the inflow side sealing flow channel 4. It is defined as the distance in the direction of the flow path between the one closest to the gas outflow side end surface 9 and the one farthest from the exhaust gas outflow side end surface 9 of the front end surface 6cf of the sealing portion 6c in the outflow side sealing flow channel 4. .

また、封止部6a〜6cの流路方向長さは、3〜40mmが好ましい。封止部の流路方向長さは、小さいほど排気ガスが有効に通過する隔壁面積が増大するため隔壁損失が小さくなり、圧力損失の低下に寄与する。一方、封止部の流路方向長さは、大きいほど封止部の強度の増加、及び、封止部と隔壁との接合強度の増加に寄与する。封止部の流路方向長さのより好ましい範囲は、5〜30mmである。また、隔壁のピッチは大きいほどハニカムフィルタの両端面での開口率が向上し、隔壁のピッチが小さいほど排気ガスが有効に通過する隔壁面積が増大し、隔壁に触媒を担持する場合は排気ガスと触媒との接触確率が向上するので、隔壁のピッチは0.5mm以上2.5mm未満とすることが好ましい。また、隔壁の厚さは厚いほどハニカムフィルタの強度が向上し、薄いほどハニカムフィルタの両端面での開口率が向上するので、隔壁の厚さは0.1〜0.4mmとすることが好ましい。 Moreover, 3-40 mm is preferable for the flow path direction length of the sealing parts 6a-6c. The smaller the length in the flow path direction of the sealing portion, the larger the partition wall area through which the exhaust gas passes, the smaller the partition wall loss, which contributes to the reduction in pressure loss. On the other hand, as the length of the sealing portion in the flow path direction increases, the strength of the sealing portion increases and the bonding strength between the sealing portion and the partition wall increases. A more preferable range of the length in the flow path direction of the sealing portion is 5 to 30 mm. Also, the larger the partition pitch, the higher the aperture ratio at both end faces of the honeycomb filter. The smaller the partition pitch, the larger the partition area through which the exhaust gas passes, and when the catalyst is supported on the partition, the exhaust gas The contact probability between the catalyst and the catalyst is improved, so that the partition wall pitch is preferably 0.5 mm or more and less than 2.5 mm. Moreover, the strength of the honeycomb filter is improved as the partition wall thickness is increased, and the aperture ratio at both end faces of the honeycomb filter is improved as the partition wall is thinner. Therefore, the partition wall thickness is preferably 0.1 to 0.4 mm. .

また本発明において、流入側封止流路4における封止部6aの前端面6afを、実質的に前記セラミックハニカム構造体の排気ガス流入側端面8から離れて配置することが好ましいのは、以下の理由による。流入側封止流路4の封止部6aの前端面6afが、ハニカムフィルタの排気ガス流入側端面8と同一面に存在する場合や排気ガス流入側端面8より突出している場合は、PMが封止部6aの前端面6afに堆積、成長し、このPMの堆積物が流出側封止流路3と中間封止流路5の開口部を封鎖する虞がある。このPMを除去するために、ハニカムフィルタの上流側に酸化触媒(以下前置酸化触媒と略す)を設置して、更にその上流側より排気ガス中へ燃料を添加することで、燃料を酸化触媒中で酸化させ排気ガスの温度をPMの燃焼温度まで上げることで、堆積したPMを燃焼除去する技術が知られているが、車両上の狭いスペース上に更に前置酸化触媒を設置するスペースを確保することは困難である場合が多い。本発明では、図4に示すように、流入側封止流路4の封止部6aの前端面6afを排気ガス流入側端面8から離れて配置することで、該封止部の前端面6afにPMが堆積しても、流路の内部に堆積するため、PMの堆積物が流出側封止流路3と中間封止流路5の開口部を封鎖する虞が減少し、更に、流入側封止流路4の封止部5aより上流側の隔壁2に酸化触媒を担持し、該隔壁を上記の前置酸化触媒と同機能を持たせることで、上記PMの堆積物を燃焼除去することができる。   In the present invention, it is preferable to dispose the front end face 6af of the sealing portion 6a in the inflow side sealing flow path 4 substantially away from the exhaust gas inflow side end face 8 of the ceramic honeycomb structure. Because of the reason. When the front end surface 6af of the sealing portion 6a of the inflow side sealing flow path 4 is on the same plane as the exhaust gas inflow side end surface 8 of the honeycomb filter or protrudes from the exhaust gas inflow side end surface 8, PM is There is a possibility that the PM deposits and grows on the front end face 6af of the sealing portion 6a, and the PM deposits block the openings of the outflow side sealing flow path 3 and the intermediate sealing flow path 5. In order to remove this PM, an oxidation catalyst (hereinafter abbreviated as a pre-oxidation catalyst) is installed on the upstream side of the honeycomb filter, and fuel is further added to the exhaust gas from the upstream side to thereby remove the fuel from the oxidation catalyst. The technology to burn and remove the accumulated PM by raising the temperature of the exhaust gas to the combustion temperature of PM is known, but there is a space to install a pre-oxidation catalyst on a narrow space on the vehicle. It is often difficult to secure. In the present invention, as shown in FIG. 4, the front end surface 6af of the sealing portion 6a of the inflow side sealing flow path 4 is disposed away from the exhaust gas inflow side end surface 8, thereby the front end surface 6af of the sealing portion. Even if PM accumulates on the inside of the flow path, it accumulates inside the flow path, so that the possibility of PM deposits blocking the openings of the outflow side sealed flow path 3 and the intermediate sealed flow path 5 is reduced. An oxidation catalyst is supported on the partition wall 2 upstream of the sealing portion 5a of the side sealing flow path 4, and the partition deposits have the same function as the pre-oxidation catalyst, so that the PM deposits are removed by combustion. can do.

本発明により、排気ガス流出側端面での開口率を小さくすることなく排気ガス流入側端面での開口率を大きくすることで、圧力損失を低減したハニカムフィルタを得ることができる。   According to the present invention, a honeycomb filter with reduced pressure loss can be obtained by increasing the aperture ratio at the exhaust gas inflow side end surface without decreasing the aperture ratio at the exhaust gas outflow side end surface.

次に本発明を実施例により具体的に説明するが、これら実施例により本発明が限定されるものではない。
(実施例1)
本実施例1にあたり、図1に示すハニカムフィルタ10を製造した。このハニカムフィルタ10は、コーディエライト質セラミックからなり、外径267mm、長さ320mm、隔壁厚さ0.3mm、隔壁ピッチ1.5mmである。また、流出側封止流路3の数(A)と流入側封止流路4の数(B)と中間封止流路5の数(C)との合計(N:N=A+B+C)に対する流出側封止流路3の数(A)の割合(A/N)を1/2とし、B≦C≦AとなるようにB=1/6×N、C=1/3×Nとなるように、各流路を図1(a)に示すパターンで配置した。具体的には本実施例1のハニカムフィルタ10の流出側封止流路3の数(A)は12000ヶ、流入側封止流路4の数(B)は4000ヶ、中間封止流路5の数(C)は8000ヶとなった。さらに、流出側封止流路3はこの流路を構成する隔壁2の面を介して流入側封止流路4と中間封止流路5とにのみ接している。このハニカムフィルタ10は、まず公知の方法でセラミックハニカム構造体の一端を市松模様状に目封止し、これをハニカムフィルタ10の流出側封止流路3の封止部6cとし、他端を図1に示す中間封止流路5の封止部6bとなる位置を目封止し、長さ170mmのハニカムフィルタを製造し、次に別の長さ150mmのセラミックハニカム構造体を準備し、このセラミックハニカム構造体の一端を図1に示す流入側封止流路4の封止部6aとなる位置を目封止したハニカムフィルタを製造し、先に製造したハニカムフィルタと接着剤により接合一体化することで、ハニカムフィルタ10を製造した。なお、封止部6a、6b、6cの流路方向長さは何れも10mmとしている。したがって、中間封止流路5における封止部6bの前端面6bfと流入側封止流路4における封止部6aの後端面6arとの流路方向の距離Xは、流入側封止流路4における封止部6aの後端面6arから流出側封止流路3における封止部6cの前端面6cfまでの流路方向の距離Lの46.7%である。上記のようにして得たハニカムフィルタ20へ空気を15Nm/minの流量で通過させ、このときのハニカムフィルタの上流側と下流側との差圧を測定し、圧力損失を求めた。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.
Example 1
In Example 1, the honeycomb filter 10 shown in FIG. 1 was manufactured. The honeycomb filter 10 is made of cordierite ceramic and has an outer diameter of 267 mm, a length of 320 mm, a partition wall thickness of 0.3 mm, and a partition wall pitch of 1.5 mm. Further, with respect to the sum (N: N = A + B + C) of the number (A) of the outflow side sealing channels 3, the number (B) of the inflow side sealing channels 4, and the number (C) of the intermediate sealing channels 5. The ratio (A / N) of the number (A) of the outflow side sealing flow paths 3 is ½, and B = 1/6 × N and C = 1/3 × N so that B ≦ C ≦ A. Each flow path was arranged in the pattern shown in FIG. Specifically, the number (A) of the outflow side sealing channels 3 of the honeycomb filter 10 of Example 1 is 12,000, the number (B) of the inflow side sealing channels 4 is 4000, and the intermediate sealing channels. The number (C) of 5 was 8000. Furthermore, the outflow side sealing flow path 3 is in contact with only the inflow side sealing flow path 4 and the intermediate sealing flow path 5 through the surface of the partition wall 2 constituting this flow path. In this honeycomb filter 10, first, one end of a ceramic honeycomb structure is plugged in a checkered pattern by a known method, and this is used as a sealing portion 6c of the outflow side sealing flow path 3 of the honeycomb filter 10, and the other end is connected. Plugging the position to be the sealing portion 6b of the intermediate sealing flow path 5 shown in FIG. 1 to produce a honeycomb filter having a length of 170 mm, and then preparing another ceramic honeycomb structure having a length of 150 mm, A honeycomb filter is manufactured in which one end of the ceramic honeycomb structure is plugged at a position to be the sealing portion 6a of the inflow side sealing flow path 4 shown in FIG. As a result, the honeycomb filter 10 was manufactured. Note that the lengths of the sealing portions 6a, 6b, and 6c in the flow path direction are all 10 mm. Therefore, the distance X in the flow path direction between the front end surface 6bf of the sealing portion 6b in the intermediate sealing flow path 5 and the rear end surface 6ar of the sealing portion 6a in the inflow side sealing flow path 4 is the inflow side sealing flow path. 46.7% of the distance L in the flow path direction from the rear end face 6ar of the sealing part 6a in FIG. 4 to the front end face 6cf of the sealing part 6c in the outflow side sealing flow path 3. Air was passed through the honeycomb filter 20 obtained as described above at a flow rate of 15 Nm 3 / min. At this time, the differential pressure between the upstream side and the downstream side of the honeycomb filter was measured to obtain the pressure loss.

(実施例2)
本実施例2は、実施例1の流出側封止流路3と流入側封止流路4と中間封止流路5の配置のみを変更して、図3に示す配置とした以外は、実施例1と同様としたものである。すなわち本実施例2のハニカムフィルタ30は、流出側封止流路の数(A)と流入側封止流路の数(B)と中間封止流路の数(C)及びその合計(N)との関係を、A/N≦1/2、かつ、B≦C≦Aとなるように、A/N=1/3、C=1/3×N、B=1/3×Nとなるように、具体的には本実施例2のハニカムフィルタ30の流出側封止流路3の数(A)は8000ヶ、流入側封止流路4の数(B)は8000ヶ、中間封止流路5の数(C)は8000ヶとなった。そして、流出側封止流路3は該流路を構成する4面の隔壁2のうち、2面を介して流入側封止流路4と接すると共に、他の2面の隔壁2を介して中間封止流路5で接している。さらに、ハニカムフィルタ30の横断面における隔壁2が延伸する2方向に、流出側封止流路3と、流入側封止流路4と、中間封止流路5とをこの順番で配置している。図3に示す本実施例2のハニカムフィルタ30の圧力損失を実施例1と同様に求めた。
(Example 2)
Example 2 is different from the example 1 in that the arrangement of the outflow side sealing flow path 3, the inflow side sealing flow path 4 and the intermediate sealing flow path 5 is changed to the arrangement shown in FIG. This is the same as Example 1. That is, in the honeycomb filter 30 of Example 2, the number of outflow side sealing channels (A), the number of inflow side sealing channels (B), the number of intermediate sealing channels (C), and the total (N ), A / N = 1/3, C = 1/3 × N, and B = 1/3 × N so that A / N ≦ 1/2 and B ≦ C ≦ A. Specifically, the number (A) of the outflow side sealing channels 3 of the honeycomb filter 30 of Example 2 is 8000, the number (B) of the inflow side sealing channels 4 is 8000, and the middle. The number (C) of the sealing flow paths 5 was 8000. The outflow side sealing flow path 3 is in contact with the inflow side sealing flow path 4 through two surfaces of the four partition walls 2 constituting the flow path and through the other two surfaces of the partition walls 2. The intermediate sealing flow path 5 is in contact. Further, the outflow side sealing flow path 3, the inflow side sealing flow path 4, and the intermediate sealing flow path 5 are arranged in this order in two directions in which the partition walls 2 in the cross section of the honeycomb filter 30 extend. Yes. The pressure loss of the honeycomb filter 30 of Example 2 shown in FIG. 3 was determined in the same manner as Example 1.

(比較例1)
本比較例1にあたり、図5に示すハニカムフィルタ50を製造した。このハニカムフィルタ50は、図5に示すように、ハニカムフィルタ50の両端に千鳥模様状に封止部を有し中間封止流路が存在しない、すなわち、流入側封止流路と流出側封止流路を交互に配置していること以外は、実施例1と同様のものであり、その全長は320mmである。図5に示す本比較例1のハニカムフィルタ50の圧力損失を実施例1と同様に求めた。
(Comparative Example 1)
In this comparative example 1, a honeycomb filter 50 shown in FIG. 5 was manufactured. As shown in FIG. 5, this honeycomb filter 50 has sealing portions in a staggered pattern at both ends of the honeycomb filter 50, and there is no intermediate sealing channel, that is, the inflow side sealing channel and the outflow side sealing. Except that the stop flow paths are alternately arranged, it is the same as that of Example 1, and its total length is 320 mm. The pressure loss of the honeycomb filter 50 of the present comparative example 1 shown in FIG.

実施例1〜2にて測定したハニカムフィルタの圧力損失の値と、比較例1にて測定したハニカムフィルタの圧力損失の値を、表1に示す。表1にて、圧力損失の値は、比較例1のハニカムフィルタ50の圧力損失の値を100として示している。表1より、本発明のハニカムフィルタの圧力損失は、両端に千鳥模様状に封止部を有するハニカムフィルタと比較して排気ガス流出側端面での開口率を同等以上とすることで、圧力損失を低減できることがわかる。   Table 1 shows the pressure loss value of the honeycomb filter measured in Examples 1 and 2 and the pressure loss value of the honeycomb filter measured in Comparative Example 1. In Table 1, the value of pressure loss is shown with the value of pressure loss of the honeycomb filter 50 of Comparative Example 1 being 100. From Table 1, the pressure loss of the honeycomb filter according to the present invention is such that the opening ratio at the exhaust gas outflow side end face is equal to or higher than that of the honeycomb filter having sealing portions in a staggered pattern at both ends. It can be seen that can be reduced.

(比較例2)
本比較例2は、実施例1における中間封止流路5の一部を流出側封止流路3と置換して図6に示す配置とした以外は、実施例1と同様としたものである。具体的には本比較例2のハニカムフィルタ60の流出側封止流路3の数(A)は16000ヶ、流入側封止流路4の数(B)は4000ヶ、中間封止流路5の数(C)は4000ヶとなった。図6に示す本比較例2のハニカムフィルタ60の圧力損失を実施例1と同様に求め、その値を表1に示す。本比較例2におけるハニカムフィルタ60は、流路を上記配置とすることで、流出側封止流路3と流入側封止流路4と中間封止流路5との総数(N)と流出側封止流路3の数(A)との関係がA/N>1/2となり、また、流出側封止流路3を構成する4面の隔壁2を介して流入側封止流路4に隣接しない流出側封止流路3が存在することにより、比較例1の両端に千鳥模様状に封止部を有するハニカムフィルタと比較して、ハニカムフィルタの圧力損失が悪化することがわかる。
(Comparative Example 2)
This Comparative Example 2 is the same as Example 1 except that a part of the intermediate sealed flow path 5 in Example 1 is replaced with the outflow side sealed flow path 3 to obtain the arrangement shown in FIG. is there. Specifically, the number (A) of the outflow side sealing channels 3 of the honeycomb filter 60 of Comparative Example 2 is 16000, the number (B) of the inflow side sealing channels 4 is 4000, and the intermediate sealing channels. The number (C) of 5 was 4000 pieces. The pressure loss of the honeycomb filter 60 of this comparative example 2 shown in FIG. 6 was determined in the same manner as in Example 1, and the values are shown in Table 1. In the honeycomb filter 60 in Comparative Example 2, the total number (N) of the outflow side sealing channel 3, the inflow side sealing channel 4, and the intermediate sealing channel 5 and the outflow are set by arranging the channels as described above. The relationship with the number (A) of the side sealing channels 3 is A / N> 1/2, and the inflow side sealing channels are provided via the four-surface partition walls 2 constituting the outflow side sealing channel 3. It can be seen that the presence of the outflow side sealing flow path 3 not adjacent to 4 deteriorates the pressure loss of the honeycomb filter as compared with the honeycomb filter having the sealing portions in the staggered pattern at both ends of Comparative Example 1. .

(比較例3)
本比較例3は、実施例1のハニカムフィルタ10の上流側と下流側を逆にして、すなわち下流側端面9より排気ガスを流入したものである。実施例1と同様にハニカムフィルタの圧力損失を測定した結果を表1に示す。本比較例3では、流出側封止流路3の数(A=4000ヶ)と流入側封止流路4の数(B=8000ヶ)と中間封止流路5の数(C=12000ヶ)との関係が、B>C>Aとなり、圧力損失の値が比較例1のハニカムフィルタよりさらに悪化した。
(Comparative Example 3)
In Comparative Example 3, the upstream side and the downstream side of the honeycomb filter 10 of Example 1 are reversed, that is, exhaust gas is introduced from the downstream end face 9. The results of measuring the pressure loss of the honeycomb filter in the same manner as in Example 1 are shown in Table 1. In this comparative example 3, the number of outflow side sealed channels 3 (A = 4000), the number of inflow side sealed channels 4 (B = 8000), and the number of intermediate sealed channels 5 (C = 12000). The relationship between the pressure loss and the honeycomb filter of Comparative Example 1 was further deteriorated.

Figure 2007222858
Figure 2007222858

(実施例3〜7)
本実施例3〜7は、実施例1における中間封止流路5の封止部6bの位置を流路方向に移動させ、図2に示す距離X/Lを変化させた以外は実施例1と同様としたものである。ただし、実施例6と7のみは、中間封止流路5の封止部6bの流路方向長さを、それぞれ30mm、40mmとした。実施例1と同様に圧力損失を測定した結果を表2に示す。表2にて、圧力損失の値は、比較例1のハニカムフィルタ50の圧力損失の値を100として示している。表2より、X/Lの値が35〜65の範囲にあるとき、圧力損失が比較例1に示す両端に千鳥模様状に封止部を設けたハニカムフィルタの圧力損失に比較して9割以下と小さくなり、本発明の効果が大きくなることが分かる。
(Examples 3 to 7)
In Examples 3 to 7, Example 1 was performed except that the position of the sealing portion 6b of the intermediate sealing channel 5 in Example 1 was moved in the channel direction and the distance X / L shown in FIG. 2 was changed. It is the same as that. However, only in Examples 6 and 7, the length in the flow direction of the sealing portion 6b of the intermediate sealing flow channel 5 was set to 30 mm and 40 mm, respectively. The results of measuring the pressure loss in the same manner as in Example 1 are shown in Table 2. In Table 2, the value of pressure loss is shown with the value of pressure loss of the honeycomb filter 50 of Comparative Example 1 being 100. From Table 2, when the value of X / L is in the range of 35 to 65, the pressure loss is 90% compared to the pressure loss of the honeycomb filter provided with the sealing portions in the staggered pattern at both ends shown in Comparative Example 1. It can be seen that the effect of the present invention is increased by reducing the following.

Figure 2007222858
Figure 2007222858

(実施例8〜9)
本実施例8に使用するハニカムフィルタは、上記実施例2における図3に示す排気ガス流入側端面8に、両端に封止部を有しない長さが50mmのハニカム構造体を接合一体化して、図4に示すように上流側封止流路4の封止部6aの前端面6afが排気ガス流入側端面8より離れて配置されたものである。この図4に示すハニカムフィルタ50の圧力損失を実施例1と同様に測定すると、圧力損失の値は実施例2における図3に示すハニカムフィルタ30と略同じであった。次に、本実施例8のハニカムフィルタ40の排気ガス流入側端面8側より微粒子発生器により空気流量10Nm/minで、粒径0.042μmのカーボン粉を3g/hで2時間投入した。その後再度圧力損失を測定した。また、実施例9として、実施例2における図3に示すハニカムフィルタ30に対して、上記と同様に排気ガス流入側端面8側より微粒子発生器により空気流量10Nm/minで、粒径0.042μmのカーボン粉を3g/hで2時間投入した後に、圧力損失を測定した。カーボン粉を投入した後の圧力損失の値を表3に示す。表3において、圧力損失の値は、実施例9の圧力損失の値を100として示している。実施例8では、流入側端面8にカーボン粉が堆積しても、流出側封止流路3と中間封止流路5の開口部を封鎖するように成長しにくいために、カーボン粉を投入した後でも圧力損失が大きくなりにくいことが分かる。
(Examples 8 to 9)
The honeycomb filter used in this Example 8 was joined and integrated with a honeycomb structure having a length of 50 mm that does not have sealing portions at both ends, on the exhaust gas inflow side end surface 8 shown in FIG. As shown in FIG. 4, the front end face 6af of the sealing portion 6a of the upstream side sealing flow path 4 is arranged away from the exhaust gas inflow side end face 8. When the pressure loss of the honeycomb filter 50 shown in FIG. 4 was measured in the same manner as in Example 1, the value of the pressure loss was substantially the same as that of the honeycomb filter 30 shown in FIG. Next, carbon powder having a particle size of 0.042 μm was charged at 3 g / h for 2 hours from the exhaust gas inflow side end face 8 side of the honeycomb filter 40 of Example 8 with a fine particle generator at an air flow rate of 10 Nm 3 / min. Thereafter, the pressure loss was measured again. Further, as Example 9, with respect to the honeycomb filter 30 shown in FIG. 3 in Example 2, an air flow rate of 10 Nm 3 / min and a particle size of 0. After introducing 042 μm carbon powder at 3 g / h for 2 hours, the pressure loss was measured. Table 3 shows the value of pressure loss after the carbon powder is charged. In Table 3, the value of pressure loss is shown with the value of pressure loss of Example 9 as 100. In Example 8, even if carbon powder accumulates on the inflow side end face 8, carbon powder is added because it is difficult to grow so as to block the openings of the outflow side sealing flow path 3 and the intermediate sealing flow path 5. It can be seen that the pressure loss does not easily increase even after the operation.

Figure 2007222858
Figure 2007222858

本発明のハニカムフィルタの1例を示した模式図である。It is the schematic diagram which showed one example of the honeycomb filter of this invention. 本発明のハニカムフィルタの別の1例を示した模式図である。It is the schematic diagram which showed another example of the honeycomb filter of this invention. 本発明のハニカムフィルタの別の1例を示した模式図である。It is the schematic diagram which showed another example of the honeycomb filter of this invention. 本発明のハニカムフィルタの別の1例を示した模式図である。It is the schematic diagram which showed another example of the honeycomb filter of this invention. 従来のハニカムフィルタを示した模式図である。It is the schematic diagram which showed the conventional honeycomb filter. 比較例2で使用したハニカムフィルタの流路の配置を示した模式図である。6 is a schematic diagram showing the arrangement of flow paths of a honeycomb filter used in Comparative Example 2. FIG. 本発明の流路の位置関係の例を説明する図である。It is a figure explaining the example of the positional relationship of the flow path of this invention. 本発明の流路と封止部の定義を説明する模式図である。It is a schematic diagram explaining the definition of the flow path and sealing part of this invention.

符号の説明Explanation of symbols

1:外周壁
2、2a、2b:隔壁
3:流出側封止流路
4:流入側封止流路
5、5a、5b:中間封止流路
6a、6b、6c:封止部
8:排気ガス流入側端面
9:排気ガス流出側端面
10:隔壁の交点
1: Outer wall 2, 2a, 2b: Partition wall 3: Outflow side sealed flow path 4: Inflow side sealed flow path 5, 5a, 5b: Intermediate sealed flow paths 6a, 6b, 6c: Sealing portion 8: Exhaust Gas inflow end face 9: Exhaust gas outflow end face 10: Intersection of partition walls

Claims (7)

セラミックハニカム構造体の所望の流路を封止部で目封止したハニカムフィルタであって、排気ガス流入側端面で開口して排気ガス流出側を目封止した流出側封止流路と、排気ガス流出側端面で開口して排気ガス流入側を目封止した流入側封止流路と、両端を開口し、かつ、前記流出側封止流路の封止部および前記流入側封止流路の封止部から流路方向に離れた中間部を目封止した中間封止流路を備え、前記流出側封止流路の数(A)と前記流入側封止流路の数(B)と前記中間封止流路の数(C)及びその合計(N)との関係が、A/N≦1/2、かつ、B≦C≦Aであり、前記流出側封止流路は該流路を構成する隔壁の少なくとも1面を介して前記流入側封止流路に接することを特徴とするハニカムフィルタ。   A honeycomb filter in which a desired flow path of a ceramic honeycomb structure is plugged with a sealing portion, an outflow side sealing flow path that is open at an exhaust gas inflow side end face and plugs an exhaust gas outflow side; An inflow side sealing flow path that opens at the exhaust gas outflow side end face and plugs the exhaust gas inflow side; and both ends of the inflow side sealing flow path, and the sealing portion of the outflow side sealing flow path and the inflow side sealing An intermediate sealed flow path that plugs an intermediate portion that is separated from the sealed portion of the flow path in the flow path direction, the number of the outflow side sealed flow paths (A) and the number of the inflow side sealed flow paths; The relationship between (B) and the number (C) of the intermediate sealing channels and the total (N) is A / N ≦ 1/2 and B ≦ C ≦ A, and the outflow side sealing flow A honey-comb filter characterized by a path | route being in contact with the said inflow side sealing flow path through at least 1 surface of the partition which comprises this flow path. 前記流出側封止流路は、該流路を構成する隔壁の面を介して前記流入側封止流路と前記中間封止流路とにのみ接することを特徴とする請求項1に記載のハニカムフィルタ。   The said outflow side sealing flow path contacts only the said inflow side sealing flow path and the said intermediate | middle sealing flow path through the surface of the partition which comprises this flow path. Honeycomb filter. 前記流路の横断面形状が略四角形であることを特徴とする請求項1〜2のいずれかに記載のハニカムフィルタ。   The honeycomb filter according to any one of claims 1 to 2, wherein a cross-sectional shape of the flow path is a substantially square shape. 前記ハニカムフィルタの横断面における隔壁が延伸する2方向に、前記流出側封止流路と、前記流入側封止流路と、前記中間封止流路とをこの順番で配置していることを特徴とする請求項3に記載のハニカムフィルタ。   The outflow side sealing flow path, the inflow side sealing flow path, and the intermediate sealing flow path are arranged in this order in two directions in which the partition walls in the cross section of the honeycomb filter extend. The honeycomb filter according to claim 3, wherein the honeycomb filter is characterized in that: 前記中間封止流路における封止部の前端面と前記流入側封止流路における封止部の後端面との流路方向の距離が、前記流入側封止流路における封止部の後端面から前記流出側封止流路における封止部の前端面までの流路方向の距離の35〜60%であることを特徴とする請求項1〜4のいずれかに記載のハニカムフィルタ。   The distance in the channel direction between the front end surface of the sealing portion in the intermediate sealing channel and the rear end surface of the sealing portion in the inflow side sealing channel is the rear of the sealing portion in the inflow side sealing channel. The honeycomb filter according to any one of claims 1 to 4, wherein the honeycomb filter is 35 to 60% of a distance in a flow path direction from an end face to a front end face of a sealing portion in the outflow side sealed flow path. 前記流入側封止流路における封止部の前端面を、実質的に前記セラミックハニカム構造体の排気ガス流入側端面から離れて配置していることを特徴とする請求項1〜5のいずれかに記載のハニカムフィルタ。   The front end face of the sealing portion in the inflow side sealing flow path is disposed substantially away from the exhaust gas inflow side end face of the ceramic honeycomb structure. Honeycomb filter as described in. 前記隔壁に触媒を担持していることを特徴とする請求項1〜6のいずれかに記載のハニカムフィルタ。   The honeycomb filter according to any one of claims 1 to 6, wherein a catalyst is supported on the partition wall.
JP2006067078A 2006-01-27 2006-03-13 Ceramic honeycomb filter Pending JP2007222858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006067078A JP2007222858A (en) 2006-01-27 2006-03-13 Ceramic honeycomb filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006018491 2006-01-27
JP2006067078A JP2007222858A (en) 2006-01-27 2006-03-13 Ceramic honeycomb filter

Publications (1)

Publication Number Publication Date
JP2007222858A true JP2007222858A (en) 2007-09-06

Family

ID=38545155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006067078A Pending JP2007222858A (en) 2006-01-27 2006-03-13 Ceramic honeycomb filter

Country Status (1)

Country Link
JP (1) JP2007222858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228219A (en) * 2009-03-26 2010-10-14 Ngk Insulators Ltd Method of drying honeycomb molded product
WO2015133435A1 (en) * 2014-03-03 2015-09-11 住友化学株式会社 Honeycomb filter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928010A (en) * 1982-08-05 1984-02-14 Nippon Denso Co Ltd Structure to purify exhaust gas
JPS61138812A (en) * 1984-12-06 1986-06-26 ダイムラ−ベンツ・アクチエンゲゼルシャフト Exhaust gas filter for diesel engine
JPH04148013A (en) * 1990-10-10 1992-05-21 Nippon Soken Inc Filter for collecting particulate in exhaust gas
JPH05222913A (en) * 1992-02-14 1993-08-31 Nippon Soken Inc Exhaust emission control device
JP2004019498A (en) * 2002-06-13 2004-01-22 Toyota Motor Corp Emission gas purification filter type promoter
JP2004108202A (en) * 2002-09-17 2004-04-08 Hino Motors Ltd Particulate filter
JP2004251266A (en) * 2002-03-29 2004-09-09 Hitachi Metals Ltd Ceramic honeycomb filter type and exhaust gas purifying method
JP2004251137A (en) * 2003-02-18 2004-09-09 Ngk Insulators Ltd Honeycomb filter and exhaust emission control system
JP2005262210A (en) * 2004-02-18 2005-09-29 Hitachi Metals Ltd Ceramic honeycomb filter and device for cleaning exhaust gas

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928010A (en) * 1982-08-05 1984-02-14 Nippon Denso Co Ltd Structure to purify exhaust gas
JPS61138812A (en) * 1984-12-06 1986-06-26 ダイムラ−ベンツ・アクチエンゲゼルシャフト Exhaust gas filter for diesel engine
JPH04148013A (en) * 1990-10-10 1992-05-21 Nippon Soken Inc Filter for collecting particulate in exhaust gas
JPH05222913A (en) * 1992-02-14 1993-08-31 Nippon Soken Inc Exhaust emission control device
JP2004251266A (en) * 2002-03-29 2004-09-09 Hitachi Metals Ltd Ceramic honeycomb filter type and exhaust gas purifying method
JP2004019498A (en) * 2002-06-13 2004-01-22 Toyota Motor Corp Emission gas purification filter type promoter
JP2004108202A (en) * 2002-09-17 2004-04-08 Hino Motors Ltd Particulate filter
JP2004251137A (en) * 2003-02-18 2004-09-09 Ngk Insulators Ltd Honeycomb filter and exhaust emission control system
JP2005262210A (en) * 2004-02-18 2005-09-29 Hitachi Metals Ltd Ceramic honeycomb filter and device for cleaning exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228219A (en) * 2009-03-26 2010-10-14 Ngk Insulators Ltd Method of drying honeycomb molded product
WO2015133435A1 (en) * 2014-03-03 2015-09-11 住友化学株式会社 Honeycomb filter

Similar Documents

Publication Publication Date Title
US7806956B2 (en) Tuning particulate filter performance through selective plugging and use of multiple particulate filters to reduce emissions and improve thermal robustness
EP1125704B2 (en) Corrugated wall honeycomb structure and production method thereof
JP4639024B2 (en) Dust collection elements associated with methods of removing soot particles from exhaust gases
JP2010269205A (en) Catalyst for cleaning exhaust gas
JP2015120150A (en) Wall-flow filter with thin porous ceramic wall
JPWO2007094499A1 (en) Ceramic honeycomb filter and exhaust gas purification device
JP2006523526A (en) Porous sheet and substrate having one or more porous sheets for treating exhaust gases of combustion engine
WO2008026675A1 (en) Ceramic honeycomb filter
JP4006645B2 (en) Exhaust gas purification device
EP2191108A1 (en) Partial flow exhaust filter
JP2003278526A (en) Exhaust fine-particle collecting filter
CN106573229B (en) Oxidation catalyst for diesel engine
JP2004251266A (en) Ceramic honeycomb filter type and exhaust gas purifying method
JP2007222858A (en) Ceramic honeycomb filter
JP2005042687A (en) Exhaust emission control device and emission control method
JP2009006262A (en) Ceramic honeycomb filter
JP2006334459A (en) Ceramic honeycomb filter
JP2006102742A (en) Filter assembly for exhaust treatment apparatus
JP2012240007A (en) Multiple-pipe filter
JP5526388B2 (en) Exhaust gas purification filter and exhaust gas purification device
WO2019059032A1 (en) Exhaust gas purification filter
JP2004108202A (en) Particulate filter
JP2006336506A (en) Exhaust emission control device
JP2010248996A (en) Particulate filter
JP4570554B2 (en) Diesel engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121109