JP2006334459A - Ceramic honeycomb filter - Google Patents

Ceramic honeycomb filter Download PDF

Info

Publication number
JP2006334459A
JP2006334459A JP2005159263A JP2005159263A JP2006334459A JP 2006334459 A JP2006334459 A JP 2006334459A JP 2005159263 A JP2005159263 A JP 2005159263A JP 2005159263 A JP2005159263 A JP 2005159263A JP 2006334459 A JP2006334459 A JP 2006334459A
Authority
JP
Japan
Prior art keywords
exhaust gas
inflow side
ceramic honeycomb
porosity
honeycomb filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005159263A
Other languages
Japanese (ja)
Inventor
Hirohisa Suwabe
博久 諏訪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005159263A priority Critical patent/JP2006334459A/en
Priority to KR1020077013129A priority patent/KR20070095889A/en
Priority to CN2005800428278A priority patent/CN101080261B/en
Priority to PCT/JP2005/023684 priority patent/WO2006068256A1/en
Priority to EP05820087A priority patent/EP1837063B1/en
Priority to US11/722,537 priority patent/US7892309B2/en
Publication of JP2006334459A publication Critical patent/JP2006334459A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic honeycomb filter which can stably be used for a long period of time by preventing the pressure loss from increasing caused by leaving unburnt residue of PM in the end surface 45a of flowing-in side of the opening sealing part 45 of an exhaust gas flowing-in side in the case of depositing a large amount of PM on the end surface 45a of the flowing-in side of the opening-sealing part 45 of the exhaust gas flowing-in side by continuing the state of a low temperature of the exhaust gas, in a ceramic honeycomb filter arranging the opening sealing part of an exhaust gas flowing-in side apart from the end surface of an exhaust gas flowing-in side. <P>SOLUTION: In the ceramic honeycomb filter having such a structure that the exhaust gas is allowed to pass through the partition wall of a honeycomb structure by opening-sealing the desired flow passage of the porous ceramic honeycomb structure and arranging the opening-sealing part of the exhaust gas flowing-in side apart from the end surface of the exhaust gas flowing-in side, the porosity of the partition wall is 50-80%, and the porosity of the opening-sealing part of the exhaust gas flowing-in side is smaller than that of the partition wall. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ディーゼルエンジンから排出される粒子状物質を含む排気ガスを浄化するのに使用されるセラミックハニカムフィルタに関する。   The present invention relates to a ceramic honeycomb filter used for purifying exhaust gas containing particulate matter discharged from a diesel engine.

ディーゼルエンジンの排気ガス中には炭素質からなる煤と、高沸点炭化水素成分からなるSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とするPM(Particulate Matter:粒子状物質)が含まれており、これが大気中に放出されると、人体や環境に悪影響を与える。このため、ディーゼルエンジンの排気管の途中に、PMを捕集するためのフィルタを装着することが従来から行われている。図3は、自動車の排気ガス中のPMを捕集、浄化する、従来のハニカムフィルタの一例を示し、(a)は正面模式図、(b)は側断面模式図である。図3(a)(b)において、ハニカムフィルタ30は、多孔質セラミックからなり、外周壁1と、この外周壁1の内側に各々直交する隔壁2で仕切られた多数の流路3、4を有するハニカム構造体の流路が、排気ガスの流入側端面7と流出側端面8で交互に封止部5、6で封止されている。また、ハニカム構造体の外周壁1は、金属メッシュあるいはセラミックス製のマットなどで形成された把持部材(図示せず)で使用中に動かないように把持され、金属製収納容器(図示せず)内に配置されている。   The exhaust gas of a diesel engine contains PM (Particulate Matter: particulate matter) whose main components are soot made of carbon and SOF content (soluble organic fraction) consisting of high-boiling hydrocarbon components. If it is released into the atmosphere, it will adversely affect the human body and the environment. For this reason, it has been conventionally performed to install a filter for collecting PM in the exhaust pipe of a diesel engine. FIG. 3 shows an example of a conventional honeycomb filter that collects and purifies PM in the exhaust gas of an automobile, (a) is a schematic front view, and (b) is a schematic side sectional view. 3 (a) and 3 (b), the honeycomb filter 30 is made of a porous ceramic, and includes an outer peripheral wall 1 and a large number of flow paths 3 and 4 partitioned by partition walls 2 orthogonal to the inner side of the outer peripheral wall 1, respectively. The flow path of the honeycomb structural body is sealed by the sealing portions 5 and 6 alternately at the exhaust gas inflow end surface 7 and the outflow side end surface 8. Further, the outer peripheral wall 1 of the honeycomb structure is held so as not to move during use by a holding member (not shown) formed of a metal mesh or a ceramic mat or the like, and a metal storage container (not shown). Is placed inside.

図3に示すハニカムフィルタ30において、排気ガスの浄化は以下の通り行われる。排気ガス(点線矢印で示す)は、流入側端面7に開口している流路3から流入する。そして、排気ガス中に含まれるPMは、隔壁2を通過する際に捕集され、浄化された排気ガスは、流出側端面8に開口している流路4から流出、大気中に放出される。一方、隔壁2に捕集されたPMが多くなると、隔壁が目詰まりしてしまい圧力損失が増加してしまうので、圧力損失が増加する前に、PMを燃焼除去してハニカムフィルタを再生する必要がある。しかし、通常のディーゼルエンジンの運転状態では、PMが燃焼するほどの高い排気ガス温度が得られることが少ないため、例えば高比表面積材料であるアルミナに白金族金属や酸化セリウムなどの希土類酸化物を担持した酸化触媒を一体的に担持させた触媒担持型のハニカムフィルタの実用化が進められている。このような触媒担持型のハニカムフィルタを採用すれば、捕集されたPMの燃焼反応が触媒により促進されて、PMを燃焼、除去することが可能となる。   In the honeycomb filter 30 shown in FIG. 3, the exhaust gas is purified as follows. Exhaust gas (indicated by a dotted arrow) flows in from the flow path 3 opened in the inflow side end face 7. Then, PM contained in the exhaust gas is collected when passing through the partition wall 2, and the purified exhaust gas flows out from the flow path 4 opened in the outflow side end face 8 and is released into the atmosphere. . On the other hand, if the amount of PM collected in the partition wall 2 increases, the partition wall is clogged and the pressure loss increases. Therefore, before the pressure loss increases, it is necessary to regenerate the honeycomb filter by burning and removing PM. There is. However, under normal diesel engine operating conditions, exhaust gas temperatures that are high enough to burn PM are rarely obtained. For example, alumina, which is a high specific surface area material, is mixed with rare earth oxides such as platinum group metals and cerium oxide. A catalyst-supporting honeycomb filter in which the supported oxidation catalyst is integrally supported is being put to practical use. If such a catalyst-supporting honeycomb filter is employed, the combustion reaction of the collected PM is promoted by the catalyst, and PM can be burned and removed.

ところで、このような触媒担持型のハニカムフィルタを採用したとしても、排気ガス温度の低い運転状態が続くような、渋滞の市街地を走行するような場合には、触媒が活性とならずPMの燃焼除去が良好に行わない不具合が発生するため、特許文献1に記載の発明では、ディーゼルエンジンの運転状態に応じて、触媒物質を担持させたフィルタ上へのPMの堆積量を推定した上で、フィルタの上流側に燃料を未燃のまま噴射して、前記触媒物質上で、燃料の酸化反応を促し、その反応熱によりフィルタの内部温度を前記触媒物質の活性下限温度以上に維持することによって、堆積したPMを燃焼させる排気浄化方法が開示されている。しかしながら、このような燃料添加によるフィルタの強制再生を行うに際し、触媒物質における燃料の酸化反応は、下流側へ向かうにつれて触媒物質との接触頻度が増すことにより活性化してくるので、このフィルタでの温度分布は、排気ガス温度とほぼ等しい流入側端面の温度から下流側に向かうにつれ反応熱により徐々に上昇し、フィルタの流入側端面は常に触媒物質の活性度は低い状態にある。このため、排気ガス温度が低い運転状態が継続した場合、触媒物質の活性度が低くなっているフィルタ流入側端面7、特に排気ガス流入側目封止部5の排気ガス流入側端面に、PMが付着し易くなり、ここに付着したPMの堆積量が多くなることによりフィルタの流入側流路3の流入側端部が閉塞して、圧力損失が上昇する虞があった。   By the way, even when such a catalyst-carrying honeycomb filter is adopted, when the vehicle travels in a congested urban area where the exhaust gas temperature continues to be low, the catalyst becomes inactive and the PM burns. Since a problem that the removal is not performed properly occurs, the invention described in Patent Document 1 estimates the amount of PM deposited on the filter carrying the catalyst material according to the operation state of the diesel engine. By injecting fuel unburned upstream of the filter, promoting an oxidation reaction of the fuel on the catalyst material, and maintaining the internal temperature of the filter above the lower limit temperature of the catalyst material by the reaction heat An exhaust purification method for burning accumulated PM is disclosed. However, when the filter is forcibly regenerated by adding such fuel, the oxidation reaction of the fuel in the catalyst material is activated by increasing the contact frequency with the catalyst material toward the downstream side. The temperature distribution gradually increases due to the reaction heat from the temperature of the inflow side end face, which is substantially equal to the exhaust gas temperature, toward the downstream side, and the inflow side end face of the filter is always in a state of low activity of the catalyst substance. For this reason, when the operation state where the exhaust gas temperature is low continues, PM on the filter inflow side end surface 7 where the activity of the catalyst material is low, particularly the exhaust gas inflow side end surface of the exhaust gas inflow side plugging portion 5, Is likely to adhere, and the accumulated amount of PM adhering thereto increases, so that the inflow side end portion of the inflow side flow path 3 of the filter is blocked, and the pressure loss may increase.

このため、本出願人らは、特許文献2において、触媒担持型ハニカムフィルタの排気ガス流入側端部、特に排気ガス流入側目封止部の排気ガス流入側端面に、PMが堆積して圧力損失が上昇するのを防ぐ目的で、図4に示すような、多孔質セラミックハニカム構造体の隔壁及び/または目封止部の少なくとも一部に触媒物質が担持されているとともに、少なくとも一つの排気ガス流入側目封止部45が排気ガス流入側端面47より離れて配置されていることを特徴とするセラミックハニカムフィルタ40及び排気ガス浄化方法を開示している。このような構成のセラミックハニカムフィルタによれば、内燃機関運転中にセラミックハニカムフィルタ上へのPMの堆積量がある一定値以上になった際に、セラミックハニカムフィルタの温度を上昇させる目的で行うフィルタ上流への未燃の燃料及び/又は炭化水素ガス噴射時において、PMが付着、堆積しやすい流入側目封止部45の流入側端面45aがセラミックハニカムフィルタ内の温度の高い部位に配置されることから、当該部位に担持された触媒物質の活性度が高められるため、流入側目封止部端面45aでの微粒子の燃焼が容易に行われ、流入側目封止部端面45aへのPM堆積により発生する流路の閉塞を防ぐことができる。このため、長期に亘り安定して圧力損失の増加の少ないセラミックハニカムフィルタが得られる。   For this reason, the applicants in JP-A No. 2004-86400 have a pressure in which PM accumulates on the exhaust gas inflow side end portion of the catalyst-supporting honeycomb filter, particularly on the exhaust gas inflow side end surface of the exhaust gas inflow side plugging portion. For the purpose of preventing the loss from increasing, at least one exhaust gas and a catalyst material are supported on at least a part of the partition walls and / or plugging portions of the porous ceramic honeycomb structure as shown in FIG. A ceramic honeycomb filter 40 and an exhaust gas purification method are disclosed, in which the gas inflow side plugging portion 45 is arranged away from the exhaust gas inflow side end face 47. According to the ceramic honeycomb filter having such a configuration, the filter is used for the purpose of increasing the temperature of the ceramic honeycomb filter when the amount of PM deposited on the ceramic honeycomb filter exceeds a certain value during operation of the internal combustion engine. When injecting unburned fuel and / or hydrocarbon gas upstream, the inflow side end face 45a of the inflow side plugging portion 45 where PM easily adheres and accumulates is disposed at a high temperature portion in the ceramic honeycomb filter. Therefore, the activity of the catalyst material carried on the part is increased, so that the particulates are easily burned at the inflow side plugged portion end surface 45a, and the PM deposits on the inflow side plugged portion end surface 45a. Therefore, the blockage of the flow path generated by the above can be prevented. For this reason, a ceramic honeycomb filter can be obtained which is stable over a long period of time and has little increase in pressure loss.

特開2002−122015号公報JP 2002-122015 A 特開2004−251266号公報JP 2004-251266 A

しかしながら、本発明者らが提案した、多孔質セラミックハニカム構造体の隔壁及び/または目封止部の少なくとも一部に触媒物質が担持されているとともに、排気ガス流入側目封止部45が排気ガス流入側端面47より離れて配置されていることを特徴とするセラミックハニカムフィルタ40では、排気ガス温度の低い状態が続き、排気ガス流入側目封止部45の流入側端面45aにPMが多量に堆積した場合は、フィルタ上流へ未燃の燃料及び/又は炭化水素ガスを噴射によるフィルタの強制再生を行ったとしても、フィルタでの温度分布は、排気ガス温度とほぼ等しい流入側端面の温度から下流側に向かうにつれ反応熱により徐々に上昇することになるので、排気ガス流入側目封止部45より上流側の隔壁42uや排気ガス流入側目封止部45の触媒活性が不十分のため、燃え残ったPMが流入側端面45aに残留し、セラミックハニカムフィルタの圧力損失が上昇するという問題につながる場合もあった。   However, the catalyst material is supported on at least a part of the partition walls and / or plugging portions of the porous ceramic honeycomb structure proposed by the present inventors, and the exhaust gas inflow side plugging portions 45 are exhausted. In the ceramic honeycomb filter 40, which is disposed away from the gas inflow side end surface 47, the exhaust gas temperature continues to be low, and a large amount of PM is present on the inflow side end surface 45 a of the exhaust gas inflow side plugging portion 45. When the filter is forcedly regenerated by injecting unburned fuel and / or hydrocarbon gas upstream of the filter, the temperature distribution in the filter is the temperature of the inflow side end face that is substantially equal to the exhaust gas temperature. Since it gradually rises due to the reaction heat as it goes from the downstream side to the downstream side, the partition wall 42u upstream of the exhaust gas inflow side plugging portion 45 and the exhaust gas inflow side plugging Because the catalytic activity of the Department 45 is insufficient burning remaining PM remains in the inflow side end face 45a, the pressure loss of the ceramic honeycomb filter was also lead to a problem that rises.

本発明は、上記問題に鑑みてなされたもので、排気ガス流入側目封止部が排気ガス流入側端面から離れて配置されているセラミックハニカムフィルタにおいて、排気ガス温度の低い状態が続き、排気ガス流入側目封止部45の流入側端面45aにPMが多量に堆積した場合に、排気ガス流入側目封止部45の流入側端面45aに燃え残りのPMが残留して、圧力損失が上昇するのを防止し、長期に亘り安定して使用できるセラミックハニカムフィルタを提供することにある。   The present invention has been made in view of the above problems. In the ceramic honeycomb filter in which the exhaust gas inflow side plugging portion is arranged away from the end surface of the exhaust gas inflow side, the exhaust gas temperature is continuously low, When a large amount of PM accumulates on the inflow side end surface 45a of the gas inflow side plugging portion 45, unburned PM remains on the inflow side end surface 45a of the exhaust gas inflow side plugging portion 45, resulting in pressure loss. An object of the present invention is to provide a ceramic honeycomb filter that can be prevented from rising and can be used stably over a long period of time.

本発明者らは、排気ガス流入側目封止部45が排気ガス流入側端面47より離れて配置されているセラミックハニカムフィルタ40において発生する上記問題に対して、鋭意検討を行い、本発明に想到した。   The inventors of the present invention have made intensive studies on the above-mentioned problem that occurs in the ceramic honeycomb filter 40 in which the exhaust gas inflow side plugging portion 45 is arranged away from the exhaust gas inflow side end face 47, and the present invention has been made. I thought.

本発明のセラミックハニカムフィルタは、多孔質セラミックハニカム構造体の所望の流路を目封止することによりハニカム構造体の隔壁に排気ガスを通過させる構造を有し、排気ガス流入側目封止部が排気ガス流入側端面から離れて配置されているセラミックハニカムフィルタにおいて、前記隔壁の気孔率が50〜80%、前記排気ガス流入側目封止部の気孔率が前記隔壁の気孔率より小さいことを特徴とする。 The ceramic honeycomb filter of the present invention has a structure that allows exhaust gas to pass through the partition walls of the honeycomb structure by plugging a desired flow path of the porous ceramic honeycomb structure, and the exhaust gas inflow side plugged portion In the ceramic honeycomb filter, which is disposed away from the exhaust gas inflow side end face, the partition wall has a porosity of 50 to 80%, and the exhaust gas inflow side plugged portion has a porosity smaller than the partition wall porosity. It is characterized by.

本発明のセラミックハニカムフィルタにおいて、前記排気ガス流入側目封止部の気孔率が前記隔壁の気孔率の0.5〜0.9倍であることが好ましい。 In the ceramic honeycomb filter of the present invention, it is preferable that the porosity of the exhaust gas inflow side plugged portion is 0.5 to 0.9 times the porosity of the partition wall.

本発明のセラミックハニカムフィルタにおいて、排気ガス流出側目封止部の気孔率が前記隔壁の気孔率より大きいことが好ましい。また、前記排気ガス流出側目封止部の気孔率が90%以下であり、かつ前記隔壁の気孔率の1.1〜1.5倍であることが好ましい。   In the ceramic honeycomb filter of the present invention, it is preferable that the porosity of the exhaust gas outflow side plugged portion is larger than the porosity of the partition wall. Further, the porosity of the exhaust gas outlet side plugged portion is preferably 90% or less and 1.1 to 1.5 times the porosity of the partition wall.

(作用効果)
本発明のセラミックハニカムフィルタ10の作用効果について、図1の模式断面図を用いて説明する。本発明のセラミックハニカムフィルタ10は、多孔質セラミックハニカム構造体の所望の流路を目封止することによりハニカム構造体の隔壁に排気ガスを通過させる構造を有し、排気ガス流入側目封止部15が排気ガス流入側端面17から離れて配置されているセラミックハニカムフィルタにおいて、前記隔壁の気孔率が50〜80%、前記排気ガス流入側目封止部15の気孔率を前記隔壁の気孔率より小さくしている。
(Function and effect)
The effects of the ceramic honeycomb filter 10 of the present invention will be described with reference to the schematic cross-sectional view of FIG. The ceramic honeycomb filter 10 of the present invention has a structure that allows exhaust gas to pass through the partition walls of the honeycomb structure by plugging a desired flow path of the porous ceramic honeycomb structure, and is plugged on the exhaust gas inflow side. In the ceramic honeycomb filter in which the portion 15 is disposed away from the exhaust gas inflow side end face 17, the partition wall has a porosity of 50 to 80%, and the exhaust gas inflow side plugging portion 15 has a porosity of It is smaller than the rate.

本発明のセラミックハニカムフィルタ10は、流入側目封止部15の気孔率を隔壁に比べて小さくしていることから、流入側目封止部15の気孔率が隔壁と同じ、或いは隔壁に比べて大きい場合に比べて、排気ガスは流入側目封止部15内を通過し難くなるため、排気ガス温度の低い運転状態が続いた場合であっても、流入側目封止部15の流入側端面15aへのPM堆積量を減少させることができる。フィルタ上流への未燃燃料及び/又は炭化水素ガス噴射によるフィルタの強制再生を行うに際し、触媒活性度が低い状態になりやすい流入側目封止部15の流入側端面15aでのPM堆積量が減少しているため、堆積したPMを良好に燃焼させることができ、燃え残ったPMによるセラミックハニカムフィルタ10の圧力損失が上昇するのを防ぐことができる。ここで、前記隔壁の気孔率を50〜80%とするのは、隔壁の気孔率が50%未満であると、ハニカムフィルタの圧力損失が上昇し、エンジンの出力低下につながるからであり、隔壁の気孔率が80%を超えると、隔壁の強度が低下するため、使用時の熱衝撃や機械的振動により破損することがあるからであり、捕集効率も低下するからである。 In the ceramic honeycomb filter 10 of the present invention, since the porosity of the inflow side plugged portion 15 is smaller than that of the partition wall, the porosity of the inflow side plugged portion 15 is the same as that of the partition wall or compared with that of the partition wall. The exhaust gas is less likely to pass through the inflow side plugging portion 15 than in the case where the exhaust gas temperature is large. The amount of PM deposited on the side end face 15a can be reduced. When the filter is forcibly regenerated by injecting unburned fuel and / or hydrocarbon gas upstream of the filter, the amount of PM deposited on the inflow side end face 15a of the inflow side plugging portion 15 that tends to be in a low catalyst activity level is low. Since it decreases, accumulated PM can be burned well, and it can prevent that the pressure loss of the ceramic honeycomb filter 10 by the unburned PM rises. Here, the porosity of the partition wall is set to 50 to 80% because when the partition wall porosity is less than 50%, the pressure loss of the honeycomb filter increases and the output of the engine decreases. This is because if the porosity exceeds 80%, the strength of the partition walls is reduced, so that it may be damaged by thermal shock or mechanical vibration during use, and the collection efficiency is also reduced.

本発明のセラミックハニカムフィルタにおいて、前記排気ガス流入側目封止部の気孔率が前記隔壁の気孔率の0.5〜0.9倍であることが好ましいのは、排気ガス温度が低い状態が続いた場合であっても、流入側目封止部15の流入側端面15aへのPM堆積量を確実に減少させるのと共に、目封止部15と隔壁間の耐熱衝撃強度を確保するためである。すなわち、前記排気ガス流入側目封止部15の気孔率が前記隔壁の気孔率の0.5倍未満である場合、流入側目封止部と隔壁との気孔率の差が大きいため、両者の熱容量の違いが大きくなって、フィルタ上流への未燃燃料及び/又は炭化水素ガス噴射によるフィルタの強制再生を行う際の熱衝撃が加わった場合、両者の間にキレツが発生することもあるからである。また、前記排気ガス流入側目封止部15の気孔率が前記隔壁の気孔率の0.9倍を越えると、排気ガス温度の低い状態が続いた場合の、流入側目封止部15の流入側端面15aへのPM堆積量を減少させる効果が小さく、セラミックハニカムフィルタの圧力損失上昇を低減する効果が小さい場合もあるからである。前記排気ガス流入側目封止部の気孔率のより好ましい範囲は、前記隔壁の気孔率の0.6〜0.8倍である。 In the ceramic honeycomb filter of the present invention, the porosity of the exhaust gas inflow side plugged portion is preferably 0.5 to 0.9 times the porosity of the partition wall because the exhaust gas temperature is low. Even in the case where it continues, the amount of PM deposited on the inflow side end face 15a of the inflow side plugged portion 15 can be surely reduced and the thermal shock strength between the plugged portion 15 and the partition wall can be secured. is there. That is, when the porosity of the exhaust gas inflow side plugged portion 15 is less than 0.5 times the porosity of the partition wall, the difference in porosity between the inflow side plugged portion and the partition wall is large. When the difference in the heat capacity of the filter increases and thermal shock is applied when the filter is forcibly regenerated by injecting unburned fuel and / or hydrocarbon gas upstream of the filter, there may be a crease between the two. Because. Further, when the porosity of the exhaust gas inflow side plugging portion 15 exceeds 0.9 times the porosity of the partition wall, the inflow side plugging portion 15 in the case where the exhaust gas temperature continues to be low. This is because the effect of reducing the amount of PM deposited on the inflow side end face 15a is small, and the effect of reducing the increase in pressure loss of the ceramic honeycomb filter may be small. A more preferable range of the porosity of the exhaust gas inflow side plugged portion is 0.6 to 0.8 times the porosity of the partition wall.

本発明のセラミックハニカムフィルタにおいて、排気ガス流出側目封止部の気孔率が前記隔壁の気孔率より大きいことが好ましいのは、排気ガス流出側封止部16内を排気ガスが通過しやすくなるため、セラミックハニカムフィルタの圧力損失をより低減することができるからである。また、前記排気ガス流出側目封止部の気孔率が90%以下であり、かつ前記隔壁の気孔率の1.1〜1.5倍であることが好ましいのは、排気ガス流出側封止部内を排気ガスが確実に通過しやすくなるためであり、セラミックハニカムフィルタの圧力損失をより低減することができるからである。前記排気ガス流出側目封止部の気孔率が90%以下とするのは、気孔率が90%を越えると、排気ガス流出側封止部自体の強度が小さくなって破損しやすくなることもあるからであり、前記排気ガス流出側目封止部の気孔率が前記隔壁の気孔率の1.1倍未満であると、流出側目封止部16での圧力損失低減効果が得られない場合もあるからであり、1.5倍を越えると排気ガス流出側封止部自体の強度が小さくなって破損しやすくなることもあるからである。前記排気ガス流入側目封止部の気孔率のより好ましい範囲は、前記隔壁の気孔率の1.2〜1.4倍である。   In the ceramic honeycomb filter of the present invention, it is preferable that the porosity of the exhaust gas outflow side plugging portion is larger than the porosity of the partition wall so that the exhaust gas easily passes through the exhaust gas outflow side sealing portion 16. This is because the pressure loss of the ceramic honeycomb filter can be further reduced. The exhaust gas outlet side plugging portion preferably has a porosity of 90% or less and 1.1 to 1.5 times the porosity of the partition wall. This is because the exhaust gas can easily surely pass through the inside, and the pressure loss of the ceramic honeycomb filter can be further reduced. The porosity of the exhaust gas outlet side plugged portion is set to 90% or less. When the porosity exceeds 90%, the strength of the exhaust gas outlet side sealed portion itself may be reduced and easily damaged. This is because if the porosity of the exhaust gas outlet side plugged portion is less than 1.1 times the porosity of the partition wall, the effect of reducing pressure loss at the outlet side plugged portion 16 cannot be obtained. This is because the strength of the exhaust gas outflow side sealing part itself may be reduced and may be easily damaged when the ratio exceeds 1.5 times. A more preferable range of the porosity of the exhaust gas inflow side plugged portion is 1.2 to 1.4 times the porosity of the partition wall.

本発明のセラミックハニカムフィルタにおいて、図1に示すように排気ガス流入側目封止部15すべてが、セラミックハニカムフィルタの排気ガス流入側端面17から離れている必要はなく、本発明の効果が得られる程度に配置されていれば良い。具体的には少なくとも70%以上の排気ガス流入側目封止部15が、排気ガス流入側端面17より離れていれば、PMの排気ガス流入側端部への堆積による圧力損失上昇を防ぐ効果が大きくなる。より好ましくは90%以上である。更に好ましくは95%以上である。   In the ceramic honeycomb filter of the present invention, as shown in FIG. 1, it is not necessary that all the exhaust gas inflow side plugging portions 15 are separated from the exhaust gas inflow side end face 17 of the ceramic honeycomb filter, and the effect of the present invention is obtained. As long as it is arranged as much as possible. Specifically, if at least 70% or more of the exhaust gas inflow side plugging portion 15 is separated from the end surface 17 of the exhaust gas inflow side, an effect of preventing an increase in pressure loss due to accumulation of PM on the end side of the exhaust gas inflow side. Becomes larger. More preferably, it is 90% or more. More preferably, it is 95% or more.

また、本発明のセラミックハニカムフィルタにおいて、排気ガス流入側端面より離れて配置される排気ガス流入側目封止部15の配置位置は、セラミックハニカムフィルタの所望の圧力損失やPM捕集率が得られるように適宜選択すれば良いが、前記排気ガス流入側端面15aが、セラミックハニカムフィルタの排気ガス流入側端面17から、該セラミックハニカムフィルタ全長の0.7倍以下の長さの区間に配置されていることが好ましい。排気ガス流入側端面15aの位置を、流入側端面17から該セラミックハニカムフィルタ全長の0.7倍の長さの区間を越えて配置すると、セラミックハニカムフィルタの全体の長さには制約があるため、排気ガス流入側目封止部15より流出側の隔壁12dの面積が少なくなるため、セラミックハニカムフィルタ全体の圧力損失が上昇することもあるからである。また、ハニカムフィルタ上流に未燃の燃料及び/又は炭化水素ガスを噴射した際の、排気ガス流入側目封止部15より上流側の隔壁12uでの触媒物質による温度上昇効果を確実なものとするためには、排気ガス流入側目封止部15は流入側端面17から30mm以上に離れて配置されていることがさらに好ましい。また、更に好ましい流入側目封止部端面15aの配置区間は、セラミックハニカムフィルタ流入側端面17から該セラミックハニカムフィルタ全長の0.25〜0.45倍の長さの区間である。   Further, in the ceramic honeycomb filter of the present invention, the arrangement position of the exhaust gas inflow side plugging portion 15 arranged away from the end face on the exhaust gas inflow side can obtain a desired pressure loss and PM collection rate of the ceramic honeycomb filter. The exhaust gas inflow side end surface 15a may be disposed in a section having a length not more than 0.7 times the entire length of the ceramic honeycomb filter from the exhaust gas inflow side end surface 17 of the ceramic honeycomb filter. It is preferable. If the position of the exhaust gas inflow side end face 15a is disposed beyond the section of 0.7 times the total length of the ceramic honeycomb filter from the inflow side end face 17, the overall length of the ceramic honeycomb filter is limited. This is because the pressure loss of the entire ceramic honeycomb filter may increase because the area of the partition wall 12d on the outflow side from the plugging portion 15 on the exhaust gas inflow side is reduced. In addition, when unburned fuel and / or hydrocarbon gas is injected upstream of the honeycomb filter, the temperature rise effect by the catalytic material in the partition wall 12u upstream from the exhaust gas inflow side plugging portion 15 is ensured. In order to achieve this, it is more preferable that the exhaust gas inflow side plugging portion 15 is disposed at a distance of 30 mm or more from the inflow side end surface 17. Further, a more preferable arrangement section of the inflow side plugging portion end face 15a is an area having a length 0.25 to 0.45 times as long as the entire length of the ceramic honeycomb filter from the end face 17 of the ceramic honeycomb filter inflow side.

本発明のセラミックハニカムフィルタにおいて、前記隔壁及び/または目封止部の少なくとも一部に触媒物質が担持されていることが好ましい。この理由は、内燃機関運転中にハニカムフィルタ上へのPMの堆積量がある一定値以上になった際のフィルタ上流への未燃の燃料及び/又は炭化水素ガス噴射時において、これら未燃の燃料及び/又は炭化水素ガスの酸化反応を促進させ、この反応熱によって、セラミックハニカムフィルタの温度を上昇させることができるからである。更に、排気ガス温度の高い高速走行などの運転状態の場合、触媒物質の作用によりPMを連続的に燃焼させることができ、PM堆積による圧力損失の上昇を回避することができるからである。ここで前記ハニカムフィルタに担持される触媒物質は、白金族金属を含む酸化触媒や微粒子燃焼触媒であると好ましい。尚、白金族金属を含む酸化触媒は、たとえば、Pt、Pd、Ru、Rh又はその組合せ、白金族金属酸化物等が含まれるが、アルカリ土類金属酸化物や希土類酸化物等を含んでも良い。また、白金族金属を含む触媒物質には、公知のγアルミナ等の活性アルミナからなる高比表面積材料が含まれると、白金族金属等と排気ガスとの接触面積を大きくすることができ、排気ガスの浄化効率を高めることができることから好ましい。また、微粒子燃焼触媒としては、ベース金属触媒、典型的にはランタン、セシウム、バナジウム(La/Cs/V23)類よりなる触媒物質であると好ましい。 In the ceramic honeycomb filter of the present invention, it is preferable that a catalyst substance is supported on at least a part of the partition walls and / or plugging portions. This is because when the amount of PM accumulated on the honeycomb filter exceeds a certain value during operation of the internal combustion engine, unburned fuel and / or hydrocarbon gas is injected upstream of the filter when the unburned fuel is injected. This is because the oxidation reaction of the fuel and / or hydrocarbon gas is promoted, and the temperature of the ceramic honeycomb filter can be increased by the heat of reaction. Furthermore, in an operating state such as high-speed running with a high exhaust gas temperature, PM can be continuously burned by the action of the catalyst substance, and an increase in pressure loss due to PM deposition can be avoided. Here, the catalyst material supported on the honeycomb filter is preferably an oxidation catalyst or a particulate combustion catalyst containing a platinum group metal. The oxidation catalyst containing a platinum group metal includes, for example, Pt, Pd, Ru, Rh or a combination thereof, a platinum group metal oxide, etc., but may contain an alkaline earth metal oxide, a rare earth oxide, or the like. . In addition, when the catalyst material containing platinum group metal includes a high specific surface area material made of active alumina such as known γ alumina, the contact area between the platinum group metal and the exhaust gas can be increased, This is preferable because the gas purification efficiency can be increased. The fine particle combustion catalyst is preferably a base metal catalyst, typically a catalyst material made of lanthanum, cesium, or vanadium (La / Cs / V 2 O 3 ).

次に本発明のセラミックハニカムフィルタの隔壁及び目封止部を構成する材料としては、本発明が主にディーゼルエンジンの排気ガス中の微粒子を除去するために使用されるため、耐熱性に優れた材料を使用することが好ましく、コージェライト、アルミナ、ムライト、窒化珪素、炭化珪素、チタン酸アルミニウム、窒化アルミニウム及びLASからなる群から選ばれた少なくとも1種を主結晶とするセラミック材料を用いることが好ましい。中でも、コージェライトを主結晶とする材料は、安価で耐熱性、耐食性に優れ、また低熱膨張であることから最も好ましい。なお、隔壁を構成する材料と目封止部を構成する材料は異なっていても構わないが、同一であれば、目封止部と隔壁の熱膨張係数の違いによって発生する熱応力を低減できることから好ましい。   Next, as the material constituting the partition walls and plugging portions of the ceramic honeycomb filter of the present invention, the present invention is mainly used for removing fine particles in the exhaust gas of a diesel engine, and thus has excellent heat resistance. It is preferable to use a material, and it is preferable to use a ceramic material whose main crystal is at least one selected from the group consisting of cordierite, alumina, mullite, silicon nitride, silicon carbide, aluminum titanate, aluminum nitride, and LAS. preferable. Among them, a material having cordierite as the main crystal is most preferable because it is inexpensive, excellent in heat resistance and corrosion resistance, and has low thermal expansion. In addition, although the material which comprises a partition and the material which comprises a plugging part may differ, if it is the same, the thermal stress generated by the difference in the thermal expansion coefficient of a plugging part and a partition can be reduced. To preferred.

前記セラミックハニカムフィルタの隔壁の平均細孔径は10〜40μmであることが好ましい。排気ガスが隔壁に形成された細孔を通過することから、平均細孔径が10μm未満であると、ハニカムフィルタの圧力損失が上昇し、エンジンの出力低下につながるからであり、平均細孔径が40μmを越えると、隔壁の強度が低下するため、使用時の熱衝撃や機械的振動により破損することがあるからであり、捕集効率も低下するからである。   The average pore diameter of the partition walls of the ceramic honeycomb filter is preferably 10 to 40 μm. The exhaust gas passes through the pores formed in the partition walls, and if the average pore diameter is less than 10 μm, the pressure loss of the honeycomb filter increases, leading to a decrease in engine output. The average pore diameter is 40 μm. This is because the strength of the partition walls will be reduced if it exceeds the range, it may be damaged by thermal shock or mechanical vibration during use, and the collection efficiency will also decrease.

本発明に係るセラミックハニカムフィルタの隔壁の厚さは0.1〜0.5mmが好ましく、隔壁のピッチは1.0〜3.0mmが好ましい。隔壁厚が0.1mm未満では、隔壁が細孔を有する高気孔率の多孔質体であることからハニカム構造体の強度が低下し、好ましくない。一方、隔壁厚が0.5mmを超えると、如何に隔壁が高気孔率であっても、排気ガスに対する隔壁の通気抵抗が大きくなるため、セラミックハニカムフィルタの圧力損失が大きくなるからである。より好ましい隔壁厚さは、0.2〜0.4mmである。また、隔壁のピッチが1.3mm未満であると、ハニカム構造体の流路の開口面積が小さくなることから、セラミックハニカムフィルタの流路を排気ガスが出入りする際の圧力損失が大きくなるため、好ましくない。一方、隔壁のピッチが3.0mmを超えると、セラミックハニカムフィルタの単位体積当たりの表面積が小さくなることから、圧力損失が大きくなることも有るからである。より好ましい隔壁のピッチは1.2〜2.0mmである。   In the ceramic honeycomb filter according to the present invention, the partition wall thickness is preferably 0.1 to 0.5 mm, and the partition wall pitch is preferably 1.0 to 3.0 mm. When the partition wall thickness is less than 0.1 mm, the partition wall is a porous body having a high porosity and thus the strength of the honeycomb structure is lowered, which is not preferable. On the other hand, when the partition wall thickness exceeds 0.5 mm, no matter how high the partition wall has a high porosity, the ventilation resistance of the partition wall to the exhaust gas increases, and the pressure loss of the ceramic honeycomb filter increases. A more preferable partition wall thickness is 0.2 to 0.4 mm. In addition, if the partition wall pitch is less than 1.3 mm, the opening area of the flow path of the honeycomb structure is reduced, so that the pressure loss when exhaust gas enters and exits the flow path of the ceramic honeycomb filter increases. It is not preferable. On the other hand, if the partition pitch exceeds 3.0 mm, the surface area per unit volume of the ceramic honeycomb filter is reduced, and the pressure loss may be increased. A more preferable partition pitch is 1.2 to 2.0 mm.

本発明のセラミックハニカムフィルタは、排気ガス流入側目封止部15がセラミックハニカムフィルタ内の温度の高い部位に配置されれば微粒子の燃焼が容易に行われ、微粒子の堆積による圧力損失の上昇が起こりにくくなることを考慮すると、排気ガス流入側目封止部15は、図2(1)に示すように排気ガス流入側目封止部端面15aが流入側端面17から同一の位置に配置されなくても良く、また、図2(2)に示すように、排気ガス流入側目封止部15及び流出側目封止部16の長さは全て同一でなくても良い。また、本発明の効果が得られるのであれば、排気ガス流出側目封止部16は、同一の長さでなくても良く、同一の位置に配置されなくても良い。   In the ceramic honeycomb filter of the present invention, if the exhaust gas inflow side plugging portion 15 is arranged at a high temperature portion in the ceramic honeycomb filter, the particulates are easily burned, and the pressure loss increases due to the deposition of the particulates. Considering that the exhaust gas inflow side plugging portion 15 is less likely to occur, the exhaust gas inflow side plugging portion end surface 15a is arranged at the same position from the inflow side end surface 17 as shown in FIG. The lengths of the exhaust gas inflow side plugging portion 15 and the outflow side plugging portion 16 do not have to be the same as shown in FIG. Moreover, as long as the effect of the present invention is obtained, the exhaust gas outflow side plugging portions 16 may not have the same length and may not be arranged at the same position.

以上詳細に説明したように、本発明によれば、多孔質セラミックハニカム構造体の所望の流路を目封止することによりハニカム構造体の隔壁に排気ガスを通過させる構造を有し、排気ガス流入側目封止部が排気ガス流入側端面から離れて配置されているセラミックハニカムフィルタにおいて、前記隔壁の気孔率を50〜80%、前記排気ガス流入側目封止部の気孔率を前記隔壁の気孔率より小さくしていることから、排気ガスが流入側目封止部内を通過しにくく、排気ガス温度の低い運転状態が続いた場合であっても、流入側目封止部の流入側端面へのPM堆積を減少させることができるため、フィルタ上流への未燃燃料及び/又は炭化水素ガス噴射によるフィルタの強制再生を行うに際し、触媒活性度が低い状態になりやすい流入側目封止部15の流入側端面15aであっても、堆積したPMを良好に燃焼させることができ、燃え残ったPMによるセラミックハニカムフィルタの圧力損失の上昇を防ぐという効果が得られる。   As described above in detail, according to the present invention, the exhaust gas is passed through the partition walls of the honeycomb structure by plugging a desired flow path of the porous ceramic honeycomb structure. In the ceramic honeycomb filter in which the inflow side plugging portion is arranged away from the exhaust gas inflow side end surface, the partition wall has a porosity of 50 to 80%, and the exhaust gas inflow side plugging portion has a porosity of the partition wall. Therefore, even if the exhaust gas is less likely to pass through the inflow side plugged portion and the operation state at a low exhaust gas temperature continues, the inflow side of the inflow side plugged portion Since PM accumulation on the end face can be reduced, inflow side plugging that tends to result in low catalyst activity when forcibly regenerating the filter by injecting unburned fuel and / or hydrocarbon gas upstream of the filter Even inlet-side end 15a of 15, the deposited PM can be satisfactorily combusted, effect that prevents an increase in pressure loss of the ceramic honeycomb filter according burning remaining PM.

本発明の、多孔質セラミックハニカム構造体の所望の流路を目封止することによりハニカム構造体の隔壁に排気ガスを通過させる構造を有し、流入側目封止部15がセラミックハニカムフィルタの排気ガス流入側端面17から離れて配置されており、前記隔壁の気孔率が50〜80%、前記排気ガス流入側目封止部15の気孔率が前記隔壁の気孔率より小さいセラミックハニカムフィルタ10の製造方法一例を図5を用いて説明する。セラミックス原料粉末に、バインダーなどの成形助剤と造孔剤を添加し、規定量の水を注入してさらに十分な混合を行い、押出成形可能な坏土を調整し、押出成形用金型を用いて押出成形し、外周壁と、この外周壁の内周側で隔壁により囲まれた断面が四角形状の流路を有するハニカム構造を有する成形体を作製し、乾燥した。その後、焼成を行い、外径267mm、全長L300mm、隔壁の厚さ0.3mm、隔壁のピッチ1.5mm、隔壁の気孔率50〜80%の多孔質セラミックハニカム構造体を準備する(図5(1))。このとき、気孔率50〜80%が得られるよう、セラミックス原料粉末の粒径や造孔剤の添加量を適宜調整する。その後、このハニカム構造体11の流路14内の所定位置に、流路幅より小さい外径を有する管状部材61を挿入し、この管状部材からセラミック原料粉末、バインダー、水、必要に応じて分散材等の助剤等からなる流入側目封止部用の目封止材スラリーを流路内に所定量注入する(図5(2))。注入された目封止材スラリー中の水が多孔質隔壁中に毛細管現象で吸水されることにより、目封止材スラリーは固化して、排気ガス流入側端面から離れた位置に排気ガス流入側目封止部15を形成する(図5(3))。このとき、流入側封止部15の流路方向長さは注入量を調整することにより調整することができる。次いで、排気ガス流出側端面に樹脂製フィルム65を貼り付け、排気ガス流入側目封止部15を形成していない流路13のフィルムをレーザ光などにより穿孔して、開口し(図5(4))、セラミック原料粉末、バインダー、造孔剤、水、必要に応じて分散材等の助剤等からなる流出側目封止部用の目封止材スラリーを開口部から浸入させて(図5(5))、排気ガス流出側目封止部16を形成した後、フィルム65を剥がして乾燥、焼成を行い、目封止部と隔壁を一体化させてセラミックハニカムフィルタ10を得る。   The porous ceramic honeycomb structure of the present invention has a structure that allows exhaust gas to pass through the partition walls of the honeycomb structure by plugging a desired flow path of the porous ceramic honeycomb structure. The ceramic honeycomb filter 10 is disposed away from the end face 17 on the exhaust gas inflow side, the porosity of the partition wall is 50 to 80%, and the porosity of the exhaust gas inflow side plugging portion 15 is smaller than the porosity of the partition wall. An example of the manufacturing method will be described with reference to FIG. Add a molding aid such as a binder and a pore-forming agent to the ceramic raw material powder, inject a specified amount of water, mix thoroughly, adjust the extrudable clay, and prepare an extrusion mold. A molded body having a honeycomb structure having a channel having a square cross section surrounded by a partition wall on the inner peripheral side of the outer peripheral wall and the outer peripheral wall was produced and dried. Thereafter, firing is performed to prepare a porous ceramic honeycomb structure having an outer diameter of 267 mm, an overall length of L300 mm, a partition wall thickness of 0.3 mm, a partition wall pitch of 1.5 mm, and a partition wall porosity of 50 to 80% (FIG. 5 ( 1)). At this time, the particle size of the ceramic raw material powder and the amount of pore-forming agent added are appropriately adjusted so that a porosity of 50 to 80% is obtained. Thereafter, a tubular member 61 having an outer diameter smaller than the channel width is inserted into a predetermined position in the channel 14 of the honeycomb structure 11, and ceramic raw material powder, binder, water, and dispersed as necessary from the tubular member A predetermined amount of a plugging material slurry for the inflow side plugging portion made of an auxiliary material such as a material is injected into the flow path (FIG. 5B). The water in the injected plugging material slurry is absorbed into the porous partition wall by capillary action, so that the plugging material slurry is solidified, and the exhaust gas inflow side is located away from the exhaust gas inflow side end surface. A plugging portion 15 is formed (FIG. 5 (3)). At this time, the flow direction length of the inflow side sealing part 15 can be adjusted by adjusting the injection amount. Next, a resin film 65 is attached to the exhaust gas outflow side end face, and the film of the flow path 13 in which the exhaust gas inflow side plugging portion 15 is not formed is perforated with a laser beam or the like (FIG. 5 ( 4)) A plugging material slurry for the outflow side plugging portion made of ceramic raw material powder, binder, pore-forming agent, water, and auxiliary agent such as a dispersing agent as required is infiltrated from the opening ( 5 (5)), after forming the exhaust gas outlet side plugged portion 16, the film 65 is peeled off, dried and fired, and the plugged portion and the partition wall are integrated to obtain the ceramic honeycomb filter 10.

ここで、排気ガス流入側目封止部15の気孔率を隔壁の気孔率より小さくするには、排気ガス流入側目封止部15を形成するため目封止材スラリ−を作成する際に、造孔剤を添加しない、或いは造孔剤の添加量を、隔壁を形成するための坏土より少なくする等の方法により得ることができる。また、排気ガス流出側目封止部16の気孔率を隔壁の気孔率より大きくするには、排気ガス流出側目封止部16を形成するため目封止材スラリ−を作成する際に、造孔剤の添加量を、隔壁を形成するための坏土より多くする等の方法により得ることができる。 Here, in order to make the porosity of the exhaust gas inflow side plugging portion 15 smaller than the porosity of the partition wall, when forming the plugging material slurry to form the exhaust gas inflow side plugging portion 15. The pore-forming agent is not added, or the amount of pore-forming agent added is less than that of the clay for forming the partition walls. Further, in order to make the porosity of the exhaust gas outflow side plugging portion 16 larger than the porosity of the partition wall, when creating the plugging material slurry to form the exhaust gas outflow side plugging portion 16, It can be obtained by a method such as increasing the amount of pore-forming agent added to the clay for forming the partition walls.

以下、発明の実施の形態を詳細に説明する。
(実施例)
Hereinafter, embodiments of the present invention will be described in detail.
(Example)

図1は本発明の実施例1に係るハニカムフィルタの断面模式図である。図1のセラミックハニカムフィルタ10は、外周壁の内側に隔壁で仕切られた多数の四角形の流路を有し、この流路は流入側目封止部15、及び流出側目封止部16で目封止されており、流入側目封止部15は流入側端面17から離れた流路内に配置され、隔壁の気孔率は50〜80%、流入側目封止部15の気孔率は隔壁の気孔率より小さくなるように形成されている。
本実施例におけるセラミックハニカムフィルタは、以下の製造工程で製造した。カオリン、タルク、シリカ、アルミナ、水酸化アルミニウムの粉末を調整して、質量比で、SiO2:48〜52%、Al23:33〜37%、MgO:12〜15%を含むコーディエライト生成原料粉末とする。本実施例ではSiO2:50%、Al23:35%、MgO:15%に調整した。これにメチルセルロース、ヒドロキシプロピルメチルセルロース等のバインダー、潤滑材、造孔剤として有機発泡剤を添加し、乾式で十分混練した後、規定量の水を添加、十分な混練を行って可塑化したセラミック坏土を作成した。次に、押出し成形用金型を用いて坏土を押出し成形し、切断して、ハニカム構造を有する成形体とした。次にこの成形体を、乾燥、焼成し、隔壁の厚さ0.3mm、気孔率65%、平均細孔径20μm、隔壁ピッチ1.5mm、外径が267mm、全長が305mmのコーディエライト質セラミックハニカム構造体を得た。
FIG. 1 is a schematic cross-sectional view of a honeycomb filter according to Example 1 of the present invention. The ceramic honeycomb filter 10 of FIG. 1 has a large number of rectangular channels partitioned by partition walls on the inner side of the outer peripheral wall, and these channels are formed by an inflow side plugging portion 15 and an outflow side plugging portion 16. The inflow side plugging portion 15 is arranged in a flow path separated from the inflow side end surface 17, the porosity of the partition wall is 50 to 80%, and the porosity of the inflow side plugging portion 15 is It is formed to be smaller than the porosity of the partition wall.
The ceramic honeycomb filter in this example was manufactured by the following manufacturing process. A cordier containing powders of kaolin, talc, silica, alumina and aluminum hydroxide and containing SiO 2 : 48-52%, Al 2 O 3 : 33-37%, MgO: 12-15% by mass ratio Use light-generating raw material powder. In this example, the SiO 2 ratio was adjusted to 50%, the Al 2 O 3 ratio to 35%, and the MgO ratio to 15%. To this was added an organic foaming agent as a binder such as methylcellulose and hydroxypropylmethylcellulose, a lubricant, and a pore-forming agent. Created soil. Next, the kneaded material was extruded using an extrusion molding die and cut to obtain a formed body having a honeycomb structure. Next, the compact is dried and fired, and cordierite ceramic having a partition wall thickness of 0.3 mm, a porosity of 65%, an average pore diameter of 20 μm, a partition wall pitch of 1.5 mm, an outer diameter of 267 mm, and a total length of 305 mm. A honeycomb structure was obtained.

次に、図5(2)に示すように、目封止材スラリー保管タンク(図示せず)から流入側目封止部用の目封止材スラリーを管状部材61に供給するチューブ63、バルブ64から構成される目封止材スラリー料供給装置に、セラミックハニカム構造体11を流路方向が略重力方向に一致するように載置した。目封止材料の供給に使用する管状部材61は、ステンレス鋼製で外径φ1.1mm、内径φ0.8mmの断面円形のものを用いた。また、目封止材スラリーは、セラミック原料粉末として、タルク、カオリン、シリカ、アルミナ、水酸化アルミニウムのコーディエライト化原料粉末Aを、質量比で、SiO2:50%、Al23:35%、MgO:15%となるよう調整して用い、セラミック原料粉末に対し、有機発泡剤、メチルセルロースを加えて、乾式混合した後、イオン交換水、分散剤としてポリカルボン酸系界面活性剤を加えて湿式混合して作製した。ここで、流入側目封止部の気孔率が表1に示すものが得られるよう、有機発泡剤の添加量を調整して(添加量0含む)、試験NO.1〜6用の目封止材スラリーに調整した。 Next, as shown in FIG. 5 (2), a tube 63 and a valve for supplying the plugging material slurry for the inflow side plugging portion from the plugging material slurry storage tank (not shown) to the tubular member 61. The ceramic honeycomb structure 11 was placed on a plugging material slurry supply apparatus composed of 64 so that the flow path direction substantially coincided with the gravity direction. The tubular member 61 used for supplying the plugging material was made of stainless steel and had a circular cross section with an outer diameter of φ1.1 mm and an inner diameter of φ0.8 mm. Further, the plugging material slurry is a cordierite forming raw material powder A of talc, kaolin, silica, alumina, and aluminum hydroxide as a ceramic raw material powder in terms of mass ratio, SiO 2 : 50%, Al 2 O 3 : 35%, MgO: Adjusted to 15%, and after adding organic foaming agent and methylcellulose to the ceramic raw material powder and dry mixing, ion-exchanged water, polycarboxylic acid surfactant as dispersant In addition, it was prepared by wet mixing. Here, the addition amount of the organic foaming agent was adjusted (including the addition amount of 0) so that the porosity of the inflow side plugged portion shown in Table 1 was obtained, and the plugs for test Nos. 1 to 6 were used. It adjusted to the stopping material slurry.

次に、管状部材61を目封止する流路内へ、セラミックハニカム構造体11の端面17から120mmの位置に挿入し、所定量の目封止材スラリーを管状部材から注入し、目封止スラリー中の水を多孔質隔壁中に吸水させることにより、目封止材を固化させた。その他の流路についても同様に、目封止を行った後、乾燥を行った。その後、排気ガス流出側端面に樹脂製フィルム65を貼り付け、所定の流路に相当する箇所を穿孔して、排気ガス流出側端面18からコーディエライト化原料及び有機発泡剤からなる目封止材スラリーを流入させて排気ガス流出側目封止部を形成した。その後、大気中で1400℃に加熱して、目封止材の焼成を行うと共に、目封止部と隔壁を一体化させて、試験NO.1〜6のセラミックハニカムフィルタを作製した。   Next, the tubular member 61 is inserted into the flow path for plugging the tubular member 61 at a position 120 mm from the end face 17 of the ceramic honeycomb structure 11, and a predetermined amount of the plugging material slurry is injected from the tubular member, and plugged. The plugging material was solidified by absorbing water in the slurry into the porous partition walls. Similarly, the other channels were plugged and then dried. Thereafter, a resin film 65 is attached to the exhaust gas outflow side end face, a portion corresponding to a predetermined flow path is perforated, and the exhaust gas outflow side end face 18 is plugged with a cordierite forming raw material and an organic foaming agent. The material slurry was introduced to form an exhaust gas outlet side plugged portion. Thereafter, the plugging material is baked by heating to 1400 ° C. in the atmosphere, and the plugging portion and the partition wall are integrated. 1 to 6 ceramic honeycomb filters were produced.

試験NO.1〜6のセラミックハニカムフィルタに対して、Pt、酸化セリウム、及び活性アルミナからなる触媒物質を隔壁表面及び隔壁中の細孔内部、更には目封止部表面及び目封止部中の細孔内部に担持させた。担持量はPt量で2g/L(ハニカムフィルタ容積1Lに対して2g担持の意味)とした。   Test NO. For the ceramic honeycomb filters 1 to 6, a catalyst material composed of Pt, cerium oxide, and activated alumina is applied to the partition wall surface and inside the pores in the partition wall, and further to the plugging portion surface and the pores in the plugging portion. It was carried inside. The supported amount was 2 g / L in terms of Pt amount (meaning 2 g supported per 1 L of honeycomb filter volume).

上記のように作製した試験NO.1〜6のセラミックハニカムフィルタを圧力損失試験装置(図示せず)に設置し、空気流量7.5Nm3/minの条件で空気を流入し、流入側端面と流出側端面の差圧を測定し、各セラミックハニカムフィルタの初期圧力損失を評価した。更に、試験NO.1〜6のセラミックハニカムフィルタを、ディーゼルエンジンの排気管に配置し、市街地走行を模したパターン走行条件で耐久試験を行った。この際、排気ガス温度が触媒物質の活性下限温度を下まわるような運転状態が続くような場合を発生させ、PMがフィルタ上に多量に堆積するような条件を作り出した上で、この運転状態に応じて、触媒物質を担持させたセラミックハニカムフィルタ上へのPMの堆積量を推定し、堆積量が一定値以上なったと判断された時点で、フィルタの上流側に燃料を未燃のまま噴射して、フィルタの強制再生を繰り返す耐久試験を行った。その後、耐久試験後のハニカムフィルタの圧力損失を初期圧力損失と同様に測定し、初期圧力損失と比較して、圧力損失比:(試験後の圧力損失)/(初期圧力損失)を算出し、表1に示した。 Test NO. Produced as described above. 1 to 6 ceramic honeycomb filters are installed in a pressure loss test device (not shown), air is introduced under the condition of an air flow rate of 7.5 Nm 3 / min, and the differential pressure between the inflow side end surface and the outflow side end surface is measured. The initial pressure loss of each ceramic honeycomb filter was evaluated. Furthermore, test NO. The ceramic honeycomb filters 1 to 6 were arranged in an exhaust pipe of a diesel engine, and an endurance test was performed under pattern running conditions simulating urban driving. At this time, an operation state in which the exhaust gas temperature falls below the lower activation limit temperature of the catalyst substance is generated, and conditions are set such that a large amount of PM is deposited on the filter. Accordingly, the amount of PM deposited on the ceramic honeycomb filter carrying the catalyst substance is estimated, and when it is determined that the amount of accumulation exceeds a certain value, the fuel is injected unburned upstream of the filter. Then, an endurance test was repeated for repeated forced regeneration of the filter. Then, the pressure loss of the honeycomb filter after the durability test is measured in the same manner as the initial pressure loss, and compared with the initial pressure loss, the pressure loss ratio: (pressure loss after test) / (initial pressure loss) is calculated, It is shown in Table 1.

また試験NO.1〜6のセラミックハニカムフィルタを排気系部品試験装置(図示せず)に設置し、セラミックハニカムフィルタの上流側に配置されたLPGを燃料とするバーナーによりフィルタ温度を600℃まで急加熱した後、室温まで急冷する繰り返し熱衝撃を10回加えた後、セラミックハニカムフィルタを取り出し、流入側封止部の存在する部位で、流路に垂直方向に切断して、流入側封止部と、隔壁の境界におけるキレツの発生状況を確認し、キレツが全く認められなかったものを(◎)、軽微なキレツが認められたが実用上問題ないものを(○)、キレツ発生により流入側封止部の脱落が認められたものを(×)として表1に記載した。 Test NO. After the ceramic honeycomb filters 1 to 6 are installed in an exhaust system component testing apparatus (not shown), the filter temperature is rapidly heated to 600 ° C. with a burner using LPG disposed on the upstream side of the ceramic honeycomb filter, After 10 times of repeated thermal shocks for rapid cooling to room temperature, the ceramic honeycomb filter is taken out and cut in a direction perpendicular to the flow path at the site where the inflow side sealing portion exists, and the inflow side sealing portion and the partition wall Check the occurrence of crevices at the boundary, (◎) if no crevices were observed at all, (○) if minor crevices were observed but no problem in practical use (○). Those in which dropout was observed are shown in Table 1 as (x).

本発明の実施例である、試験NO.1〜4のセラミックハニカムフィルタは、流入側目封止部の気孔率が隔壁の気孔率より小さいことから、圧力損失比は1.01〜1.07の範囲であった、これに対し、比較例である、試験NO.5及び6のセラミックハニカムフィルタは、流入側目封止部の気孔率が隔壁と同じ或いは隔壁より大きいことから、圧力損失比は1.15〜1.21で、試験NO.1〜4より大きくなった。一方、耐熱衝撃性は、いずれも判定は(○)又は(◎)であったが、試験NO.1のセラミックハニカムフィルタは、流入側目封止の気孔率が隔壁の気孔率の0.5未満であることから判定が(○)であった。   Example No. 1 which is an example of the present invention. The ceramic honeycomb filters 1 to 4 have a pressure loss ratio in the range of 1.01 to 1.07 because the porosity of the inflow side plugged portion is smaller than the porosity of the partition wall. For example, test NO. In the ceramic honeycomb filters 5 and 6, the porosity of the inflow side plugged portion is the same as that of the partition walls or larger than that of the partition walls. It became larger than 1-4. On the other hand, the thermal shock resistance was judged as either (◯) or (◎). The ceramic honeycomb filter of No. 1 was judged as (◯) because the porosity of the inflow side plugging was less than 0.5 of the porosity of the partition walls.

Figure 2006334459
Figure 2006334459

以上説明してきたように、本発明のセラミックハニカムフィルタは、ディーゼル機関から排出される排気ガス中のPMを多孔質隔壁で捕集、浄化する構造のセラミックハニカムフィルタに好適に用いることができる。 As described above, the ceramic honeycomb filter of the present invention can be suitably used for a ceramic honeycomb filter having a structure in which PM in exhaust gas discharged from a diesel engine is collected and purified by a porous partition wall.

本発明のセラミックハニカムフィルタの模式断面図である。It is a schematic cross section of the ceramic honeycomb filter of the present invention. 本発明のセラミックハニカムフィルタ模式断面図である。1 is a schematic cross-sectional view of a ceramic honeycomb filter of the present invention. 従来のセラミックハニカムフィルタを示した模式断面図である。It is the schematic cross section which showed the conventional ceramic honeycomb filter. 従来のセラミックハニカムフィルタを示した模式断面図である。It is the schematic cross section which showed the conventional ceramic honeycomb filter. 本発明のセラミックハニカムフィルタの製造方法の一例を示す模式断面図である。It is a schematic cross section which shows an example of the manufacturing method of the ceramic honeycomb filter of this invention.

符号の説明Explanation of symbols

1:外周壁
2:隔壁
3、4:流路
5:排気ガス流入側目封止部
6:排気ガス流出側目封止部
7:排気ガス流入側端面
8:排気ガス流出側端面
10:本発明のセラミックハニカムフィルタ
11:セラミックハニカム構造体
12u:排気ガス流入側目封止部より上流側の隔壁
12d:排気ガス流入側目封止部より下流側の隔壁
15:排気ガス流入側目封止部
15a:排気ガス流入側目封止部の排気ガス流入側端面
16:排気ガス流出側目封止部
17:排気ガス流入側端面
18:排気ガス流出側端面
30:セラミックハニカムフィルタ
40:少なくとも一つの排気ガス流入側目封止部が排気ガス流入側端面より離れて配置されているセラミックハニカムフィルタ
45:排気ガス流入側目封止部
42u:排気ガス流入側目封止部より上流側の隔壁
42d:排気ガス流入側目封止部より下流側の隔壁
45a:排気ガス流入側目封止部の排気ガス流入側端面
46:排気ガス流出側目封止部
47:排気ガス流入側端面
48:排気ガス流出側端面
61:管状部材
63:チューブ
64:バルブ
65:樹脂製フィルム
1: outer peripheral wall 2: partition wall 3, 4: flow path 5: exhaust gas inflow side plugging portion 6: exhaust gas outflow side plugging portion 7: exhaust gas inflow side end surface 8: exhaust gas outflow side end surface 10: book Ceramic honeycomb filter of the invention 11: Ceramic honeycomb structure 12u: Partition wall upstream of the exhaust gas inflow side plugging portion 12d: Partition wall downstream of the exhaust gas inflow side plugging portion 15: Exhaust gas inflow side plugging Portion 15a: Exhaust gas inflow side end surface of the exhaust gas inflow side plugging portion 16: Exhaust gas outflow side plugging portion 17: Exhaust gas inflow side end surface 18: Exhaust gas outflow side end surface 30: Ceramic honeycomb filter 40: At least one Ceramic honeycomb filter in which two exhaust gas inflow side plugging portions are arranged apart from the end surface of the exhaust gas inflow side 45: Exhaust gas inflow side plugging portion 42u: Upstream from the exhaust gas inflow side plugging portion Side partition 42d: partition downstream of exhaust gas inflow side plugging portion 45a: exhaust gas inflow side end surface of exhaust gas inflow side plugging portion 46: exhaust gas outflow side plugging portion 47: exhaust gas inflow side End surface 48: Exhaust gas outflow side end surface 61: Tubular member 63: Tube 64: Valve 65: Resin film

Claims (4)

多孔質セラミックハニカム構造体の所望の流路を目封止することによりハニカム構造体の隔壁に排気ガスを通過させる構造を有し、排気ガス流入側目封止部が排気ガス流入側端面から離れて配置されているセラミックハニカムフィルタにおいて、前記隔壁の気孔率が50〜80%、前記排気ガス流入側目封止部の気孔率が前記隔壁の気孔率より小さいことを特徴とするセラミックハニカムフィルタ。   A desired flow path of the porous ceramic honeycomb structure is plugged to allow exhaust gas to pass through the partition walls of the honeycomb structure, and the exhaust gas inflow side plugging portion is separated from the end surface of the exhaust gas inflow side. The ceramic honeycomb filter is characterized in that the partition wall has a porosity of 50 to 80% and the exhaust gas inflow side plugging portion has a porosity smaller than that of the partition wall. 前記排気ガス流入側目封止部の気孔率が前記隔壁の気孔率の0.5〜0.9倍であることを特徴とする請求項1に記載のセラミックハニカムフィルタ。   The ceramic honeycomb filter according to claim 1, wherein the porosity of the exhaust gas inflow side plugged portion is 0.5 to 0.9 times the porosity of the partition wall. 排気ガス流出側目封止部の気孔率が前記隔壁の気孔率より大きいことを特徴とする請求項1または請求項2に記載のセラミックハニカムフィルタ。   The ceramic honeycomb filter according to claim 1 or 2, wherein the porosity of the exhaust gas outflow side plugged portion is larger than the porosity of the partition wall. 前記排気ガス流出側目封止部の気孔率が90%以下であり、かつ前記隔壁の気孔率の1.1〜1.5倍であることを特徴とする請求項3に記載のセラミックハニカムフィルタ。
4. The ceramic honeycomb filter according to claim 3, wherein the porosity of the exhaust gas outlet side plugged portion is 90% or less and 1.1 to 1.5 times the porosity of the partition wall. .
JP2005159263A 2004-12-22 2005-05-31 Ceramic honeycomb filter Withdrawn JP2006334459A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005159263A JP2006334459A (en) 2005-05-31 2005-05-31 Ceramic honeycomb filter
KR1020077013129A KR20070095889A (en) 2004-12-22 2005-12-22 Method for manufacturing honeycomb filter and honeycomb filter
CN2005800428278A CN101080261B (en) 2004-12-22 2005-12-22 Honeycomb filter manufacturing method and honeycomb filter
PCT/JP2005/023684 WO2006068256A1 (en) 2004-12-22 2005-12-22 Method for manufacturing honeycomb filter and honeycomb filter
EP05820087A EP1837063B1 (en) 2004-12-22 2005-12-22 Method for manufacturing honeycomb filter and honeycomb filter
US11/722,537 US7892309B2 (en) 2004-12-22 2005-12-22 Production method of honeycomb filter and honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159263A JP2006334459A (en) 2005-05-31 2005-05-31 Ceramic honeycomb filter

Publications (1)

Publication Number Publication Date
JP2006334459A true JP2006334459A (en) 2006-12-14

Family

ID=37555461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159263A Withdrawn JP2006334459A (en) 2004-12-22 2005-05-31 Ceramic honeycomb filter

Country Status (1)

Country Link
JP (1) JP2006334459A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837063A1 (en) * 2004-12-22 2007-09-26 Hitachi Metals, Ltd. Method for manufacturing honeycomb filter and honeycomb filter
WO2008078716A1 (en) * 2006-12-27 2008-07-03 Hitachi Metals, Ltd. Ceramic honeycomb filter and process for producing the same
WO2009041611A1 (en) * 2007-09-28 2009-04-02 Kyocera Corporation Honeycomb structure and purification device using the honeycomb structure
JP2009240867A (en) * 2008-03-28 2009-10-22 Ngk Insulators Ltd Honeycomb structure
EP4312014A1 (en) * 2022-07-29 2024-01-31 Johnson Matthey Public Limited Company Testing of substrate monoliths

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837063A4 (en) * 2004-12-22 2009-04-29 Hitachi Metals Ltd Method for manufacturing honeycomb filter and honeycomb filter
EP1837063A1 (en) * 2004-12-22 2007-09-26 Hitachi Metals, Ltd. Method for manufacturing honeycomb filter and honeycomb filter
US7892309B2 (en) 2004-12-22 2011-02-22 Hitachi Metals, Ltd. Production method of honeycomb filter and honeycomb filter
US8092568B2 (en) 2006-12-27 2012-01-10 Hitachi Metals, Ltd. Ceramic honeycomb filter and its production method
WO2008078716A1 (en) * 2006-12-27 2008-07-03 Hitachi Metals, Ltd. Ceramic honeycomb filter and process for producing the same
KR101436878B1 (en) 2006-12-27 2014-09-02 히타치 긴조쿠 가부시키가이샤 Ceramic honeycomb filter and process for producing the same
JP5272733B2 (en) * 2006-12-27 2013-08-28 日立金属株式会社 Ceramic honeycomb filter and manufacturing method thereof
JPWO2008078716A1 (en) * 2006-12-27 2010-04-22 日立金属株式会社 Ceramic honeycomb filter and manufacturing method thereof
JPWO2009041611A1 (en) * 2007-09-28 2011-01-27 京セラ株式会社 Honeycomb structure and purification apparatus using the same
CN101808956B (en) * 2007-09-28 2013-03-20 京瓷株式会社 Honeycomb structure and purification device using the honeycomb structure
WO2009041611A1 (en) * 2007-09-28 2009-04-02 Kyocera Corporation Honeycomb structure and purification device using the honeycomb structure
JP2009240867A (en) * 2008-03-28 2009-10-22 Ngk Insulators Ltd Honeycomb structure
EP4312014A1 (en) * 2022-07-29 2024-01-31 Johnson Matthey Public Limited Company Testing of substrate monoliths
WO2024023486A1 (en) * 2022-07-29 2024-02-01 Johnson Matthey Public Limited Company Testing of substrate monoliths

Similar Documents

Publication Publication Date Title
EP1348843B1 (en) Ceramic honeycomb filter and exhaust gas-cleaning method
JP6279368B2 (en) Exhaust gas purification device
KR100747088B1 (en) Dpf with improving heat durability
JP2005002972A (en) Exhaust emission control device of internal-combustion engine
JP2010269205A (en) Catalyst for cleaning exhaust gas
JPWO2012046484A1 (en) Exhaust gas purification device
JP2007313477A (en) Catalyst for cleaning exhaust gas
JP5218056B2 (en) Ceramic honeycomb filter
JP6539551B2 (en) EXHAUST GAS TREATMENT APPARATUS, METHOD OF TEMPERATURE TEMPERATURE FOR CATALYST, METHOD FOR REGENERATING HONEYCOMB STRUCTURE AND METHOD FOR REMOVING ASH
JP2006233935A (en) Exhaust emission control device
JP2006272157A (en) Ceramic honeycomb filter and waste gas cleaning facility
JPWO2005045207A1 (en) Ceramic honeycomb filter, exhaust gas purification device, and exhaust gas purification method
JP2005349269A (en) Sealed honeycomb structure and method for producing the same
JP3867976B2 (en) Ceramic honeycomb filter and exhaust gas purification method
JP4006645B2 (en) Exhaust gas purification device
JP2006305503A (en) Ceramic honeycomb filter
JP2006334459A (en) Ceramic honeycomb filter
JP4412641B2 (en) Exhaust gas purification device and exhaust gas purification method
JP4239864B2 (en) Diesel exhaust gas purification device
JP2006231116A (en) Exhaust gas-cleaning filter catalyst
JP2007117954A (en) Catalyst for cleaning exhaust gas from diesel engine
JP2006334452A (en) Ceramic honeycomb filter
JP4218559B2 (en) Diesel exhaust gas purification device
JP4285342B2 (en) Manufacturing method of exhaust gas purification filter
JP2008229459A (en) Exhaust gas cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100427