JP2004251137A - Honeycomb filter and exhaust emission control system - Google Patents

Honeycomb filter and exhaust emission control system Download PDF

Info

Publication number
JP2004251137A
JP2004251137A JP2003039426A JP2003039426A JP2004251137A JP 2004251137 A JP2004251137 A JP 2004251137A JP 2003039426 A JP2003039426 A JP 2003039426A JP 2003039426 A JP2003039426 A JP 2003039426A JP 2004251137 A JP2004251137 A JP 2004251137A
Authority
JP
Japan
Prior art keywords
honeycomb filter
honeycomb
exhaust gas
filter
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003039426A
Other languages
Japanese (ja)
Other versions
JP4369141B2 (en
Inventor
Yukihito Ichikawa
結輝人 市川
Toshio Yamada
敏雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003039426A priority Critical patent/JP4369141B2/en
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to EP04250835A priority patent/EP1450015B1/en
Priority to EP05017556A priority patent/EP1598534B1/en
Priority to DE602004014659T priority patent/DE602004014659D1/en
Priority to DE602004026554T priority patent/DE602004026554D1/en
Priority to US10/778,051 priority patent/US7618596B2/en
Publication of JP2004251137A publication Critical patent/JP2004251137A/en
Priority to US12/453,362 priority patent/US20090226348A1/en
Application granted granted Critical
Publication of JP4369141B2 publication Critical patent/JP4369141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2459Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/62Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series
    • B01D46/64Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series arranged concentrically or coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/008Bodies obtained by assembling separate elements having such a configuration that the final product is porous or by spirally winding one or more corrugated sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/78Side-way connecting, e.g. connecting two plates through their sides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/88Joining of two substrates, where a substantial part of the joining material is present outside of the joint, leading to an outside joining of the joint
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/063Surface coverings for exhaust purification, e.g. catalytic reaction zeolites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support

Abstract

<P>PROBLEM TO BE SOLVED: To reduce pressure loss in comparison with the conventional case, to prevent the clogging of a filter caused by a solid material which does not eliminate by burning of ash or iron oxide, to suppress a phenomenon in which a particulate matter deposited in the circulating hole of the filter is delivered to the rear of the filter by pulsation when exhaust gas from an engine pulsates greatly, and to use a honeycomb filter as an exhaust gas purifying filter for a gasoline engine having higher exhaust gas temperature than a diesel engine and having wider variation in temperature, in the honeycomb filter used for purifying exhaust gas. <P>SOLUTION: This honeycomb filter seals one end of a part of the circulating holes 3a, only on one side end 6 of a honeycomb structure having two or more circulating holes 3 partitioned by porous bulkheads 2 and axially passed through. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、ディーゼルエンジン等の内燃機関から排出される排ガス中のパティキュレートマターを捕集するために使用されるハニカムフィルタに関する。
【0002】
【従来の技術】ディーゼルエンジン、ガソリンリーンバーンエンジン、あるいはガソリン直噴エンジンから排出される排ガス中にはスート(カーボンによる黒煙)を主体とするパティキュレートマター(微粒子状物質)が多量に含まれている。このパティキュレートマターが大気中に放出されると環境汚染を引き起こすため、ディーゼルエンジンの排ガス系には、パティキュレートマターを捕集するためのフィルタが搭載されている。
【0003】このような目的で使用されるハニカムフィルタは、図10(a)及び(b)に示すように、多孔質の隔壁12により仕切られた軸方向に貫通する多数の流通孔13を有するハニカム構造体の一方の端面16において一部の流通孔13aの一方の端部を封止し、他方の端面15において残余の流通孔13bの一方の端部を封止した構造を有する(例えば、特許文献1参照。)。
【0004】被処理ガス(排ガス)は、このフィルタ11の流入側端面15において封止されておらず、流出側端面16において封止された流通孔13aに流入し、多孔質の隔壁12を通って、流入側端面15において封止され、流出側端面16において封止されていない流通孔13bに移動し、当該流通孔13bから排出される。そして、この際に隔壁12が濾過層となり、ガス中のスート等のパティキュレートマターが隔壁12に捕捉され隔壁12上に堆積する。
【0005】
【特許文献1】
特開2001−269585号公報
【0006】
【発明が解決しようとする課題】しかしながら、前記のような構造のハニカムフィルタは、すべての流通孔がその一端部において封止されているため、圧力損失が高いという問題があった。
【0007】また、ディーゼルエンジンの排ガス浄化に用いられるディーゼルパティキュレートフィルタ(DPF)は、その使用に伴って、捕集されたパティキュレートマターが次第にフィルタ内に堆積し、そのまま放置しておくとフィルタ性能が低下して行くので、パティキュレートマターがある程度堆積した時点で、フィルタを加熱するなどして堆積したパティキュレートマターを燃焼除去し、フィルタ機能を再生させるようにしているが、従来のハニカムフィルタにおいては、アッシュ(灰分)や酸化鉄等の燃焼により消失しない固形物が徐々に堆積して、フィルタが目詰まりしやすいという問題があった。
【0008】更に、エンジンからの排ガスが大きく脈動した場合には、その脈動を一方の端部が封止された全ての流通孔で受けることになり、流通孔内(流通孔を仕切る隔壁の細孔内部も含む)に堆積していたパティキュレートマターが、排気脈動によって、フィルタの後方へ排出されてしまうという現象が生じることあった。
【0009】更にまた、従来のハニカムフィルタは、排ガスの流出側端面のみならず、排ガスに直接的に曝される流入側端面においても流通孔の封止部を有する構造となっていることから、当該流入側端面における封止部の熱膨張などにより耐熱衝撃性に難点があり、このためディーゼルエンジンよりも排ガス温度が高く、かつ排ガスの温度変動幅の大きいガソリンエンジンの排ガス浄化用フィルタとして使用するにことが困難であった。
【0010】更には、ハニカムフィルタの排ガス流入側端面において、流通孔の封止部にパティキュレートマターが付着し、そこを起点にパティキュレートマターが次第に堆積して、排ガス流入側端面において端部が封止されていない流通孔の開口部までもが閉塞され、そのためにフィルタの圧力損失が急増してしまうという問題があった。
【0011】本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、排ガス浄化に使用可能なハニカムフィルタにおいて、▲1▼従来よりも圧力損失を低減すること、▲2▼アッシュや酸化鉄等の燃焼により消失しない固形物によるフィルタの目詰まりを防止すること、▲3▼エンジンからの排ガスが大きく脈動した際に、フィルタの流通孔内に堆積していたパティキュレートマターが当該脈動によりフィルタ後方へ排出されるという現象を抑制すること、▲4▼ディーゼルエンジンよりも排ガス温度が高く、温度変動幅が大きいガソリンエンジンの排ガス浄化用フィルタとしても使用可能にすること、及び▲5▼排ガス流入側端面におけるパティキュレートマターの堆積により流通孔の開口部が閉塞されることによって起こるフィルタ圧力損失の急増現象を回避すること、にある。
【0012】
【課題を解決するための手段】本発明によれば、多孔質の隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体の片側の端面においてのみ、一部の流通孔の一方の端部を封止してなることを特徴とするハニカムフィルタ(第一発明)、が提供される。
【0013】また、本発明によれば、前記第一発明のハニカムフィルタが使用されていることを特徴とする排ガス浄化システム(第二発明)、が提供される。
【0014】更に、本発明によれば、多孔質の隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体の片側の端面においてのみ、一部の流通孔の一方の端部を封止してなる第一のハニカムフィルタと、多孔質の隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体の一方の端面において一部の流通孔の一方の端部を封止し、他方の端面において残余の流通孔の一方の端部を封止してなる第二のハニカムフィルタとが、互いの流通孔の封止部において接しているか、又は接合されていることを特徴とするハニカムフィルタ(第三発明)、が提供される。
【0015】更に、本発明によれば、前記第三発明のハニカムフィルタの製造方法であって、前記第一のハニカムフィルタと前記第二のハニカムフィルタの流通孔の封止部が、セラミック材料を流通孔の端部に充填して焼成することにより形成されるものであり、前記焼成が行われる前に、前記第一のハニカムフィルタと前記第二のハニカムフィルタの未焼成の封止部同士を貼り合わせ、前記焼成により両ハニカムフィルタを一体化することを特徴とするハニカムフィルタの製造方法(第四発明)、が提供される。
【0016】更にまた、本発明によれば、前記第三発明のハニカムフィルタの製造方法であって、前記第一のハニカムフィルタと前記第二のハニカムフィルタの流通孔の封止部が、セラミック材料を流通孔の端部に充填して焼成することにより形成されるものであり、前記焼成が行われた後に、前記第一のハニカムフィルタと前記第二のハニカムフィルタの封止部同士を接合剤を介して貼り合わせ、再度焼成することにより両ハニカムフィルタを一体化することを特徴とするハニカムフィルタの製造方法(第五発明)、が提供される。
【0017】
【発明の実施の形態】図1は第一発明に係るハニカムフィルタの実施形態の一例を示す概要説明図であり、(a)が一端面側から見た平面図、(b)が断面図である。第1発明に係るハニカムフィルタは、多孔質の隔壁2により仕切られた軸方向に貫通する多数の流通孔3を有するハニカム構造体の片側の端面においてのみ、一部の流通孔3aの一方の端部を封止してなるものである。このハニカムフィルタに好適に使用できるハニカム構造体の一例としては、外径が190.5mm、長さが203.2mm、流通孔の断面形状(セル形状)が正方形、セルピッチが1.6mm、隔壁厚さが0.3mmである押出し成形法により製造されたコージェライト質のハニカム構造体が挙げられるが、本発明は勿論このようなハニカム構造体を使用したハニカムフィルタに限定されるものではない。
【0018】従来DPF等として使用されるハニカムフィルタが、図10のようにハニカム構造体の両側の端面(被処理ガスの流入側端面15及び流出側端面16)において流通孔13の封止を行い、全ての流通孔13がそのどちらか一方の端部を封じられているのに対し、第一発明のハニカムフィルタ1は、前記のようにハニカム構造体の片側の端面6(使用時には被処理ガスの流出側端面となる)においてのみ、一部の流通孔3aの一方の端部が封止されている。
【0019】すなわち、第一発明のハニカムフィルタにおいては、一端部が封止された流通孔3aと、何れの端部も封止されていない流通孔3bが混在することになる。このような構造とした結果、一端部が封止された流通孔3aに流入した被処理ガスは、従来のハニカムフィルタと同様に、濾過層となる多孔質の隔壁2を通過し、ガス中のパティキュレートマターが除去されてから外部に排出されるが、何れの端部も封止されていない流通孔3bに流入した被処理ガスは、隔壁2をほとんど通過することなく外部に排出されるため、フィルタ全体としてのパティキュレートマターの捕集効率は従来に比して低下することになる。
【0020】しかしながら、封止されていない流通孔3bが存在することによって、圧力損失を従来よりも低減できるという利点があり、フィルタ単体での捕集効率があまり厳しく要求されないような用途において有用である。また、フィルタ内部に堆積したパティキュレートマターを燃焼除去した後に消失することなく残るアッシュや酸化鉄等の固形物も、封止されていない流通孔3b内に残った分については、当該流通孔3b内を通過するガスの圧力などによって外部に排出されるので、それら固形物によるフィルタの目詰まりが生じにくい。
【0021】更にまた、エンジンからの排ガスが大きく脈動した場合に、従来のハニカムフィルタでは、その脈動を一方の端部が封止された全ての流通孔で受けることになり、流通孔内(流通孔を仕切る隔壁の細孔内部も含む)に堆積していたパティキュレートマターが、排気脈動により、フィルタの後方へ排出されてしまうという現象が生じることあったが、第一発明のハニカムフィルタを用いれば、通気抵抗が相対的に小さい何れの端部も封止されていない流通孔で排ガスの脈動を受けることができ、一方の端部が封止された流通孔内に堆積していたパティキュレートマターが排気脈動によりフィルタ後方へ排出されることを抑制することができる。
【0022】本発明のハニカムフィルタはディーゼルエンジンの他、ガソリンリーンバーンエンジンやガソリン直噴エンジンからの排ガスの浄化システムにも好適に用いることができる。一般に、ディーゼルエンジンよりもガソリンエンジンの方が、その排ガス温度が高く、また温度の変動幅も大きい。ディーゼルエンジンでは、排ガス温度は高くても600℃程度であるが、ガソリンエンジンでは、排ガス温度がエンジン近傍で1000℃あるいはそれ以上に及ぶことがある。
【0023】ハニカムフィルタを排気系に設置した場合、フィルタの排ガス流入部が排ガスの温度変動を直接に受けることになるので、エンジンからの排ガス温度変動に着目した場合には、フィルタの排ガス流入部における耐熱衝撃性が重要となる。図10のような従来のハニカムフィルタでは、排ガス流出側端面16のみならず排ガス流入側端面15においても流通孔の封止部14を有する構造から、耐熱衝撃性に難点があったため、温度が高く、温度変動幅の大きいガソリンエンジンに適用することが困難であった。
【0024】しかしながら、第一発明のハニカムフィルタは、片側の端面にのみ流通孔の封止部が存在し、その反対側の端面においては流通孔の封止部が存在しない構造なので、その封止部が存在しない側の端面を排ガス流入側端面とすることで、ガソリンエンジンに使用した場合における排ガス流入部での排ガス温度変動による厳しい熱衝撃に耐えることが可能となる。当然、ディーゼルエンジンにおいても、その排ガスの温度変動幅が大きく熱衝撃が厳しい場合には、第一発明のハニカムフィルタが好適に使用できる。
【0025】なお、図1では、流通孔の封止部4は千鳥状に形成されているが、封止部の形成パターンはこれに限らない。例えば、一方の端部が封止されている流通孔を特定の箇所に複数集合させ、何れの端部も封止されていない流通孔を他の箇所に複数集合させるような構成としてもよいし、一方の端部が封止されている流通孔と、何れの端部も封止されていない流通孔とを、ハニカム構造体の端面側から見てそれぞれ列状に集合させる構成としてもよい。
【0026】また、一方の端部が封止されている流通孔と、何れの端部も封止されていない流通孔とが、ハニカム構造体の端面側から見て、それぞれ同心円状や放射状に配置した構成としてもよい。あるいは、ハニカム構造体の外周部に、一方の端部が封止されている流通孔と、何れの端部も封止されていない流通孔とを交互に配置し、その内側(ハニカム構造体の中央部)に、何れの端部も封止されていない流通孔のみを配置する構成としてもよい。
【0027】これら流通孔の封止部の構成は流通孔の断面形状(セル形状)によって様々なパターンが可能である。図の例では、セル形状を四角形としているが、三角形や六角形などの多角形、あるいは円形としてもよく、また、異なるセル形状を組み合わせるようにしてもよい。ハニカム構造体の断面形状についても特に制限はなく、円形の他、楕円形、長円形、オーバル形、略三角形、略四角形などあらゆる形状をとることができる。
【0028】また、流通孔の開口面積は、全ての流通孔で同一とする必要はなく、開口面積の異なる流通孔が混在するようにしてもよい。例えば、図2(a)及び(b)に示す実施形態では、ハニカム構造体1が、相対的に開口面積の大きい流通孔3cと、相対的に開口面積の小さい流通孔3dとを有している。このような構造のハニカム構造体を、本発明のフィルタに用いる場合には、ハニカム構造体1の片側の端面6においてのみ、少なくとも相対的に開口面積の大きい流通孔3cの一方の端部を封止することが好ましい。
【0029】図1のように、全ての流通孔の開口面積が同一の場合においては、相対的に通気抵抗が小さい何れの端部も封止していない流通孔の方へ排ガスが流れ込みやすくなってしまうために、一方の端部が封止された流通孔に流れ込む排ガスの量が減少して、フィルタの捕集効率が大幅に低下してしまう。
【0030】これに対し、図2のように、相対的に開口面積の大きい流通孔3cと、相対的に開口面積の小さい流通孔3dとを混在させ、相対的に開口面積の大きい流通孔3cの一方の端部を封止し、相対的に開口面積の小さい流通孔3dは端部を封止しないようにすると、端部が封止された流通孔3cへ排ガスが流れ込みやすくなり、フィルタの捕集効率の大幅な低減を回避できる。
【0031】また、少なくとも何れの端部も封止していない流通孔において、孔内にフォーム状、繊維状などの充填物を充填したり、隔壁表面に粒子状、繊維状、フィン状などの突起状物質を形成したり、隔壁自体を曲げたり、隔壁表面を曲面にしたりすることでも、流通孔の通気抵抗を調整することが可能であり、このような手段によって、パティキュレートマターの捕捉性能を向上させることができる。
【0032】ハニカム構造体の材質については、強度、耐熱性等の観点から、コージェライト、アルミナ、ムライト、チタン酸アルミニウム、チタニア、ジルコニア、窒化珪素、窒化アルミニウム、炭化珪素、LAS(リチウムアルミニウムシリケート)といったセラミック材料を1種又は2種以上の複合物として、あるいは、ステンレス鋼、アルミニウム合金などの金属材料や、活性炭、シリカゲル、ゼオライト等の吸着材料を用いることが好ましい。また、流通孔の端部を封止する封止部4の材質は、ハニカム構造体の材質と同一にすると、両者の熱膨張率が一致するため好ましい。
【0033】ハニカム構造体の隔壁の表面及び/又は隔壁内部の細孔の表面には、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)などの貴金属類や銅、チタニア、バナジウム、ゼオライト、ペロブスカイト系触媒などの非貴金属を触媒成分として担持してもよく、これにより、排ガス中のハイドロカーボン(HC)類、一酸化炭素(CO)、窒素酸化物(NO)などの有害成分を処理したり、フィルタ内に堆積したパティキュレートマターを燃焼除去する際に、その燃焼を促進することができる。
【0034】従来使用されている通常のハニカムフィルタでは、隣接する流通孔の端部をハニカム構造体の両側端面において交互に封止した構造のために、触媒成分を担持させることが困難であったが、第一発明のハニカムフィルタは、片側の端面においてのみ一部の流通孔の端部を封止した構造となっているため触媒担持が比較的容易であり、触媒成分をフィルタ全体にほぼ均一に担持することが可能である。
【0035】排ガス浄化用のフィルタに担持される触媒成分としては、一般に、HC類、CO、そしてパティキュレートマターを処理する機能を持つPt、Pdなどの酸化触媒が用いられるが、NOも処理するために、Rhなどの還元触媒が担持される場合もある。
【0036】酸化触媒により排ガス中の硫黄分(サルファー)も酸化されて硫酸などが形成されるために触媒自体が被毒し性能低下を招くことがあり、特に還元触媒で著しい。そのため、酸化触媒と還元触媒とを同じ領域で共存させることはあまり好ましくない。還元触媒がパティキュレートマターあるいはアッシュで覆われてしまいNO成分との接触が物理的に阻害されることもある。また、HC類は還元剤としても機能するので、HC類が酸化されると還元反応の進行が阻害されることにもなる。
【0037】更には、酸化触媒と還元触媒とが共存すると、各触媒成分の分散性、独立性が低下するので、排ガスとの接触効率が低下する。更にまた、酸化触媒でのパティキュレートマターの酸化燃焼による急激な高温化により、近くに存在する還元触媒が劣化するという問題も考えられる。
【0038】そこで、第一発明のハニカムフィルタに、酸化触媒と還元触媒とを担持させる場合には、一方の端部が封止された流通孔を仕切っている隔壁の孔内表面及び/又は隔壁内部の細孔の表面に酸化触媒を担持し、その他の何れの端部も封止されていない流通孔を仕切っている隔壁の孔内表面及び/又は隔壁内部の細孔の表面に還元触媒を担持した構成とすることがこのましく、これにより、基本的に酸化触媒と還元触媒とを同一領域内で共存させるということを回避できる。
【0039】酸化触媒が担持されている一方の端部が封止された流通孔内では、HC類、CO、パティクレートマター、そしてサルファーの各成分が酸化されるが、NO成分は還元されずに、多孔質の隔壁を通過して、何れの端部も封止されていない流通孔へ抜けていく。何れの端部も封止されていない流通孔内では酸化触媒と分離して担持された還元触媒が待ち受けているので、前記隔壁を通過して当該孔内に移動してきた当NO成分は、当該孔内へ直接に流入してきたNO成分と合流して、還元触媒により還元処理されることになる。
【0040】何れの端部も封止されていない流通孔内では、HC類が酸化されずに存在しているので、それらHC類が還元剤として機能することが可能となる。また、何れの端部も封止されていない流通孔内では、サルファー成分が酸化され硫酸が形成されることもない。更に、何れの端部も封止されていない流通孔の隔壁表面では、一方の端部が封止された流通孔から通過してきた排ガスが流出してくるので、パティキュレートマターが多く堆積することがなく、還元触媒がパティキュレートマターで覆われて、NO成分との接触が阻害されるといった事態が生じにくい。
【0041】NO成分は主に高温燃焼過程で発生するので、エンジン負荷や回転数の高い領域での発生が多く、その発生の際には排ガス量自体も多くなり、排ガス流速も高くなる。このような状態では、排ガスが相対的に通気抵抗の低い何れの端部も封止されていない流通孔の方へ選択的に流入しようとするので、何れの端部も封止されていない流通孔に還元触媒を配置することが有効となる。なお、排ガス自体が高温化してくると、パティキュレートマターは自己燃焼するようになる。
【0042】一方の端部が封止された流通孔と、何れの端部も封止されていない流通孔とは、隔壁1枚で隔てられているだけなので、隔壁表面にのみ触媒成分を担持するタイプであれば、完全に酸化触媒と還元触媒とを分離することができる。しかしながら、隔壁内部の細孔内にまで触媒成分を担持するタイプになると、酸化触媒と還元触媒とは隔壁内部で共存する場合が生じる。このような場合にでも、全体的に見ると、一方の端部が封止された流通孔では酸化触媒が主成分となっており、何れの端部も封止されていない流通孔へ向かうに従って、還元触媒が主成分になってくるようになっていればよい。
【0043】なお、後述する排ガス浄化システムのように、複数のハニカムフィルタを用いる場合においては、それぞれのハニカムの材質や、セル密度、壁厚、セル形状等のセル構造、気孔率、細孔径、細孔分布等の材料特性などを同一とする必要はなく、使用される条件等により任意のものを選択すればよい。
【0044】第一発明に係るハニカムフィルタの製造方法としては、押出成形等により作製したハニカム構造体の片側端面において、所定の流通孔の端部に封止部となるセラミック材料をスラリー化、ペースト化するなどして充填し、その後に焼成するのが簡単であるが、このように片側端面においてのみ流通孔の端部を封止して焼成を行うと、流通孔を封止した側の端面と封止しない側の端面とで焼成収縮に差が生じ、この収縮バランスの崩れに起因して歪み、変形、亀裂等の製品不良が発生しやすい。
【0045】このような焼成時の収縮差をなくすため、まず、ハニカム構造体の片側端面だけでなく、両側端面において、それぞれ流通孔の端部に封止部となるセラミック材料を充填して、両側端面における焼成時の収縮量が同程度となるように焼成を行い、焼成後に、片側端面の流通孔の封止部を加工除去することにより、第一発明に係るハニカムフィルタを得ることが好ましい。あるいは、焼成後に、中央で切断することにより同一のものを2つ得ることも可能である。
【0046】また、一方の端部が封止された流通孔を仕切っている隔壁の孔内表面及び/又は隔壁内部の細孔の表面に酸化触媒を担持し、その他の何れの端部も封止されていない流通孔を仕切っている隔壁の孔内表面及び/又は隔壁内部の細孔の表面に還元触媒を担持した構成のハニカムフィルタを作製する場合には、例えば、まず、ハニカム構造体の両側端面で流通孔の一方の端部を交互に封止した通常のハニカムフィルタを製造する。次に、このフィルタの一方の端面から酸化触媒成分を含有するスラリーを開口した流通孔内へ流し込み、当該流通孔内に酸化触媒成分を担持する。次いで、もう一方の端面から還元触媒成分を含有するスラリーを開口した流通孔内へ流し込み、当該流通孔内に還元触媒成分を担持する。その後、酸化触媒成分を含有するスラリーを流し込んだ側の端面を流通孔の封止部ごと切断して除去する。
【0047】第二発明に係る排ガス浄化システムは、前記第一発明のハニカムフィルタが使用されていることをその特徴とするものであり、当該ハニカムフィルタが使用されることによって、システムの圧力損失を低減するとともに、フィルタの目詰まりを生じにくくすることができる。
【0048】なお、このシステムにおいては、第一発明のハニカムフィルタを単独で配置して使用しもよいが、目的に応じて複数個用いたり、他の構成要素と組み合わせて用いてもよい。例えば、図3のように、缶体30内において、ハニカム構造体に触媒成分を担持してなる触媒体21が、第一発明のハニカムフィルタ1の前方(排ガス流れ方向上流側)に配置されたシステム構成とすることにより、排ガス中に含まれるHC等の有害成分を触媒体21で無害化した後、後方のハニカムフィルタ1でパティキュレートマターの除去を行うことができる。触媒体21に担持させる触媒成分としては、例えば、Pt、Pd、Rh等の従来より排ガス浄化に使用されている金属を使用することができる。
【0049】また、図4のように、第一発明のハニカムフィルタ1を2つ使用し、これらハニカムフィルタが排ガスの流れ方向に沿って直列に配置されたシステム構成としてもよい。この場合、前方に配置されたハニカムフィルタ1の流通孔の封止部4と、後方に配置されたハニカムフィルタ1の何れの端部も封止されていない流通孔3bの一端部とが、両ハニカムフィルタ1、1の対向する端面において対応する位置(軸方向において向かい合う位置)に存在し、かつ、両ハニカムフィルタ1、1の対向する端面が接しているか、又は両ハニカムフィルタ1、1が接合されていることが好ましく、このような構成とすることにより、パティキュレートマターの捕集効率を高めることができる。
【0050】両ハニカムフィルタを接合する場合には、それらの接合面に低熱膨張材料を接合材として用いることが過大な熱応力を回避する観点から好ましい。例えば、ハニカムフィルタがコージェライトのような低熱膨張材料で製造されている場合には、LAS材料が接合材として好適である。
【0051】また、図5のように、多孔質の隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体の一方の端面において一部の流通孔の一方の端部を封止し、他方の端面において残余の流通孔の一方の端部を封止してなるハニカムフィルタ(図10に示すような従来構造のハニカムフィルタ)11が、第一発明のハニカムフィルタ1の後方(排ガス流れ方向下流側)に配置されたシステム構成をとることにより、先に第一発明のハニカムフィルタ1で排ガス中のパティキュレートマターがある程度除去され、後方のハニカムフィルタ11には、あまり多くのパティキュレートマターが堆積しなくなる。
【0052】このため、フィルタの再生(パティキュレートマターの燃焼除去)を行う間隔を長くしたり、再生後に後方のハニカムフィルタ内に残存するアッシュ等の固形物の量を減少させて、フィルタを目詰まりしにくくしたりすることができる。
【0053】また、必要に応じ、流通孔の封止部の一部において排ガスを貫通させることで、封止部を有する流通孔の通気抵抗を低減することが可能であるとともに、流通孔内に捕捉されるアッシュ等の固形物を貫通部よりフィルタ外部へ排出することにより、フィルタを目詰まりしにくくしたりすることもできる。封止部の一部に貫通部を設ける代わりに、封止部全体に通気性をもたせることでも同様の効果が期待できる。
【0054】流通孔の封止部の一部において排ガスを貫通させる手段としては、封止部に貫通孔を設けるか、あるいは、隔壁と封止部との境界部に隙間を設けることが好ましい。また、封止部全体に通気性をもたせる手段は、具体的には封止部を多孔質とすることであり、通常は封止部が隔壁よりも厚いので、封止部の細孔の寸法を隔壁の細孔の寸法よりも大きくすることが好ましい。
【0055】なお、このように従来構造のハニカムフィルタ11を、第一発明のハニカムフィルタ1の後方に配置する場合においては、図6のように、従来構造のハニカムフィルタ11の流通孔の封止部と、第一発明のハニカムフィルタ1の流通孔の封止部とが、両ハニカムフィルタ1、11の対向する端面において対応する位置(軸方向において向かい合う位置)に存在するようにすることが好ましく、更に、図7のように、両ハニカムフィルタ1、11の対向する端面が接しているか、又は両ハニカムフィルタ1、11が接合されていることがより好ましい。
【0056】このような構成とすることにより、従来構造のハニカムフィルタ11の排ガス流入側端面において、流通孔の封止部にパティキュレートマターが付着し、そこを起点にパティキュレートマターが次第に堆積して、排ガス流入側端面において端部が封止されていない流通孔の開口部までもが閉塞され、フィルタの圧力損失が急増してしまうという問題を解決することができる。
【0057】第三発明に係るハニカムフィルタは、図7のように第一発明のハニカムフィルタ1と従来構造のハニカムフィルタ11とを組み合わせて使用する場合おいて、システムへの組み込みを容易にする等の目的で両者を何らかの手段により接触状態とするか、あるいは接合一体化して1つのハニカムフィルタとした例を示すものであり、図8に示すように、多孔質の隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体の片側の端面においてのみ、一部の流通孔の一方の端部を封止してなる第一のハニカムフィルタ(第一発明に係るハニカムフィルタ)1と、多孔質の隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体の一方の端面において一部の流通孔の一方の端部を封止し、他方の端面において残余の流通孔の一方の端部を封止してなる第二のハニカムフィルタ(図10に示すような従来構造のハニカムフィルタ)11とが、互いの流通孔の封止部4、14において接触しているか、又は接合されていることを特徴とするものである。
【0058】2つのハニカムフィルタ1、11を接触状態とし、あるいは接合して一体化するに当たっては、両フィルタの端面において隔壁同士を接触・接合するという方法も考えられるが、フィルタに用いられるような薄壁のハニカム構造体では、端面における隔壁の面積、すなわち接触・接合面とすることができる部分の面積が小さいため、必要な接触面積を確保したり、接合強度を得ることが難しい。
【0059】そこで、第三発明においては、前記のように互いの流通孔の封止部4、14において両フィルタ1、11を接触させ、あるいは接合して一体化することとした。両フィルタの端面を合わせたときに、互いの封止部同士が接するように各々の封止部4、14を配置しておけば、必要な強度を得るのに十分な接触・接合面積を確保することが可能である。そして、このように2つのハニカムフィルタを接触させ、あるいは接合して一体化することにより、排ガス浄化システムへの組み込みが容易となるとともに、両フィルタ間のガスの移動がスムーズになる等の効果が得られる。
【0060】第四発明は、前記第三発明のハニカムフィルタの製造方法の一例であって、第一のハニカムフィルタ1と第二のハニカムフィルタ11の流通孔の封止部4、14が、共にセラミック材料を流通孔の端部に充填して焼成することにより形成されるものである場合において、前記焼成が行われる前に、第一のハニカムフィルタ1と第二のハニカムフィルタ11の未焼成の封止部(流通孔の端部に充填されたセラミック材料)同士を貼り合わせ、その後、焼成により両ハニカムフィルタを一体化するものである。このように、両ハニカムフィルタの流通孔の封止部を未焼成の状態で貼り合わせれば、その後の焼成により、特に接合剤等を使用しなくても両者を一体化することができる。
【0061】勿論、前記のような未焼成状態の封止部に対し、その接合に接合剤等を使用するようにしてもよく、それによってより強固に両者を一体化することができる。また、接合剤において熱膨張差を緩和できるように工夫することにより、両者の材質が異なるなどして熱膨張特性が違う場合において、接合部の信頼性を確保することが可能となる。
【0062】第五発明は、第三発明のハニカムフィルタの製造方法の別の一例であって、第一のハニカムフィルタ1と第二のハニカムフィルタ11の流通孔の封止部4,14が、共にセラミック材料を流通孔の端部に充填して焼成することにより形成されるものである場合において、前記焼成が行われた後に、第一のハニカムフィルタ1と第二のハニカムフィルタ11の封止部同士を接合剤を介して貼り合わせ、再度焼成することにより両ハニカムフィルタを一体化するものである。この方法によれば、第一のハニカムフィルタ1と第二のハニカムフィルタ11とが、既にその封止部が焼成された状態で存在する場合に、両者を容易かつ十分な接合強度で一体化することができる。フィルタに触媒成分を担持する場合には、両者を接合した後に触媒成分を担持してもよいし、両者を接合する前に触媒成分を担持してもよい。
【0063】なお、本製造方法においては、図9に示すように、第一のハニカムフィルタと第二のハニカムフィルタとの何れか一方の封止部4の貼り合わせ面を凸形状とし、他方の封止部14の貼り合わせ面をそれに対応した凹形状とすることが好ましく、これにより、両ハニカムフィルタを接合する際の位置決めが容易になるとともに、接合力を高めることができる。また、第一のハニカムフィルタと第二のハニカムフィルタとの何れか一方の封止部にピンを設けておき、他方の封止部に当該ピンが嵌合するような孔部を設けておくことによっても、同様に位置決めを容易にすることが可能である。
【0064】
【発明の効果】以上説明したように、本発明のハニカムフィルタ及び排ガス浄化システムによれば、従来よりも圧力損失を低減することが可能であり、また、アッシュや酸化鉄等の燃焼により消失しない固形物によるフィルタの目詰まりを生じにくくすることができる。
【0065】また、本発明のハニカムフィルタにおいては、エンジンからの排ガスが大きく脈動した場合に、通気抵抗が相対的に小さい何れの端部も封止されていない流通孔で、その排気脈動を受けることができ、その結果、一方の端部が封止された流通孔内に堆積していたパティキュレートマターが当該脈動によりフィルタ後方へ排出されるという現象を抑制することが可能となる。
【0066】更に、本発明のハニカムフィルタは、ディーゼルエンジンに比して排ガス温度が高く、温度変動幅が大きいため、耐熱衝撃性の観点から従来のハニカムフィルタでは適用が困難であったガソリンエンジンの排ガス浄化用フィルタとしても使用することが可能である。
【0067】更にまた、従来構造のハニカムフィルタを本発明のハニカムフィルタの後方(排ガス流れ方向下流側)に配置することにより、従来構造のハニカムフィルタの排ガス流入側端面において、流通孔の封止部にパティキュレートマターが付着し、そこを起点にパティキュレートマターが次第に堆積して、排ガス流入側端面において端部が封止されていない流通孔の開口部までもが閉塞され、フィルタの圧力損失が急増してしまうという問題を解決することができる。
【図面の簡単な説明】
【図1】第一発明に係るハニカム構造体の実施形態の一例を示す概要説明図であり、(a)が一端面側から見た平面図、(b)が断面図である。
【図2】第一発明に係るハニカム構造体の実施形態の他の一例を示す概要説明図であり、(a)が一端面側から見た平面図、(b)が断面図である。
【図3】第二発明に係る排ガス浄化システムの実施形態の一例を示す概要説明図である。
【図4】第二発明に係る排ガス浄化システムの実施形態の他の一例を示す概要説明図である。
【図5】第二発明に係る排ガス浄化システムの実施形態の他の一例を示す概要説明図である。
【図6】第二発明に係る排ガス浄化システムの実施形態の他の一例を示す概要説明図である。
【図7】第二発明に係る排ガス浄化システムの実施形態の他の一例を示す概要説明図である。
【図8】第三発明に係るハニカムフィルタの実施形態の一例を示す概要説明図である。
【図9】封止部の貼り合わせ面を凸形状と凹形状にした例を示す概要説明図である。
【図10】従来DPF等に使用されているハニカムフィルタの基本的な構造を示す概要説明図で、(a)が一端面側から見た平面図、(b)が断面図である。
【符号の説明】
1…第一発明に係るハニカムフィルタ、2…隔壁、3…流通孔、4…封止部、6…流出側端面、11…従来構造のハニカムフィルタ、12…隔壁、13…流通孔、14…封止部、15…流入側端面、16…流出側端面、21…触媒体、30…缶体。
[0001]
The present invention relates to a honeycomb filter used for collecting particulate matter in exhaust gas discharged from an internal combustion engine such as a diesel engine.
[0002]
2. Description of the Related Art Exhaust gas discharged from a diesel engine, a gasoline lean burn engine, or a gasoline direct injection engine contains a large amount of particulate matter (particulate matter) mainly composed of soot (black smoke due to carbon). ing. If this particulate matter is released into the atmosphere, it causes environmental pollution. Therefore, the exhaust gas system of a diesel engine is equipped with a filter for trapping the particulate matter.
A honeycomb filter used for such a purpose has, as shown in FIGS. 10 (a) and 10 (b), a large number of flow holes 13 penetrating in an axial direction and partitioned by porous partition walls 12. The honeycomb structure has a structure in which one end face of one of the flow holes 13a is sealed at one end face 16 and one end of the remaining flow hole 13b is sealed at the other end face 15 (for example, See Patent Document 1.).
The gas to be treated (exhaust gas) is not sealed at the inflow side end face 15 of the filter 11, but flows into the flow hole 13 a sealed at the outflow side end face 16, and passes through the porous partition 12. Then, it moves to the flow hole 13b that is sealed at the inflow side end surface 15 and is not sealed at the outflow side end surface 16, and is discharged from the flow hole 13b. At this time, the partition 12 becomes a filtration layer, and particulate matter such as soot in the gas is captured by the partition 12 and deposited on the partition 12.
[0005]
[Patent Document 1]
JP 2001-269585 A
[0006]
However, the honeycomb filter having the above-described structure has a problem that the pressure loss is high because all the flow holes are sealed at one end thereof.
A diesel particulate filter (DPF) used for purifying exhaust gas of a diesel engine has a problem in that the collected particulate matter gradually accumulates in the filter as it is used, and if the filter is left as it is, the filter becomes unfiltered. As the performance deteriorates, when the particulate matter accumulates to a certain extent, the filter function is regenerated by burning the particulate matter by heating the filter, etc. to regenerate the filter function. However, there is a problem that solids that do not disappear due to combustion of ash (ash), iron oxide, and the like gradually accumulate and the filter is likely to be clogged.
Further, when the exhaust gas from the engine pulsates greatly, the pulsation is received by all of the flow holes whose one end is sealed, and the pulsation is received in the flow hole (the thin wall of the partition partitioning the flow hole). In some cases, the particulate matter accumulated in the hole (including the inside of the hole) is discharged to the rear of the filter due to the exhaust pulsation.
Furthermore, the conventional honeycomb filter has a structure having a sealing portion for a flow hole not only at the outflow end face of the exhaust gas but also at the inflow end face directly exposed to the exhaust gas. There is a problem in thermal shock resistance due to the thermal expansion of the sealing portion at the inflow side end face, and therefore, it is used as an exhaust gas purification filter for a gasoline engine having a higher exhaust gas temperature than a diesel engine and a large temperature fluctuation range of the exhaust gas. It was difficult.
[0010] Further, on the exhaust gas inflow side end face of the honeycomb filter, particulate matter adheres to the sealing portion of the flow hole, and the particulate matter gradually accumulates therefrom as a starting point. There has been a problem that even the opening of the unsealed flow hole is closed, which causes a sudden increase in the pressure loss of the filter.
The present invention has been made in view of such conventional circumstances, and an object of the present invention is to provide a honeycomb filter that can be used for purifying exhaust gas to reduce the pressure loss as compared with the prior art. (2) Prevent clogging of the filter due to solid matter that does not disappear due to combustion of ash, iron oxide, etc. (3) When exhaust gas from the engine pulsates greatly, the exhaust gas accumulates in the flow holes of the filter. (4) The exhaust gas temperature is higher than that of diesel engines and the temperature fluctuation range is larger than that of diesel engines. And (5) the opening of the flow hole is closed by the accumulation of particulate matter on the exhaust gas inflow side end face. Avoiding surge phenomenon filter pressure loss caused by, in.
[0012]
According to the present invention, only one end face of a honeycomb structure having a large number of axially penetrating through holes partitioned by a porous partition wall has a part of the through hole. A honeycomb filter (first invention) characterized in that one end is sealed.
Further, according to the present invention, there is provided an exhaust gas purification system (second invention) wherein the honeycomb filter of the first invention is used.
Further, according to the present invention, one end of one of the flow holes is provided only on one end surface of the honeycomb structure having a large number of flow holes penetrating in the axial direction partitioned by the porous partition walls. And a first honeycomb filter having a plurality of axially penetrated through-holes formed by a porous partition wall. And the second honeycomb filter, which seals one end of the remaining flow holes on the other end surface, is in contact with or bonded to each other at the sealing portions of the flow holes. Thus, there is provided a honeycomb filter (third invention).
Further, according to the present invention, there is provided the method for manufacturing a honeycomb filter according to the third invention, wherein the sealing portions of the flow holes of the first honeycomb filter and the second honeycomb filter are made of a ceramic material. It is formed by filling and sintering the end of the flow hole, and before the sintering is performed, the unsintered sealing portions of the first honeycomb filter and the second honeycomb filter are bonded to each other. A method for manufacturing a honeycomb filter (fourth invention) is characterized in that both honeycomb filters are integrated by bonding and firing.
Furthermore, according to the present invention, there is provided the method for manufacturing a honeycomb filter according to the third invention, wherein a sealing portion of a flow hole of the first honeycomb filter and the second honeycomb filter is formed of a ceramic material. Is filled in the end of the flow hole and fired, and after the firing is performed, the sealing portions of the first honeycomb filter and the second honeycomb filter are bonded to each other with a bonding agent. And a method for manufacturing a honeycomb filter (fifth invention), wherein both honeycomb filters are integrated by firing and re-baking.
[0017]
1 is a schematic explanatory view showing an example of an embodiment of a honeycomb filter according to the first invention, wherein (a) is a plan view viewed from one end face side, and (b) is a cross-sectional view. is there. The honeycomb filter according to the first invention has one end of one of the flow holes 3a only on one end surface of the honeycomb structure having a large number of flow holes 3 penetrating in the axial direction partitioned by the porous partition walls 2. The part is sealed. As an example of a honeycomb structure that can be suitably used for this honeycomb filter, the outer diameter is 190.5 mm, the length is 203.2 mm, the cross-sectional shape (cell shape) of the flow hole is square, the cell pitch is 1.6 mm, and the partition wall thickness is A cordierite-based honeycomb structure manufactured by an extrusion molding method having a thickness of 0.3 mm is exemplified, but the present invention is not limited to a honeycomb filter using such a honeycomb structure.
As shown in FIG. 10, a honeycomb filter conventionally used as a DPF or the like seals the flow holes 13 at both end faces (the inflow end face 15 and the outflow end face 16 of the gas to be treated) as shown in FIG. While all the flow holes 13 are closed at one end, the honeycomb filter 1 according to the first aspect of the present invention, as described above, has one end face 6 of the honeycomb structure (the gas to be treated when used). Only one end of one of the flow holes 3a is sealed.
That is, in the honeycomb filter of the first aspect of the present invention, the flow holes 3a whose one end is sealed and the flow holes 3b whose both ends are not sealed are mixed. As a result of such a structure, the gas to be treated that has flowed into the flow hole 3a whose one end is sealed passes through the porous partition walls 2 serving as a filtration layer in the same manner as in a conventional honeycomb filter, and After the particulate matter is removed, the gas is discharged to the outside. However, the gas to be processed that has flowed into the flow holes 3b whose ends are not sealed is discharged to the outside almost without passing through the partition wall 2. In addition, the collection efficiency of the particulate matter as the whole filter is reduced as compared with the related art.
However, the presence of the unsealed flow holes 3b has the advantage that the pressure loss can be reduced as compared with the conventional case, and is useful in applications where the collection efficiency of the filter alone is not required to be very strict. is there. In addition, solid matter such as ash and iron oxide remaining without burning after removing particulate matter deposited inside the filter is removed from the unsealed flow holes 3b. Since the gas is exhausted to the outside due to the pressure of the gas passing through the inside, clogging of the filter by the solid matter is unlikely to occur.
Furthermore, when the exhaust gas from the engine pulsates greatly, in the conventional honeycomb filter, the pulsation is received by all of the flow holes whose one end is sealed, and the inside of the flow hole (flow The particulate matter deposited on the partition wall (including the inside of the partition wall) may be discharged to the rear of the filter due to the exhaust pulsation, but the honeycomb filter of the first invention is used. In this case, the exhaust holes can receive pulsation of the exhaust gas in the unsealed flow holes having relatively small airflow resistance at one end, and the particulates accumulated in the flow holes sealed at one end can be obtained. Matter can be suppressed from being discharged to the rear of the filter due to exhaust pulsation.
The honeycomb filter of the present invention can be suitably used not only for a diesel engine but also for a system for purifying exhaust gas from a gasoline lean burn engine or a gasoline direct injection engine. In general, a gasoline engine has a higher exhaust gas temperature than a diesel engine, and a temperature fluctuation range is larger. In a diesel engine, the exhaust gas temperature is at most about 600 ° C., but in a gasoline engine, the exhaust gas temperature may reach 1000 ° C. or more near the engine.
When the honeycomb filter is installed in the exhaust system, the exhaust gas inflow portion of the filter is directly affected by the temperature fluctuation of the exhaust gas. Is important in thermal shock resistance. In the conventional honeycomb filter as shown in FIG. 10, the structure having the sealing portion 14 of the flow hole not only on the exhaust gas outflow end face 16 but also on the exhaust gas inflow end face 15 has a problem in thermal shock resistance. However, it is difficult to apply to a gasoline engine having a large temperature fluctuation range.
However, the honeycomb filter of the first invention has a structure in which the sealing portion for the flow hole exists only on one end face and the sealing portion for the flow hole does not exist on the opposite end face. By using the end face on the side where no portion exists as the exhaust gas inflow side end face, it becomes possible to withstand severe thermal shock due to exhaust gas temperature fluctuation at the exhaust gas inflow section when used in a gasoline engine. Naturally, also in a diesel engine, when the temperature fluctuation width of the exhaust gas is large and the thermal shock is severe, the honeycomb filter of the first invention can be suitably used.
In FIG. 1, the sealing portions 4 of the flow holes are formed in a staggered manner, but the pattern of forming the sealing portions is not limited to this. For example, a configuration may be adopted in which a plurality of flow holes whose one end is sealed are collected at a specific location, and a plurality of flow holes whose end is not sealed are collected at another position. Alternatively, a configuration may be adopted in which the flow holes having one end sealed and the flow holes not having any end sealed are assembled in a row when viewed from the end face side of the honeycomb structure.
Further, the flow hole having one end sealed and the flow hole not having any end sealed are respectively formed concentrically or radially when viewed from the end face side of the honeycomb structure. It is good also as a structure which arranged. Alternatively, in the outer peripheral portion of the honeycomb structure, a flow hole whose one end is sealed and a flow hole whose one end is not sealed are alternately arranged, and the inside thereof (in the honeycomb structure). (Central part), it is good also as a structure which arrange | positions only the circulation hole which neither end part is sealed.
Various configurations are possible for the configuration of the sealing portion of these flow holes depending on the cross-sectional shape (cell shape) of the flow holes. In the example of the figure, the cell shape is a quadrangle, but it may be a polygon such as a triangle or a hexagon, or a circle, or a combination of different cell shapes. The cross-sectional shape of the honeycomb structure is not particularly limited, and may be any shape such as an ellipse, an oval, an oval, a substantially triangle, and a substantially square, in addition to a circle.
The opening area of the flow holes does not need to be the same for all the flow holes, and flow holes having different opening areas may be mixed. For example, in the embodiment shown in FIGS. 2A and 2B, the honeycomb structure 1 has a flow hole 3 c having a relatively large opening area and a flow hole 3 d having a relatively small opening area. I have. When a honeycomb structured body having such a structure is used for the filter of the present invention, at least one end face 6 of the honeycomb structured body 1 is closed at least at one end of the flow hole 3c having a relatively large opening area. It is preferable to stop.
As shown in FIG. 1, when the opening areas of all the flow holes are the same, the exhaust gas easily flows into the flow holes which have relatively small airflow resistance and are not sealed at any end. As a result, the amount of exhaust gas flowing into the flow hole with one end sealed is reduced, and the collection efficiency of the filter is significantly reduced.
On the other hand, as shown in FIG. 2, a flow hole 3c having a relatively large opening area and a flow hole 3d having a relatively small opening area are mixed to form a flow hole 3c having a relatively large opening area. When one end of the filter is sealed and the flow hole 3d having a relatively small opening area is not sealed at the end, the exhaust gas easily flows into the flow hole 3c having the sealed end, and Significant reduction in collection efficiency can be avoided.
Further, at least in a flow hole in which neither end is sealed, a filler such as a foam, a fiber, or the like is filled in the hole, and a particle, fiber, fin, etc. It is also possible to adjust the ventilation resistance of the flow hole by forming a projecting substance, bending the partition wall itself, or making the partition wall surface a curved surface, and the trapping performance of the particulate matter can be adjusted by such means. Can be improved.
With respect to the material of the honeycomb structure, cordierite, alumina, mullite, aluminum titanate, titania, zirconia, silicon nitride, aluminum nitride, silicon carbide, LAS (lithium aluminum silicate) are used from the viewpoints of strength, heat resistance and the like. It is preferable to use one or more of these ceramic materials as a composite, or use a metal material such as stainless steel or an aluminum alloy, or an adsorbing material such as activated carbon, silica gel, or zeolite. Further, it is preferable that the material of the sealing portion 4 that seals the end portion of the flow hole be the same as the material of the honeycomb structure because the thermal expansion coefficients of the two are the same.
Noble metals such as platinum (Pt), rhodium (Rh), and palladium (Pd), copper, titania, vanadium, zeolite, and the like are provided on the surfaces of the partition walls of the honeycomb structure and / or the surfaces of the pores inside the partition walls. A non-precious metal such as a perovskite-based catalyst may be supported as a catalyst component, whereby hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO x ) Can be promoted when treating harmful components such as) or burning and removing particulate matter deposited in the filter.
In a conventional honeycomb filter used conventionally, it is difficult to carry a catalyst component because the ends of adjacent flow holes are alternately sealed at both end faces of the honeycomb structure. However, the honeycomb filter of the first invention has a structure in which the end of a part of the flow hole is sealed only at one end surface, so that the catalyst can be relatively easily supported, and the catalyst component is almost uniformly distributed over the entire filter. It is possible to carry on.
As a catalyst component carried on the exhaust gas purifying filter, an oxidation catalyst such as Pt or Pd having a function of treating HCs, CO, and particulate matter is generally used. x In some cases, a reduction catalyst such as Rh is supported in order to treat the same.
Since the sulfur (sulfur) in the exhaust gas is also oxidized by the oxidation catalyst to form sulfuric acid and the like, the catalyst itself may be poisoned and the performance may be deteriorated. Particularly, the reduction catalyst is remarkable. Therefore, it is not preferable that the oxidation catalyst and the reduction catalyst coexist in the same region. NO as reduction catalyst is covered with particulate matter or ash x Contact with components may be physically inhibited. In addition, since HCs also function as reducing agents, the progress of the reduction reaction is hindered when HCs are oxidized.
Further, when the oxidation catalyst and the reduction catalyst coexist, the dispersibility and independence of each catalyst component are reduced, so that the contact efficiency with the exhaust gas is reduced. Furthermore, there is a problem that a nearby reduction catalyst is deteriorated due to a rapid increase in temperature due to oxidative combustion of the particulate matter by the oxidation catalyst.
Therefore, when the oxidation filter and the reduction catalyst are supported on the honeycomb filter of the first invention, the inner surface of the partition wall and / or the partition wall which partition the flow hole whose one end is sealed. An oxidation catalyst is supported on the surface of the internal pores, and a reduction catalyst is applied to the inner surface of the partition walls and / or the surfaces of the internal pores of the partition walls that partition the flow holes that are not sealed at any other end. It is preferable to have a configuration in which the oxidation catalyst and the reduction catalyst are supported, and thereby, it is possible to basically avoid coexistence of the oxidation catalyst and the reduction catalyst in the same region.
In the flow hole in which one end supporting the oxidation catalyst is sealed, the components of HCs, CO, particulate matter, and sulfur are oxidized. x The components pass through the porous partition without being reduced and pass through the unsealed flow holes at any end. Since the reduction catalyst supported separately from the oxidation catalyst is waiting in the flow hole in which neither end is sealed, the NO that has passed through the partition wall and moved into the hole is not present. x The component is NO that has flowed directly into the pore. x The components are combined and reduced by the reduction catalyst.
Since HCs are present without being oxidized in the flow holes whose ends are not sealed, these HCs can function as a reducing agent. Further, in the flow hole in which neither end is sealed, the sulfur component is not oxidized and sulfuric acid is not formed. Furthermore, on the partition wall surface of the flow hole where neither end is sealed, exhaust gas that has passed through the flow hole whose one end is sealed flows out, so that a large amount of particulate matter is deposited. And the reduction catalyst is covered with particulate matter, and NO x A situation in which contact with the component is hindered is less likely to occur.
NO x Since components are mainly generated in a high-temperature combustion process, they are often generated in a region where the engine load and the number of revolutions are high, and at that time, the amount of exhaust gas itself increases and the exhaust gas flow rate also increases. In such a state, the exhaust gas tends to selectively flow into the unsealed flow hole at any end having relatively low airflow resistance, so that the flow is not sealed at any end. It is effective to arrange a reduction catalyst in the holes. When the temperature of the exhaust gas itself increases, the particulate matter self-combustes.
The flow hole with one end sealed and the flow hole with no end sealed are separated only by one partition, so that the catalyst component is supported only on the partition surface. In this case, the oxidation catalyst and the reduction catalyst can be completely separated. However, when the catalyst component is supported even in the pores inside the partition, the oxidation catalyst and the reduction catalyst may coexist inside the partition. Even in such a case, when viewed as a whole, the oxidation catalyst is the main component in the flow hole in which one end is sealed, and as the flow goes to the flow hole in which neither end is sealed. It suffices if the reduction catalyst becomes the main component.
When a plurality of honeycomb filters are used as in the exhaust gas purification system described later, the material of each honeycomb, the cell structure such as cell density, wall thickness, cell shape, porosity, pore diameter, It is not necessary to make the material properties such as pore distribution the same, and any material may be selected depending on the conditions used.
The method for manufacturing a honeycomb filter according to the first invention is as follows. On one end surface of a honeycomb structure manufactured by extrusion or the like, a ceramic material serving as a sealing portion is formed into a slurry at the end of a predetermined flow hole, and paste is formed. It is easy to fill and bake afterwards, but if the end of the flow hole is sealed and fired only on one end face in this way, the end face on the side where the flow hole is sealed There is a difference in firing shrinkage between the non-sealed end face and the unsealed end face, and product defects such as distortion, deformation, and cracks are likely to occur due to the collapse of the shrinkage balance.
In order to eliminate such a difference in shrinkage at the time of firing, first, not only on one end face but also on both end faces of the honeycomb structure, the end portions of the flow holes are filled with a ceramic material serving as a sealing portion. It is preferable to obtain the honeycomb filter according to the first aspect of the present invention by performing sintering so that the shrinkage during sintering on both side end surfaces is substantially the same, and after sintering, processing and removing the sealing portion of the flow hole on one end surface. . Alternatively, it is also possible to obtain two identical ones by cutting at the center after firing.
Further, an oxidation catalyst is carried on the inner surface of the partition wall and / or the surface of the pores inside the partition wall which partition the flow hole whose one end is sealed, and any other end is sealed. When manufacturing a honeycomb filter having a configuration in which a reduction catalyst is supported on the inner surface of the partition wall partitioning the unrestricted flow holes and / or the surfaces of the pores inside the partition wall, for example, first, a honeycomb structure is first prepared. A normal honeycomb filter in which one end of a flow hole is alternately sealed at both end surfaces is manufactured. Next, a slurry containing an oxidation catalyst component is poured from one end face of the filter into an open flow hole, and the oxidation catalyst component is supported in the flow hole. Next, the slurry containing the reducing catalyst component is poured into the opened flow hole from the other end face, and the reduced catalyst component is carried in the flowing hole. Thereafter, the end surface on the side into which the slurry containing the oxidation catalyst component has been poured is cut and removed together with the sealing portion of the flow hole.
The exhaust gas purification system according to the second invention is characterized in that the honeycomb filter of the first invention is used, and the use of the honeycomb filter reduces the pressure loss of the system. In addition to the reduction, it is possible to prevent the filter from being clogged.
In this system, the honeycomb filter of the first invention may be used by arranging it alone. However, depending on the purpose, a plurality of honeycomb filters or a combination with other components may be used. For example, as shown in FIG. 3, in the can 30, the catalyst body 21 in which the catalyst component is carried on the honeycomb structure is disposed in front of the honeycomb filter 1 of the first invention (upstream in the exhaust gas flow direction). By adopting the system configuration, after the harmful components such as HC contained in the exhaust gas are made harmless by the catalyst 21, the particulate matter can be removed by the rear honeycomb filter 1. As a catalyst component supported on the catalyst body 21, for example, a metal such as Pt, Pd, and Rh conventionally used for purifying exhaust gas can be used.
Further, as shown in FIG. 4, a system configuration in which two honeycomb filters 1 of the first invention are used and these honeycomb filters are arranged in series along the flow direction of the exhaust gas may be adopted. In this case, the sealing portion 4 of the through-hole of the honeycomb filter 1 arranged in front and the one end of the through-hole 3b in which none of the ends of the honeycomb filter 1 arranged behind are sealed. The honeycomb filters 1 and 1 are present at corresponding positions (positions facing each other in the axial direction) on the opposed end faces, and the opposed end faces of the two honeycomb filters 1 and 1 are in contact with each other or the two honeycomb filters 1 and 1 are joined. It is preferable that such a configuration can increase the collection efficiency of the particulate matter.
When the two honeycomb filters are joined, it is preferable to use a low thermal expansion material as a joining material for the joining surfaces from the viewpoint of avoiding excessive thermal stress. For example, when the honeycomb filter is made of a low thermal expansion material such as cordierite, the LAS material is suitable as the bonding material.
As shown in FIG. 5, one end face of a honeycomb structure having a large number of flow holes penetrating in the axial direction partitioned by a porous partition wall is used to seal one end of one of the flow holes. A honeycomb filter (a honeycomb filter having a conventional structure as shown in FIG. 10) 11 in which the other end face is closed and one end of the remaining flow hole is sealed at the other end face, is provided behind the honeycomb filter 1 (first embodiment). By adopting the system configuration arranged on the downstream side in the exhaust gas flow direction), the particulate matter in the exhaust gas is removed to some extent by the honeycomb filter 1 of the first invention, and the honeycomb filter 11 on the rear side has too much particulate matter. Cured matter no longer accumulates.
For this reason, the interval between regeneration of the filter (burning of particulate matter) is increased, or the amount of solids such as ash remaining in the rear honeycomb filter after the regeneration is reduced. It can make it hard to clog.
Further, if necessary, the exhaust gas can be passed through a part of the sealing portion of the flow hole, so that the ventilation resistance of the flow hole having the sealing portion can be reduced. By discharging the trapped ash or other solid matter to the outside of the filter from the through portion, the filter can be made less likely to be clogged. The same effect can be expected by providing air permeability to the entire sealing portion instead of providing the penetration portion in a part of the sealing portion.
As a means for allowing the exhaust gas to pass through a part of the sealing portion of the flow hole, it is preferable to provide a through hole in the sealing portion or to provide a gap at the boundary between the partition and the sealing portion. The means for providing air permeability to the entire sealing portion is specifically to make the sealing portion porous. Since the sealing portion is usually thicker than the partition wall, the size of the pores of the sealing portion is generally small. Is preferably larger than the size of the pores of the partition walls.
When the honeycomb filter 11 having the conventional structure is disposed behind the honeycomb filter 1 according to the first aspect of the invention, as shown in FIG. It is preferable that the part and the sealing part of the flow hole of the honeycomb filter 1 of the first invention are present at corresponding positions (positions facing each other in the axial direction) on the end faces of both the honeycomb filters 1 and 11 facing each other. Further, as shown in FIG. 7, it is more preferable that the opposing end faces of both the honeycomb filters 1 and 11 are in contact with each other or that both the honeycomb filters 1 and 11 are joined.
With such a configuration, on the exhaust gas inflow side end face of the honeycomb filter 11 having the conventional structure, the particulate matter adheres to the sealing portion of the circulation hole, and the particulate matter gradually accumulates therefrom. Thus, it is possible to solve the problem that even the opening of the flow hole whose end is not sealed on the exhaust gas inflow side end surface is closed, and the pressure loss of the filter increases rapidly.
The honeycomb filter according to the third invention facilitates incorporation into a system when the honeycomb filter 1 of the first invention and the honeycomb filter 11 of the conventional structure are used in combination as shown in FIG. 8 shows an example in which both are brought into contact with each other by some means, or are joined and integrated to form a single honeycomb filter. As shown in FIG. A first honeycomb filter (honeycomb filter according to the first invention) 1 in which one end of one of the through holes is sealed only at one end surface of the honeycomb structure having a large number of through holes that pass therethrough; At one end face of a honeycomb structure having a large number of through-holes penetrating in the axial direction separated by a porous partition wall, one end of one of the through-holes is sealed, and the other end is sealed. The second honeycomb filter (honeycomb filter having a conventional structure as shown in FIG. 10) 11 in which one end of the remaining flow hole is sealed at the end face, and the sealing portions 4 and 14 of the flow hole. , Or being joined.
In order to bring the two honeycomb filters 1 and 11 into a contact state or to join and integrate them, a method of contacting and joining the partition walls at the end faces of both filters can be considered. In the thin-walled honeycomb structure, since the area of the partition wall at the end face, that is, the area of a portion that can be a contact / joining surface is small, it is difficult to secure a necessary contact area or obtain joining strength.
Therefore, in the third invention, as described above, the two filters 1 and 11 are brought into contact with each other at the sealing portions 4 and 14 of the respective flow holes or joined to be integrated. If the sealing portions 4 and 14 are arranged so that the sealing portions are in contact with each other when the end faces of both filters are matched, a sufficient contact / joining area to obtain the necessary strength is secured. It is possible to do. By bringing the two honeycomb filters into contact with each other or joining them together as described above, the integration into the exhaust gas purification system becomes easy, and the effect of smooth gas movement between the two filters is obtained. can get.
The fourth invention is an example of the method for manufacturing the honeycomb filter according to the third invention, wherein the sealing portions 4 and 14 of the flow holes of the first honeycomb filter 1 and the second honeycomb filter 11 are both formed. In the case of being formed by filling and sintering a ceramic material into the end of the flow hole, before the sintering is performed, the unsintered first honeycomb filter 1 and the second honeycomb filter 11 are formed. The sealing portions (ceramic material filled at the ends of the flow holes) are adhered to each other, and then the honeycomb filters are integrated by firing. As described above, if the sealing portions of the flow holes of both honeycomb filters are bonded in an unfired state, the two can be integrated by subsequent firing without using a bonding agent or the like.
Of course, a bonding agent or the like may be used for bonding the unfired sealing portion as described above, whereby the two can be more firmly integrated. In addition, by devising so that the difference in thermal expansion can be reduced in the bonding agent, it is possible to secure the reliability of the bonding portion when the two materials have different thermal expansion characteristics due to different materials.
The fifth invention is another example of the method for manufacturing a honeycomb filter according to the third invention, wherein the sealing portions 4 and 14 of the flow holes of the first honeycomb filter 1 and the second honeycomb filter 11 are In the case where both are formed by filling and sintering a ceramic material into the end of the flow hole and sealing the first honeycomb filter 1 and the second honeycomb filter 11 after the sintering is performed. The two honeycomb filters are integrated by bonding the portions together via a bonding agent and firing again. According to this method, when the first honeycomb filter 1 and the second honeycomb filter 11 are already in a state where the sealing portion is fired, the two are integrated easily and with a sufficient bonding strength. be able to. When the catalyst component is loaded on the filter, the catalyst component may be loaded after joining both, or the catalyst component may be loaded before joining both.
In this manufacturing method, as shown in FIG. 9, the bonding surface of one of the sealing portions 4 of the first honeycomb filter and the second honeycomb filter is formed in a convex shape, and the other is formed. It is preferable that the bonding surface of the sealing portion 14 has a concave shape corresponding to the bonding surface, whereby positioning when bonding both honeycomb filters is facilitated and bonding force can be increased. In addition, a pin is provided in one of the sealing portions of the first honeycomb filter and the second honeycomb filter, and a hole is provided in the other sealing portion so that the pin fits. Can also facilitate positioning.
[0064]
As described above, according to the honeycomb filter and the exhaust gas purifying system of the present invention, the pressure loss can be reduced as compared with the conventional one, and the honeycomb filter and the exhaust gas purifying system do not disappear due to the burning of ash, iron oxide and the like. Clogging of the filter due to solid matter can be suppressed.
Further, in the honeycomb filter of the present invention, when the exhaust gas from the engine pulsates greatly, the exhaust pulsation is received in the unsealed flow holes at any ends having relatively small ventilation resistance. As a result, it is possible to suppress the phenomenon that the particulate matter accumulated in the flow hole whose one end is sealed is discharged to the rear of the filter due to the pulsation.
Further, since the honeycomb filter of the present invention has a higher exhaust gas temperature and a larger temperature fluctuation range than a diesel engine, it is difficult to apply the honeycomb filter to a conventional honeycomb filter from the viewpoint of thermal shock resistance. It can also be used as an exhaust gas purification filter.
Further, by disposing the honeycomb filter having the conventional structure behind the honeycomb filter of the present invention (downstream in the exhaust gas flow direction), the sealing portion of the flow hole is formed at the end face on the exhaust gas inflow side of the honeycomb filter having the conventional structure. Particulate matter adheres to the surface, and the particulate matter gradually accumulates therefrom, and even the opening of the unsealed flow hole at the exhaust gas inflow side end face is blocked, and the pressure loss of the filter is reduced. The problem of a sudden increase can be solved.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an example of an embodiment of a honeycomb structure according to a first invention, in which (a) is a plan view viewed from one end face side, and (b) is a cross-sectional view.
FIGS. 2A and 2B are schematic explanatory views showing another example of the embodiment of the honeycomb structure according to the first invention, wherein FIG. 2A is a plan view seen from one end face side, and FIG.
FIG. 3 is a schematic explanatory view showing an example of an embodiment of an exhaust gas purification system according to a second invention.
FIG. 4 is a schematic explanatory view showing another example of the embodiment of the exhaust gas purification system according to the second invention.
FIG. 5 is a schematic explanatory view showing another example of the embodiment of the exhaust gas purification system according to the second invention.
FIG. 6 is a schematic explanatory view showing another example of the embodiment of the exhaust gas purification system according to the second invention.
FIG. 7 is a schematic explanatory view showing another example of the embodiment of the exhaust gas purification system according to the second invention.
FIG. 8 is a schematic explanatory view showing an example of an embodiment of a honeycomb filter according to a third invention.
FIG. 9 is a schematic explanatory view showing an example in which a bonding surface of a sealing portion has a convex shape and a concave shape.
FIGS. 10A and 10B are schematic explanatory views showing a basic structure of a honeycomb filter conventionally used for a DPF or the like, wherein FIG. 10A is a plan view seen from one end face side, and FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Honeycomb filter concerning 1st invention, 2 ... Partition, 3 ... Flow hole, 4 ... Sealing part, 6 ... Outflow end face, 11 ... Honeycomb filter of conventional structure, 12 ... Partition, 13 ... Flow hole, 14 ... Sealing part, 15 ... inflow side end face, 16 ... outflow side end face, 21 ... catalyst body, 30 ... can body.

Claims (14)

多孔質の隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体の片側の端面においてのみ、一部の流通孔の一方の端部を封止してなることを特徴とするハニカムフィルタ。Only one end face of a honeycomb structure having a large number of through-holes penetrating in the axial direction partitioned by a porous partition wall is characterized in that one end of one of the through-holes is sealed. Honeycomb filter. 前記ハニカム構造体が、相対的に開口面積の大きい流通孔と、相対的に開口面積の小さい流通孔とを有し、前記ハニカム構造体の片側の端面においてのみ、少なくとも前記相対的に開口面積の大きい流通孔の一方の端部を封止してなる請求項1記載のハニカムフィルタ。The honeycomb structure has a flow hole with a relatively large open area and a flow hole with a relatively small open area, and only on one end surface of the honeycomb structure, at least the relatively large open area. The honeycomb filter according to claim 1, wherein one end of the large flow hole is sealed. 前記隔壁の表面及び/又は前記隔壁内部の細孔の表面に、触媒成分が担持された請求項1又は2に記載のハニカムフィルタ。The honeycomb filter according to claim 1, wherein a catalyst component is supported on a surface of the partition wall and / or a surface of a pore inside the partition wall. 一方の端部が封止された流通孔を仕切っている隔壁の孔内表面及び/又は隔壁内部の細孔の表面に酸化触媒が担持され、その他の何れの端部も封止されていない流通孔を仕切っている隔壁の孔内表面及び/又は隔壁内部の細孔の表面に還元触媒が担持された請求項3記載のハニカムフィルタ。An oxidation catalyst is supported on the inner surface of the partition wall and / or the surface of the pores inside the partition wall that partition the flow hole with one end sealed, and the other end is not sealed. 4. The honeycomb filter according to claim 3, wherein the reduction catalyst is supported on the inner surface of the partition wall partitioning the pores and / or the surface of the pores inside the partition wall. 前記請求項1ないし4の何れか一項に記載のハニカムフィルタが使用されていることを特徴とする排ガス浄化システム。An exhaust gas purification system using the honeycomb filter according to any one of claims 1 to 4. ハニカム構造体に触媒成分を担持してなる触媒体が、前記請求項1ないし4の何れか一項に記載のハニカムフィルタの前方に配置された請求項5記載の排ガス浄化システム。The exhaust gas purification system according to claim 5, wherein a catalyst body having a catalyst component supported on the honeycomb structure is disposed in front of the honeycomb filter according to any one of claims 1 to 4. 前記請求項1ないし4の何れか一項に記載のハニカムフィルタが2つ使用され、これらハニカムフィルタが排ガスの流れ方向に沿って直列に配置された請求項5記載の排ガス浄化システム。The exhaust gas purification system according to claim 5, wherein two honeycomb filters according to any one of claims 1 to 4 are used, and the honeycomb filters are arranged in series along a flow direction of the exhaust gas. 前方に配置されたハニカムフィルタの流通孔の封止部と、後方に配置されたハニカムフィルタの何れの端部も封止されていない流通孔の一端部とが、両ハニカムフィルタの対向する端面において対応する位置に存在し、かつ、両ハニカムフィルタの対向する端面が接しているか、又は両ハニカムフィルタが接合されている請求項7記載の排ガス浄化システム。The sealing portion of the through-hole of the honeycomb filter arranged in the front, and one end of the through-hole in which none of the ends of the honeycomb filter arranged behind are sealed, in the end faces of both honeycomb filters facing each other. The exhaust gas purification system according to claim 7, which is present at a corresponding position, and in which both end faces of both honeycomb filters are in contact with each other or both honeycomb filters are joined. 多孔質の隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体の一方の端面において一部の流通孔の一方の端部を封止し、他方の端面において残余の流通孔の一方の端部を封止してなるハニカムフィルタが、前記請求項1ないし4の何れか一項に記載のハニカムフィルタの後方に配置された請求項5記載の排ガス浄化システム。At one end face of the honeycomb structure having a large number of flow holes penetrating in the axial direction partitioned by a porous partition wall, one end of one of the flow holes is sealed, and the remaining flow hole is opened at the other end face. The exhaust gas purification system according to claim 5, wherein a honeycomb filter formed by sealing one end of the honeycomb filter is disposed behind the honeycomb filter according to any one of claims 1 to 4. 前記多孔質の隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体の一方の端面において一部の流通孔の一方の端部を封止し、他方の端面において残余の流通孔の一方の端部を封止してなるハニカムフィルタの流通孔の封止部と、前記請求項1ないし4の何れか一項に記載のハニカムフィルタの流通孔の封止部とが、両ハニカムフィルタの対向する端面において対応する位置に存在し、かつ、両ハニカムフィルタの対向する端面が接しているか、又は両ハニカムフィルタが接合されている請求項9記載の排ガス浄化システム。At one end face of a honeycomb structure having a large number of flow holes penetrating in the axial direction partitioned by the porous partition wall, one end of one of the flow holes is sealed, and the remaining flow is left at the other end face. The sealing portion of the flow hole of the honeycomb filter formed by sealing one end of the hole and the sealing portion of the flow hole of the honeycomb filter according to any one of claims 1 to 4, The exhaust gas purification system according to claim 9, which is present at a corresponding position on opposing end faces of the honeycomb filters, and the opposing end faces of both honeycomb filters are in contact with each other, or both honeycomb filters are joined. 多孔質の隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体の片側の端面においてのみ、一部の流通孔の一方の端部を封止してなる第一のハニカムフィルタと、多孔質の隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構造体の一方の端面において一部の流通孔の一方の端部を封止し、他方の端面において残余の流通孔の一方の端部を封止してなる第二のハニカムフィルタとが、互いの流通孔の封止部において接しているか、又は接合されていることを特徴とするハニカムフィルタ。A first honeycomb filter in which one end of one of the flow holes is sealed only at one end surface of the honeycomb structure having a large number of flow holes penetrating in the axial direction separated by a porous partition wall And, at one end face of a honeycomb structure having a large number of flow holes penetrating in the axial direction partitioned by a porous partition wall, one end of one of the flow holes is sealed, and the remaining end face is left at the other end face. A honeycomb filter, wherein a second honeycomb filter sealing one end of a flow hole is in contact with or joined to a sealing portion of the flow hole. 前記請求項11記載のハニカムフィルタの製造方法であって、前記第一のハニカムフィルタと前記第二のハニカムフィルタの流通孔の封止部が、セラミック材料を流通孔の端部に充填して焼成することにより形成されるものであり、前記焼成が行われる前に、前記第一のハニカムフィルタと前記第二のハニカムフィルタの未焼成の封止部同士を貼り合わせ、前記焼成により両ハニカムフィルタを一体化することを特徴とするハニカムフィルタの製造方法。The method for manufacturing a honeycomb filter according to claim 11, wherein the sealing portions of the flow holes of the first honeycomb filter and the second honeycomb filter are filled with ceramic material at the ends of the flow holes and fired. Before the firing is performed, the unfired sealing portions of the first honeycomb filter and the second honeycomb filter are attached to each other, and both the honeycomb filters are fired by the firing. A method for manufacturing a honeycomb filter, which is integrated. 前記請求項11記載のハニカムフィルタの製造方法であって、前記第一のハニカムフィルタと前記第二のハニカムフィルタの流通孔の封止部が、セラミック材料を流通孔の端部に充填して焼成することにより形成されるものであり、前記焼成が行われた後に、前記第一のハニカムフィルタと前記第二のハニカムフィルタの封止部同士を接合剤を介して貼り合わせ、再度焼成することにより両ハニカムフィルタを一体化することを特徴とするハニカムフィルタの製造方法。The method for manufacturing a honeycomb filter according to claim 11, wherein the sealing portions of the flow holes of the first honeycomb filter and the second honeycomb filter are filled with ceramic material at the ends of the flow holes and fired. After the sintering is performed, the sealing portions of the first honeycomb filter and the second honeycomb filter are bonded to each other with a bonding agent, and baked again. A method for manufacturing a honeycomb filter, comprising integrating both honeycomb filters. 前記第一のハニカムフィルタと前記第二のハニカムフィルタとの何れか一方の封止部の貼り合わせ面を凸形状とし、他方の封止部の貼り合わせ面をそれに対応した凹形状とする請求項13記載のハニカムフィルタの製造方法。The bonding surface of one of the sealing portions of the first honeycomb filter and the second honeycomb filter has a convex shape, and the bonding surface of the other sealing portion has a concave shape corresponding thereto. 14. A method for manufacturing a honeycomb filter according to item 13.
JP2003039426A 2003-02-18 2003-02-18 Honeycomb filter and exhaust gas purification system Expired - Lifetime JP4369141B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003039426A JP4369141B2 (en) 2003-02-18 2003-02-18 Honeycomb filter and exhaust gas purification system
EP05017556A EP1598534B1 (en) 2003-02-18 2004-02-17 Honeycomb filter and exhaust gas purification system
DE602004014659T DE602004014659D1 (en) 2003-02-18 2004-02-17 Honeycomb filter and emission control system
DE602004026554T DE602004026554D1 (en) 2003-02-18 2004-02-17 Honeycomb filter and emission control system
EP04250835A EP1450015B1 (en) 2003-02-18 2004-02-17 Honeycomb filter and exhaust gas purification system
US10/778,051 US7618596B2 (en) 2003-02-18 2004-02-17 Honeycomb filter and exhaust gas purification system
US12/453,362 US20090226348A1 (en) 2003-02-18 2009-05-08 Honeycomb filter and exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039426A JP4369141B2 (en) 2003-02-18 2003-02-18 Honeycomb filter and exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2004251137A true JP2004251137A (en) 2004-09-09
JP4369141B2 JP4369141B2 (en) 2009-11-18

Family

ID=32732911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039426A Expired - Lifetime JP4369141B2 (en) 2003-02-18 2003-02-18 Honeycomb filter and exhaust gas purification system

Country Status (4)

Country Link
US (2) US7618596B2 (en)
EP (2) EP1450015B1 (en)
JP (1) JP4369141B2 (en)
DE (2) DE602004014659D1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046839A (en) * 2003-07-14 2005-02-24 Hitachi Metals Ltd Ceramic honeycomb filter and its production method
JPWO2004024294A1 (en) * 2002-09-13 2006-01-05 イビデン株式会社 filter
JP2006150309A (en) * 2004-12-01 2006-06-15 Hitachi Metals Ltd Honeycomb filter
JP2006150276A (en) * 2004-11-30 2006-06-15 Hitachi Metals Ltd Honeycomb filter
EP1696109A2 (en) 2005-02-23 2006-08-30 Ngk Insulators, Ltd. Method of manufacturing plugged honeycomb structure and plugged honeycomb structure
JP2006289203A (en) * 2005-04-07 2006-10-26 Matsushita Electric Ind Co Ltd Using method of exhaust gas purification material
JP2006289202A (en) * 2005-04-07 2006-10-26 Matsushita Electric Ind Co Ltd Exhaust gas purification material and exhaust gas purifying device
WO2007026803A1 (en) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic substance
JP2007111585A (en) * 2005-10-18 2007-05-10 Hitachi Metals Ltd Ceramic honeycomb filter
JP2007222858A (en) * 2006-01-27 2007-09-06 Hitachi Metals Ltd Ceramic honeycomb filter
JP2007289925A (en) * 2006-03-29 2007-11-08 Ngk Insulators Ltd Honeycomb structure
US7338642B2 (en) 2003-07-08 2008-03-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for engine
JP2009000647A (en) * 2007-06-22 2009-01-08 Tokyo Yogyo Co Ltd Exhaust gas cleaning filter
EP2236783A1 (en) 2009-03-24 2010-10-06 NGK Insulators, Ltd. Method of manufacturing exhaust gas purification device and exhaust gas purification device
JP2010221163A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Device for cleaning exhaust
JP2011169156A (en) * 2010-02-16 2011-09-01 Ngk Insulators Ltd Exhaust emission control device
JP2011167582A (en) * 2010-02-16 2011-09-01 Ngk Insulators Ltd Honeycomb catalyst body
CN102625727A (en) * 2009-08-31 2012-08-01 康宁股份有限公司 Particulate filters and methods of filtering particulate matter
KR101425496B1 (en) * 2006-02-17 2014-08-13 히타치 긴조쿠 가부시키가이샤 Ceramic honeycomb filter and exhaust gas purifier
JP2014148924A (en) * 2013-01-31 2014-08-21 Ngk Insulators Ltd Exhaust gas purification device
JP2015520718A (en) * 2012-04-23 2015-07-23 ダウ グローバル テクノロジーズ エルエルシー Axial partitioned ceramic honeycomb assembly
JP2015193495A (en) * 2014-03-31 2015-11-05 日本碍子株式会社 honeycomb structure
JP2016133060A (en) * 2015-01-20 2016-07-25 株式会社デンソー Abnormality diagnosis device of pm sensor
JP2016160847A (en) * 2015-03-03 2016-09-05 株式会社デンソー Exhaust emission control device
JP2019178635A (en) * 2018-03-30 2019-10-17 日本碍子株式会社 Honeycomb structure
CN114837773A (en) * 2022-05-27 2022-08-02 奇瑞汽车股份有限公司 Particle collecting device and vehicle
US11712648B2 (en) 2018-02-02 2023-08-01 Proterial, Ltd. Water-treating ceramic filter module

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261664A (en) * 2003-02-28 2004-09-24 Ngk Insulators Ltd Honeycomb structure and mouthpiece for extrusion molding of honeycomb structure
US8387363B2 (en) * 2005-02-24 2013-03-05 Volvo Technology Corporation Arrangement and method for removal of particulates in a gas flow
US20060251548A1 (en) 2005-05-06 2006-11-09 Willey Ray L Exhaust aftertreatment device
DE102005045015A1 (en) * 2005-09-21 2007-03-29 Robert Bosch Gmbh Filter element and soot filter with improved thermal shock resistance
US20090139400A1 (en) * 2005-12-05 2009-06-04 Eidgenossische Materialprufungs- Und Forschung- Sanstalt Empa Diffuser For Exhaust Gas Cleaning Systems
JP4619976B2 (en) * 2006-03-30 2011-01-26 日本碍子株式会社 Plasma reactor
DE202006007876U1 (en) * 2006-05-15 2007-09-20 Bauer Technologies Gmbh Optimization of cellular structures, in particular for the emission control of combustion units and other applications
DE102006026161A1 (en) * 2006-05-23 2007-11-29 Robert Bosch Gmbh Filter device, in particular for an exhaust system of an internal combustion engine
WO2008011146A1 (en) * 2006-07-21 2008-01-24 Dow Global Technologies Inc. Improved zone catalyzed soot filter
EP2058042B2 (en) * 2006-08-30 2017-05-03 Hitachi Metals, Ltd. Ceramic honeycomb filter
DE102006048045A1 (en) * 2006-10-11 2008-04-17 Daimler Ag Emission control system for an internal combustion engine
US7491373B2 (en) * 2006-11-15 2009-02-17 Corning Incorporated Flow-through honeycomb substrate and exhaust after treatment system and method
US20080120968A1 (en) * 2006-11-29 2008-05-29 Douglas Munroe Beall Partial wall-flow filter and diesel exhaust system and method
WO2008113507A1 (en) * 2007-03-16 2008-09-25 Elringklinger Ag Diesel particulate filter component
JP5150132B2 (en) * 2007-04-27 2013-02-20 日本碍子株式会社 Honeycomb filter system
US8166751B2 (en) * 2007-07-31 2012-05-01 Caterpillar Inc. Particulate filter
US7806956B2 (en) * 2007-08-09 2010-10-05 Cummins Filtration Ip, Inc. Tuning particulate filter performance through selective plugging and use of multiple particulate filters to reduce emissions and improve thermal robustness
US20090056546A1 (en) * 2007-08-31 2009-03-05 Timothy Adam Bazyn Partial flow exhaust filter
US8105417B2 (en) * 2007-09-14 2012-01-31 GM Global Technology Operations LLC Face crack reduction strategy for particulate filters
US9828298B2 (en) * 2007-11-30 2017-11-28 Corning Incorporated Cement compositions for applying to honeycomb bodies
JP2009154124A (en) * 2007-12-27 2009-07-16 Ngk Insulators Ltd Partially unsealed dpf
WO2009101683A1 (en) * 2008-02-13 2009-08-20 Ibiden Co., Ltd. Process for producing honeycomb structure
WO2009101682A1 (en) 2008-02-13 2009-08-20 Ibiden Co., Ltd. Honeycomb structure, exhaust gas purification apparatus and process for producing honeycomb structure
US8673064B2 (en) * 2008-05-29 2014-03-18 Corning Incorporated Partial wall-flow filter and method
US20100154392A1 (en) * 2008-12-18 2010-06-24 Caterpillar Inc. Adjusting nitrogen oxide ratios in exhaust gas
US8444730B2 (en) * 2010-09-27 2013-05-21 Ford Global Technologies, Llc Even-loading DPF and regeneration thereof
SE535454C2 (en) * 2010-11-16 2012-08-14 Scania Cv Ab Particle filter for an exhaust system of an internal combustion engine
WO2013182327A1 (en) * 2012-06-04 2013-12-12 Hjs Emission Technology Gmbh & Co. Kg Particulate filter designed as a partial filter
WO2013186922A1 (en) 2012-06-15 2013-12-19 イビデン株式会社 Honeycomb filter
WO2013186923A1 (en) 2012-06-15 2013-12-19 イビデン株式会社 Honeycomb filter
EP2698190B1 (en) * 2012-08-13 2018-06-27 NGK Insulators, Ltd. Plugged Honeycomb Structure
EP2698188B1 (en) 2012-08-17 2018-01-31 Pall Corporation Catalytic filter module and catalytic filter system comprising same
WO2014054159A1 (en) 2012-10-04 2014-04-10 イビデン株式会社 Honeycomb filter
US9757675B2 (en) * 2013-01-29 2017-09-12 Corning Incorporated Partial wall-flow filter and method
US20140238242A1 (en) * 2013-02-28 2014-08-28 Corning Incorporated Ceramic partial wall-flow filter with low deep bed
JP5972816B2 (en) * 2013-03-22 2016-08-17 日本碍子株式会社 Honeycomb structure
JP6267452B2 (en) * 2013-07-31 2018-01-24 イビデン株式会社 Honeycomb filter
JP6239303B2 (en) 2013-07-31 2017-11-29 イビデン株式会社 Honeycomb filter
JP6239306B2 (en) 2013-07-31 2017-11-29 イビデン株式会社 Honeycomb filter
JP6239304B2 (en) 2013-07-31 2017-11-29 イビデン株式会社 Honeycomb filter
JP6239305B2 (en) * 2013-07-31 2017-11-29 イビデン株式会社 Honeycomb filter
JP6239307B2 (en) 2013-07-31 2017-11-29 イビデン株式会社 Honeycomb filter
WO2015083670A1 (en) * 2013-12-02 2015-06-11 株式会社キャタラー Exhaust gas purification device and particulate filter
GB2520776A (en) * 2013-12-02 2015-06-03 Johnson Matthey Plc Wall-flow filter comprising catalytic washcoat
JP6492495B2 (en) * 2014-01-27 2019-04-03 株式会社デンソー Exhaust gas purification filter and manufacturing method thereof
CN104949213B (en) 2014-03-28 2017-09-29 Lg电子株式会社 Air purifier
CN104949212B (en) * 2014-03-28 2017-11-14 Lg电子株式会社 Air purifier
WO2016036779A1 (en) 2014-09-03 2016-03-10 Corning Incorporated Honeycomb body having layered plugs and method of making the same
CN104819034B (en) * 2015-04-22 2017-08-04 江苏大学 A kind of diesel engine EGR system is repeatable to utilize desulfurization particulate filter arrangement
JP6431823B2 (en) 2015-07-13 2018-11-28 株式会社Soken Exhaust gas purification filter
JP6578938B2 (en) * 2015-12-25 2019-09-25 株式会社デンソー Exhaust gas filter
JP6622128B2 (en) * 2016-03-25 2019-12-18 日本碍子株式会社 Honeycomb structure
JP7049156B2 (en) * 2018-03-30 2022-04-06 日本碍子株式会社 Honeycomb filter
SE1850373A1 (en) * 2018-04-04 2019-10-05 Nibe Ab Method for providing clean residential comfort heating
JP7329950B2 (en) * 2019-03-29 2023-08-21 日本碍子株式会社 Particulate filter and canning structure
CN111664718B (en) * 2020-06-20 2022-02-18 信丰县包钢新利稀土有限责任公司 Device and method capable of recycling waste heat of neodymium iron boron waste roasting kiln

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416676A (en) * 1982-02-22 1983-11-22 Corning Glass Works Honeycomb filter and method of making it
US4417908A (en) 1982-02-22 1983-11-29 Corning Glass Works Honeycomb filter and method of making it
JPS5928010A (en) * 1982-08-05 1984-02-14 Nippon Denso Co Ltd Structure to purify exhaust gas
EP0225402A1 (en) 1985-11-05 1987-06-16 Nippondenso Co., Ltd. Porous ceramic structure
JP3130587B2 (en) 1991-09-17 2001-01-31 イビデン株式会社 Honeycomb filter of exhaust gas purification device
JPH0647619A (en) 1992-01-06 1994-02-22 Mitsubishi Materials Corp Reamer with sub-land
JP3387290B2 (en) 1995-10-02 2003-03-17 トヨタ自動車株式会社 Exhaust gas purification filter
JPH1099626A (en) * 1996-09-30 1998-04-21 Ibiden Co Ltd Honeycomb filter and its manufacture
JP2002537965A (en) 1999-02-26 2002-11-12 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Monolith catalyst / filter device
JP2001205108A (en) 2000-01-24 2001-07-31 Toyota Motor Corp Particulate filter
US6776814B2 (en) * 2000-03-09 2004-08-17 Fleetguard, Inc. Dual section exhaust aftertreatment filter and method
JP3756721B2 (en) 2000-03-24 2006-03-15 日本碍子株式会社 Exhaust gas purification filter
JP4471452B2 (en) * 2000-05-29 2010-06-02 日本碍子株式会社 Manufacturing method of filter element
JP2002004844A (en) 2000-06-22 2002-01-09 Honda Motor Co Ltd Exhaust emission control device for diesel engine
US6673414B2 (en) 2000-12-20 2004-01-06 Corning Incorporated Diesel particulate filters
JP2002306915A (en) * 2001-02-09 2002-10-22 Denso Corp Honeycomb structure
JP4404497B2 (en) 2001-03-01 2010-01-27 日本碍子株式会社 Honeycomb filter and manufacturing method thereof
JP3624892B2 (en) * 2001-03-29 2005-03-02 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4423818B2 (en) 2001-06-19 2010-03-03 いすゞ自動車株式会社 Exhaust gas purification device
JP2003035126A (en) 2001-07-24 2003-02-07 Mitsubishi Motors Corp Exhaust emission control device for diesel engine
US7090714B2 (en) * 2002-06-17 2006-08-15 Hitachi Metals, Ltd. Ceramic honeycomb filter
US7189375B2 (en) * 2002-09-16 2007-03-13 Delphi Technologies, Inc. Exhaust treatment device
JP3942086B2 (en) 2002-09-20 2007-07-11 日野自動車株式会社 Particulate filter

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004024294A1 (en) * 2002-09-13 2006-01-05 イビデン株式会社 filter
US7338642B2 (en) 2003-07-08 2008-03-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for engine
JP4569865B2 (en) * 2003-07-14 2010-10-27 日立金属株式会社 Ceramic honeycomb filter and manufacturing method thereof
JP2005046839A (en) * 2003-07-14 2005-02-24 Hitachi Metals Ltd Ceramic honeycomb filter and its production method
JP2006150276A (en) * 2004-11-30 2006-06-15 Hitachi Metals Ltd Honeycomb filter
JP4513063B2 (en) * 2004-11-30 2010-07-28 日立金属株式会社 Honeycomb filter
JP2006150309A (en) * 2004-12-01 2006-06-15 Hitachi Metals Ltd Honeycomb filter
US7611560B2 (en) 2005-02-23 2009-11-03 Ngk Insulators, Ltd. Method of manufacturing plugged honeycomb structure, and plugged honeycomb structure
CN1824628B (en) * 2005-02-23 2010-05-26 日本碍子株式会社 Method of manufacturing plugged honeycomb structure and plugged honeycomb structure
EP1696109A2 (en) 2005-02-23 2006-08-30 Ngk Insulators, Ltd. Method of manufacturing plugged honeycomb structure and plugged honeycomb structure
JP2006231162A (en) * 2005-02-23 2006-09-07 Ngk Insulators Ltd Production method of opening-sealed honeycomb structure, and opening-sealed honeycomb structure
JP4528153B2 (en) * 2005-02-23 2010-08-18 日本碍子株式会社 Method for manufacturing plugged honeycomb structure
JP2006289202A (en) * 2005-04-07 2006-10-26 Matsushita Electric Ind Co Ltd Exhaust gas purification material and exhaust gas purifying device
JP2006289203A (en) * 2005-04-07 2006-10-26 Matsushita Electric Ind Co Ltd Using method of exhaust gas purification material
JPWO2007026803A1 (en) * 2005-08-31 2009-03-12 日本碍子株式会社 Honeycomb structure and honeycomb catalyst body
WO2007026803A1 (en) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic substance
US7867598B2 (en) 2005-08-31 2011-01-11 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic body
JP4600826B2 (en) * 2005-10-18 2010-12-22 日立金属株式会社 Ceramic honeycomb filter
JP2007111585A (en) * 2005-10-18 2007-05-10 Hitachi Metals Ltd Ceramic honeycomb filter
JP2007222858A (en) * 2006-01-27 2007-09-06 Hitachi Metals Ltd Ceramic honeycomb filter
KR101425496B1 (en) * 2006-02-17 2014-08-13 히타치 긴조쿠 가부시키가이샤 Ceramic honeycomb filter and exhaust gas purifier
JP2007289925A (en) * 2006-03-29 2007-11-08 Ngk Insulators Ltd Honeycomb structure
JP2009000647A (en) * 2007-06-22 2009-01-08 Tokyo Yogyo Co Ltd Exhaust gas cleaning filter
JP2010221163A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Device for cleaning exhaust
JP2010221162A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Method of producing device for cleaning exhaust, and device for cleaning exhaust
EP2236783A1 (en) 2009-03-24 2010-10-06 NGK Insulators, Ltd. Method of manufacturing exhaust gas purification device and exhaust gas purification device
CN102625727A (en) * 2009-08-31 2012-08-01 康宁股份有限公司 Particulate filters and methods of filtering particulate matter
CN102625727B (en) * 2009-08-31 2014-12-10 康宁股份有限公司 Particulate filters and methods of filtering particulate matter
JP2011169156A (en) * 2010-02-16 2011-09-01 Ngk Insulators Ltd Exhaust emission control device
JP2011167582A (en) * 2010-02-16 2011-09-01 Ngk Insulators Ltd Honeycomb catalyst body
JP2015520718A (en) * 2012-04-23 2015-07-23 ダウ グローバル テクノロジーズ エルエルシー Axial partitioned ceramic honeycomb assembly
JP2014148924A (en) * 2013-01-31 2014-08-21 Ngk Insulators Ltd Exhaust gas purification device
JP2015193495A (en) * 2014-03-31 2015-11-05 日本碍子株式会社 honeycomb structure
JP2016133060A (en) * 2015-01-20 2016-07-25 株式会社デンソー Abnormality diagnosis device of pm sensor
WO2016117300A1 (en) * 2015-01-20 2016-07-28 株式会社デンソー Abnormality diagnosis device for pm sensor
JP2016160847A (en) * 2015-03-03 2016-09-05 株式会社デンソー Exhaust emission control device
WO2016139899A1 (en) * 2015-03-03 2016-09-09 株式会社デンソー Exhaust purification device
US11712648B2 (en) 2018-02-02 2023-08-01 Proterial, Ltd. Water-treating ceramic filter module
JP2019178635A (en) * 2018-03-30 2019-10-17 日本碍子株式会社 Honeycomb structure
CN114837773A (en) * 2022-05-27 2022-08-02 奇瑞汽车股份有限公司 Particle collecting device and vehicle

Also Published As

Publication number Publication date
DE602004014659D1 (en) 2008-08-14
US20090226348A1 (en) 2009-09-10
EP1598534A3 (en) 2005-12-14
US7618596B2 (en) 2009-11-17
DE602004026554D1 (en) 2010-05-27
US20040161373A1 (en) 2004-08-19
EP1598534A2 (en) 2005-11-23
JP4369141B2 (en) 2009-11-18
EP1598534B1 (en) 2010-04-14
EP1450015B1 (en) 2008-07-02
EP1450015A1 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
JP4369141B2 (en) Honeycomb filter and exhaust gas purification system
KR100874398B1 (en) Honeycomb Structure
US8283019B2 (en) Honeycomb structured body
EP2180936B1 (en) Tuning particulate filter performance through selective plugging and use of multiple particulate filters to reduce emissions and improve thermal robustness
US7559967B2 (en) Honeycomb filter
JP5726414B2 (en) Catalyst-carrying filter and exhaust gas purification system
EP1520614A1 (en) Honeycomb structure body
EP3313553B1 (en) Catalytic wall-flow filter having a membrane
WO2005002709A1 (en) Honeycomb structure body
KR20150015444A (en) Axially sectioned ceramic honeycomb assemblies
JP2006272157A (en) Ceramic honeycomb filter and waste gas cleaning facility
JP4426381B2 (en) Honeycomb structure and manufacturing method thereof
US8137637B2 (en) Particulate filter and method of making
JP4285342B2 (en) Manufacturing method of exhaust gas purification filter
KR101340519B1 (en) Exhaust gas filter
JP4048926B2 (en) Exhaust particulate filter for internal combustion engine
JP3874258B2 (en) Exhaust gas purification device
JP5526388B2 (en) Exhaust gas purification filter and exhaust gas purification device
US20060078479A1 (en) Filter assembly for an exhaust treatment device
KR100587136B1 (en) Catalytic Filter for diesel engine
JP4803480B2 (en) Ceramic honeycomb filter
KR100636051B1 (en) Diesel Particulate Filter
JP2009275554A (en) Exhaust emission control device
JP2006150276A (en) Honeycomb filter
EP2614873B1 (en) Honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090827

R150 Certificate of patent or registration of utility model

Ref document number: 4369141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

EXPY Cancellation because of completion of term