JP2007207688A - ミラー電子顕微鏡およびミラー電子顕微鏡を用いた検査装置 - Google Patents

ミラー電子顕微鏡およびミラー電子顕微鏡を用いた検査装置 Download PDF

Info

Publication number
JP2007207688A
JP2007207688A JP2006027850A JP2006027850A JP2007207688A JP 2007207688 A JP2007207688 A JP 2007207688A JP 2006027850 A JP2006027850 A JP 2006027850A JP 2006027850 A JP2006027850 A JP 2006027850A JP 2007207688 A JP2007207688 A JP 2007207688A
Authority
JP
Japan
Prior art keywords
electron beam
sample
mirror
energy
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006027850A
Other languages
English (en)
Inventor
Hisaya Murakoshi
久弥 村越
Hideo Todokoro
秀男 戸所
Hiroyuki Shinada
博之 品田
Masaki Hasegawa
正樹 長谷川
Momoyo Maruyama
百代 圓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2006027850A priority Critical patent/JP2007207688A/ja
Priority to US11/701,386 priority patent/US20070181808A1/en
Publication of JP2007207688A publication Critical patent/JP2007207688A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/29Reflection microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • H01J2237/057Energy or mass filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/1508Combined electrostatic-electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24592Inspection and quality control of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application
    • H01J2237/2538Low energy electron microscopy [LEEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】 一般の電子顕微鏡像が試料の形状や材質を反映したものであるのに対して、ミラー電子から得られる画像はミラー電子が反射する等電位面の形状を反映したものとなり、像解釈が複雑になっていた。
【解決手段】 測定するパターンの構造あるいは興味ある欠陥の対象に応じて、以下のミラー電子の反射面を制御する手段を設ける。
1)電子源の種類、動作条件および測定する試料7上のパターンの種類に応じて、ミラー電子線の反射面の高さに相当する電子源1と試料7の間の電位差を制御する手段を設ける。
2)照射系にエネルギーフィルタ9を配置させて、照射電子線のエネルギー分布を制御する手段を設ける。
【効果】 パターンの大きさや電位を区別して検査することが可能となる。絶縁物試料を高分解能で観察することができる。
【選択図】 図1

Description

本発明は、試料(半導体試料等)の表面状態を観察するミラー電子顕微鏡などの反射結像型電子顕微鏡、もしくは反射結像型電子顕微鏡を用いて半導体ウェハ上に形成されるパターン欠陥や異物などを検査する欠陥検査装置に関する。
半導体装置の製造過程において、ウェハ上に形成された回路パターンの欠陥を画像の比較検査により検出する方法として、電子線を試料に照射することにより、光学顕微鏡の分解能以下となる微小なエッチング残り、微小パターン欠陥などの形状欠陥の検出や微小導通孔の非開口不良等の電気的な欠陥の検出が可能となっている。ここで、点状の電子線を試料上で走査する走査型電子顕微鏡を用いた方式では、実用的な検査速度を得るためには限界があるので、「特開平7−249393号公報」、「特開平10−197462号公報」、「特開2003−202217号公報」等には、矩形状の電子線を半導体ウェハに照射して後方散乱電子や二次電子または逆電界の形成によりウェハに照射されずに反射される電子をレンズにより結像させる等、いわゆるプロジェクション方式により高速に検査する装置について記載されている。
特開平7−249393号公報
特開平10−197462号公報 特開2003−202217号公報
しかし、二次電子やミラー電子のプロジェクション方式は下記の課題が残っていた。
検出電子として二次電子や後方散乱電子を拡大投影させる装置は、低エネルギー電子顕微鏡と呼ばれている。この方式ではSEM方式よりも大電流の電子線を一度に照射でき、かつ一括で画像を取得できるためSEM方式と比較して超高速に画像を形成できることが期待できる。ところが、二次電子の放出角度分布は広い角度に広がっており、しかもエネルギーも約1〜10eVと広がっている。このような電子を結像して試料の拡大像を形成するとき、大部分の二次電子をカットしないと十分な分解能が得られないことが、「LSIテスティングシンポジウム/1999会議録、P142」に記載の図6から容易に判断することができる。この図は試料から放出した二次電子を加速するための負の試料印加電圧と二次電子の結像分解能を示したものである。これによると試料印加電圧−5kVのとき分解能はほぼ0.2μmである。 ここで、放出した二次電子がすべて画像形成に使用できるわけではなく、たとえば当該引用文献の計算では対物レンズ通過後の像面において1.1mradの開き角以下のビームを使用した場合となっている。この開き角の範囲内の二次電子は全体のたかだか10%程度である。さらに結像に使用する二次電子のエネルギーの幅を1eVで計算しているが、放出される二次電子のエネルギー幅は実際には数eV以上の幅を持って放出しており、高エネルギー側の裾野はおよそ50eVまで存在する。そのような幅広いエネルギー分布を持つ二次電子のうち、たかだか1eVのエネルギー幅のもののみを抽出した場合はさらに数分の一になってしまう。
このように、電子線を面積ビームとして試料に大電流を照射して得られる二次電子を用いて一括で画像を形成しようとしても、実際に画像形成に寄与できる電子の割合が低いために画像のS/N比を確保することが困難となり、結局期待できるほどの検査時間の短縮は不可能である。画像形成に後方散乱電子を用いても、後方散乱電子は照射ビーム電流に比べて二桁少ない放出量しか得られず、二次電子の場合と同様に高分解能と高速性の両立は困難である。
二次電子や後方散乱電子に替わり、試料の直前で試料に当たらないで反射するミラー電子を拡大投影する装置はミラー電子顕微鏡と呼ばれている。このミラー電子を用いて欠陥を起因として生じる電位や形状の乱れを検出することによって、欠陥を検出することができる。パターンが凸形状か負帯電している場合には試料直上に形成される等電位面は入射電子に対して凸面鏡レンズのように作用し、パターンが窪んだ形状か回りより正帯電している場合には、試料直上に形成される等電位面は入射電子に対して凹面鏡レンズとして作用する。このように、ミラー電子は試料直上に形成されるレンズにより若干軌道を変えるが、結像レンズの焦点条件を調整すれば、これらのミラー電子のほとんどを画像形成に用いることができる。すなわち、ミラー電子を用いれば、S/N比の高い画像が得られ、検査時間の短縮が期待できる。
しかしながら、一般の電子顕微鏡像が試料の形状や材質を反映したものであるのに対して、ミラー電子から得られる画像はミラー電子が反射する等電位面の形状を反映したものとなり、従来と異なる像解釈が必要となっていた。したがって、ミラー電子から得られる画像のコントラストは、結像電子ビームのフォーカス条件だけでなく、電子ビームの試料への照射条件に大きく依存してしまうことになる。
本発明は、上述の点に着目してなされたものであり、安定したミラー電子画像を取得することによって、ウェハ上に形成されたパターンの欠陥部を、高速かつ高精度に検出する欠陥検査装置を提供することを目的とする。
本発明の目的は、以下の方法で達成できる。
第一の方法として、ミラー電子が反射する反射面を制御する手段を設けることとした。具体的には、電子源に印加する電圧をV0、試料に印加する電圧をVsと置くと、Vs <V0 すなわちVsがV0より負の電位になると、入射電子ビームは試料に衝突しないで反射するミラー反射条件となるが、この電位差V0-Vsを制御する手段を設けることによって、ミラー電子画像のコントラストが最適になるような手段を設けることにした。
すなわち、大きさが異なるパターンに対する試料直上の等電位面の歪は、寸法の小さなパターンに比べて寸法の大きなパターンの歪のほうが試料の遠方まで広がっている。例えば、図4に示す立方体パターンの場合には、等電位面の変形はパターンの高さに依存しており、ミラー電子の反射面を試料に近づければ、大きいパターンと小さいパターンの歪を反映した画像が取得できるが、ミラー電子の反射面を試料から遠ざけることで寸法の大きなパターンからの歪のみを選択した画像を取得することができる。例えば、細かな凹凸がある表面にパターンが形成される試料の観察では、ミラー電子の反射面を試料に近づければ、細かな凹凸とパターンの両方の情報を取得できるが、パターンの形状欠陥を検査したい場合には、ミラー電子の反射面を試料から遠ざけてパターンの情報のみを抽出した画像を取得することができる。
試料表面の電位コントラストについても同様に、等電位面の変形は試料表面電位の大きさに依存する。図5は、電位Vsの試料と対向電極の間に5kV/mmの電界を印加して、Vs−2Vに帯電したパターンとVs−0.5Vに帯電したパターンからの等電位面の変形と照射電子線の軌道変化を示したものである。図中の等電位面間隔は0.2Vおきにとり、等電位面は高さ方向に平均約40nm間隔で分布している。図5(a)は、e(Vs−0.2V)のエネルギーで試料に垂直に平行照射する電子軌道であり、Vs−0.2Vの等電位面で電子はほぼエネルギーが0になり向きを変えて反射している。−0.5Vと−2Vに帯電したパターンからの等電位面変形によりミラー電子線の軌道が発散して変化しており、両方のパターンの検出が可能である。一方、図5(b)はe(Vs−0.4V)のエネルギーで試料に垂直に平行照射する電子軌道を示しており、Vs−0.4Vの等電位面がほぼ照射電子線のエネルギーが0になる反射面となる。−2Vに帯電したパターンからの等電位面変形により電子軌道が発散するのに対し、−0.5Vに帯電したパターンからの等電位面変形は少なく、ミラー電子線はほぼ垂直に反射する。したがって、この照射条件では−2Vのパターンを選択して検出することが可能となる。
以上のように、測定する試料の種類や状態に応じてミラー電子線となる照射電子線の反射面を制御する手段を設ければ、パターンの大きさや帯電の大きさなどを区別して観察あるいは検査することが可能となる。
第二の方法としては、照射電子線のエネルギーの分布を制御することとした。電子源から出射した照射電子線は、電子源の種類、動作条件によりによりあるエネルギー広がりを持つ。また、照射電子線を大電流で出射させると電子同士のクーロン相互作用の影響を受け、さらにエネルギー幅が広がって試料に到達する。照射電子線にエネルギーの分布があると、エネルギーが高い電子が試料の直上で反射する条件に試料および電子源の印加条件を設定しても、エネルギーの低い電子は試料の遠方で反射してしまうことになる。
この問題を回避するために、照射する電子線のエネルギー分布を制御する手段を設ければ、反射面の制御が可能となる。すなわち、電子源と試料の間にエネルギーフィルタを配置して照射電子線のエネルギー分布を狭めることにより、特定の反射面からのミラー電子画像を得ることができる。ここで、例えば試料直前で反射した電子線のみで画像化すれば、試料表面の微細な情報まで反映した高分解能画像が得られる。また、これらの反射面の異なる画像を複数比較することにより、試料表面の三次元的な構造を再構成することができる。エネルギーを狭めたビームの反射面の調整には、エネルギーフィルタを通過するビームのエネルギーを制御することにより実現できるが、前述の電子源電位と試料電位の電位差を制御する手段と組み合わせても実現できる。
さらに、電子ビームの高エネルギー部分のみを除外することにより、試料帯電による像分解能の劣化を回避することができる。電子ビームを電流リークが少ない絶縁物試料に照射すると、試料の表面電位は試料に電子が当たらなくなる負の電位まで上昇する。すなわち、図6(a)に示すように照射電子ビームの高エネルギー側に裾があると、試料電位は照射初期の電位Vs(図6(b))から、裾の一番高エネルギー側の電子が当たらなくなる電位(図6(c))まで試料電位が上昇して、照射ビームが試料から遠ざかってしまうので、試料表面の微細な情報が得られにくくなるので、画像が不鮮明になってしまう。ここで、エネルギーフィルタにより電子ビームの高エネルギー部分のみをカットすることにより、照射ビームが試料から遠ざからない状態で、高分解能画像を得ることができる(図6(d))。
あるいは、電子ビームの低エネルギー部分のみを除外することにより、試料より遠方の長周期構造からの情報を除外することも可能となる。
さらに、エネルギーフィルタおよびセパレータとしてE×B偏向器を用いる場合に、エネルギーフィルタとセパレータの偏向方向を互いに逆方向に作用させることによって、照射ビームの偏向収差を低減することができる。ExB偏向器は、電界Eと磁界Bを直交かつ重畳して動作させて動作させる偏向器である。図7を用いてこの動作を説明する。加速電圧Vの電子線が図7に示す長さ2l、間隔dの平行平板電極型の静電偏向器で偏向される偏向角θEおよび長さ2lの均一磁界偏向器で偏向される偏向角θMは、それぞれ次式で与えられる。
Figure 2007207688
電界による偏向と磁界による偏向が打ち消しあう条件
Figure 2007207688
をWien条件と呼び、図7でWien条件に設定されたE×B 偏向器に上方から入射した電子線は直進し、下方から入射した電子線はθEM=2θEの偏向を受ける。
Wien条件で、e(V+ΔV)のエネルギーの電子線の偏向量ΔyはE×B 偏向器の偏向色収差となり、次式で近似される。
Figure 2007207688
また、Wien条件で反対方向から入射した場合の偏向量Δy’は、上式の括弧内を加算して、
Figure 2007207688
となり、Wien条件で反対方向から入射した電子線は直進する電子線より約3倍の色収差をもつことになることがわかる。
ここで、エネルギーフィルタとしてWien条件に設定されたE×B 偏向器を選び、エネルギーeVの電子線が直進する条件で、E×B 偏向器からL離れた位置に形成されるクロスオーバのエネルギー分散量、すなわちe(V+ΔV)のエネルギーのeVのエネルギーの電子線に対する電子線の偏向量Δyは(2)式で与えられる。このΔyの偏向量がコンデンサレンズにより対物レンズ焦点面に倍率Mcで投影されると、偏向量はMcΔyとなる。照射電子線はコンデンサレンズと対物レンズの間に配置されたWien条件に設定されたビームセパレータ(E×B 偏向器)により2θEの偏向をうけるとすると、エネルギー分散量、すなわちe(V+ΔV)のエネルギーの電子線のeVのエネルギーの電子線に対する偏向量Δy’は(3)式で与えられる。したがって、このエネルギーフィルタとビームセパレータのエネルギー分散量が相殺される条件は
McΔy= -Δy’ (4)
となる。ここで、ビームセパレータの偏向量は照射レンズと結像レンズの光学系の配置関係で固定されるので、エネルギーフィルタの偏向量を、おおむね(4)式が成り立つように調整すればエネルギー分散量が相殺あるいは緩和される。
さらに、エネルギーフィルタおよびビームセパレータの間に磁界型のコンデンサレンズを配置する場合には、磁界レンズにより照射電子線が回転してしまうので、偏向方向の補正を行う必要がある。コンデンサレンズの励磁コイルの巻き数をN、励磁電流をI、コンデンサレンズを通過する照射電子線のエネルギーをeVと置いて、規格化されたレンズ励磁Exを、
Figure 2007207688
と置くと、Ex=1の変化に対してコンデンサレンズによる照射電子線の回転角Rは約11°変化する。そこで、コンデンサレンズの動作条件から計算される回転角Rが補正されるように、エネルギーフィルタの偏向方向をコンデンサレンズとは逆向きに回転させることで、ビームセパレータの偏向収差とエネルギーフィルタの偏向収差を緩和することができる。
以下に、本発明の実施例について図面を参照して詳細に説明する。
(実施例1)
図1は、実施例1の動作を説明するための構成を示したものである。ビームセパレータとしてE×B偏向器4をミラー電子線を含む反射電子線302の結像面近傍に配置させる。照射系の光軸とウェハ7に垂直な結像系の光軸とは、互いにθINの角度で交叉している。コンデンサレンズ3と対物レンズ5の間にはビームセパレータとしてのE×B偏向器4が配置されており、電子源1より放出された照射電子線301は、E×B偏向器4によりウェハ7に垂直な光軸に偏向される。E×B偏向器4により偏向された照射電子線301は、コンデンサレンズ3により対物レンズの焦点面303近傍に集束され、試料上7をほぼ平行な照射電子線で照射することができる。
試料7には、電子源1に印加される加速電圧V0とほぼ等しい負の電位が試料7を保持するステージ8を通じて、試料印加電源37より印加されている。試料と対向する円孔電極6には円孔電極印加電源36により、試料7に対して数kVから数十kVの範囲の正電圧が印加されており、この円孔電極6と試料7との間の減速電界によって面状の照射電子線301の大部分が試料7に衝突する直前で引き戻されてミラー電子となり、試料7の形状や電位、磁界などを反映した方向や強度を持って再び対物レンズ5に入射する。
このミラー電子による反射電子線302は、対物レンズ5により拡大されて、E×B偏向器4近傍にミラー投影像を結ぶ。このE×B偏向器4は反射電子線にはウィーン条件で作用する。すなわち、反射電子線302に対してはE×B偏向器4は偏向作用を持たず、また、ミラー電子像がE×B偏向器4近傍に結像投影されるのでE×B偏向器4による偏向収差もほとんど発生しない。この対物レンズ5により投影された反射電子像302は、中間レンズ13および投影レンズ14により投影され、シンチレータ15上に拡大されたミラー電子像が形成される。このミラー電子像はシンチレータ15により光学像に変換され、光学レンズ16あるいは光ファイバー束によりCCDカメラ17上に投影され、CCDカメラ17により電気信号に変換されたミラー像がモニタ22により表示される。
照射条件などにより、反射電子線302には、ミラー電子のほかに試料に衝突した電子が後方に散乱された後方散乱電子、試料から二次的に発生した二次電子なども含まれる場合があるが、後方散乱電子や二次電子の出射方向のばらつきにより、シンチレータに入射する電子はほぼ垂直に出射した電子に制限されてしまうので、ミラー電子に対する後方散乱電子や二次電子の割合は少なく、画像のコントラストには通常条件では影響を及ぼさない。もし、画像に後方散乱電子や二次電子の割合が多く含まれる場合には、対物レンズ5の焦点面に形成される電子線回折像面あるいは中間レンズ13によりこの電子線回折像が投影される面上に反射電子線の角度を制限する制限絞り挿入することで、後方散乱電子や二次電子の割合を調整することができる。
E×B偏向器4を光軸垂直方向から見た断面は図8に示す8極電磁極構造であり、各電磁極51はパーマロイなどの磁性体で構成されている。各電磁極は電位を与えられることによって電極として動作し、各電磁極にN回巻かれているコイル53に励磁電流を流すことによって磁極として動作する。図8に示す電圧配分で各電磁極に電圧VXを印加すると電子はx方向に偏向作用を受ける。また、図9に示すような電流配分で電流IYを各コイルに流すと、図9の紙面の裏側から表へ運動する電子はx方向の正方向、紙面の表から裏側へ運動する電子はx方向の負方向へ偏向作用を受ける。各電極の電圧および電流配分は実際の電磁極形状に電位あるいは磁位を与えた電磁界計算により均一な電磁界が発生するように最適化されており、例えば図中のα=0.414に設定されている。
図10はE×B偏向器4の光軸を含む断面図である。E×B偏向器をビームセパレータとして用いる場合、照射系と結像系の交叉角θINは二つの光学系が互いに干渉しない配置関係を考慮すると、30度程度は取る必要がある。照射電子線301を30°偏向しても電磁極に当たらないようにするためには、開口部の直径を電磁極長さより大きくしなければならないが、開口を広げると偏向させる電圧を増加させなければならないので、電磁極51形状は電子軌道にほぼ沿った末広がりの円錐形状とした。また、電磁極の上下にはシールド電磁極54を設け、電磁界の滲みだしを抑えるとともに、電界と磁界が同一の空間で作用するようにして、空間内で常にウィーン条件が成り立つ完全なE×B偏向器として動作するようにした。
なお、上記の動作は、E×B偏向器4のx方向の偏向方向について説明したが、y方向への偏向成分の補正についても8極の電磁極にy方向の偏向成分の電圧あるいは電流を供給することによって同様の手順で行うことができる。例えば、E×B偏向器に周辺の磁界レンズからの磁束の漏れが生じている場合には、このようなy方向の電磁界を重畳させる回転補正が必要である。
また、図9においては、各コイルの巻き数は等しくN回としたが、磁極に流す電流Iとの関係がNIが一定になる範囲で電流IおよびNを変化させても良い。
次に、ミラー電子線の反射面調整について説明する。モニタ25上の操作画面には、電子源印加電源31を通じて電子源1に印加する電子源印加電圧V0、試料印加電源37から試料7を保持するステージ8を通じて試料7に印加する試料印加電圧Vs、あるいは試料印加電圧と電子源印加電圧の電位差ΔVなどの情報が表示されている。また、試料7と対向する円孔電極6には円孔電極印加電源36から円孔電極電圧Vaが供給されており、円孔電極−試料間距離Lおよび円孔電極−試料間の電界強度E=(Va−Vs)/Lの情報も表示されている。
測定対象ウェハの材質についての入力情報は、ユーザーが入力インターフェイス26を通じて入力する。制御部24には、あらかじめ試料材料の種類に応じた仕事関数が記憶されており、ユーザーがSiO2と入力すると、SiO2の仕事関数9eVから電子源1の仕事関数、例えばZr/O/W型のショットキー電子源の仕事関数約2.6eVを引いた仕事関数の差ΔVw:6.4eVが表示される。基準となるエネルギーの照射電子線が試料7に0Vで衝突する試料印加電圧VsをVs0と定義すると、基準エネルギーがV0である照射電子線に対するVs0=V0−ΔVwとなる。しかし、実際には電子源1の種類、形状により照射電子線のエネルギー分布は異なり、電子源1と試料7との仕事関数差も、金属間の接触によって生じるゼーベック効果などにより多少変動するので、あらかじめ、電子源1の種類に応じて、一定電圧の補正値を設定しても良い。
図11に、Zr/O/W型などのショットキー電子源について、電子線のエネルギー分布とエネルギー準位の関係を示す。ショットキー放出電子は引き出し電界により、真空準位よりポテンシャル障壁が下がって放出されるものであり、放出電子のエネルギーは電子源の真空準位の近傍に分布する。電子源の真空準位のエネルギーから放出された電子が試料直前まで近づくためには、電子源印加電圧と試料印加電圧の電位差が、電子源と試料の仕事関数差ΔVwにおおむね等しければよい。実際には、電子源の最大エネルギー電子はΔV1ほど真空準位より大きく、電子源のエネルギー分布の最大値に相当するエネルギーの真空準位との電位差はΔV2だけ異なる。ユーザーは、最大エネルギーの電子線が試料直前まで近づく電圧を基準にするならば、Vs0=V0−ΔVw+ΔV1となる。あるいは、エネルギー分布の最大値に相当するエネルギーの電子線が試料直前まで近づく電圧を基準にするならば、Vs0=V0−ΔVw-ΔV2となる。このΔV1とΔV2の値は電子源の曲率半径の実測値、加熱温度、引き出し電圧などの条件をパラメータとした実測値のデータベースなどより、電子源の動作条件に応じて自動的に設定されても良いし、ユーザーがプリセット値として設定しても良い。あるいは、金属間の接触によって生じるゼーベック効果などの補正値を加えても良い。
図12には、W(310)などの電界放出電子源について、電子線のエネルギー分布とエネルギー準位の関係を示す。電界放出電子は強い引き出し電界により、トンネル効果により放出されるものであり、放出電子のエネルギーは電子源のフェルミ準位の近傍に分布する。電子源のフェルミ準位のエネルギーから放出された電子が試料直前まで近づくためには、電子源印加電圧と試料印加電圧の電位差が試料の仕事関数Vfに等しければよい。実際には、電子源の最大エネルギー電子はΔV1ほどフェルミ準位より大きく、電子源のエネルギー分布の最大値に相当するエネルギーのフェルミ準位との電位差はΔV2異なる。ユーザーは、最大エネルギーの電子線が試料直前まで近づく電圧を基準にするならば、Vs0=V0−Vf+ΔV1となる。あるいは、エネルギー分布の最大値に相当するエネルギーの電子線が試料直前まで近づく電圧を基準にするならば、Vs0=V0−Vf-ΔV2となる。このΔV1とΔV2の値は電子源の曲率半径の実測値、引き出し電圧などの条件をパラメータとした実測値のデータベースなどより、電子源の動作条件に応じて自動的に設定されても良いし、ユーザーがプリセット値として設定しても良い。あるいは、金属間の接触によって生じるゼーベック効果などの補正値を加えても良い。
また、このVs0は実験的に求めても良い。例えば、ステージ8に電流計を接続して、試料7に吸収される電流を計測することにより、Vs0を決定することができる。操作画面上には吸収電流値が表示され、ユーザーが吸収電流値を見ながら、V0あるいはVsを調整して、V0−Vsの値を変化させる。電流が0になる条件は、照射電子線がすべてミラー反射する条件となるので、照射電子線を試料に近づけて、吸収電流が流れ出すV0−Vsの値が、おおむね最大エネルギーの照射電子線が試料7に衝突する条件だと判断して設定することができる。あるいは、吸収電流の変化量が一番大きい条件のV0−Vsの値が、おおむねエネルギー分布の最大値に相当するエネルギーの照射電子線が試料7に衝突する条件だと判断して設定することができる。または、操作画面上でミラー電子像を表示させて、V0−Vsの値を照射電子線が全部反射する条件に設定して、照射電子線を試料7に近づけるようにV0−Vsの値を変化させて、照射電子線の分布を計測することができる。例えば、ミラー電子像の強度が一番小さくなるのが、最小エネルギーの照射電子線がおおむね試料7に衝突する条件だと判断して設定することもできる。
または、上記の手順で求められた電子線のエネルギー分布の中で基準となるエネルギー値、例えば最大エネルギー値、エネルギー分布の最大値に相当するエネルギー値、あるいはエネルギー分布の中の一定の割合までの電子線のエネルギー値に対応するV0−Vsの値を制御部で記憶しても良い。操作画面上には、基準となるエネルギー値が最大エネルギー値か、エネルギー分布の最大値に相当するエネルギーか、あるいはエネルギー分布の中の一定の割合までの電子線のエネルギー値か、選択するモードボタンが表示され、ユーザーがモードを選択すると自動的にモードに対応するV0−Vsの値が設定される。
ミラー電子線の反射面は、基準となるエネルギー値の電子線が試料直前まで近づくミラー電子線反射面の高さHを0に設定するか、ユーザーが指定する高さを入力することにより、操作画面上に表示される。ミラー電子線反射面の高さHの変動ΔHとV0−Vsの変動値ΔV0−Sとの関係は、ΔH=ΔV0−S/E で表されるので、ユーザーが反射面連動モードを指定すると、ΔHの入力値に対して、ΔV0−Sが連動して変化するように制御される。また、試料印加電圧Vs、円孔電極電圧Va、円孔電極−試料間距離Lの変化に対する円孔電極−試料間の電界強度E=(Va−Vs)/Lの変化に連動して、ΔH=ΔV0−S/Eの表示も補正して設定される。
観察する試料の形状、種類などの条件に応じて、ユーザーはミラー反射面をの高さΔHをマニュアルで自由に調整することができる。あるいは、試料の形状、種類などの条件に応じて、あらかじめ最適な反射面の高さが制御部に記憶されており、ユーザーが試料の形状、種類を選ぶと、自動的に最適な反射面高さΔHに相当するV0−Vsの値を設定することもできる。
<実施例2>
図2に示す本実施例は、ミラー電子顕微鏡の照射系にエネルギーフィルタを搭載して、ミラー反射面を制御する構成である。電子銃レンズ2とコンデンサレンズ3との間にエネルギーフィルタ9を配置して、電子源1より放出されてエネルギーフィルタ9を通過した照射電子線101は、エネルギーフィルタ9とコンデンサレンズ3の間でエネルギー分散したクロスオーバを形成する。クロスオーバ上には制限絞り11が配置され、照射電子線のエネルギー選択を行う。エネルギー選択された照射電子線101は、コンデンサレンズ3と対物レンズ5の間に配置されたビームセパレータ4によりウェハ7に垂直な光軸に偏向されるとともに、コンデンサレンズ3により対物レンズ焦点面303近傍に集束されて、試料7をほぼ平行な状態で垂直照射することができる。制限絞り11の形状は、エネルギー分散したクロスオーバの中で、高エネルギー部分、あるいは低エネルギー部分を制限する場合には、例えばナイフエッジ形状の絞りが用いられ、ある特定エネルギー範囲部分を選択する場合には、スリット形状、あるいは円形の絞りを用いればよい。
エネルギーフィルタ9としては、例えば、E×B偏向器10が用いられる。E×B偏向器10は、例えば図8に示す8極電磁極構造である。各電磁極51はパーマロイなどの磁性体で構成されている。各電磁極は電位を与えられることによって電極として動作し、各電磁極にN回巻かれているコイル53に励磁電流を流すことによって磁極として動作する。ここで、セパレータの偏向方向に対して、逆方向をエネルギーフィルタのx方向と定めると、エネルギーフィルタの偏向方向を図8に示す電圧配分で各電磁極に電圧VXを印加すると電子はx方向に偏向作用を受ける。また、図9に示すような電流配分で電流IYを各コイルに流すと、図9の紙面の裏側から表へ運動する電子はx方向の正方向、紙面の表から裏側へ運動する電子はx方向の負方向へ偏向作用を受ける。各電極の電圧および電流配分は実際の電磁極形状に電位あるいは磁位を与えた電磁界計算により均一な電磁界が発生するように最適化されており、例えば図中のα=0.414に設定されている。E×B偏向器10の光軸近傍の電界強度Eと各電磁極印加電圧VXとの関係、およびE×B偏向器10の光軸近傍の磁束密度Bと各電磁極印加電流IYとの関係はあらかじめ電磁界計算などで求められている。
照射電子線101は、例えばZr/O/W型などのショットキー電子源については図11のようなエネルギー分布を持ち、放出される電子線のエネルギーは真空準位に相当するエネルギー値とは必ずしも等しくはないがほぼ一致した分布を持つ。。したがって、電子源印加電源31から電子源1に印加される電子源印加電圧をVとすると、E×B偏向器10を通過する電子線のエネルギー分布のピークは、エネルギーeVとほぼ一致しているので、エネルギーフィルタ9を直進するエネルギーeVFは、eVを基準としてE×B偏向器10に供給する電界強度Eおよび磁束密度Bの比をWien条件
Figure 2007207688
が成り立つように設定することにより調整できる。また、エネルギーフィルタにより発生したクロスオーバ上のエネルギー分散は偏向方向と同じ方向に発生するが、上記Wien条件が成り立つような強度比でEおよびBを変化させることによりエネルギー分散の大きさを調整できる。例えば、クロスオーバ上のエネルギー分散を5μm/eVと設定すると、幅2μmのスリットをクロスオーバ上の偏向垂直方向に配置すれば、エネルギー幅0.4eVの電子線を選択して通過させることができる。
モニタ上25の操作画面には、電子源印加電源31を通じて電子源1に印加する電子源印加電圧V、試料印加電源37から試料7を保持するステージ8を通じて試料7に印加する試料印加電圧Vs、あるいは試料印加電圧と電子源印加電圧の電位差ΔVなどの情報が表示されている。また、試料7と対向する円孔電極6には円孔電極印加電源36から円孔電極電圧Vaが供給されており、円孔電極−試料間距離Lおよび円孔電極−試料間の電界強度E=(Va−Vs)/Lの情報も表示されている。また、E×B偏向器10の動作も、例えば上記の幅2μmのスリットを通過するエネルギー幅ΔEおよび通過エネルギーeVFを、EおよびBを変化させることにより設定して、表示できるようになっている。測定対象ウェハの材質についての入力情報はユーザーが入力インターフェイス26を通じて入力する。制御部24には、あらかじめ試料材料の種類に応じた仕事関数が記憶されており、ユーザーがSiO2と入力すると、SiO2の仕事関数9eVから電子源1の仕事関数、例えばZr/O/W型のショットキー電子源の仕事関数約2.6eVを引いた仕事関数の差ΔVw:6.4eVが表示される。基準となるエネルギーの照射電子線が試料7に0Vで衝突する試料印加電圧VsをVs0と定義すると、基準エネルギーがVである照射電子線に対するVs0=V−ΔVwとなる。
上記の操作により、ユーザーはVs0の値を決定するとともに、対応するミラー電子線反射面の高さHを0に設定するか、ユーザーが指定する高さを入力する。ミラー電子線反射面の高さHの変動ΔHとV−Vsの変動値ΔVF−Sとの関係は、ΔH=ΔVF−S/E で表されるので、ユーザーが反射面連動モードを指定すると、ΔHの入力値に対して、ΔVF−Sの値も連動して変化するように制御される。すなわち、試料印加電源37から試料7に印加する試料印加電圧Vsを変化させるか、Wien条件式(4)よりE×B偏向器10に供給する電界強度Eおよび磁束密度Bの比を調整してエネルギーフィルタを通過するエネルギーeVFを変化させることにより、ΔVF−Sを制御することができる。また、試料印加電圧Vs、円孔電極電圧Va、円孔電極−試料間距離Lの変化に対する円孔電極−試料間の電界強度E=(Va−Vs)/Lの変化に連動して、ΔH=ΔVF−S/Eの表示も補正して設定される。
観察する試料の形状、種類などの条件に応じて、ユーザーはミラー反射面をの高さΔHをマニュアルで自由に調整することができる。あるいは、試料の形状、種類などの条件に応じて、あらかじめ最適な反射面の高さが制御部に記憶されており、ユーザーが試料の形状、種類を選ぶと、自動的に最適な反射面高さΔHに相当するV−Vsの値を設定することもできる。
エネルギーフィルタのクロスオーバで生じたエネルギー分散はコンデンサレンズ3を通じて対物レンズ焦点面303上にも形成されるので、ビームセパレータ4で発生した偏向色収差によるエネルギー分散と相殺される方向にエネルギー分散を生じさせれば、対物レンズ焦点面303上でエネルギー分散のないクロスオーバが形成される。ここで、コンデンサレンズ3が静電型の場合には、照射電子線101に対する回転作用が発生しないので、ビームセパレータ4の偏向方向とエネルギーフィルタ9の偏向方向を逆向きで作用させれば、対物レンズ焦点面303上のエネルギー分散を相殺あるいは緩和することができる。
コンデンサレンズ3が磁界型の場合には、コンデンサレンズ3の励磁コイルの巻き数をN、励磁電流をI、コンデンサレンズ3を通過する照射電子線101のエネルギーをeV0と置いて、規格化されたレンズ励磁Exを、
Figure 2007207688
と置くと、Ex=1の変化に対して回転角Rは約11°変化する。そこで、コンデンサレンズ3の動作条件から計算される回転角Rを補正するように、エネルギーフィルタ9の偏向方向をコンデンサレンズ3とは逆向きに回転させることで、ビームセパレータ4の偏向収差とエネルギーフィルタ9の偏向収差を緩和することができる。ここで、エネルギーフィルタ9として用いるE×B偏向器10のy方向への偏向についても、図13に示す電圧配分で各電磁極に印加する電圧V、図14に示すような電流配分で各コイルに流す電流Iを、Wien条件を満足させるように制御することができる。さらに、エネルギーフィルタとして動作するE×B偏向器10の動作電圧の絶対値
Figure 2007207688
が一定の条件で、かつ回転角R=tan(Vy/Vx)となるように、VxとVyを設定することでエネルギーフィルタのエネルギー分散の回転方向を制御することができる。また、エネルギーフィルタ9のエネルギー分散の回転方向を可変にした場合の制限絞り11の形状は、高エネルギー部分、あるいは低エネルギー部分を制限する場合には、エネルギー分散の大きさに比べて大きい円形状の絞りを用いればよい。すなわち、クロスオーバ上のエネルギー分散を5μm/eVと設定すると、例えば直径100μm以上の円形状の制限絞りを用いれば、各偏向方向に対してほぼ直交方向に交叉したナイフエッジの機能を持たせることができる。
ここで、図2に示す実施例では、電子銃レンズ2とコンデンサレンズ3との間にエネルギーフィルタ9を配置して、電子源1より放出されてエネルギーフィルタ9を通過した照射電子線101は、エネルギーフィルタ9とコンデンサレンズ3の間でエネルギー分散したクロスオーバを形成するが、図15に示すように、電子銃レンズ2とコンデンサレンズ3の間に第二コンデンサレンズ12を配置するとともに、第二コンデンサレンズ12とコンデンサレンズ3の間にエネルギーフィルタ9を配置して、エネルギーフィルタ9とコンデンサレンズ3の間で照射電子線101がエネルギー分散したクロスオーバを形成する構成としてもよい。あるいは、電子銃レンズ2とコンデンサレンズ3の間に第二コンデンサレンズ12を配置するとともに、電子銃レンズ2とコンデンサレンズ3との間にエネルギーフィルタ9を配置して、照射電子線101がエネルギーフィルタ9とコンデンサレンズ3の間でエネルギー分散したクロスオーバを形成する構成としてもよい。
<実施例3>
図3に示す本実施例はミラー電子顕微鏡を高速ウェハ検査に適用した構成である。電子源1には、先端半径が1μm程度のZr/O/W型のショットキー電子源を用いた。この電子源を用いることにより、大電流ビーム(例えば、1.5μA)で、かつエネルギー幅が0.5eV以下の均一な面状電子線を安定に形成できる。
電子銃レンズ2とコンデンサレンズ3との間でエネルギーフィルタ9を配置して、電子源1より放出された照射電子線301は、エネルギーフィルタ9を通過後、エネルギーフィルタ9とコンデンサレンズ3の間でエネルギー分散したクロスオーバを形成する。クロスオーバ上には制限絞り11が配置され、照射電子線101のエネルギー選択を行う。エネルギー選択された照射電子線101はコンデンサレンズ3を通過後、コンデンサレンズ3と対物レンズ10の間に配置されたビームセパレータによりウェハ7に垂直な光軸に偏向される。ビームセパレータとしては、例えばE×B偏向器4を反射電子線302の結像面近傍に配置させる。
欠陥検査には、ミラー電子顕微鏡モードを使用する。ミラー電子は試料直上に形成される等電位面の歪により軌道を変えるが、結像レンズの焦点条件を調整すれば、これらのミラー電子のほとんどを画像形成に用いることができる。すなわち、ミラー電子を用いれば、S/N比の高い画像が得られ、検査時間の短縮が期待できる。
次に、モニタ上25の操作画面による反射面調整について説明する。モニタ25上の操作画面には、電子源印加電圧V0、試料印加電圧Vs、あるいは試料印加電圧と電子源印加電圧の電位差ΔVなどの情報が表示されている。電圧測定対象ウェハの材質についての入力情報が表示されている。制御部24には、あらかじめ試料材料の種類に応じた仕事関数が記憶されており、ユーザーがSiO2と入力すると、SiO2の仕事関数9eVから電子源の仕事関数、例えばZr/O/W型のショットキー電子源の仕事関数約2.6eVを引いた仕事関数の差ΔVw:6.4eVが表示される。基準となるエネルギーの照射電子線101が試料7に0Vで衝突する試料印加電圧VsをVs0と定義すると、基準エネルギーがV0である照射電子線101に対するVs0=V0−ΔVwとなる。しかし、実際には電子源1の種類、形状により照射電子線101のエネルギー分布はある幅、エネルギーシフトがあり、電子源1と試料7との仕事関数差も、金属間の接触によって生じるゼーベック効果などにより、多少変動するので、このVs0は実験的に求めることができる。例えば、試料7に吸収される吸収電流を計測することにより、Vs0を決定することができる。さらに、あらかじめ制御部に入力された試料構造に対して、上記の電圧印加条件に対して、試料近傍の電界分布を計算した結果がモニタ上25に表示される。ユーザーが基準となる照射電子線を指定すると、基準となるエネルギーの照射電子線が反射する反射面が表示される。ユーザーが試料印加電圧、電子源印加電圧などの電圧条件を変化させると、入力条件に応じて電子線軌道の再計算を行い、入射電子線が反射する点をつないで反射面を形成して表示させるか、便宜的に、平坦な試料領域で基準と成るエネルギーの電子線が反射する等電位面を表示させる。ユーザーはモニタ25を見ながら、検出する欠陥の大きさ、種類に応じて、反射面を調整して、検査条件を決定することができる。
エネルギーフィルタ9としてE×B偏向器10を動作させて照射電子線101のエネルギーを選択する場合には、まずあらかじめクロスオーバ上でエネルギーを選択する制限絞り11を光軸近傍に配置して、エネルギーeVの照射電子線に対して、Wien条件となるように設定しておく。特に、高エネルギー側の分布強度が弱い部分を除外して、高エネルギー成分の強度が大きい電子線で絶縁物試料を照射すれば、絶縁物の帯電状態を制御しつつ絶縁物試料の直上で反射する強度の大きい信号が得られるので、高分解能を維持した状態で絶縁物を観察することが可能になる。例えば、図16(a)に示すエネルギー分布の電子線に対してエネルギーeV以上の高エネルギー成分をカットする場合には、ナイフエッジ形状の制限絞りを光軸近傍に配置して、エネルギーeV以上の電子線が制限絞りで遮られるようにすればよい。この条件で基準となるエネルギーの照射電子線が試料に0Vで衝突する試料印加電圧VsをVs0と定義すると、基準エネルギーが照射電子線101の最大エネルギーVであるので、照射電子線101に対するVs0=V−ΔVwとなり、試料の直上で強度の大きい電子線がミラー電子線として反射されるので、絶縁物試料を帯電させることなく高分解能で観察することができる(図16(b))。ここで、絶縁物をVmの負電圧に帯電させるためには、エネルギーe(V+Vm)の照射電子線に対して、E×B偏向器10がWien条件となるように設定し直すか、Vs=Vs0+Vmに設定して、照射電子線101を試料7に照射し続けると(図16(c))、絶縁膜の負帯電は照射電子線を反発するようになるまで進行し、絶縁膜に進入する電子数と絶縁膜から周辺へ逃げていく電子数が釣り合った電位まで負帯電して安定する。特に、絶縁膜中に蓄積した電子が周辺部に逃げていかない場合には、図16(d)に示すように絶縁膜は照射電子線101が進入しなくなる−Vmの電位まで負帯電して安定する。このような、絶縁膜が負帯電した状態でも、試料の直上で強度の大きい電子線がミラー電子線として反射されるので、高分解能観察することができる。
ミラー電子としてウェハ7のパターン情報を反映した方向や強度を持って上がってくる反射電子線102は対物レンズ5により収束作用を受ける。ビームセパレータ4は下方から進行した反射電子線102に対しては偏向作用を持たないように設定されており、反射電子線102はそのまま垂直に上昇し、中間レンズ13、投影レンズ14により拡大投影されて、画像検出部15上にウェハ7表面の画像を結像させる。これにより、ウェハ7表面の局部的な帯電電位の変化や凹凸等の構造の違いが画像として形成される。この画像は電気信号に変換され画像処理部103に送られる。
画像処理部103は、画像信号記憶部18及び19、演算部20、欠陥判定部21より構成されている。画像記憶部18と19は同一パターンの隣接部の画像を記憶するようになっており、両者の画像を演算部20で演算して両画像の異なる場所を検出する。この結果を欠陥判定部21により欠陥として判定しその座標を記憶部23に記憶する。なお、取り込まれた画像信号はモニタ22により画像表示される。
半導体ウェハ7表面上に形成された同一設計パターンを有する隣接チップA、B間でのパターンの比較検査をする場合には、先ず、チップA内の被検査領域についての電子線画像信号を取り込んで、記憶部18内に記憶させる。次に、隣接するチップB内の上記と対応する被検査領域についての画像信号を取り込んで、記憶部19内に記憶させながら、それと同時に、記憶部18内の記憶画像信号と比較する。さらに、次のチップC内の対応する被検査領域についての画像信号を取得し、それを記憶部18に上書き記憶させながら、それと同時に、記憶部19内のチップB内の被検査領域についての記憶画像信号と比較する。このような動作を繰り返して、全ての被検査チップ内の互いに対応する被検査領域についての画像信号を順次記憶させながら、比較して行く。
上記の方法以外に、予め、標準となる良品(欠陥のない)試料についての所望の検査領域の電子線画像信号を記憶部18内に記憶させておく方法を採ることも可能である。その場合には、予め制御部24に上記良品試料についての検査領域および検査条件を入力しておき、これらの入力データに基づき上記良品試料についての検査を実行し、所望の検査領域についての取得画像信号を記憶部18内に記憶する。次に、検査対象となるウェハ7をステージ8上にロードして、先と同様の手順で検査を実行する。
そして、上記と対応する検査領域についての取得画像信号を記憶部19内に取り込むと同時に、この検査対象試料についての画像信号と先に記憶部18内に記憶された上記良品試料についての画像信号とを比較する。これにより上記検査対象試料の上記所望の検査領域についてのパターン欠陥の有無を検出する。なお、上記標準(良品)試料としては、上記検査対象試料とは別の予めパターン欠陥が無いことが判っているウェハを用いても良いし、上記検査対象試料表面の予めパターン欠陥が無いことが判っている領域(チップ)を用いても良い。例えば、半導体試料(ウェハ)表面にパターンを形成する際、ウェハ全面にわたり下層パターンと上層パターン間での合わせずれ不良が発生することがある。このような場合には、比較対象が同一ウェハ内あるいは同一チップ内のパターン同士であると、上記のようなウェハ全面にわたり発生した不良(欠陥)は見落とされてしまう。
しかし、本実施例によれば、予め良品(無欠陥)であることが判っている領域の画像信号を記憶しておき、この記憶画像信号と検査対象領域の画像信号とを比較するので、上記したようなウェハ全面にわたり発生した不良をも精度良く検出することができる。
記憶部18、19内に記憶された両画像信号は、それぞれ演算部20内に取り込まれ、そこで、既に求めてある欠陥判定条件に基づき、各種統計量(具体的には、画像濃度の平均値、分散等の統計量)、周辺画素間での差分値等が算出され
る。これらの処理を施された両画像信号は、欠陥判定部21内に転送されて、そこで比較されて両画像信号間での差信号が抽出される。これらの差信号と、既に求めて記憶してある欠陥判定条件とを比較して欠陥判定がなされ、欠陥と判定されたパターン領域の画像信号とそれ以外の領域の画像信号とが分別されるとともに、欠陥部のアドレスが記憶部23に記憶される。
装置各部の動作命令および動作条件は、制御部24から入出力される。制御部24には、予め電子線発生時の加速電圧、電子線偏向幅・偏向速度、試料ステージ移動速度、画像検出素子からの画像信号取り込みタイミング等々の諸条件が入力されている。
検査時には、試料(半導体ウェハ)7を搭載したステージ8はx方向に一定速度で連続移動する。ステージ8は連続移動しているので、電子線は照射系偏向器5によってステージ8の移動に追従して偏向走査させる。
電子線の照射領域あるいは照射位置は、ステージ8に設けられたステージ位置測定器、試料高さ測定器等により常時モニタされる。これらのモニタ情報が制御部24に転送されて詳細に位置ずれ量が把握され、正確に補正される。これにより、パターンの比較検査に必要な正確な位置合わせが高速・高精度で行われ得る。
また、半導体ウェハ7の表面高さを、電子線以外の手段でリアルタイムに測定し、電子線を照射するための対物レンズ5や中間レンズ13、投影レンズ14の焦点距離をダイナミックに補正する。電子線以外の手段としては例えば、レーザ干渉方式や反射光の位置変化を計測する方式等による光学式の高さ測定器である。これにより、常に被検査領域の表面に焦点のあった電子線像を形成することができる。また、予め検査前にウェハ7の反りを測定しておき、その測定データを基に上記の焦点距離補正をするようにして、実検査時にはウェハ7の表面高さ測定を行う必要がないようにしてもよい。
上記より、ミラー電子線の反射面を制御することにより、パターンの大きさや電位を区別して検査することが可能となるとともに、絶縁物試料に対しても高分解能の画像を維持したまま検査することが可能となる。
本発明の第1の実施例になるミラー電子顕微鏡の構成を示す図。 本発明の第2の実施例の構成を説明する図。 本発明の第3の実施例の構成を説明する図。 立方体パターン直上の等電位面の歪を示す図。 試料電位による等電面の歪を示す図。 電子線の高エネルギー部分のみを除外した効果を示す図。 E×B偏向器の動作を説明する図。 8極型E×B偏向器のx方向偏向の電圧配分を説明する図。 8極型E×B偏向器のx方向偏向の電流配分を説明する図。 8極型E×B偏向器の断面図。 ショットキー電子源のエネルギー分布とエネルギー準位の関係を示す図。 電界放出電子源のエネルギー分布とエネルギー準位の関係を示す図。 8極型E×B偏向器のy方向偏向の電圧配分を説明する図。 8極型E×B偏向器のy方向偏向の電流配分を説明する図。 本発明の第2の実施例の別構成を説明する図。 高エネルギー部分のみを除外した電子線で絶縁物試料を照射した様子を説明する図。
符号の説明
1:電子源、2:電子銃レンズ、3:コンデンサレンズ、4:E×B偏向器、5:対物レンズ、6:円孔電極、7:試料(ウェハ)、8:ステージ、9:エネルギーフィルタ、10:E×B偏向器、11:制限絞り、12:第二コンデンサレンズ、13:中間レンズ、14:投影レンズ、15:シンチレータ、16:光ファイバー束、17:CCDカメラ、18:画像記憶部、19:画像記憶部、20:演算部、21:欠陥判定部、22:モニタ、23:記憶部、24:制御部、25:モニタ、26:入力インターフェイス、27:、28:、30:ステージ制御系、31:電子源印加電源、32:電子銃レンズ印加電源、33:コンデンサレンズ電源、34:E×B偏向器用電源、35:対物レンズ電源、36:円孔電極印加電源、37:試料印加電源、36:E×B偏向器用電圧電源、37:E×B偏向器用電流電源、39:エネルギーフィルタ電源、51:電磁極、52:ボビン、53:コイル、54:シールド、101:電子光学系、102:試料室、103:画像処理部、301:照射電子線、302:反射電子線、303:対物レンズ焦点面、304:エネルギー分散面。

Claims (20)

  1. 電子源に加速電圧を印加する電子源印加手段と、試料を保持するステージに試料電圧を印加する試料電圧印加手段と、前記電子源から出射した電子線を試料に二次元的な広がりを有する面状の照射電子線として照射する照射レンズ手段と、試料に衝突しないで反射したミラー電子線の反射面を制御する手段と、前記ミラー電子線を電子線を投影拡大して試料像を投影結像して画像化する手段とを備えたことを特徴とするミラー電子顕微鏡
  2. 電子源に加速電圧を印加する電子源印加手段と、試料を保持するステージに試料電圧を印加する試料電圧印加手段と、前記電子源から出射した電子線を試料に二次元的な広がりを有する面状の照射電子線として照射する照射レンズ手段と、試料に衝突しないで反射したミラー電子線の反射面を制御する手段と、前記ミラー電子線を電子線を投影拡大して試料像を投影結像して画像化する手段と、
    前記画像から欠陥を判定する手段とを備えたことを特徴とする欠陥検査装置
  3. 電子源に加速電圧を印加する電子源印加手段と、試料を保持するステージに試料電圧を印加する試料電圧印加手段と、前記電子源から出射した電子線を試料に二次元的な広がりを有する面状の照射電子線として照射する照射レンズ手段と、試料に衝突しないで反射したミラー電子線の反射面を制御する手段と、前記ミラー電子線を電子線を投影拡大して試料像を投影結像して画像化する手段と同一パターンの複数の画像を比較して欠陥を判定する手段とを備えたことを特徴とする欠陥検査装置
  4. 前記ミラー電子線の反射面を制御する手段は、前記電子源印加手段と前期試料印加手段の間の相対電圧を調整して試料面に対するミラー電子線の反射面の高さを調整することを特徴とする請求項1、2,3記載のミラー電子顕微鏡あるいは欠陥検査装置。
  5. 前記試料と前記試料と対向する対向電極との間の電位差および前記試料と前記対向電極間の距離で定まる前期試料と前記対向電極間の電界強度に応じて、前記電子源印加手段と前期試料印加手段の間の相対電圧を制御してミラー電子線の反射面の高さを調整することを特徴とする請求項4記載のミラー電子顕微鏡あるいは欠陥検査装置。
  6. 前記ミラー電子線の反射面を制御する手段は、前記照射電子線のエネルギー分布を調整する手段を設けることにより、特定の高さの反射面で反射するミラー電子線の割合を制御することを特徴とする請求項1、2,3記載のミラー電子顕微鏡あるいは欠陥検査装置。
  7. 照射電子線のエネルギー分布を調整する手段は、照射電子線の高エネルギー成分をカットすることを特徴とする請求項6記載のミラー電子顕微鏡あるいは欠陥検査装置
  8. 前記照射電子線の高エネルギー成分をカットすることにより、絶縁物試料の帯電を制御する手段を備えたことを特徴とする請求項6記載のミラー電子顕微鏡あるいは欠陥検査装置
  9. 照射電子線のエネルギー分布を調整する手段は、照射電子線の低エネルギー成分をカットすることを特徴とする請求項6記載のミラー電子顕微鏡あるいは欠陥検査装置
  10. 照射電子線のエネルギー分布を調整する手段は、照射電子線の特定のエネルギー範囲の電子線を照射することを特徴とする請求項6記載のミラー電子顕微鏡あるいは欠陥検査装置
  11. ミラー電子線の反射面を、照射電子線中でのおおよそ最大エネルギーの電子が反射する面を基準として制御することを特徴とする請求項1から請求項10まで記載のミラー電子顕微鏡あるいは欠陥検査装置。
  12. ミラー電子線の反射面を、照射電子線のエネルギー分布区間でおおよそ最大度数となる区間のエネルギーの電子線が反射する面を基準として制御することを特徴とする請求項1から請求項10まで記載のミラー電子顕微鏡あるいは欠陥検査装置。
  13. ミラー電子線の反射面を、照射電子線のうちおおよそ一定の割合までの電子線が反射する面を基準として制御することを特徴とする請求項1から請求項10まで記載のミラー電子顕微鏡あるいは欠陥検査装置。
  14. 前記試料の種類に応じて、ミラー電子線の反射面を制御することを特徴とする請求項請求項1から請求項10まで記載のミラー電子顕微鏡あるいは欠陥検査装置。
  15. 検査する欠陥の対象に応じて、ミラー電子線の反射面を制御することを特徴とする請求項2から請求項14まで記載の欠陥検査装置。
  16. 電子源と、電子源から出た照射電子線を加速して集束する電子銃レンズと、コンデンサレンズ、対物レンズにより構成される照射レンズ系により試料に面積ビームを照射する手段と、試料に衝突しないで反射したミラー電子線を前記対物レンズ、中間レンズ、結像レンズにより拡大投影する手段と、ミラー電子線と照射電子線をセパレータにより分離する手段とを有するミラー電子顕微鏡において、電子銃レンズによって形成される照射電子線のクロスオーバ近傍にエネルギーフィルタを配置して照射電子線のエネルギーを選択する手段を設けたことを特徴とするミラー電子顕微鏡
  17. 前記エネルギーフィルタにより生じた照射電子線のエネルギーの分散を前記セパレータにより生じたエネルギーの分散により緩和あるいは相殺する手段を設けたことを特徴とする請求項16記載のミラー電子顕微鏡。
  18. 前記セパレータの偏向方向に合わせて、前記エネルギーフィルタの偏向方向を調整する手段を設けたことを特徴とする請求項17記載のミラー電子顕微鏡
  19. 前記エネルギーフィルタと前記セパレータの間にコンデンサレンズを配置し、コンデンサレンズの励磁強度に連動して前記エネルギーフィルタの偏向方向を調整する手段を設けたことを特徴とする請求項18記載のミラー電子顕微鏡
  20. 前記エネルギーフィルタと前記セパレータは磁界と電界が交叉するExBフィルタであることを特徴とする請求項16から請求項19まで記載のミラー電子顕微鏡
JP2006027850A 2006-02-06 2006-02-06 ミラー電子顕微鏡およびミラー電子顕微鏡を用いた検査装置 Withdrawn JP2007207688A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006027850A JP2007207688A (ja) 2006-02-06 2006-02-06 ミラー電子顕微鏡およびミラー電子顕微鏡を用いた検査装置
US11/701,386 US20070181808A1 (en) 2006-02-06 2007-02-02 Electron microscope and electron bean inspection system.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027850A JP2007207688A (ja) 2006-02-06 2006-02-06 ミラー電子顕微鏡およびミラー電子顕微鏡を用いた検査装置

Publications (1)

Publication Number Publication Date
JP2007207688A true JP2007207688A (ja) 2007-08-16

Family

ID=38333105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027850A Withdrawn JP2007207688A (ja) 2006-02-06 2006-02-06 ミラー電子顕微鏡およびミラー電子顕微鏡を用いた検査装置

Country Status (2)

Country Link
US (1) US20070181808A1 (ja)
JP (1) JP2007207688A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211961A (ja) * 2008-03-05 2009-09-17 Hitachi High-Technologies Corp 走査電子顕微鏡
WO2009125603A1 (ja) * 2008-04-11 2009-10-15 株式会社荏原製作所 試料観察方法及び装置、並びにそれらを用いた検査方法及び装置
JP2010038853A (ja) * 2008-08-08 2010-02-18 Ebara Corp 基板表面の検査方法及び検査装置
WO2016002003A1 (ja) * 2014-07-01 2016-01-07 株式会社日立ハイテクノロジーズ 基板検査装置及び方法
JP2017009334A (ja) * 2015-06-18 2017-01-12 株式会社ホロン 電子を用いた超高速検査装置および電子を用いた超高速検査方法
JP2018010714A (ja) * 2016-01-28 2018-01-18 株式会社荏原製作所 ウィーンフィルター
WO2019058440A1 (ja) * 2017-09-20 2019-03-28 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP2020020808A (ja) * 2019-10-15 2020-02-06 株式会社ホロン 電子を用いた超高速検査装置および電子を用いた超高速検査方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988444B2 (ja) * 2007-06-19 2012-08-01 株式会社日立製作所 検査方法および装置
JP4659004B2 (ja) * 2007-08-10 2011-03-30 株式会社日立ハイテクノロジーズ 回路パターン検査方法、及び回路パターン検査システム
US8334508B1 (en) * 2011-02-22 2012-12-18 Electron Optica, Inc. Mirror energy filter for electron beam apparatus
JP5592833B2 (ja) * 2011-05-20 2014-09-17 株式会社日立ハイテクノロジーズ 荷電粒子線装置および静電チャック装置
WO2016129026A1 (ja) * 2015-02-09 2016-08-18 株式会社日立製作所 ミラーイオン顕微鏡およびイオンビーム制御方法
WO2017158744A1 (ja) * 2016-03-16 2017-09-21 株式会社 日立ハイテクノロジーズ 欠陥検査方法及び欠陥検査装置
JP6746422B2 (ja) * 2016-08-01 2020-08-26 株式会社日立製作所 荷電粒子線装置
JP7159011B2 (ja) 2018-11-08 2022-10-24 株式会社日立ハイテク 電子線装置
JP2021077492A (ja) * 2019-11-07 2021-05-20 株式会社ニューフレアテクノロジー 電子ビーム検査装置及び電子ビーム検査方法
CN110988003B (zh) * 2019-11-27 2021-08-13 中科晶源微电子技术(北京)有限公司 用于半导体器件的电子束检测设备、和电子束检测组件
TWI749687B (zh) * 2020-08-05 2021-12-11 力晶積成電子製造股份有限公司 電壓對比缺陷的分析方法及分析系統

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331774A (ja) * 2002-05-16 2003-11-21 Toshiba Corp 電子ビーム装置およびその装置を用いたデバイス製造方法
DE10235456B4 (de) * 2002-08-02 2008-07-10 Leo Elektronenmikroskopie Gmbh Elektronenmikroskopiesystem
JP4074185B2 (ja) * 2002-12-17 2008-04-09 日本電子株式会社 エネルギーフィルタ及び電子顕微鏡
JP2005083948A (ja) * 2003-09-10 2005-03-31 Hitachi High-Technologies Corp 検査装置及び検査方法並びにプロセス管理方法
JP4253576B2 (ja) * 2003-12-24 2009-04-15 株式会社日立ハイテクノロジーズ パターン欠陥検査方法及び検査装置
JP2006032107A (ja) * 2004-07-15 2006-02-02 Hitachi High-Technologies Corp 反射結像型電子顕微鏡及びそれを用いたパターン欠陥検査装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211961A (ja) * 2008-03-05 2009-09-17 Hitachi High-Technologies Corp 走査電子顕微鏡
US9966227B2 (en) 2008-04-11 2018-05-08 Ebara Corporation Specimen observation method and device using secondary emission electron and mirror electron detection
WO2009125603A1 (ja) * 2008-04-11 2009-10-15 株式会社荏原製作所 試料観察方法及び装置、並びにそれらを用いた検査方法及び装置
KR20110009138A (ko) * 2008-04-11 2011-01-27 가부시키가이샤 에바라 세이사꾸쇼 시료관찰방법과 장치 및 상기 방법과 장치를 이용한 검사방법과 장치
JPWO2009125603A1 (ja) * 2008-04-11 2011-08-04 株式会社荏原製作所 試料観察方法及び装置、並びにそれらを用いた検査方法及び装置
JP2014052379A (ja) * 2008-04-11 2014-03-20 Ebara Corp 試料観察方法及び装置、並びにそれらを用いた検査方法及び装置
US8937283B2 (en) 2008-04-11 2015-01-20 Ebara Corporation Specimen observation method and device using secondary emission electron and mirror electron detection
TWI473140B (zh) * 2008-04-11 2015-02-11 Ebara Corp 試料觀察方法與裝置,及使用該方法與裝置之檢查方法與裝置
JP2016028248A (ja) * 2008-04-11 2016-02-25 株式会社荏原製作所 試料観察方法及び装置
KR101599912B1 (ko) 2008-04-11 2016-03-04 가부시키가이샤 에바라 세이사꾸쇼 시료관찰방법과 장치 및 상기 방법과 장치를 이용한 검사방법과 장치
JP2010038853A (ja) * 2008-08-08 2010-02-18 Ebara Corp 基板表面の検査方法及び検査装置
WO2016002003A1 (ja) * 2014-07-01 2016-01-07 株式会社日立ハイテクノロジーズ 基板検査装置及び方法
JP2017009334A (ja) * 2015-06-18 2017-01-12 株式会社ホロン 電子を用いた超高速検査装置および電子を用いた超高速検査方法
JP2018010714A (ja) * 2016-01-28 2018-01-18 株式会社荏原製作所 ウィーンフィルター
WO2019058440A1 (ja) * 2017-09-20 2019-03-28 株式会社日立ハイテクノロジーズ 荷電粒子線装置
DE112017007862T5 (de) 2017-09-20 2020-04-30 Hitachi High-Technologies Corporation Ladungsträgerstrahlvorrichtung
JPWO2019058440A1 (ja) * 2017-09-20 2020-10-22 株式会社日立ハイテク 荷電粒子線装置
US11107655B2 (en) 2017-09-20 2021-08-31 Hitachi High-Technologies Corporation Charged particle beam device
JP2020020808A (ja) * 2019-10-15 2020-02-06 株式会社ホロン 電子を用いた超高速検査装置および電子を用いた超高速検査方法

Also Published As

Publication number Publication date
US20070181808A1 (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP2007207688A (ja) ミラー電子顕微鏡およびミラー電子顕微鏡を用いた検査装置
JP6934980B2 (ja) 走査型電子顕微鏡装置
JP4920385B2 (ja) 荷電粒子ビーム装置、走査型電子顕微鏡、及び試料観察方法
TWI592976B (zh) Charged particle beam device and inspection method using the device
US9437395B2 (en) Method and compound system for inspecting and reviewing defects
JP2003202217A (ja) パターン欠陥検査方法及びパターン欠陥検査装置
JP2006032107A (ja) 反射結像型電子顕微鏡及びそれを用いたパターン欠陥検査装置
JP6666627B2 (ja) 荷電粒子線装置、及び荷電粒子線装置の調整方法
JP2017016755A (ja) 荷電粒子線装置
JP2004342341A (ja) ミラー電子顕微鏡及びそれを用いたパターン欠陥検査装置
JP2017199606A (ja) 荷電粒子線装置
JP2007280614A (ja) 反射結像型電子顕微鏡、及びそれを用いた欠陥検査装置
US11626267B2 (en) Back-scatter electrons (BSE) imaging with a SEM in tilted mode using cap bias voltage
US7105843B1 (en) Method and system for controlling focused ion beam alignment with a sample
JP2004014485A (ja) ウェハ欠陥検査方法及びウェハ欠陥検査装置
US11610754B2 (en) Charged particle beam device
JP2004513477A (ja) 静電対物に調整可能な最終電極を設けたsem
JP5438937B2 (ja) 荷電粒子ビーム装置
US20230170181A1 (en) Multiple particle beam system with a mirror mode of operation, method for operating a multiple particle beam system with a mirror mode of operation and associated computer program product
US8008629B2 (en) Charged particle beam device and method for inspecting specimen
JP2006156134A (ja) 反射結像型電子顕微鏡
US9502212B2 (en) Charged particle beam apparatus
JP2019169362A (ja) 電子ビーム装置
JP2007088493A (ja) パターン欠陥検査方法及び検査装置
TW202338889A (zh) 使用帽偏壓以傾斜模式的掃描式電子顯微鏡(sem)作反散射電子(bse)成像

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100525