JP2007193859A - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP2007193859A
JP2007193859A JP2006008614A JP2006008614A JP2007193859A JP 2007193859 A JP2007193859 A JP 2007193859A JP 2006008614 A JP2006008614 A JP 2006008614A JP 2006008614 A JP2006008614 A JP 2006008614A JP 2007193859 A JP2007193859 A JP 2007193859A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic powder
recording medium
amino group
containing compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006008614A
Other languages
Japanese (ja)
Inventor
Kazuki Matsuo
和貴 松尾
Mikio Kishimoto
幹雄 岸本
Yuji Sasaki
勇治 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2006008614A priority Critical patent/JP2007193859A/en
Publication of JP2007193859A publication Critical patent/JP2007193859A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a magnetic recording medium having excellent short wavelength characteristics and chemical stability by bonding an amino group-containing compound to the surface of magnetic powder having small particle size, high coercive force and saturation magnetization optimum to high density recording. <P>SOLUTION: In the magnetic recording medium having a magnetic layer containing the magnetic powder and a binder on a non-magnetic supporting body, the magnetic recording medium having excellent short wavelength characteristics, chemical stability and high reliability is obtained by containing the amino group-containing compound onto the surface of granular or elliptical magnetic powder having 5 to 50 nm average particle size. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、粒状ないしは楕円状で、その表面にアミノ基含有化合物を結合させた磁性粉末を使用した磁気記録媒体に関し、さらに詳しくは、デジタルビデオテープ、コンピユータ用のバックアップテープなどの超高密度記録に最適な磁気記録媒体に関するものである。 The present invention relates to a magnetic recording medium using a magnetic powder that is granular or elliptical and has an amino group-containing compound bonded to the surface thereof. More specifically, the present invention relates to ultrahigh density recording such as digital video tapes and backup tapes for computers. The present invention relates to an optimum magnetic recording medium.

塗布型磁気記録媒体、つまり、非磁性支持体上に磁性粉末と結合剤を含有する磁性層を有する磁気記録媒体は、記録再生方式がアナログ方式からデジタル方式への移行に伴い、一層の記録密度の向上が要求されている。とくに、高記録密度用のビデオテープやコンピュータ用のバックアップテープなどにおいては、この要求が年々高まってきている。
記録密度の向上に不可欠な短波長記録に対応するためには、記録時の厚み損失を小さくするため、磁性層の厚さを300nm以下、とくに100nm以下に薄膜化するのが効果的である。このような高記録密度媒体に用いられる再生用磁気ヘッドとしては、高出力が得られるMRヘッドが一般に用いられる。
Coating type magnetic recording media, that is, magnetic recording media having a magnetic layer containing a magnetic powder and a binder on a non-magnetic support, have a higher recording density as the recording / reproducing system shifts from analog to digital. Improvement is demanded. In particular, this demand is increasing year by year for video tapes for high recording density and backup tapes for computers.
In order to cope with short wavelength recording, which is indispensable for improving the recording density, it is effective to reduce the thickness of the magnetic layer to 300 nm or less, particularly 100 nm or less in order to reduce the thickness loss during recording. As a reproducing magnetic head used in such a high recording density medium, an MR head capable of obtaining a high output is generally used.

また、ノイズ低減のため磁性粉末においては、年々微粒子化がはかられ、現在粒子径が100nm程度の針状のメタル磁性粉末が実用化されている。さらに、短波長記録時の減磁による出力低下を防止するために、年々高保磁力化がはかられ、鉄−コバルト合金化により238.9A/m(3,000Oe)程度の保磁力が実現されている(特許文献1〜3参照)。しかし、針状磁性粒子を用いる磁気記録媒体では保磁力が形状に依存するため、上記粒子径からのさらなる微粒子化は困難になってきている。すなわちさらに微粒子化すると、比表面積が著しく大きくなり、飽和磁化が大きく低下する。そのため、金属または合金磁性粉末の最大の特徴である高飽和磁化のメリットが損なわれる。
そこで、上記針状の磁性粉末とは全く異なる磁性粉末として、希土類−遷移金属系粒状磁性粉末、たとえば、粒状ないし楕円状の希土類−鉄−ホウ素系磁性粉末を使用した磁気記録媒体が提唱されている(特許文献4参照)。この媒体は磁性粉末の超微粒子化が可能で、かつ高飽和磁化および高保磁力を実現でき、高記録密度化に大きく貢献するものである。
Further, in order to reduce noise, the magnetic powder is becoming finer every year, and at present, acicular metal magnetic powder having a particle diameter of about 100 nm is put into practical use. Furthermore, in order to prevent a decrease in output due to demagnetization at the time of short wavelength recording, a higher coercive force has been achieved year by year, and a coercive force of about 238.9 A / m (3,000 Oe) has been realized by iron-cobalt alloying. (See Patent Documents 1 to 3). However, in a magnetic recording medium using acicular magnetic particles, since the coercive force depends on the shape, it is difficult to further reduce the particle size from the above particle diameter. That is, when the particle size is further reduced, the specific surface area is remarkably increased and the saturation magnetization is greatly reduced. Therefore, the merit of high saturation magnetization, which is the greatest feature of metal or alloy magnetic powder, is impaired.
Therefore, a magnetic recording medium using a rare earth-transition metal-based granular magnetic powder, for example, a granular or elliptical rare earth-iron-boron-based magnetic powder as a magnetic powder completely different from the acicular magnetic powder has been proposed. (See Patent Document 4). This medium can make magnetic powder ultrafine particles, can realize high saturation magnetization and high coercive force, and greatly contributes to high recording density.

また粒子形状が針状でない鉄系磁性粉末として、粒子形状が不定形でFe162 相を主相とした、BET比表面積が10m2 /g程度の窒化鉄系磁性粉末を用いた磁気記録媒体も提案されている(特許文献5参照)。 Magnetic recording using an iron nitride magnetic powder having an irregular particle shape and an Fe 16 N 2 phase as a main phase and a BET specific surface area of about 10 m 2 / g as an iron magnetic powder having a non-acicular particle shape. A medium has also been proposed (see Patent Document 5).

一方Fe162 相を含み粒子サイズが5〜50nmの粒状ないし楕円状の磁性粉末が本発明者らにより提案されており、従来の磁性粉末では得られない優れた短波長特性を示すことが述べられている。この磁性粉末は、さらに磁性粉末中に希類土元素やアルミニウム、シリコンなどを含有させることを特徴としている。(特許文献6参照)
特開平3−49026号公報(第4頁) 特開平10−83906号公報(第3頁) 特開平10−34085号公報(第2頁) 特開2001−181754号公報(第4頁、第22頁) 特開2000−277311号公報(第3頁、図4) 特開2004−273094号公報(第4頁、図2)
On the other hand, a granular or elliptical magnetic powder containing a Fe 16 N 2 phase and having a particle size of 5 to 50 nm has been proposed by the present inventors, and exhibits excellent short wavelength characteristics that cannot be obtained with conventional magnetic powders. It is stated. This magnetic powder is further characterized by containing rare earth elements, aluminum, silicon, and the like in the magnetic powder. (See Patent Document 6)
JP-A-3-49026 (Page 4) JP 10-83906 A (page 3) JP 10-34085 A (2nd page) JP 2001-181754 A (4th page, 22nd page) Japanese Unexamined Patent Publication No. 2000-277311 (3rd page, FIG. 4) JP 2004-273094 A (page 4, FIG. 2)

上記特許文献6記載の磁性粉、すなわちFe162 相を含み粒子サイズが5〜50nmの粒状ないし楕円状の磁性粉末は、従来の磁性粉末では得られない優れた短波長特性を示すことが最大の特徴である。一方このような磁気記録媒体を高記録密度用のビデオテープやコンピュータ用のバックアップテープなどに使用するためには、短波長特性と同時に高い信頼性が要求される。この信頼性の中でも、高温高湿下に磁気記録媒体を保持した場合の信頼性は特に重要である。すなわち磁性粉末に金属、合金あるいは金属化合物を使用した場合、本質的に高温高湿下での劣化は避けられないためである。 The magnetic powder described in Patent Document 6, that is, a granular or elliptical magnetic powder containing a Fe 16 N 2 phase and having a particle size of 5 to 50 nm, exhibits excellent short wavelength characteristics that cannot be obtained with conventional magnetic powders. It is the biggest feature. On the other hand, in order to use such a magnetic recording medium for a high recording density video tape, a computer backup tape, etc., high reliability is required as well as short wavelength characteristics. Among the reliability, the reliability when the magnetic recording medium is held under high temperature and high humidity is particularly important. That is, when a metal, an alloy or a metal compound is used for the magnetic powder, deterioration under high temperature and high humidity is unavoidable.

本発明は、このような事情に照らし、粒子サイズが5〜50nmの粒状ないし楕円状の磁性粉末を用いた磁気記録媒体において、すぐれた短波長記録特性と同時に、化学的にも極めて安定で高い信頼性を有する磁気記録媒体を提供することを目的としている。
In light of such circumstances, the present invention provides a magnetic recording medium using a granular or elliptical magnetic powder having a particle size of 5 to 50 nm, as well as excellent short-wavelength recording characteristics, as well as being chemically extremely stable and high. An object of the present invention is to provide a magnetic recording medium having reliability.

本発明は、このような事情に照らしてなされたもので、磁性粉末の平均粒子サイズが5〜50nmの粒状ないし楕円状の粒子形状の磁性粉末で、かつこの磁性粉末の表面にアミノ基含有化合物を結合させることにより、この磁性粉末が本来有する優れた短波長記録特性と同時に、化学的にも極めて安定で高い信頼性を有する磁気記録媒体が得られることを見出した。
ここで、本発明でいう平均粒子サイズ(平均粒子径ともいう)とは、透過電子顕微鏡(TEM)にて倍率25万倍で撮影した写真から粒子サイズを実測して、500個の平均値により求められるものである。また、磁性粉末について粒状ないし楕円状とは、磁性粉末の長軸方向に対する短軸方向の長さの比が1以上2以下のものをいう。
The present invention has been made in light of the above circumstances, and is a magnetic powder having an average particle size of 5 to 50 nm in a granular or elliptical particle shape, and an amino group-containing compound on the surface of the magnetic powder. It has been found that a magnetic recording medium that is chemically stable and highly reliable can be obtained simultaneously with the excellent short wavelength recording characteristics inherent to this magnetic powder.
Here, the average particle size (also referred to as average particle size) in the present invention is an actual measurement of particle size from a photograph taken at a magnification of 250,000 with a transmission electron microscope (TEM), and an average value of 500 particles. It is required. The granular or elliptical shape of the magnetic powder means that the ratio of the length in the minor axis direction to the major axis direction of the magnetic powder is 1 or more and 2 or less.

このような所定の磁性粉末を用いた磁気記録媒体において、その磁性粉にアミノ基含有化合物を結合させることにより、すぐれた短波長記録特性と同時に化学的にも極めて安定で高い信頼性を有する磁気記録媒体が得られる。この場合のアミノ基含有化合物は磁性層中の磁性粉末に対して0.05〜5.0重量%含有させることが特に有効である。   In such a magnetic recording medium using a predetermined magnetic powder, by combining an amino group-containing compound with the magnetic powder, it has excellent short wavelength recording characteristics and at the same time is chemically stable and highly reliable. A recording medium is obtained. In this case, it is particularly effective to contain the amino group-containing compound in an amount of 0.05 to 5.0% by weight based on the magnetic powder in the magnetic layer.

本発明の磁気記録媒体においては、高密度記録特性や短波長記録特性の観点から、磁気特性としては長手方向の保磁力(Hc)が79.6〜318.4kA/m(1,000〜4,000Oe)、長手方向の角形比(Br/Bm)が0.6〜0.9、飽和磁束密度と磁性層厚さとの積(Bm・t)が0.001〜0.1μTmの磁気記録媒体とするのが好ましい。
なお、本発明では、上記のように所定の磁性粉末の耐食性を向上させるためにアミノ基含有化合物を使用するが、このようなアミノ基含有化合物は、現在広く使用されているFe、Fe−Co、Fe−Ni、Fe−Co−Niを主成分とする針状の金属あるいは合金磁性粉末を磁性層に用いた磁気記録媒体において用いることができるが、Fe162 相を少なくとも含む平均粒子サイズが5〜50nmの粒状ないし楕円状の磁性粉末に対しては特に有効である。
In the magnetic recording medium of the present invention, the coercive force (Hc) in the longitudinal direction is 79.6 to 318.4 kA / m (1,000 to 4) as the magnetic characteristics from the viewpoint of high density recording characteristics and short wavelength recording characteristics. , 000 Oe), a longitudinal squareness ratio (Br / Bm) of 0.6 to 0.9, and a product of saturation magnetic flux density and magnetic layer thickness (Bm · t) of 0.001 to 0.1 μTm. Is preferable.
In the present invention, an amino group-containing compound is used in order to improve the corrosion resistance of a predetermined magnetic powder as described above. Such an amino group-containing compound includes Fe, Fe—Co, which are widely used at present. , Fe-Ni, Fe-Co-Ni as the main component can be used in magnetic recording media using acicular metal or alloy magnetic powder for the magnetic layer, but the average particle size including at least the Fe 16 N 2 phase Is particularly effective for granular or elliptical magnetic powders of 5 to 50 nm.

以上のように、本発明は磁性粉末として平均粒子サイズが5〜50nmの粒状ないし楕円状の磁性粉末を使用し、さらにこの磁性粉末の表面にアミノ基含有化合物を結合させることにより、この磁性粉末が有する優れた短波長記録特性と同時に化学的にも極めて安定で高い信頼性を有する磁気記録媒体を得ることができる。
As described above, the present invention uses a granular or elliptical magnetic powder having an average particle size of 5 to 50 nm as the magnetic powder, and further bonds the amino group-containing compound to the surface of the magnetic powder. In addition to the excellent short wavelength recording characteristics of the magnetic recording medium, it is possible to obtain a magnetic recording medium that is chemically stable and highly reliable.

〈本発明で使用する磁性粉末〉
本発明で使用する平均粒子サイズが5〜50nmの粒状ないし楕円状の磁性粉末は、さらに鉄に対する窒素の含有量が1.0〜20.0原子%であることが好ましく、より好ましくは5.0〜18.0原子%、更に好ましくは8.0〜15.0原子%である。これより窒素の含有量が少なすぎると、Fe162 相の形成量が少なく、保磁力増加の効果が小さくなり、多すぎると、非磁性窒化物が形成されやすく、保磁力増加の効果が小さくなり、また飽和磁化が過度に低下する恐れがあるからである。
<Magnetic powder used in the present invention>
The granular or elliptical magnetic powder having an average particle size of 5 to 50 nm used in the present invention preferably further has a nitrogen content with respect to iron of 1.0 to 20.0 atomic%, more preferably 5. It is 0-18.0 atomic%, More preferably, it is 8.0-15.0 atomic%. If the nitrogen content is too small, the amount of Fe 16 N 2 phase formed will be small and the effect of increasing the coercive force will be small. If it is too large, nonmagnetic nitride will be easily formed and the effect of increasing the coercive force will be achieved. This is because the size may be reduced and the saturation magnetization may be excessively reduced.

この磁性粉末は、鉄に対して希土類元素を0.05〜20.0原子%添加することが好ましい。希土類元素の量が少なすぎると、希土類元素による分散性の向上効果が小さくなり、また還元時の粒子形状維持効果が小さくなる。また、多すぎると、添加した希土類元素のうち、未反応の部分が多くなり、分散、塗布工程の障害となるばかりでなく、保磁力や飽和磁化の過度な低下が生じやすい。この希土類元素としては、イットリウム、イッテルビウム、セシウム、プラセオジウム、ランタン、ユーロピウム、ネオジウムなどが挙げられる。これらのうち、イットリウム、サマリウムまたはネオジウムは、とくに還元時の粒子形状の維持効果が大きいことから、これらの元素の中から、その少なくとも1種を選択使用するのが望ましい。またさらに、希土類元素のみならず、ホウ素、シリコン、アルミニウム、リンを添加すると、形状保持効果と同時に分散性の向上をはかれることがわかった。これらは、希土類元素に比べて安価であることから、コスト的にも有利であり、希土類元素と組み合わせて使用することがより好ましい。
〈本発明で使用するアミノ基含有化合物〉
またアミノ基含有化合物の結合量は、磁性粉末に対して0.05〜5.0量%が好ましく、より好ましくは0.1〜3.0重量%である。この結合量が少ないと化学的安定性向上の効果が少なく、多すぎると塗料粘度が高くなリ過ぎて塗布適性が悪くなる傾向がある。このアミノ基含有化合物としては飽和環状化合物が特に好ましく、一般式C2nで表されるシクロアルカンにアミノ基が結合した構造のものが好ましい。またアミノ基の他にさらにカルボキシル基など他の官能基が結合していても構わない。本発明で使用できるアミノ基含有化合物としては、具体的には例えば、シクロヘキシルアミン、シクロヘキシルアミン炭酸塩、シクロヘキシルアミン塩酸塩、シクロヘキシルアミン臭化水素酸塩、シクロヘキシルアミン亜硝酸塩、アリルシクロヘキシルアミン、N−(3−アミノプロピル)シクロヘキシルアミン、N−メチルシクロヘキシルアミン、ジシクロヘキシルアミン、N,N−ジエチルシクロヘキシルアミン、N,Nジメチルシクロヘキシルアミン、N−エチルシクロヘキシルアミン、1−エチルシクロヘキシルアミン、N−イソプロピルシクロヘキシルアミン、2−メルカプトベンゾチアゾールシクロヘキシルアミン、N−ニトロソジシクロヘキシルアミン、またはこれらの塩類(塩としてはシクロヘキシルアミン系で記した炭酸塩、塩酸塩、臭化水素塩、亜硝酸塩など)が挙げられる。
以上のような磁性粉末を用いた磁気記録媒体とすることにより、すぐれた短波長記録特性と同時に化学的にも極めて安定で高い信頼性を有する磁気記録媒体となる。
This magnetic powder is preferably added with 0.05 to 20.0 atomic% of a rare earth element with respect to iron. If the amount of the rare earth element is too small, the effect of improving the dispersibility by the rare earth element is reduced, and the effect of maintaining the particle shape during reduction is reduced. On the other hand, if the amount is too large, the unreacted portion of the added rare earth element increases, which not only hinders the dispersion and coating process, but also tends to cause an excessive decrease in coercive force and saturation magnetization. Examples of the rare earth element include yttrium, ytterbium, cesium, praseodymium, lanthanum, europium, and neodymium. Of these, yttrium, samarium, or neodymium is particularly effective in maintaining the particle shape during reduction, and therefore it is desirable to selectively use at least one of these elements. Furthermore, it has been found that when not only rare earth elements but also boron, silicon, aluminum and phosphorus are added, the shape retention effect and the dispersibility can be improved. Since these are cheaper than rare earth elements, they are advantageous in terms of cost, and are more preferably used in combination with rare earth elements.
<Amino group-containing compound used in the present invention>
Further, the binding amount of the amino group-containing compound is preferably 0.05 to 5.0% by weight, more preferably 0.1 to 3.0% by weight, based on the magnetic powder. When the amount of this bond is small, the effect of improving the chemical stability is small. The amino group-containing compound is particularly preferably a saturated cyclic compound, and preferably has a structure in which an amino group is bonded to a cycloalkane represented by the general formula C n H 2n . In addition to the amino group, another functional group such as a carboxyl group may be bonded. Specific examples of the amino group-containing compound that can be used in the present invention include cyclohexylamine, cyclohexylamine carbonate, cyclohexylamine hydrochloride, cyclohexylamine hydrobromide, cyclohexylamine nitrite, allylcyclohexylamine, N- (3-aminopropyl) cyclohexylamine, N-methylcyclohexylamine, dicyclohexylamine, N, N-diethylcyclohexylamine, N, N dimethylcyclohexylamine, N-ethylcyclohexylamine, 1-ethylcyclohexylamine, N-isopropylcyclohexylamine , 2-mercaptobenzothiazolecyclohexylamine, N-nitrosodicyclohexylamine, or salts thereof (as the salt, the carbonic acid described in the cyclohexylamine system) , Hydrochloride, hydrobromide, etc. nitrite) and the like.
By using the magnetic recording medium using the magnetic powder as described above, it becomes a magnetic recording medium having excellent short wavelength recording characteristics and extremely chemically stable and highly reliable.

このように磁性粉末にアミノ基含有化合物を結合させることにより化学的安定性が大幅に向上する理由については必ずしも明らかではないが、以下のように考えられる。すなわちアミノ基を通して磁性粉末とバインダの官能基との架橋が促進され、磁性層中で磁性粉とバインダとの強固な結合が形成される結果、水分や酸素の侵入を防いでいると考えられる。またアミノ基そのものがアルカリ性であるために、水分が浸入した場合でも、磁性粉の周囲がアルカリ性になる結果、水分による劣化を防止できると考えられる。
このようにアミノ基を通してのバインダの強固な結合と磁性粉周辺のアルカリ化により、本質的に安定である窒化鉄系磁性粉末を用いた磁気記録媒体をさらに化学的に安定化し、実用的に優れた磁気記録媒体とすることができる。
〈磁気記録媒体の製造方法〉
以下に本発明の窒化鉄系磁性粉末の製造方法と、この磁性粉末にアミノ基含有化合物を結合させる方法について説明する。
出発原料には、鉄系酸化物または水酸化物を使用する。たとえばヘマタイト、マグネタイト、ゲータイトなどが挙げられる。平均粒子サイズとしては、とくに限定されないが、通常5〜80nm、好ましくは5〜50nm、より好ましくは5〜30nmとするのがよい。粒子サイズが小さすぎると、還元処理時に粒子間焼結が生じやすく、また大きすぎると、還元処理が不均質となりやすく、粒子径や磁気特性の制御が困難となる。
The reason why the chemical stability is greatly improved by bonding the amino group-containing compound to the magnetic powder as described above is not necessarily clear, but is considered as follows. That is, it is considered that cross-linking between the magnetic powder and the functional group of the binder is promoted through the amino group, and a strong bond between the magnetic powder and the binder is formed in the magnetic layer, thereby preventing moisture and oxygen from entering. In addition, since the amino group itself is alkaline, even when moisture permeates, it is considered that the periphery of the magnetic powder becomes alkaline, so that deterioration due to moisture can be prevented.
In this way, the strong binding of the binder through the amino group and the alkalinization around the magnetic powder further stabilize the magnetic recording medium using the iron nitride magnetic powder, which is essentially stable, and is practically superior. A magnetic recording medium.
<Method of manufacturing magnetic recording medium>
Hereinafter, a method for producing the iron nitride magnetic powder of the present invention and a method for binding an amino group-containing compound to the magnetic powder will be described.
An iron-based oxide or hydroxide is used as a starting material. Examples include hematite, magnetite, and goethite. The average particle size is not particularly limited, but is usually 5 to 80 nm, preferably 5 to 50 nm, more preferably 5 to 30 nm. If the particle size is too small, inter-particle sintering is likely to occur during the reduction treatment, and if it is too large, the reduction treatment tends to be heterogeneous, making it difficult to control the particle size and magnetic properties.

この出発原料に対して、希土類元素を被着させることができる。この場合、通常は、アルカリまたは酸の水溶液中に出発原料を分散させ、これに希土類元素の塩を溶解させ、中和反応などにより、出発原料粉末に希土類元素を含む水酸化物や水和物を沈殿析出させるようにすればよい。   Rare earth elements can be deposited on this starting material. In this case, usually, a starting material is dispersed in an aqueous solution of an alkali or acid, a salt of a rare earth element is dissolved therein, and a hydroxide or hydrate containing a rare earth element in the starting material powder is obtained by a neutralization reaction or the like. May be precipitated.

また、シリコン、ホウ素、アルミニウム、リンなどの元素で構成された化合物を溶解させ、これに原料粉末を浸漬して、原料粉末に対して、ホウ素、シリコン、アルミニウム、リンを被着させてもよい。これらの被着処理を効率良く行うため、還元剤、pH緩衝剤、粒径制御剤などの添加剤を混入させてもよい。これらの被着処理として、希土類元素とホウ素、シリコン、アルミニウム、リンを同時にあるいは交互に被着させるようにしてもよい。また希土類元素やシリコン、アルミニウムなどの元素は、出発原料粉末に被着することもできるが、出発原料合成時に同時に添加し、後述する加熱処理時に磁性粉表面に析出させることもできる。さらに出発原料合成時に添加することと、原料合成後に被着することを組み合わせることもできる。   Alternatively, a compound composed of elements such as silicon, boron, aluminum, and phosphorus may be dissolved, and the raw material powder may be immersed in the compound to deposit boron, silicon, aluminum, and phosphorus on the raw material powder. . In order to perform these deposition processes efficiently, additives such as a reducing agent, a pH buffering agent, and a particle size controlling agent may be mixed. As these deposition treatments, a rare earth element and boron, silicon, aluminum, or phosphorus may be deposited simultaneously or alternately. In addition, elements such as rare earth elements, silicon, and aluminum can be deposited on the starting raw material powder, but can also be added at the same time as the starting raw material synthesis and deposited on the surface of the magnetic powder during the heat treatment described later. Furthermore, the addition at the time of starting material synthesis and the deposition after the material synthesis can be combined.

このような原料を水素気流中で加熱還元する。還元ガスはとくに限定されず、水素ガス以外に、一酸化炭素ガスなどの還元性ガスを使用してもよい。
還元温度としては、300〜600℃とするのが望ましい。還元温度が300℃より低くなると、還元反応が十分進まなくなり、また、600℃を超えると、粉末粒子の焼結が起こりやすくなり、いずれも好ましくない。
Such a raw material is heated and reduced in a hydrogen stream. The reducing gas is not particularly limited, and a reducing gas such as carbon monoxide gas may be used in addition to hydrogen gas.
The reduction temperature is preferably 300 to 600 ° C. When the reduction temperature is lower than 300 ° C., the reduction reaction does not proceed sufficiently. When the reduction temperature exceeds 600 ° C., powder particles are likely to be sintered, which is not preferable.

このような加熱還元処理後、窒化処理を施すことにより、本発明の鉄と窒素を構成元素とする磁性粉末が得られる。窒化処理としては、アンモニアを含むガスを用いて行うのが望ましい。アンモニアガス単体のほかに、水素ガス、ヘリウムガス、窒素ガス、アルゴンガスなどをキャリアーガスとした混合ガスを使用してもよい。窒素ガスは安価なため、特に好ましい。   By performing nitriding after such heat reduction treatment, the magnetic powder containing iron and nitrogen as constituent elements of the present invention can be obtained. The nitriding treatment is desirably performed using a gas containing ammonia. In addition to ammonia gas alone, a mixed gas using hydrogen gas, helium gas, nitrogen gas, argon gas or the like as a carrier gas may be used. Nitrogen gas is particularly preferred because it is inexpensive.

窒化処理温度は、100〜300℃とするのがよい。窒化処理温度が低すぎると、窒化が十分進まず、保磁力増加の効果が少ない。高すぎると、窒化が過剰に促進され、Fe4 NやFe3 N相などの割合が増加し、保磁力がむしろ低下し、さらに飽和磁化の過度な低下を引き起こしやすい。
このような窒化処理にあたり、得られる磁性粉末中の鉄に対する窒素の含有量が1.0〜20.0原子%となるように、窒化処理の条件を選択することが望ましい。上記窒素の量が少なすぎると、Fe162 の生成量が少ないため、保磁力向上の効果が少なくなる。また上記窒素の量が多すぎると、Fe4 NやFe3 N相などが形成されやすくなり、保磁力がむしろ低下し、さらに飽和磁化の過度な低下を引き起こしやすい。
The nitriding temperature is preferably 100 to 300 ° C. If the nitriding temperature is too low, nitriding does not proceed sufficiently and the effect of increasing the coercive force is small. If it is too high, nitriding will be promoted excessively, the proportion of Fe 4 N, Fe 3 N phase, etc. will increase, the coercive force will rather decrease, and it will tend to cause an excessive decrease in saturation magnetization.
In such nitriding treatment, it is desirable to select the nitriding treatment conditions so that the nitrogen content with respect to iron in the obtained magnetic powder is 1.0 to 20.0 atomic%. If the amount of nitrogen is too small, the amount of Fe 16 N 2 produced is small and the effect of improving the coercive force is reduced. If the amount of nitrogen is too large, an Fe 4 N or Fe 3 N phase or the like is likely to be formed, the coercive force is rather lowered, and the saturation magnetization is likely to be excessively lowered.

上記の窒化鉄系磁性粉末は、従来の形状磁気異方性のみに基づく針状磁性粉末とは異なり、大きな結晶磁気異方性を有し、粒状形状とした場合でも、一方向に大きな保磁力を発現すると考えられる。   Unlike the acicular magnetic powder based only on the conventional shape magnetic anisotropy, the above iron nitride magnetic powder has a large magnetocrystalline anisotropy and has a large coercive force in one direction even when it has a granular shape. Is considered to be expressed.

この磁性材料を平均粒子サイズが5〜50nmの微粒子とすると、磁気ヘッドでの記録・消去が可能な範囲内で高い保磁力と適度な飽和磁化を示し、薄層領域の塗布型磁気記録媒体としてすぐれた電磁変換特性を付与する。このように、本発明の磁性粉末は、飽和磁化、保磁力、粒子サイズ、粒子形状のすべてが薄層磁性層を得るのに本質的に適したものである。   When this magnetic material is a fine particle having an average particle size of 5 to 50 nm, it exhibits a high coercive force and an appropriate saturation magnetization within a range in which recording and erasing can be performed with a magnetic head. Gives excellent electromagnetic conversion characteristics. Thus, in the magnetic powder of the present invention, all of saturation magnetization, coercive force, particle size, and particle shape are essentially suitable for obtaining a thin magnetic layer.

本発明に使用するアミノ基含有化合物としては、例えば一般式C2nで表される環状飽和炭化水素に官能基としてアミノ基が結合したものが好ましい。またこのアミノ基の他にさらにカルボキシル基など他の官能基が結合していても構わない。
このアミノ基含有化合物の磁性粉末表面への結合方法は特に限定されるものではないが、適当量のアミノ基含有化合物を溶解した溶媒中に磁性粉末入れてボールミル等を用いて分散させ、この分散体を乾燥させて溶媒を除去することにより、アミノ基含有化合物を結合させた磁性粉末を得ることができる。あるいはアミノ基含有化合物を溶解した溶媒中で磁性粉末を分散させた後、溶媒を除去することなく磁気記録媒体の構成要素である結合剤などを添加して磁性塗料とすることもできる。この時のアミノ基含有化合物の結合量としては、磁性粉末に対して0.05〜5.0重量%とするが好ましく、より好ましくは0.1〜3.0重量%である。この量が少ないと化学的安定性向上の効果が少なく、多すぎると塗料粘度が高くなリ過ぎて塗布適性が悪くなる傾向がある。
As the amino group-containing compound used in the present invention, for example, a compound in which an amino group is bonded as a functional group to a cyclic saturated hydrocarbon represented by the general formula C n H 2n is preferable. In addition to this amino group, another functional group such as a carboxyl group may be bonded.
The bonding method of the amino group-containing compound to the surface of the magnetic powder is not particularly limited, but the magnetic powder is placed in a solvent in which an appropriate amount of the amino group-containing compound is dissolved and dispersed using a ball mill or the like. By drying the body and removing the solvent, a magnetic powder having an amino group-containing compound bonded thereto can be obtained. Alternatively, after the magnetic powder is dispersed in a solvent in which an amino group-containing compound is dissolved, a binder that is a constituent element of the magnetic recording medium can be added without removing the solvent to obtain a magnetic paint. The binding amount of the amino group-containing compound at this time is preferably 0.05 to 5.0% by weight, more preferably 0.1 to 3.0% by weight, based on the magnetic powder. If this amount is small, the effect of improving the chemical stability is small, and if it is too large, the coating viscosity tends to be too high and the coating suitability tends to be poor.

本発明の磁気記録媒体は、非磁性支持体と、この非磁性支持体の一方の面に形成された磁性層と、非磁性支持体の他方の面に形成されたバックコート層とからなる構成とするのが好ましい。これらの構成要素は特に限定されるものではなく、通常磁気記録媒体として使用されているものを使用することができる。これらの構成要素に使用される磁性粉末以外の結合剤、溶剤や研磨材などの素材や各構成要素の作製方法についても特に限定されるものではなく、通常使用されている素材や作製方法を使用できる。   The magnetic recording medium of the present invention comprises a nonmagnetic support, a magnetic layer formed on one surface of the nonmagnetic support, and a backcoat layer formed on the other surface of the nonmagnetic support. Is preferable. These components are not particularly limited, and those normally used as magnetic recording media can be used. Binders other than magnetic powder used for these components, materials such as solvents and abrasives, and methods for producing each component are not particularly limited, and materials and methods commonly used are used. it can.

以下の実施例において述べる本発明の磁気記録媒体の作製方法は、非磁性支持体上に直接磁性層を形成する、いわゆる単層媒体であるが、非磁性支持体上に下塗層を形成し、この下塗層上に磁性層を形成するいわゆる重層媒体にも適用できることは言うまでもない。
The method for producing a magnetic recording medium of the present invention described in the following examples is a so-called single-layer medium in which a magnetic layer is formed directly on a nonmagnetic support, but an undercoat layer is formed on the nonmagnetic support. Needless to say, the present invention can also be applied to a so-called multilayer medium in which a magnetic layer is formed on the undercoat layer.

以下、本発明の実施例を記載して、より具体的に説明する。
(A)窒化鉄系磁性粉末の製造
表面にイットリウムとアルミニウムの酸化物層を形成したほぼ球状に近い平均粒子サイズが20nmのマグネタイト粒子を出発原料とした。この原料のイットリウムとアルミニウムの含有量は鉄に対して、それぞれ1.2原子%と9.8原子%であった。この原料粒子を水素気流中450℃で2時間加熱還元して、イットリウムとアルミニウムを含有する鉄系磁性粉末を得た。次に、水素ガスを流した状態で約1時間かけて150℃まで降温した。150℃に到達した状態でガスをアンモニアガスに切り替え、温度を150℃に保った状態で30時間窒化処理を行った。その後、アンモニアガスを流した状態で150℃から90℃まで降温し、90℃でアンモニアガスから酸素と窒素の混合ガスに切り替え、8時間安定化処理を行った。
Hereinafter, examples of the present invention will be described in more detail.
(A) Manufacture of iron nitride magnetic powder Magnetite particles having an average particle size of approximately 20 nm and an almost spherical shape having an oxide layer of yttrium and aluminum formed on the surface were used as starting materials. The contents of yttrium and aluminum in this raw material were 1.2 atomic% and 9.8 atomic%, respectively, with respect to iron. The raw material particles were heated and reduced at 450 ° C. for 2 hours in a hydrogen stream to obtain an iron-based magnetic powder containing yttrium and aluminum. Next, the temperature was lowered to 150 ° C. over about 1 hour in a state of flowing hydrogen gas. When the temperature reached 150 ° C., the gas was switched to ammonia gas, and nitriding was performed for 30 hours while maintaining the temperature at 150 ° C. Thereafter, the temperature was lowered from 150 ° C. to 90 ° C. in a state where ammonia gas was allowed to flow, and at 90 ° C., the ammonia gas was switched to a mixed gas of oxygen and nitrogen, and stabilization treatment was performed for 8 hours.

ついで、混合ガスを流した状態で90℃から40℃まで降温し、40℃で約10時間保持したのち、空気中に取り出してイットリウムとアルミニウムを含有する窒化鉄系磁性粉末を作製した。この磁性粉末はX線回折より、Fe162 を主相とする磁性粉末であることを確認した。 Next, the temperature was lowered from 90 ° C. to 40 ° C. while flowing the mixed gas, and the temperature was kept at 40 ° C. for about 10 hours. Then, the mixture was taken out into the air to produce an iron nitride magnetic powder containing yttrium and aluminum. This magnetic powder was confirmed by X-ray diffraction to be a magnetic powder having Fe 16 N 2 as a main phase.

さらに、高分解能分析透過電子顕微鏡で粒子形状を観察したところ、ほぼ球状の粒子で平均粒子サイズが18nmであることがわかった。また、この磁性粉末について、1,270kA/m(16kOe)の磁界を印加して測定した飽和磁化は135.2Am2 /kg(105.8emu/g)、保磁力は219.7kA/m(2,760エルステッド)であった。 Furthermore, when the particle shape was observed with a high resolution analytical transmission electron microscope, it was found that the particles were almost spherical and the average particle size was 18 nm. Further, with respect to this magnetic powder, the saturation magnetization measured by applying a magnetic field of 1,270 kA / m (16 kOe) was 135.2 Am 2 / kg (105.8 emu / g), and the coercive force was 219.7 kA / m (2 , 760 Oersted).

(B)磁性粉末表面へのアミノ基含有化合物の結合
上述したイットリウムとアルミニウム含有−窒化鉄系磁性粉末100重量部に対して、アミノ基含有化合物(城北化学製、商品名;JV−C)を1.0重量部結合させた。まずアミノ基含有化合物を2重量部のメタノール中に溶解した。次にさらに溶媒としてトルエン200重量部を加え、このアミノ基含有化合物溶液中に磁性粉末100重量部を入れ、フリッチェ社製の遊星型ボールミルにより、ジルコニアビーズを用いて1時間分散した。この処理により、溶媒中に溶解していたアミノ基含有化合物が磁性粉末表面に結合させた。
(B) Binding of amino group-containing compound to the surface of the magnetic powder With respect to 100 parts by weight of the above-described yttrium and aluminum-containing iron nitride magnetic powder, an amino group-containing compound (manufactured by Johoku Chemical Co., Ltd., trade name: JV-C) 1.0 part by weight was bonded. First, the amino group-containing compound was dissolved in 2 parts by weight of methanol. Next, 200 parts by weight of toluene was further added as a solvent, 100 parts by weight of magnetic powder was put into this amino group-containing compound solution, and dispersed with a zirconia bead for 1 hour using a planetary ball mill manufactured by Fritche. By this treatment, the amino group-containing compound dissolved in the solvent was bonded to the surface of the magnetic powder.

次にトルエンを乾燥除去してアミノ基含有化合物を結合させた磁性粉末を得た。   Next, toluene was removed by drying to obtain a magnetic powder bound with an amino group-containing compound.

(C)磁性塗料の作製
上記(B)で作製したアミノ基含有化合物を結合させた磁性粉末を用いて、下記の組成の磁性塗料を作製した。磁性塗料の作製にはフリッチェ社製の遊星型ボールミルにより、ジルコニアビーズを用いて10時間分散させた。
アミノ基含有化合物を結合磁性粉末 80重量部
塩化ビニル−ヒドロキシプロピルアクリレート共重合樹脂 10重量部
(含有−SO3 Na基:0.7×10-4当量/g)
ポリエステルポリウレタン樹脂 6重量部
(含有−SO3 Na基:1.0×10-4当量/g)
メチルエチルケトン 133重量部
トルエン 100重量部
その後、ポリイソシアネート(日本ポリウレタン工業社製の「コロネートL」)を4重量部添加し、さらに15分間分散させて磁性塗料を作製した。
(C) Production of magnetic paint Using the magnetic powder to which the amino group-containing compound produced in (B) above was bonded, a magnetic paint having the following composition was produced. For the production of the magnetic coating, it was dispersed for 10 hours using a zirconia bead by a planetary ball mill manufactured by Fritche.
80 parts by weight of magnetic powder containing amino group-containing compound 10 parts by weight of vinyl chloride-hydroxypropyl acrylate copolymer resin (containing-SO 3 Na group: 0.7 × 10 −4 equivalent / g)
Polyester polyurethane resin 6 parts by weight (containing-SO 3 Na group: 1.0 × 10 −4 equivalent / g)
Methyl ethyl ketone 133 parts by weight Toluene 100 parts by weight Thereafter, 4 parts by weight of polyisocyanate (“Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd.) was added and further dispersed for 15 minutes to prepare a magnetic paint.

この磁性塗料を、非磁性支持体である厚さ20μmのPETフイルム上に、強さが318.4kA/m(4,000エルステッド)の磁界を印加しながら乾燥後の厚さが約2μmとなるように塗布して磁性塗膜を作製した。   With this magnetic paint, the thickness after drying becomes about 2 μm while applying a magnetic field with a strength of 318.4 kA / m (4,000 oersted) onto a PET film with a thickness of 20 μm, which is a nonmagnetic support. Thus, a magnetic coating film was prepared.

実施例1において、アミノ基含有化合物の添加量を1.0重量部から0.5重量部に変更した以外は、実施例1と同様に磁性塗膜を作製した。   In Example 1, a magnetic coating film was produced in the same manner as in Example 1 except that the addition amount of the amino group-containing compound was changed from 1.0 part by weight to 0.5 part by weight.

(比較例1)
実施例1において、アミノ基含有化合物を添加しないで磁性塗膜を作製した以外は、実施例1と同様に磁性塗膜を作製した。
(Comparative Example 1)
In Example 1, a magnetic coating film was prepared in the same manner as in Example 1 except that the magnetic coating film was prepared without adding the amino group-containing compound.

(比較例2)
実施例1において、アミノ基含有化合物の添加量を1.0重量部から5.5重量部に変更した以外は、実施例1と同様に磁性塗膜を作製した。
(Comparative Example 2)
In Example 1, a magnetic coating film was prepared in the same manner as in Example 1 except that the addition amount of the amino group-containing compound was changed from 1.0 part by weight to 5.5 parts by weight.

上記の実施例1〜3および比較例1の各磁性塗膜について、磁気特性として、長手方向の保磁力、角形比および飽和磁束密度を測定した。また化学的安定性の評価として、この磁性塗膜を温度が60℃、相対湿度が90%の条件下で1週間保持した時の磁気特性の変化を調べた。なお測定には、磁性塗膜を約1cm四方にカットし、このカットサンプルの保持前後の変化を調べた。保磁力と角形比は絶対値で、また飽和磁束密度は保持前の値に対する相対値で示した。結果を表1に示す。   About each magnetic coating film of said Examples 1-3 and the comparative example 1, the coercive force of the longitudinal direction, squareness ratio, and saturation magnetic flux density were measured as a magnetic characteristic. As an evaluation of chemical stability, changes in magnetic properties were examined when this magnetic coating film was held for 1 week under conditions of a temperature of 60 ° C. and a relative humidity of 90%. In the measurement, the magnetic coating film was cut into about 1 cm square, and the change before and after holding the cut sample was examined. The coercive force and the squareness ratio are shown as absolute values, and the saturation magnetic flux density is shown as a relative value with respect to the value before holding. The results are shown in Table 1.

なお比較例2の磁性塗膜に関しては、温度が60℃、相対湿度が90%の条件下で1週間保持すると磁性層表面に防錆剤が染み出してきて、テープ走行性などの面で磁気記録媒体としての基本的な仕様を満たさないと判断されたため、化学的安定性の評価は行わなかった。なお実施例1〜3、比較例1の磁性塗膜に関しては、防錆剤の染み出し等の問題は生じなかった。   As for the magnetic coating film of Comparative Example 2, the rust preventive agent oozes out on the surface of the magnetic layer when it is kept for 1 week at a temperature of 60 ° C. and a relative humidity of 90%. Since it was judged that the basic specifications as a recording medium were not satisfied, the chemical stability was not evaluated. In addition, about the magnetic coating film of Examples 1-3 and the comparative example 1, problems, such as a rust-proof agent seepage, did not arise.

Figure 2007193859
Figure 2007193859


上記表1の結果から明らかなように、アミノ基含有化合物を結合させた磁性粉末を使用した磁性塗膜は、温度が60℃、相対湿度が90%の条件下で1週間保持しても磁気特性の変化はほとんどなく、極めて化学的安定性の良好な磁性塗膜であることがわかる。
一方、アミノ基含有化合物を結合させていない磁性粉末を使用した比較例1の磁性塗膜においては、温度が60℃、相対湿度が90%の条件下で1週間保持すると、特に飽和磁束密度が著しく低下する。
以上のように短波長特性において特優れた特性を示すFe162 相を少なくとも含む平均粒子サイズが5〜50nmの粒状ないし楕円状の窒化鉄系の磁性粉末の表面に、アミノ基含有化合物を結合させることにより、この磁性粉末を用いた磁気記録媒体は、すぐれた短波長記録特性と同時に化学的にも極めて安定で高い信頼性を有する磁気記録媒体となることがわかる。

As is apparent from the results of Table 1 above, the magnetic coating film using the magnetic powder bonded with the amino group-containing compound is magnetic even if it is kept for 1 week under the conditions of a temperature of 60 ° C. and a relative humidity of 90%. It can be seen that there is almost no change in properties and the magnetic coating film has extremely good chemical stability.
On the other hand, in the magnetic coating film of Comparative Example 1 using a magnetic powder not bound with an amino group-containing compound, when the temperature is 60 ° C. and the relative humidity is 90% for one week, the saturation magnetic flux density is particularly high. It drops significantly.
As described above, an amino group-containing compound is applied to the surface of a granular or elliptical iron nitride magnetic powder having an average particle size of 5 to 50 nm including at least an Fe 16 N 2 phase that exhibits particularly excellent short wavelength characteristics. By combining the magnetic recording medium, it can be seen that the magnetic recording medium using the magnetic powder becomes a magnetic recording medium having excellent short wavelength recording characteristics and chemically stable and highly reliable.

Claims (6)

非磁性支持体と、この非磁性支持体の一方の面に塗布形成された、磁性粉末と結合剤とを含有する磁性層とを有し、前記磁性粉の平均粒子サイズが5〜50nmの粒状ないし楕円状の磁性粉末で、前記磁性粉末の表面にアミノ基含有化合物を結合させたことを特徴とする磁気記録媒体。 A non-magnetic support and a magnetic layer containing magnetic powder and a binder formed on one surface of the non-magnetic support and having an average particle size of 5 to 50 nm. A magnetic recording medium characterized in that an amino group-containing compound is bonded to the surface of the magnetic powder by an elliptical magnetic powder. 前記磁性粉は、鉄および窒素を少なくとも構成元素とし、かつFe162 相を少なくとも含むことを特徴とする請求項1記載の磁気記録媒体。 The magnetic recording medium according to claim 1, wherein the magnetic powder contains iron and nitrogen as at least constituent elements and includes at least an Fe 16 N 2 phase. 前記磁性粉末は、希土類元素、ホウ素、シリコン、アルミニウム、リンの中から選ばれる少なくともひとつの元素を、当該磁性粉末中の鉄に対して0.05〜20.0原子%含有してなる、請求項1または2記載の磁気記録媒体。 The magnetic powder contains 0.05 to 20.0 atomic percent of at least one element selected from rare earth elements, boron, silicon, aluminum, and phosphorus with respect to iron in the magnetic powder. Item 3. The magnetic recording medium according to Item 1 or 2. 前記アミノ基含有化合物の量が前記磁性粉に対して0.05〜5重量%であることを特徴とする、請求項1ないし3記載の磁気記録媒体。 4. The magnetic recording medium according to claim 1, wherein the amount of the amino group-containing compound is 0.05 to 5% by weight with respect to the magnetic powder. アミノ基含有化合物がアミノ基含有飽和環状化合物である、請求項1ないし4に記載の磁気記録媒体。 The magnetic recording medium according to claim 1, wherein the amino group-containing compound is an amino group-containing saturated cyclic compound. 長手方向の保磁力(Hc)が79.6〜318.4kA/m(1,000〜4,000Oe)、長手方向の角形比(Br/Bm)が0.6〜0.9である請求項1ないし5のいずれかに記載の磁気記録媒体。
The longitudinal coercive force (Hc) is 79.6 to 318.4 kA / m (1,000 to 4,000 Oe), and the squareness ratio (Br / Bm) in the longitudinal direction is 0.6 to 0.9. The magnetic recording medium according to any one of 1 to 5.
JP2006008614A 2006-01-17 2006-01-17 Magnetic recording medium Withdrawn JP2007193859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008614A JP2007193859A (en) 2006-01-17 2006-01-17 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006008614A JP2007193859A (en) 2006-01-17 2006-01-17 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2007193859A true JP2007193859A (en) 2007-08-02

Family

ID=38449441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008614A Withdrawn JP2007193859A (en) 2006-01-17 2006-01-17 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2007193859A (en)

Similar Documents

Publication Publication Date Title
US6964811B2 (en) Magnetic powder, method for producing the same and magnetic recording medium comprising the same
JP5416188B2 (en) Magnetic recording medium
JP4791513B2 (en) Iron nitride magnetic powder and magnetic recording medium using the same
EP1071102B1 (en) Magnetic recording medium, and magnetic powder and method for preparing the same
US20060068232A1 (en) Magnetic tape
JP5058889B2 (en) Magnetic recording medium
JP2006092672A (en) Magnetic tape
JP2000277311A5 (en)
JP4599574B2 (en) Iron nitride magnetic powder
JP2004319923A (en) Iron nitride-based magnetic powder
JP4057593B2 (en) Iron nitride magnetic powder, method for producing the same, and magnetic recording medium
JP2010147079A (en) Method of producing iron nitride-based magnetic powder, and iron nitride-based magnetic powder
US7074281B2 (en) Magnetic powder for magnetic recording
JP2008084419A (en) Magnetic recording medium
JP2007149258A (en) Magnetic recording medium
JP2008084418A (en) Magnetic recording medium and method for manufacturing the same
JP2007193859A (en) Magnetic recording medium
JP4146769B2 (en) Magnetic recording medium
JP4070147B1 (en) Magnetic recording medium
JP2011096312A (en) Iron nitride magnetic powder and magnetic recording medium using the same
JP2009223970A (en) Magnetic recording medium and manufacturing method therefor
JP2009009646A (en) Magnetic recording medium
JP2007149259A (en) Magnetic recording medium
JP2009224611A (en) Iron nitride-based magnetic powder and magnetic recording medium using the same
JP2011227974A (en) Iron nitride based magnetic powder and magnetic recording medium using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407