JP2007149996A - Layered oxide thermoelectric material having delafossite structure - Google Patents

Layered oxide thermoelectric material having delafossite structure Download PDF

Info

Publication number
JP2007149996A
JP2007149996A JP2005342933A JP2005342933A JP2007149996A JP 2007149996 A JP2007149996 A JP 2007149996A JP 2005342933 A JP2005342933 A JP 2005342933A JP 2005342933 A JP2005342933 A JP 2005342933A JP 2007149996 A JP2007149996 A JP 2007149996A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
cucr
type
merit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005342933A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ono
泰弘 小野
Kenichi Sato
健一 佐藤
Takeshi Kajitani
剛 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2005342933A priority Critical patent/JP2007149996A/en
Publication of JP2007149996A publication Critical patent/JP2007149996A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To develop p-type and n-type oxide thermoelectric materials being chemically stable at a high temperature and having a dimensionless figure of merit ZT close to 1. <P>SOLUTION: The P-type thermoelectric conversion material is composed of a layered oxide having a delafossite structure shown in general formula CuCr<SB>1-x</SB>Mg<SB>x</SB>O<SB>2</SB>(0.03≤x≤0.05). Mg<SP>2+</SP>with an ion radius near that of Cr<SP>3+</SP>is substituted for Cr<SP>3+</SP>of CuCrO<SB>2</SB>and carriers are introduced, and a figure of merit Z (Z=S<SP>2</SP>σ/κ) can be enhanced by improving an electric conductivity σ. The excellent electric conductivity is obtained at the high temperature of 600 to 1,100 K, and a Seebeck coefficient reaches 200 to 350 μV/K. The dimensionless figure of merit ZT exceeds 0.2 at 1,100 K, and the p-type thermoelectric conversion material is available as a high-temperature thermoelectric power-generation material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱電変換特性を有するデラフォッサイト構造を持つ層状酸化物からなる熱電
変換材料に関する。
The present invention relates to a thermoelectric conversion material composed of a layered oxide having a delafossite structure having thermoelectric conversion characteristics.

電気エネルギーを熱エネルギー(冷却)に変えるペルチェ効果や熱エネルギーを電気エ
ネルギーに変えるゼーベック効果は、PbTe,Bi2Te3などの物質で実現されている。近年、
実用レベルの性能を持ったp型熱電材料としてNaCoO2系(Na系)、Ca3Co4O9系(Ca系),
Bi2Sr2Co2O系(Bi系)などのCo系複合酸化物が開発されている。
The Peltier effect that converts electrical energy into thermal energy (cooling) and the Seebeck effect that converts thermal energy into electrical energy are realized with materials such as PbTe and Bi 2 Te 3 . recent years,
As p-type thermoelectric materials with practical performance, NaCoO 2 system (Na system), Ca 3 Co 4 O 9 system (Ca system),
Co-based complex oxides such as Bi 2 Sr 2 Co 2 O y (Bi) have been developed.

n型熱電材料としては、In2O3(ZnO)mに代表されるYbFe2O4類縁型層状構造の多結晶は、
m=3のとき無次元性能指数ZT=σS2T/κが極大となり(ZT=0.12,T=1050K)、3価のInを
2価のCdで置換するとさらにZTが増加する(ZT=0.15、T=1050K)(特許文献1)。
As an n-type thermoelectric material, a polycrystalline YbFe 2 O 4 related layered structure represented by In 2 O 3 (ZnO) m is
When m = 3, the dimensionless figure of merit ZT = σS 2 T / κ is maximized (ZT = 0.12, T = 1050K), and replacing trivalent In with divalent Cd further increases ZT (ZT = 0.15). , T = 1050K) (Patent Document 1).

遷移金属元素の複合酸化物としては、TixMyO2(Mは、Ta,Nb,Vから選ばれた少なくとも1
種)で示されるn型熱電材料の発明(特許文献2)が特許出願されている。この発明のな
かで最も高い出力因子σS2は、x=0.94,y=0.05(Ta)に対して得られた1.
6×10-4W/K2mである。
As the composite oxide of a transition metal element, Ti x M y O 2 ( M is at least 1 selected Ta, Nb, from V
A patent application has been filed for an invention of an n-type thermoelectric material (see Patent Document 2). The highest output factor σ S 2 in the present invention was obtained for x = 0.94, y = 0.05 (Ta).
6 × 10 −4 W / K 2 m.

ABO2(A=Cu,Ag, B=Al,In,Ga,Sc,Y,La)で示されるデラフォッサイト構造の化合物は、平
面型表示装置の透明電極をはじめ、新しい導電性透明酸化物として特許出願されている(
特許文献3)。その中でもCuCr0.95Mg0.05O2薄膜の電気伝導率は室温で220S/cmであり
、可視光近傍の透過率が約40%であるため有望な透明電極材料である(非特許文献1)
A compound with a delafosite structure represented by ABO 2 (A = Cu, Ag, B = Al, In, Ga, Sc, Y, La) is a new conductive transparent oxide, including transparent electrodes for flat panel displays. As a patent application (
Patent Document 3). Among them, the electrical conductivity of the CuCr 0.95 Mg 0.05 O 2 thin film is 220 S / cm at room temperature and the transmittance near visible light is about 40%, which is a promising transparent electrode material (Non-patent Document 1).
.

CuCr0.95Mg0.05O2薄膜のゼーベック係数は室温で100μV/Kであり、温度に比例する
キャリア拡散項と温度の二乗に比例するキャリアホッピングの項で良く近似できる(非特
許文献2)。この解析結果に従って計算したゼーベック係数は1000Kにおいて138μ
V/Kである。デラフォッサイト構造を持つ化合物の中でCuFeO2は唯一負のゼーベック係数
をもつ。その値は温度に依存し、500Kで−600μV/Kである(非特許文献3)。
The Seebeck coefficient of the CuCr 0.95 Mg 0.05 O 2 thin film is 100 μV / K at room temperature, and can be well approximated by a carrier diffusion term proportional to temperature and a carrier hopping term proportional to the square of temperature (Non-patent Document 2). The Seebeck coefficient calculated according to this analysis result is 138 μm at 1000K.
V / K. Among the compounds with delafossite structure, CuFeO 2 has the only negative Seebeck coefficient. The value depends on temperature and is −600 μV / K at 500K (Non-patent Document 3).

非平衡状態で作製されたデラフォッサイト構造の酸化物薄膜にキャリアをドープするこ
とによって無次元性能指数ZTが室温で1.0を超える高効率熱電薄膜材料の発明が出願さ
れている(特許文献4)。この用途は、主にペルチェ効果を利用した冷却である。
An invention for a high-efficiency thermoelectric thin film material having a dimensionless figure of merit ZT exceeding 1.0 at room temperature by doping carriers into an oxide thin film having a delafossite structure manufactured in a non-equilibrium state has been filed (Patent Document) 4). This application is mainly cooling using the Peltier effect.

特開2005-79565号公報JP 2005-79565 JP 特開2005-276959号公報JP 2005-276959 A 特開平11-278834号公報JP 11-278834 A 特開2005-276952号公報JP 2005-276952 JP R. Nagarajan et al., p-type conductivity in CuCr1-xMgxO2 films and powders,JOURNALOF APPLIED PHYSICS, VOL.89,NO12(15 JUNE 2001) pp.8022-8025R. Nagarajan et al., P-type conductivity in CuCr1-xMgxO2 films and powders, JOURNALOF APPLIED PHYSICS, VOL.89, NO12 (15 JUNE 2001) pp.8022-8025 J.Tate et al., p-Type oxides for use in transparent diodes, Thin Solids Films, 411 (2002) pp.119-124J. Tate et al., P-Type oxides for use in transparent diodes, Thin Solids Films, 411 (2002) pp.119-124 P.Dordor et al., Crystal Growth and Electrical Properties of CuFeO2 Single Crystals, Journal of Solid State Chemistry 75(1988)105-112P. Dordor et al., Crystal Growth and Electrical Properties of CuFeO2 Single Crystals, Journal of Solid State Chemistry 75 (1988) 105-112

熱電変換材料の性質としては、高い変換効率を得るために、高いゼーベック係数(α)
、高い電気伝導度(σ)、低い熱伝導率(κ)が要求される。酸化物熱電変換材料は、高
温で耐熱性があること、金属と異なり高温での酸化による性能劣化が少なく化学的に安定
であること、生体に対して有害でないこと、原料が安価であることなどの特徴を有してい
るが、キャリア移動度が低く、電気伝導度も低いという問題がった。
The thermoelectric conversion material has a high Seebeck coefficient (α) in order to obtain high conversion efficiency.
High electrical conductivity (σ) and low thermal conductivity (κ) are required. Oxide thermoelectric conversion materials are heat resistant at high temperatures, are unlikely to degrade chemically due to oxidation at high temperatures, are chemically stable, are not harmful to living organisms, and are inexpensive. However, there is a problem that carrier mobility is low and electric conductivity is low.

NaCoO2単結晶は1に近い無次元性能指数を示すが、化学的に不安定である。
NaCoO2中のNaは850℃を超えると蒸発する傾向がある。また、NaCoO2 (p型)とCa
0.92La0.08MnO3(n型)でp−n接合を作って345℃で10日間連続で発電実験を行った
ところ、17%の出力減少が見られた。さらには、室温で数日放置すると水を吸って電気
伝導率が低下する現象が確認されている。このため、長期にわたって安定に電力を供給可
能な発電素子を作製することができない。そこで、本発明は、化学的に安定であり、大き
な無次元性能指数をもつ酸化物熱電材料、特に高温型熱電発電材料を開発することを目的
とする。
Na x CoO 2 single crystal exhibits a dimensionless figure of merit close to 1, but is chemically unstable.
Na in Na x CoO 2 tends to evaporate above 850 ° C. Na x CoO 2 (p-type) and Ca
When a pn junction was made with 0.92 La 0.08 MnO 3 (n-type) and a power generation experiment was conducted continuously at 345 ° C. for 10 days, a 17% reduction in output was observed. Furthermore, it has been confirmed that when left at room temperature for several days, water is absorbed and the electrical conductivity is lowered. For this reason, it is impossible to produce a power generating element that can supply power stably over a long period of time. Accordingly, an object of the present invention is to develop an oxide thermoelectric material that is chemically stable and has a large dimensionless figure of merit, particularly a high-temperature thermoelectric power generation material.

本発明者は、コバルト酸化物と共通の構造単位を持ち、アルカリ金属イオンを含まない
CuCr1-xMgxO2がCr酸化物として初めての有望な高温型熱電発電材料であることを見出し
た。
The inventor has a common structural unit with cobalt oxide and does not contain alkali metal ions.
We have found that CuCr 1-x Mg x O 2 is the first promising high-temperature thermoelectric material for Cr oxide.

すなわち、本発明は、一般式CuCr1−xMg(0.03≦x≦0.05)で
示されるデラフォッサイト構造を持つ層状酸化物からなるp型熱電変換材料、である。
本発明は、CuCrO2のCr3+をイオン半径の近いMg2+で置換してキャリアを導入し電気伝
導率σの改善による性能指数Z=S2σ/κの向上を図ることができた。
That is, the present invention is a p-type thermoelectric conversion material comprising a layered oxide having a delafossite structure represented by the general formula CuCr 1-x Mg x O 2 (0.03 ≦ x ≦ 0.05).
The present invention was able to improve the figure of merit Z = S 2 σ / κ by replacing Cr 3+ of CuCrO 2 with Mg 2+ having a close ionic radius and introducing carriers to improve electrical conductivity σ. .

本発明のp型熱電変換材料は、600〜1100Kの高温で良い電気伝導性を持ち、ゼ
ーベック係数は200−350μV/Kに達し、無次元性能指数は、室温においてZT=0
.03程度であるが、温度の上昇とともに増加し1100KではZT=0.2を超えてお
り、高温型熱電発電材料として有用である。
The p-type thermoelectric conversion material of the present invention has good electrical conductivity at a high temperature of 600 to 1100 K, the Seebeck coefficient reaches 200-350 μV / K, and the dimensionless figure of merit is ZT = 0 at room temperature.
. Although it is about 03, it increases with a rise in temperature and exceeds ZT = 0.2 at 1100 K, which is useful as a high-temperature thermoelectric power generation material.

CuCr1-xMgxO2は1400Kまで大気中で安定であり、Naの蒸発が懸念されるNaxCoO2に代
わるp型熱電材料として期待される。また、焼成温度が高いことから、加工性に優れた高
密度のバルク材料が容易に得られる。
CuCr 1-x Mg x O 2 is stable in the atmosphere up to 1400K, and is expected as a p-type thermoelectric material to replace Na x CoO 2 where Na evaporation is a concern. Moreover, since the firing temperature is high, a high-density bulk material excellent in processability can be easily obtained.

図1は、デラフォッサイト構造を持つCuCrO2の説明図である。二次元構造を持つCrO2
と、O-Cu-Oからなるダンベルを二次元的に並べたO-Cu-O層とから構成されている。デラフ
ォッサイト構造の酸化物は、層状構造を有することを特徴とし、層に平行な方向と垂直な
方向とで電気伝導度及び熱伝導率の異方性を生じる。
FIG. 1 is an explanatory diagram of CuCrO 2 having a delafossite structure. It consists of a CrO 2 layer having a two-dimensional structure and an O-Cu-O layer in which dumbbells made of O-Cu-O are two-dimensionally arranged. An oxide having a delafossite structure is characterized by having a layered structure, and anisotropy of electric conductivity and thermal conductivity occurs in a direction parallel to the layer and in a direction perpendicular to the layer.

本発明のp型熱電変換材料は、一般式CuCr1−xMg(0.03≦x≦0.
05)で示されるデラフォッサイト構造を持つ層状酸化物である。CuCrO2層状酸化物にお
いてCrを少量のMgと置換することにより、室温以上で電気伝導率が著しく改善された。ゼ
ーベック係数の低下にもかかわらず電気伝導率の増加がこれを上回り、出力因子S2σは増
加する。
The p-type thermoelectric conversion material of the present invention has a general formula CuCr 1-x Mg x O 2 (0.03 ≦ x ≦ 0.
The layered oxide having a delafossite structure represented by (05). By replacing a small amount of Mg and Cr in CuCrO 2 layered oxide, electrical conductivity is greatly improved at room temperature or higher. Despite the decrease in Seebeck coefficient, the increase in electrical conductivity exceeds this, and the output factor S 2 σ increases.

MgによるCrの置換はx=0.03〜0.05の範囲が有効である。CrをMgで3〜5at%
置換することによって達成された値は、NaxCoO2の出力因子の約1/2である。通常の固相
反応法では5at%を超えてMgを置換できない。
The range of x = 0.03 to 0.05 is effective for replacing Cr with Mg. 3-5at% Cr as Mg
The value achieved by the substitution is about 1/2 of the Na x CoO 2 power factor. In the usual solid phase reaction method, Mg cannot be substituted exceeding 5 at%.

図2に、本発明の式CuCr0.97Mg0.03で示される熱電気変換材料の熱伝導率を
示す。573Kにおける熱伝導率(κ)は0.7W/mKであり、通常の酸化物に比べて低い
。また、図3に、本発明の式CuCr0.97Mg0.03で示される熱電変換材料の無次元
性能指数を示す。無次元性能指数を評価するため、多結晶体試料CuCr0.97Mg0.03
の熱伝導率κを測定し、ZT=σS2T/κから計算した。室温においてZT=0.03程度
であるが、温度の上昇とともに増加し1100KではZT=0.2を超えている。この値
は、800Kにおける多結晶Na0.7CoO2のZTと同程度である。
FIG. 2 shows the thermal conductivity of the thermoelectric conversion material represented by the formula CuCr 0.97 Mg 0.03 O 2 of the present invention. The thermal conductivity (κ) at 573 K is 0.7 W / mK, which is lower than that of a normal oxide. FIG. 3 shows the dimensionless figure of merit of the thermoelectric conversion material represented by the formula CuCr 0.97 Mg 0.03 O 2 of the present invention. In order to evaluate the dimensionless figure of merit, the polycrystalline sample CuCr 0.97 Mg 0.03 O
The thermal conductivity κ of 2 was measured and calculated from ZT = σS 2 T / κ. Although ZT = 0.03 at room temperature, it increases with increasing temperature and exceeds ZT = 0.2 at 1100K. This value is comparable to ZT of polycrystalline Na 0.7 CoO 2 at 800K.

本発明の熱電気変換材料は、所定の割合で混合した原料粉末を焼結することによって複
合酸化物の焼結体を形成することによって製造される。この複合酸化物の焼結体は、Cu源
としてCuO又はCu2O、Cr源としてCr2O3、及びMg源としてMgOを使用して製造することがで
きる。これら粉末原料をCuO:Cr2O3:MgO=2:1−x:2xまたはCu2O:Cr2O3:MgO=
1:1−x:2x (0.03≦x≦0.05)となるように混合し、金属鋳型に入れて2
00〜400kg/cm2の圧力で成形する。
The thermoelectric conversion material of the present invention is manufactured by forming a composite oxide sintered body by sintering raw material powders mixed at a predetermined ratio. The composite oxide sintered body can be manufactured using CuO or Cu 2 O as a Cu source, Cr 2 O 3 as a Cr source, and MgO as an Mg source. These powder raw materials are CuO: Cr 2 O 3 : MgO = 2: 1-x: 2x or Cu 2 O: Cr 2 O 3 : MgO =
1: 1-x: 2x (0.03 ≦ x ≦ 0.05), mixed in a metal mold and 2
Molding is performed at a pressure of 00 to 400 kg / cm 2 .

CuCr1−xMg複合酸化物の焼結は、大気中、アルゴン等の不活性ガス気流
中、真空中のいずれの雰囲気でも良く、 原料混合粉末を1000℃〜1200℃で12
〜24時間加熱して反応させる。大気中よりも酸化性の強い雰囲気中で加熱するとスピネ
ル型のCuMg2O4 やCuCr2O4が不純物として生成しやすくなるので好ましくない。
The sintering of the CuCr 1-x Mg x O 2 composite oxide may be carried out in the atmosphere, in an inert gas stream such as argon, or in a vacuum.
React by heating for ~ 24 hours. Heating in an atmosphere that is more oxidizing than in the air is not preferable because spinel-type CuMg 2 O 4 and CuCr 2 O 4 are easily generated as impurities.

一般に、焼結体密度は電気伝導率、熱伝導率に大きく影響し、焼結体密度が大きいほど
(単結晶密度に近づくほど)電気伝導率、熱伝導率は増大する傾向があるが、CuCr
−xMg複合酸化物は1000℃〜1200℃という高温で加熱焼結すれば、ほぼ
95%以上の焼結体密度が得られる。
In general, the density of the sintered body greatly affects the electrical conductivity and thermal conductivity. As the sintered body density increases (closer to the single crystal density), the electrical conductivity and thermal conductivity tend to increase, but CuCr 1
If heat sintering at a high temperature of -x Mg x O 2 composite oxide 1000 ° C. to 1200 ° C., the sintered body density can be obtained in almost 95%.

上記の方法で得られるバルク材料を原料としてパルスレーザー蒸着(PLD)法によりc軸
配向薄膜試料を作成できる。c軸配向薄膜では、伝導面であるa-b面が薄膜面内にあるため
、バルク試料より高い電気伝導性が得られる。従って、無次元性能指数は単結晶に近づい
て大きくなる。
A c-axis oriented thin film sample can be prepared by a pulse laser deposition (PLD) method using the bulk material obtained by the above method as a raw material. In the c-axis oriented thin film, the ab surface, which is the conductive surface, is in the thin film surface, so that higher electrical conductivity than the bulk sample can be obtained. Therefore, the dimensionless figure of merit increases as it approaches a single crystal.

一般式CuCr1−xMgで示されるp型熱電変換材料とn型熱電変換材料をp
−n接合することにより熱電変換発電装置、特に高温型の熱電変換発電装置とすることが
できる。熱電変換発電装置は、多数のp−n接合を電気的に直列に接続し上下二枚のセラ
ミックス平板で挟んで固定したものである。p―n接合はセラミクス平板に接着され、一
方の平板が熱源に接触し、他の一方は大気中にある。このため、p−n接合の熱源側に熱
膨張が生じるが、p型、n型材料が同様の結晶構造をもつ場合は熱膨張係数がほぼ等しい
ため接合の破壊を免れることができるのでn型材料としてもデラフォッサイト構造をとる
材料を用いることが好ましい。
A p-type thermoelectric conversion material and an n-type thermoelectric conversion material represented by the general formula CuCr 1-x Mg x O 2
It can be set as a thermoelectric conversion power generator, especially a high temperature type thermoelectric conversion power generator by joining -n. The thermoelectric conversion power generator is configured by electrically connecting a large number of pn junctions in series and sandwiching them between two upper and lower ceramic flat plates. The pn junction is bonded to the ceramic plate, with one plate in contact with the heat source and the other in the atmosphere. For this reason, thermal expansion occurs on the heat source side of the pn junction. However, when the p-type and n-type materials have the same crystal structure, the thermal expansion coefficient is almost equal, so that the breakdown of the junction can be avoided. It is preferable to use a material having a delafossite structure as the material.

また、性能指数が同じでも、電気伝導率、ゼーベック係数、熱伝導率が大きく異なる場
合、発電性能にとって不利になる。p型、n型材料が、ともにデラフォッサイト構造をと
る場合は、上記物理量も大きな差がないため、熱電変換発電装置の製作に有利である。
Moreover, even if the figure of merit is the same, if the electrical conductivity, Seebeck coefficient, and thermal conductivity are greatly different, it is disadvantageous for the power generation performance. When both the p-type and n-type materials have a delafossite structure, the physical quantity is not significantly different, which is advantageous for manufacturing a thermoelectric conversion power generation apparatus.

実施例として、CuCr1−xMgの製造と熱電性能評価を示す。Cu2O、 Cr2O3
、 及びMgOをCu2O:Cr2O3:MgO=1:1−x:2x(x=0.03,0.04,0.5)と
なるように混合し、この原料混合粉末を金属鋳型に入れて200kg/cm2の圧力で成形し
た。原料混合粉末の成形体を、大気中、1200℃で管状焼結炉において12時間加熱し
て反応させた。 なお、比較のために、MgO無添加(x=0、0.01、0.02)の焼結
体を同条件で作製した。
As an example, showing the manufacturing thermoelectric performance evaluation of CuCr 1-x Mg x O 2 . Cu 2 O, Cr 2 O 3
, And MgO are mixed so that Cu 2 O: Cr 2 O 3 : MgO = 1: 1-x: 2x (x = 0.03, 0.04, 0.5). It was put in a mold and molded at a pressure of 200 kg / cm 2 . The compact of the raw material mixed powder was reacted in the atmosphere at 1200 ° C. for 12 hours in a tubular sintering furnace. For comparison, a sintered body with no MgO added (x = 0, 0.01, 0.02) was produced under the same conditions.

炉冷した後、焼結体(反応生成物)の粉末X線回折を行った。図4に、x=0.05の
粉末X線回折強度のリートベルト解析結果を示す。測定強度はデラフォッサイト構造から
予想される計算強度と一致した。ただし、x=0.03を超えると少量のMgCr2O4(スピ
ネル)とCuOが不純物として観測された。
After furnace cooling, powder X-ray diffraction of the sintered body (reaction product) was performed. FIG. 4 shows a Rietveld analysis result of the powder X-ray diffraction intensity at x = 0.05. The measured intensity was consistent with the calculated intensity expected from the delafossite structure. However, when x = 0.03, a small amount of MgCr 2 O 4 (spinel) and CuO were observed as impurities.

焼結体をダイヤモンドカッターにより矩形状に切断しゼーベック係数と電気伝導率を測
定した。図5に、一般式CuCr1−xMg(0.01≦x≦0.05)で示され
る熱電変換材料のxの値と電気伝導率の関係を示す。測定した温度領域(300〜1100K)に
おいて、電気伝導率は、xの値が0.02と0.03の間で急激に増加しており、850
K付近において最大値2500S/mをとる(x=0.05)。室温近傍ではこの値の半分程度しかな
く、600〜1100Kの高温で良い電気伝導性をもつことがわかる。しかし、温度依存
性は半導体的である。
The sintered body was cut into a rectangular shape with a diamond cutter, and the Seebeck coefficient and electrical conductivity were measured. FIG. 5 shows the relationship between the value of x and the electric conductivity of the thermoelectric conversion material represented by the general formula CuCr 1-x Mg x O 2 (0.01 ≦ x ≦ 0.05). In the measured temperature range (300-1100K), the electrical conductivity increases rapidly between values of x between 0.02 and 0.03, 850
In the vicinity of K, the maximum value is 2500 S / m (x = 0.05). In the vicinity of room temperature, it is only about half of this value, and it can be seen that it has good electrical conductivity at a high temperature of 600 to 1100K. However, the temperature dependence is semiconductor.

図6に、一般式CuCr1−xMgで示される熱電変換材料のxの値とゼーベッ
ク係数の関係を示す。ゼーベック係数はxの値の増加とともに減少するが0.03≦x≦
0.05では、ほとんど変化が無い。CuCr1−xMg (0.03≦x≦0.
05)のゼーベック係数は200−350μV/Kに達する。
FIG. 6 shows the relationship between the x value of the thermoelectric conversion material represented by the general formula CuCr 1-x Mg x O 2 and the Seebeck coefficient. Seebeck coefficient decreases with increasing value of x, but 0.03 ≦ x ≦
At 0.05, there is almost no change. CuCr 1-x Mg x O 2 (0.03 ≦ x ≦ 0.
05) Seebeck coefficient reaches 200-350 μV / K.

図7に、一般式CuCr1−xMgで示される熱電変換材料のxの値とパワーフ
ァクターの関係を示す。0.03≦x≦0.05で、1100Kにおいて2.5×10
W/K2mに達し、これは同温度での多結晶NaCoO2のほぼ半分の大きさである。
FIG. 7 shows the relationship between the value of x and the power factor of the thermoelectric conversion material represented by the general formula CuCr 1-x Mg x O 2 . 0.03 ≦ x ≦ 0.05 and 2.5 × 10 − at 1100K
4 W / K 2 m, which is almost half the size of polycrystalline Na x CoO 2 at the same temperature.

多結晶体試料CuCr0.95Mg0.05を原料として、パルスレーザー蒸着(PLD)法
によりサファイア基板上にc軸配向薄膜試料を作成した。作成条件は、基板温度700℃
、酸素ガス圧70mTorrである。膜厚は約40nmである。CuCr1-xMgxの001
反射とCuOの002及び111反射がX線回折パターン中に観測された。
Using a polycrystalline sample CuCr 0.95 Mg 0.05 O 2 as a raw material, a c-axis oriented thin film sample was prepared on a sapphire substrate by a pulse laser deposition (PLD) method. Preparation conditions are: substrate temperature 700 ° C
The oxygen gas pressure is 70 mTorr. The film thickness is about 40 nm. 001 of CuCr 1-x Mg x O 2
Reflections and CuO 002 and 111 reflections were observed in the X-ray diffraction pattern.

本発明の一般式CuCr1−xMg(0.03≦x≦0.05)で示されるp型
のデラフォッサイト型化合物を使用することにより1400Kまで材料の化学的不安定性
による出力低下無しに電力を供給でき、熱源側と大気側との温度差による歪にも耐えうる
熱電変換発電装置の製作が可能になる。このような装置は、自動車のエンジンなどよりも
比較的温度の高い発電所や溶鉱炉などへの装着により効率よく発電できる。
By using a p-type delafossite-type compound represented by the general formula CuCr 1-x Mg x O 2 (0.03 ≦ x ≦ 0.05) of the present invention, output due to chemical instability of the material up to 1400K It becomes possible to manufacture a thermoelectric conversion power generation device that can supply electric power without lowering and can withstand distortion due to a temperature difference between the heat source side and the atmosphere side. Such a device can generate power efficiently by being installed in a power plant or blast furnace having a relatively higher temperature than an automobile engine or the like.

デラフォッサイト構造を持つCuCrO2の模式図である。It is a schematic diagram of CuCrO 2 having a delafossite structure. 本発明の式CuCr0.97Mg0.03で示される熱電変換材料の熱伝導率を示すグラフである。It is a graph showing the thermal conductivity of the thermoelectric conversion material represented by the formula CuCr 0.97 Mg 0.03 O 2 of the present invention. 本発明の式CuCr0.97Mg0.03で示される熱電変換材料の無次元性能指数を示すグラフである。It is a graph showing a dimensionless performance index of a thermoelectric conversion material represented by the formula CuCr 0.97 Mg 0.03 O 2 of the present invention. 実施例1で得られた多結晶CuCr0.95Mg0.05の粉末X線回折強度のリートベルト解析結果パターン図である。3 is a Rietveld analysis result pattern diagram of powder X-ray diffraction intensity of polycrystalline CuCr 0.95 Mg 0.05 O 2 obtained in Example 1. FIG. 実施例1で得られた一般式CuCr1−xMgで示される熱電変換材料のxの値と電気伝導率の関係を示すグラフである。4 is a graph showing the relationship between the value of x and the electric conductivity of the thermoelectric conversion material represented by the general formula CuCr 1-x Mg x O 2 obtained in Example 1. 実施例1で得られた一般式CuCr1−xMgで示される熱電変換材料のxの値とゼーベック係数の関係を示すグラフである。4 is a graph showing a relationship between a value of x and a Seebeck coefficient of a thermoelectric conversion material represented by a general formula CuCr 1-x Mg x O 2 obtained in Example 1. FIG. 実施例1で得られた一般式CuCr1−xMgで示される熱電変換材料のxの値とパワーファクターの関係を示すグラフである。4 is a graph showing a relationship between a value of x and a power factor of a thermoelectric conversion material represented by a general formula CuCr 1-x Mg x O 2 obtained in Example 1. FIG.

Claims (1)

一般式CuCr1−xMg(0.03≦x≦0.05)で示されるデラフォッサイ
ト構造を持つ層状酸化物からなるp型熱電変換材料。
A p-type thermoelectric conversion material comprising a layered oxide having a delafossite structure represented by a general formula CuCr 1-x Mg x O 2 (0.03 ≦ x ≦ 0.05).
JP2005342933A 2005-11-28 2005-11-28 Layered oxide thermoelectric material having delafossite structure Pending JP2007149996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342933A JP2007149996A (en) 2005-11-28 2005-11-28 Layered oxide thermoelectric material having delafossite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005342933A JP2007149996A (en) 2005-11-28 2005-11-28 Layered oxide thermoelectric material having delafossite structure

Publications (1)

Publication Number Publication Date
JP2007149996A true JP2007149996A (en) 2007-06-14

Family

ID=38211028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342933A Pending JP2007149996A (en) 2005-11-28 2005-11-28 Layered oxide thermoelectric material having delafossite structure

Country Status (1)

Country Link
JP (1) JP2007149996A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9440853B2 (en) 2014-02-10 2016-09-13 Samsung Electronics Co., Ltd. Hafnium telluride layered compounds, transparent and electrically conductive film, and electronic devices including the same
JP2018078219A (en) * 2016-11-10 2018-05-17 国立研究開発法人物質・材料研究機構 P-type thermoelectric semiconductor, manufacturing method therefor, and thermoelectric generation element using the same
US10099938B2 (en) 2013-12-12 2018-10-16 Samsung Electronics Co., Ltd. Electrically conductive thin films

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10099938B2 (en) 2013-12-12 2018-10-16 Samsung Electronics Co., Ltd. Electrically conductive thin films
US9440853B2 (en) 2014-02-10 2016-09-13 Samsung Electronics Co., Ltd. Hafnium telluride layered compounds, transparent and electrically conductive film, and electronic devices including the same
JP2018078219A (en) * 2016-11-10 2018-05-17 国立研究開発法人物質・材料研究機構 P-type thermoelectric semiconductor, manufacturing method therefor, and thermoelectric generation element using the same

Similar Documents

Publication Publication Date Title
JP3874365B2 (en) Thermoelectric conversion device, cooling method and power generation method using the same
Ji Metal oxide-based thermoelectric materials
US7435896B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the material, cooling device and electric apparatus using the element, and electric power generation method and cooling method using the element
KR20080003875A (en) Thermoelectric conversion material, method for production thereof and thermoelectric conversion element
JP4024294B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element
JP2007149996A (en) Layered oxide thermoelectric material having delafossite structure
JP2003142742A (en) Manganese oxide thermoelectric converting material
JP4608940B2 (en) Thermoelectric material
JP3922651B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element
JP4876721B2 (en) Thermoelectric conversion material and method for producing the same
US10937939B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2004087537A (en) P type thermoelectric converting material and its manufacturing method
JP3089301B1 (en) Thermoelectric conversion material and method for producing composite oxide sintered body
JP5206510B2 (en) N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module
JP3896479B2 (en) Method for producing composite oxide sintered body
JP4013245B2 (en) CRYSTAL-ORIENTED CERAMIC AND PROCESS FOR PRODUCING THE SAME, PLATE POWDER FOR PRODUCTION OF CRYSTAL-ORIENTED CERAMIC, AND THERMOELECTRIC CONV
JP2009196821A (en) Perovskite-based oxide, its producing method and thermoelectric element using it
JP2004134454A (en) Thermoelectric conversion material and its manufacturing method
JP4275172B2 (en) Layered oxide thermoelectric material with delafossite structure
JP2004288841A (en) Oxychalcogenide and thermoelectric material
Iyasara et al. Thermoelectric Study of La2Ti2-xNbxO7 (0≤ x≤ 0.25) Ceramic Materials
JP4844043B2 (en) Thermoelectric conversion material and method for producing the same
JP2010228927A (en) Cobalt-manganese compound oxide
JP3586716B2 (en) Composite oxide with high thermoelectric conversion efficiency
Lu La doped SrTiO3 Based Oxide Thermoelectrics

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100106