JP2007138237A - Silver-coated stainless steel strip for movable contact, and its production method - Google Patents

Silver-coated stainless steel strip for movable contact, and its production method Download PDF

Info

Publication number
JP2007138237A
JP2007138237A JP2005332874A JP2005332874A JP2007138237A JP 2007138237 A JP2007138237 A JP 2007138237A JP 2005332874 A JP2005332874 A JP 2005332874A JP 2005332874 A JP2005332874 A JP 2005332874A JP 2007138237 A JP2007138237 A JP 2007138237A
Authority
JP
Japan
Prior art keywords
nickel
silver
stainless steel
layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005332874A
Other languages
Japanese (ja)
Other versions
JP4279285B2 (en
Inventor
Yoshiaki Ogiwara
吉章 荻原
Satoshi Suzuki
智 鈴木
Naofumi Tokuhara
直文 徳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2005332874A priority Critical patent/JP4279285B2/en
Publication of JP2007138237A publication Critical patent/JP2007138237A/en
Application granted granted Critical
Publication of JP4279285B2 publication Critical patent/JP4279285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silver-coated stainless steel strip capable obtaining a long-life movable contact in high yield. <P>SOLUTION: The silver-coated stainless steel strip for a movable contact has a 0.01-0.1 μm thick nickel substrate formed at least on a part of the surface of a stainless steel base material and activated by keeping at 40-90°C for ≥3 sec, a 0.05-0.2 μm thick intermediate layer comprising at least one kind of nickel, a nickel alloy, copper and a copper alloy on the nickel substrate after activated and an outermost layer containing silver or a silver alloy and formed on the intermediate layer. Because the silver coated stainless steel is manufactured by a conventional method except the activation treatment of the nickel layer at 40-90°C for ≥3 sec, high productivity is attained. The activation temperature is kept by heat produced by the electric resistance of a stainless steel with current used for the plating pre-treatment including the formation of the nickel layer to make the cost low. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、長寿命の可動接点が高歩留まりで得られる、銀被覆ステンレス条およびその製造方法に関する。   The present invention relates to a silver-coated stainless steel strip and a method for producing the same, in which a long-life movable contact can be obtained with a high yield.

コネクター、スイッチ、端子などの電気接点部には皿バネ接点、ブラシ接点、クリップ接点などが用いられている。これら接点には、比較的安価で、耐食性、機械的性質などに優れる銅合金やステンレス鋼などの基材上にニッケルを下地めっきし、その上に導電性と半田付け性に優れる銀を被覆した複合接点材料が多用されている(特許文献1)。   A disc spring contact, a brush contact, a clip contact, or the like is used for electrical contact portions such as a connector, a switch, and a terminal. These contacts are relatively inexpensive and have a nickel base coating on a base material such as copper alloy or stainless steel, which is excellent in corrosion resistance and mechanical properties, and coated with silver that is excellent in conductivity and solderability. Composite contact materials are frequently used (Patent Document 1).

ステンレス鋼基材を用いた複合接点材料は、銅合金基材を用いたものより機械的性質、疲労寿命などに優れるため接点の小型化に有利であり、また動作回数の増加も可能なため長寿命のタクティルプッシュスイッチや検出スイッチなどの可動接点に使用されている。   Composite contact materials using stainless steel substrates are superior to those using copper alloy substrates in terms of mechanical properties, fatigue life, etc., which is advantageous for miniaturization of contacts and can be increased in number of operations. It is used for movable contacts such as tactile push switches and detection switches with a long life.

しかしながら、ステンレス鋼基材を用いた複合接点材料は、スイッチの接点圧力が大きいため接点部の銀被覆層が剥離し易いという問題があった。前記剥離は、特に、小径のドーム型可動接点で起き易く、スイッチの小型化に向けて解決すべき重要課題である。   However, the composite contact material using a stainless steel substrate has a problem that the silver coating layer of the contact portion is easily peeled off because the contact pressure of the switch is large. The peeling is particularly likely to occur at a small-diameter dome-shaped movable contact, and is an important issue to be solved for downsizing the switch.

ステンレス鋼基材を用いた複合接点材料の寿命改善については種々提案されているが、いずれにも問題がある。
即ち、(1)ステンレス鋼基材上にニッケル層、パラジウム層、金層をこの順に形成したもの(特許文献2)はパラジウム層が導電性に劣るため、接点の電気抵抗が増加する。(2)ステンレス鋼基材上にニッケル層、銅層、ニッケル層、金層をこの順に形成したもの(特許文献3)はニッケル層が硬いため曲げ加工時に金層にクラックが発生し、下層が露出して耐食性が低下する。(3)ステンレス鋼基材上にニッケル層、銅層、銀層をこの順に電気めっきしたもの(特許文献4〜6)はニッケル下地層が硬く、かつ0.2〜0.5μmと厚いため接点の小型化に必要な高度の加工性が得られない。
Various proposals have been made for improving the life of composite contact materials using a stainless steel substrate, but all have problems.
That is, (1) In the case where a nickel layer, a palladium layer, and a gold layer are formed in this order on a stainless steel substrate (Patent Document 2), the electrical resistance of the contact increases because the palladium layer is inferior in conductivity. (2) A nickel layer, a copper layer, a nickel layer, and a gold layer formed in this order on a stainless steel substrate (Patent Document 3) is cracked in the gold layer during bending because the nickel layer is hard. Exposed and corrosion resistance decreases. (3) A nickel layer, a copper layer, and a silver layer electroplated in this order on a stainless steel substrate (Patent Documents 4 to 6) have a hard nickel base layer and a contact thickness of 0.2 to 0.5 μm The high level of workability required for downsizing of the product cannot be obtained.

この他、前記銀被覆複合接点材料には、小型可動接点に高速度でプレス成形される際に銀被覆層が剥離して製造歩留まりが低下するという問題がある。
この対策として、ステンレス鋼基材上にニッケルを下地めっきする際のアノードにステンレス鋼または鉄−ニッケル合金を使用し、剥離の一因と目される水素脆化を防止する方法が考案された(特許文献7)が、この方法はニッケルめっき液が鉄イオンにより汚染され、めっき層に鉄が過剰に析出して、めっき層の密着性が低下した。
特開昭59−219945号公報 特開平11−232950号公報 特開昭63−137193号公報 特開2004−263274号公報 特開2005−002400号公報 特開2005−133169号公報 特開昭61−23788号公報
In addition, the silver-coated composite contact material has a problem that the silver coating layer is peeled off when the small movable contact is press-molded at a high speed, resulting in a decrease in manufacturing yield.
As a countermeasure, a method was devised that uses stainless steel or an iron-nickel alloy for the anode when nickel is plated on a stainless steel substrate to prevent hydrogen embrittlement, which is considered to be a cause of delamination ( In this method, however, the nickel plating solution is contaminated with iron ions, and iron is excessively deposited on the plating layer, so that the adhesion of the plating layer is lowered.
JP 59-219945 A Japanese Patent Laid-Open No. 11-232950 JP-A-63-137193 JP 2004-263274 A JP 2005-002400 A JP 2005-133169 A JP 61-23788 A

本発明者らはこのような状況に鑑み鋭意研究を行い、銀被覆層の剥離は、ステンレス鋼基材とニッケル下地層の間で起きること、前記下地層に所定の活性化処理を施すと双方の密着性が改善されることを知見し、さらに研究を進めて本発明を完成させるに至った。
本発明は、高速プレス成形時や接点として使用中に銀被覆層が剥離しない、長寿命の可動接点が高歩留まりで得られる、銀被覆ステンレス条およびその製造方法の提供を目的とする。
The present inventors have conducted intensive research in view of such a situation, and that the peeling of the silver coating layer occurs between the stainless steel substrate and the nickel underlayer, and both when the predetermined activation treatment is applied to the underlayer. It has been found that the adhesion of the resin is improved, and further research has been made to complete the present invention.
An object of the present invention is to provide a silver-coated stainless steel strip and a method for producing the same, in which a silver-coated layer does not peel off during high-speed press molding or during use, and a long-life movable contact can be obtained with a high yield.

請求項1記載発明は、ステンレス鋼基材表面の少なくとも一部に厚さ0.01〜0.1μmのニッケル下地層が形成され、前記ニッケル下地層は40〜90℃の温度で3秒以上保持する活性化処理が施されており、前記活性化処理後のニッケル下地層上にニッケル、ニッケル合金、銅、銅合金のうちの少なくとも1種からなる厚さ0.05〜0.2μmの中間層が形成され、前記中間層上に銀または銀合金の最表層が形成されていることを特徴とする可動接点用銀被覆ステンレス条である。   According to the first aspect of the present invention, a nickel underlayer having a thickness of 0.01 to 0.1 μm is formed on at least a part of the surface of a stainless steel substrate, and the nickel underlayer is held at a temperature of 40 to 90 ° C. for 3 seconds or more. And an intermediate layer having a thickness of 0.05 to 0.2 μm made of at least one of nickel, nickel alloy, copper, and copper alloy on the nickel underlayer after the activation treatment. A silver-coated stainless steel strip for a movable contact, wherein the outermost layer of silver or a silver alloy is formed on the intermediate layer.

請求項2記載発明は、ステンレス鋼基材表面の少なくとも一部に厚さ0.01〜0.1μmのニッケル下地層を電気めっきし、次いで前記ニッケル下地層に40〜90℃の温度で3秒以上保持する活性化処理を施し、前記活性化処理温度を前記ニッケル下地層の形成を含むめっき前処理で使用される電流とステンレス鋼材の電気抵抗による発熱により付与し、次いで前記活性化処理後のニッケル下地層上にニッケル、ニッケル合金、銅、銅合金のうちの少なくとも1種からなる厚さ0.05〜0.2μmの中間層を形成し、次いで前記中間層上に銀または銀合金の最表層を形成することを特徴とする可動接点用銀被覆ステンレス条の製造方法である。   According to a second aspect of the present invention, a nickel underlayer having a thickness of 0.01 to 0.1 μm is electroplated on at least a part of the surface of a stainless steel substrate, and then the nickel underlayer is heated at a temperature of 40 to 90 ° C. for 3 seconds. The activation treatment is held as described above, and the activation treatment temperature is applied by the heat used in the plating pretreatment including the formation of the nickel underlayer and the electric resistance of the stainless steel material, and then the activation treatment is performed. An intermediate layer made of at least one of nickel, nickel alloy, copper, and copper alloy and having a thickness of 0.05 to 0.2 μm is formed on the nickel underlayer, and then a silver or silver alloy outermost layer is formed on the intermediate layer. It is a manufacturing method of the silver covering stainless steel strip for movable contacts characterized by forming a surface layer.

本発明の可動接点用銀被覆ステンレス条は、ニッケル下地層に活性化処理を施すのでステンレス基材とニッケル下地層間の密着性が向上し、高速プレス成形時や可動接点として使用中に銀被覆層が剥離するのが防止され、これにより可動接点の生産性向上、小型化および寿命改善が実現する。また前記銀被覆ステンレス条はニッケル下地層に40〜90℃の温度で3秒以上保持する活性化処理を施す以外は、常法により製造できるので生産性に優れる。しかも前記活性化処理温度は前記ニッケル下地層の形成を含むめっき前処理で使用される電流とステンレス鋼材の電気抵抗による発熱により付与できるので低コストである。   The silver-coated stainless steel strip for the movable contact of the present invention has an activation treatment on the nickel base layer, so that the adhesion between the stainless steel substrate and the nickel base layer is improved, and the silver coating layer is used during high-speed press molding or as a movable contact. Is prevented from being peeled off, thereby improving the productivity, miniaturization and life of the movable contact. The silver-coated stainless steel strip is excellent in productivity because it can be produced by a conventional method except that the nickel underlayer is subjected to an activation treatment of holding at a temperature of 40 to 90 ° C. for 3 seconds or more. In addition, the activation treatment temperature is low in cost because it can be applied by the heat used in the plating pretreatment including the formation of the nickel underlayer and the electrical resistance of the stainless steel material.

本発明では、ニッケル下地層は、活性化処理により、ステンレス鋼基材に含まれる鉄と反応して、厚さ方向の成分変化が緩やかなニッケル鉄合金に変化する。そのためプレス成形時や可動接点として使用中に、ステンレス鋼基材とニッケル下地層界面に集中するひずみがニッケル下地層の厚さ方向に分散されてステンレス鋼基材とニッケル下地層間の剥離が防止される。   In the present invention, the nickel underlayer reacts with iron contained in the stainless steel substrate by the activation treatment, and changes to a nickel iron alloy whose component change in the thickness direction is gentle. Therefore, during press molding or during use as a movable contact, the strain concentrated on the interface between the stainless steel substrate and the nickel underlayer is dispersed in the thickness direction of the nickel underlayer, preventing peeling between the stainless steel substrate and the nickel underlayer. The

本発明において、可動接点の機械的強度を担うステンレス鋼基材には、応力緩和特性および耐疲労破壊特性に優れるSUS301、SUS304、SUS316などの圧延調質材またはテンションアニール材が好適である。   In the present invention, a rolled tempered material such as SUS301, SUS304, SUS316 or a tension annealing material that is excellent in stress relaxation characteristics and fatigue fracture resistance is suitable for the stainless steel base material that bears the mechanical strength of the movable contact.

本発明において、ステンレス鋼基材上に形成されるニッケル下地層は、後の活性化処理により活性化されて、ステンレス鋼基材との密着性が向上する。従って、前記ニッケル下地層上に形成される中間層および最上層からなる銀被覆層の剥離が防止される。   In the present invention, the nickel underlayer formed on the stainless steel substrate is activated by the subsequent activation treatment, and the adhesion with the stainless steel substrate is improved. Therefore, peeling of the silver coating layer composed of the intermediate layer and the uppermost layer formed on the nickel underlayer is prevented.

活性化処理後のニッケル下地層(以下、適宜、活性化層と記す。)は、ニッケル下地層にステンレス鋼基材の鉄が反応して形成された、厚さ方向に緩やかに成分変化するニッケル鉄合金からなる。ステンレス鋼には、鉄以外にクロム、コバルト、モリブデンなどが含まれるが、これらの成分が活性化層に混入してもかまわない。   The nickel underlayer after the activation treatment (hereinafter referred to as the “activation layer” as appropriate) is nickel formed by the reaction of iron of a stainless steel base material with the nickel underlayer, and the component gradually changes in the thickness direction. Made of iron alloy. Stainless steel contains chromium, cobalt, molybdenum and the like in addition to iron, but these components may be mixed into the activated layer.

前記活性化層は、ステンレス鋼基材を、ニッケル下地層形成後に40〜90℃で3秒以上保持する活性化処理により形成される。   The activation layer is formed by an activation treatment in which a stainless steel substrate is held at 40 to 90 ° C. for 3 seconds or longer after the nickel underlayer is formed.

ステンレス鋼基材上にニッケル下地層を電気めっきする際、通常、給電ロールは、給電電圧を下げるため、めっき槽の近くに設置するが、本発明では、給電ロールをめっき槽から離れた位置に設置してステンレス鋼基材の抵抗発熱量を大きくし、この熱を利用してニッケルめっき層を40〜90℃に加温する。   When electroplating a nickel underlayer on a stainless steel substrate, the feeding roll is usually installed near the plating tank to lower the feeding voltage, but in the present invention, the feeding roll is placed at a position away from the plating tank. It installs and the resistance calorific value of a stainless steel base material is enlarged, and a nickel plating layer is heated to 40-90 degreeC using this heat.

本発明において、活性化処理を40〜90℃の温度で3秒以上行う理由は、40℃未満でも、3秒未満でも、ニッケル下地層に鉄ニッケル合金層が十分に形成されず、90℃を超えると、活性化層表面が酸化して中間層との間の密着性が低下するためである。特に望ましい活性化処理条件は60〜80℃、4〜6秒である。   In the present invention, the reason why the activation treatment is performed at a temperature of 40 to 90 ° C. for 3 seconds or more is that the iron nickel alloy layer is not sufficiently formed on the nickel underlayer even if it is less than 40 ° C. or less than 3 seconds. If it exceeds, the surface of the activated layer is oxidized and the adhesion between the intermediate layer is lowered. Particularly desirable activation treatment conditions are 60 to 80 ° C. and 4 to 6 seconds.

本発明において、ニッケル下地層の厚さを0.01〜0.1μmに規定する理由は、0.01μm未満ではステンレス鋼基材との間の密着性が十分向上せず、0.1μmを超えるとその密着性改善効果が飽和するうえ、活性化層に脆い析出物が生成して、プレス成形時や接点としての使用中に銀被覆層の割れの発生原因になるためである。
ニッケル下地層の特に望ましい厚さは0.02〜0.1μmである。
In the present invention, the reason for prescribing the thickness of the nickel underlayer to 0.01 to 0.1 μm is that if it is less than 0.01 μm, the adhesion to the stainless steel substrate is not sufficiently improved and exceeds 0.1 μm. In addition, the adhesion improving effect is saturated, and brittle precipitates are generated in the activated layer, which causes cracking of the silver coating layer during press molding or use as a contact.
A particularly desirable thickness of the nickel underlayer is 0.02 to 0.1 μm.

本発明において、活性化処理後のニッケル下地層上に中間層(ニッケル、ニッケル合金、銅、銅合金など)を形成する理由は、最上層(銀または銀合金)を透過する酸素を中間層でトラップして活性化層が酸化してその密着性向上効果が低下するのを防止するためである。   In the present invention, the reason for forming an intermediate layer (nickel, nickel alloy, copper, copper alloy, etc.) on the nickel underlayer after the activation treatment is that oxygen passing through the uppermost layer (silver or silver alloy) This is to prevent the activation layer from being oxidized by trapping and reducing its adhesion improving effect.

本発明において、中間層の厚さを0.05〜0.2μmに規定する理由は、0.05μm未満では、その効果が十分に得られず、0.2μmを超えるとその効果が飽和するためである。特にニッケル層は硬いため厚くなると曲げ加工時に割れて銀被覆層の剥離の原因になる。   In the present invention, the reason for defining the thickness of the intermediate layer to 0.05 to 0.2 μm is that the effect is not sufficiently obtained when the thickness is less than 0.05 μm, and the effect is saturated when the thickness exceeds 0.2 μm. It is. In particular, since the nickel layer is hard, if it becomes thick, it will crack during bending and cause the silver coating layer to peel off.

中間層は、ニッケル、ニッケル合金、又は銅、銅合金で形成するが、より長寿命の接点材料が必要な場合には、銅又は銅合金の方がニッケルよりも酸素トラップ性並びに加工性に優れ推奨される。前記ニッケル合金は、ニッケルにコバルト、クロム、銅から選ばれる1種または2種以上を1〜10質量%含む合金、銅合金は、銅にスズ、亜鉛、ニッケルから選ばれる1種または2種を1〜10質量%含む合金が使用できる。   The intermediate layer is made of nickel, nickel alloy, copper, or copper alloy. However, if a contact material with a longer life is required, copper or copper alloy has better oxygen trapping and workability than nickel. Recommended. The nickel alloy is an alloy containing 1 to 10% by mass of one or more selected from cobalt, chromium and copper in nickel, and the copper alloy is one or two selected from tin, zinc and nickel in copper. An alloy containing 1 to 10% by mass can be used.

本発明において、最表層(銀または銀合金)の厚さを0.5〜2.0μmに規定する理由は、0.5μm未満では銀または銀合金の接触安定性に優れる効果が十分に得られず、2.0μmを超えるとその効果が飽和するためである。銀合金としては、銀にアンチモンを0.1〜2.0質量%含む合金が耐摩耗性に優れ推奨される。   In the present invention, the reason why the thickness of the outermost layer (silver or silver alloy) is specified to be 0.5 to 2.0 μm is that when it is less than 0.5 μm, the effect of excellent contact stability of silver or silver alloy is sufficiently obtained. If the thickness exceeds 2.0 μm, the effect is saturated. As a silver alloy, an alloy containing 0.1 to 2.0% by mass of antimony in silver is recommended because of its excellent wear resistance.

本発明において、中間層が銅層または銅合金層の場合、互いに接する層同士の金属元素(銀と銅、銅とニッケル)が相互に固溶するため、プレス成形時に作用するせん断応力による剥がれが起き難い。   In the present invention, when the intermediate layer is a copper layer or a copper alloy layer, the metal elements (silver and copper, copper and nickel) of the layers in contact with each other are solid-solved with each other. It's hard to get up.

特に、中間層が銅層または銅合金層の場合、最表層形成後、非酸化性雰囲気中で加熱処理することにより、中間層と最表層間で銀と銅の合金層が厚く形成され、せん断応力が向上する。加熱処理の温度が高すぎたり、時間が長すぎたりすると最表層の銀がすべて合金化して接触安定性および導電性が低下する。銀と銅の合金層の厚さは0.1μm以下が好ましく、加熱条件は200〜400℃×1分間〜5時間が好ましい。加熱処理するときの非酸化性雰囲気は、水素ガス、ヘリウムガス、アルゴンガス、窒素ガスなどの還元雰囲気或いは不活性ガス雰囲気が使用できるが、特にアルゴンガス雰囲気が好ましい。   In particular, when the intermediate layer is a copper layer or a copper alloy layer, a silver and copper alloy layer is formed thick between the intermediate layer and the outermost layer by heat treatment in a non-oxidizing atmosphere after the outermost layer is formed. Stress is improved. If the temperature of the heat treatment is too high or the time is too long, the outermost silver is all alloyed and the contact stability and conductivity are lowered. The thickness of the alloy layer of silver and copper is preferably 0.1 μm or less, and the heating conditions are preferably 200 to 400 ° C. × 1 minute to 5 hours. As the non-oxidizing atmosphere at the time of heat treatment, a reducing atmosphere or inert gas atmosphere such as hydrogen gas, helium gas, argon gas, and nitrogen gas can be used, and an argon gas atmosphere is particularly preferable.

本発明において、ニッケル下地層、中間層(ニッケル、ニッケル合金、銅、銅合金)、最表層(銀、銀合金)の各層は、電気めっき法、無電解めっき法、物理・化学的蒸着法など任意の方法により形成できるが、電気めっき法が生産性およびコストの面で有利である。前記各層は、ステンレス鋼基材の全面に形成してもよいが、接点部のみに形成するのが経済的である。   In the present invention, the nickel underlayer, intermediate layer (nickel, nickel alloy, copper, copper alloy), outermost layer (silver, silver alloy) are electroplating, electroless plating, physical / chemical vapor deposition, etc. Although it can be formed by any method, the electroplating method is advantageous in terms of productivity and cost. The respective layers may be formed on the entire surface of the stainless steel substrate, but it is economical to form the layers only on the contact portions.

以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

金属条を連続的に通板して巻取るめっきラインを用いて、厚さ0.06mm、幅100mmのSUS301条に、電解脱脂、水洗、ニッケル下地めっき、活性化処理、水洗、中間層(ニッケル、ニッケル合金、銅、銅合金)めっき、水洗、銀ストライクめっき、最表層(銀)めっき、水洗、乾燥の各処理をこの順に施して、銀被覆ステンレス条を製造した。中間層のニッケル合金にはNi−2質量%Co合金、銅合金にはCu−1質量%Sn合金およびCu−5質量%Zn合金を用いた。中間層に銅を用いた銀被覆ステンレス条の一部は250℃のアルゴン雰囲気中で2時間熱処理した。   Using a plating line that continuously winds the metal strip, it is applied to SUS301 strip of thickness 0.06mm and width 100mm, electrolytic degreasing, water washing, nickel base plating, activation treatment, water washing, intermediate layer (nickel , Nickel alloy, copper, copper alloy) plating, water washing, silver strike plating, outermost layer (silver) plating, water washing, and drying were performed in this order to produce a silver-coated stainless steel strip. Ni-2 mass% Co alloy was used for the nickel alloy of the intermediate layer, and Cu-1 mass% Sn alloy and Cu-5 mass% Zn alloy were used for the copper alloy. A part of the silver-coated stainless steel strip using copper as the intermediate layer was heat-treated in an argon atmosphere at 250 ° C. for 2 hours.

前記各処理の条件は次の通りである。
(1)電解脱脂:SUS301条をオルソケイ酸ソーダ100g/lの水溶液を用いて陰極電解して施した。(2)ニッケル下地めっき:塩化ニッケル5g/lと30%遊離塩酸のめっき液を用いて陰極電流密度2A/dmの条件で施した。(3)活性化処理:ニッケル下地めっき後のSUS301条を40〜90℃の温水〜熱水に3秒以上保持して施した。電解脱脂から活性化処理までの間のSUS301条の温度は、SUS301条を冷却器により温度調整した水洗槽内に浸漬して制御した。(4)中間層(ニッケル系)めっき:塩化ニッケル250g/lと遊離塩酸50g/lを含むめっき液を用い、全陰極電流密度5A/dmの条件で施した。(5)中間層(銅系)めっき:硫酸銅150g/lと遊離硫酸100g/lを含むめっき液を用いて陰極電流密度5A/dmの条件で施した。(6)銀ストライクめっき:シアン化銀5g/lとシアン化カリウム50g/lを含むめっき液を用い、陰極電流密度2A/dmの条件で施した。(7)銀めっき:シアン化銀50g/l、シアン化カリウム50g/l、炭酸カリウム30g/lを含むめっき液を用いて、陰極電流密度5A/dmの条件で施した。
The conditions of each process are as follows.
(1) Electrolytic degreasing: SUS301 was applied by cathodic electrolysis using an aqueous solution of sodium orthosilicate 100 g / l. (2) Nickel base plating: Using a plating solution of nickel chloride 5 g / l and 30% free hydrochloric acid, it was applied under conditions of a cathode current density of 2 A / dm 2 . (3) Activation treatment: SUS301 strip after nickel base plating was applied in hot water to hot water at 40 to 90 ° C. for 3 seconds or more. The temperature of the SUS301 strip from the electrolytic degreasing to the activation treatment was controlled by immersing the SUS301 strip in a washing tank whose temperature was adjusted by a cooler. (4) Intermediate layer (nickel-based) plating: Using a plating solution containing 250 g / l of nickel chloride and 50 g / l of free hydrochloric acid, the plating was performed under conditions of a total cathode current density of 5 A / dm 2 . (5) Intermediate layer (copper-based) plating: A plating solution containing 150 g / l of copper sulfate and 100 g / l of free sulfuric acid was used under the condition of a cathode current density of 5 A / dm 2 . (6) Silver strike plating: Using a plating solution containing 5 g / l of silver cyanide and 50 g / l of potassium cyanide, it was applied under conditions of a cathode current density of 2 A / dm 2 . (7) Silver plating: Using a plating solution containing 50 g / l of silver cyanide, 50 g / l of potassium cyanide, and 30 g / l of potassium carbonate, it was applied under conditions of a cathode current density of 5 A / dm 2 .

得られた各々の銀めっきステンレス条を直径4mmのドーム型可動接点にプレス成形して割れの発生状況を20倍の実体顕微鏡を用いて調べた(n=1000)。
また割れが生じなかった健全な可動接点を用いてスイッチを組立て、図2(イ)、(ロ)に示す方法で打鍵試験を、接点圧力9.8N/mm、打鍵速度5Hz、打鍵回数100万回で行い、打鍵試験後の銀被覆層の接触抵抗を調べた(n=20)。また打鍵試験後の銀被覆層の状況を観察した。
Each of the obtained silver-plated stainless steel strips was press-molded into a dome-shaped movable contact having a diameter of 4 mm, and the occurrence of cracks was examined using a 20-fold stereo microscope (n = 1000).
Further, a switch is assembled by using a healthy movable contact that is not cracked, and a keystroke test is performed by the method shown in FIGS. 2 (a) and 2 (b), a contact pressure of 9.8 N / mm 2 , a keystroke speed of 5 Hz, and a keystroke count of 100 The contact resistance of the silver coating layer after the keystroke test was examined (n = 20). In addition, the condition of the silver coating layer after the keystroke test was observed.

前記スイッチは、図1に示すように、樹脂ケース1内の1対の固定接点2上にドーム型可動接点4を固定接点3を跨いで配置したものであり、このスイッチは、図2(イ)に示すように、ドーム型可動接点4の中央部表面を押圧(打鍵)して、その裏面を固定接点3に接触させると2極の固定接点2、3間に電流が流れる(図2(ロ))。固定接点2、3には銀を1μm厚さにめっきした黄銅条を用いた。図2で5は樹脂の充填材である。   As shown in FIG. 1, the switch has a dome-shaped movable contact 4 straddling a fixed contact 3 on a pair of fixed contacts 2 in a resin case 1. This switch is shown in FIG. As shown in FIG. 2, when the center surface of the dome-shaped movable contact 4 is pressed (keyed) and the back surface thereof is brought into contact with the fixed contact 3, a current flows between the two-pole fixed contacts 2 and 3 (FIG. B)). For the fixed contacts 2 and 3, brass strips plated with silver to a thickness of 1 μm were used. In FIG. 2, 5 is a resin filler.

[比較例1]
ニッケル下地層或いは中間層の厚さ、または活性化処理温度或いは処理時間を本発明規定値外とした他は、実施例1と同じ方法により銀被覆ステンレス条を製造し、実施例1と同じ調査を行った。
[Comparative Example 1]
A silver-coated stainless steel strip was produced in the same manner as in Example 1 except that the thickness of the nickel underlayer or intermediate layer, or the activation treatment temperature or treatment time was outside the values specified in the present invention. Went.

実施例1および比較例1の調査結果を表1に示した。
表1には打鍵試験前の接触抵抗を併記した。
The investigation results of Example 1 and Comparative Example 1 are shown in Table 1.
Table 1 also shows the contact resistance before the keystroke test.

Figure 2007138237
Figure 2007138237

表1から明らかように、実施例1(本発明例)の可動接点用銀めっきステンレス条は、プレス成形で銀被覆層が剥がれることがなく、良好な形状を呈していた。また100万回打鍵後においても銀被覆層の接触抵抗の増加は極僅かであった。特にNo.14は、銀めっき後熱処理を施して中間層と最表層間に銀銅合金層を形成したため、両層間の密着性が向上した。そのため打鍵による接触抵抗の増加は全く認められなかった。   As is clear from Table 1, the silver-plated stainless steel strip for movable contact of Example 1 (Example of the present invention) exhibited a good shape without the silver coating layer being peeled off by press molding. Further, the contact resistance of the silver coating layer increased only slightly after the key was pressed 1 million times. In particular, no. No. 14 was subjected to a heat treatment after silver plating to form a silver-copper alloy layer between the intermediate layer and the outermost layer, so that the adhesion between both layers was improved. Therefore, no increase in contact resistance due to keystrokes was observed.

これに対し、比較例1のNo.15はニッケル下地層(活性化層)の厚さが薄すぎ、No.16はニッケル下地層の厚さが厚すぎて脆化傾向が現れたため、No.17はニッケル下地層を設けなかったため、また、No.18は処理温度が低く活性化層を充分に形成されなかったため、No.19は活性化処理温度が高すぎたため、更に、No.20は中間層の厚さが薄く活性化層が酸化したため、No.21は中間層の厚さが厚すぎて割れが生じやすくなったため、いずれにおいてもステンレス鋼基材とニッケル下地層間の密着性が低下した。その結果、比較例1は、プレス成形時に銀被覆層に割れが多数生じ、また打鍵後に銀被覆層の接触抵抗が増大した。   On the other hand, No. 1 of Comparative Example 1 was used. No. 15 has a nickel underlayer (activation layer) that is too thin. No. 16 has a nickel base layer that is too thick and tends to become brittle. No. 17 was not provided with a nickel underlayer. No. 18 had a low processing temperature and an activation layer was not sufficiently formed. No. 19 has an activation treatment temperature too high. No. 20 has a thin intermediate layer and the activation layer was oxidized. In No. 21, since the intermediate layer was too thick and cracking was likely to occur, the adhesion between the stainless steel substrate and the nickel base layer was lowered in any case. As a result, in Comparative Example 1, many cracks occurred in the silver coating layer during press molding, and the contact resistance of the silver coating layer increased after keystroke.

打鍵試験に用いたスイッチの平面説明図である。It is plane explanatory drawing of the switch used for the keystroke test. 図1に示したスイッチのA−A断面説明図で、(イ)はスイッチ動作前、(ロ)はスイッチ動作後である。FIG. 2 is a cross-sectional explanatory view taken along the line AA of the switch shown in FIG. 1, (a) before the switch operation and (b) after the switch operation.

符号の説明Explanation of symbols

1 樹脂ケース
2 固定接点
3 固定接点
4 ドーム型可動接点
5 樹脂の充填材
DESCRIPTION OF SYMBOLS 1 Resin case 2 Fixed contact 3 Fixed contact 4 Dome-shaped movable contact 5 Resin filler

Claims (2)

ステンレス鋼基材表面の少なくとも一部に厚さ0.01〜0.1μmのニッケル下地層が形成され、前記ニッケル下地層は40〜90℃の温度で3秒以上保持する活性化処理が施されており、前記活性化処理後のニッケル下地層上にニッケル、ニッケル合金、銅、銅合金のうちの少なくとも1種からなる厚さ0.05〜0.2μmの中間層が形成され、前記中間層上に銀または銀合金の最表層が形成されていることを特徴とする可動接点用銀被覆ステンレス条。   A nickel underlayer having a thickness of 0.01 to 0.1 μm is formed on at least a part of the surface of the stainless steel substrate, and the nickel underlayer is subjected to an activation treatment for holding at a temperature of 40 to 90 ° C. for 3 seconds or more. An intermediate layer having a thickness of 0.05 to 0.2 μm made of at least one of nickel, nickel alloy, copper, and copper alloy is formed on the nickel underlayer after the activation treatment, A silver-coated stainless steel strip for a movable contact, wherein an outermost layer of silver or a silver alloy is formed thereon. ステンレス鋼基材表面の少なくとも一部に厚さ0.01〜0.1μmのニッケル下地層を電気めっきし、次いで前記ニッケル下地層に40〜90℃の温度で3秒以上保持する活性化処理を施し、前記活性化処理温度を前記ニッケル下地層の形成を含むめっき前処理で使用される電流とステンレス鋼材の電気抵抗による発熱により付与し、次いで前記活性化処理後のニッケル下地層上にニッケル、ニッケル合金、銅、銅合金のうちの少なくとも1種からなる厚さ0.05〜0.2μmの中間層を形成し、次いで前記中間層上に銀または銀合金の最表層を形成することを特徴とする可動接点用銀被覆ステンレス条の製造方法。   The nickel base layer having a thickness of 0.01 to 0.1 μm is electroplated on at least a part of the surface of the stainless steel substrate, and then the nickel base layer is activated at a temperature of 40 to 90 ° C. for 3 seconds or more. And applying the activation treatment temperature by the heat used in the pre-plating treatment including the formation of the nickel underlayer and the electrical resistance of the stainless steel material, then nickel on the nickel underlayer after the activation treatment, An intermediate layer made of at least one of nickel alloy, copper and copper alloy and having a thickness of 0.05 to 0.2 μm is formed, and then an outermost layer of silver or a silver alloy is formed on the intermediate layer. A method for producing a silver-coated stainless steel strip for a movable contact.
JP2005332874A 2005-11-17 2005-11-17 Silver-coated stainless steel strip for movable contact and method for producing the same Active JP4279285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332874A JP4279285B2 (en) 2005-11-17 2005-11-17 Silver-coated stainless steel strip for movable contact and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332874A JP4279285B2 (en) 2005-11-17 2005-11-17 Silver-coated stainless steel strip for movable contact and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007138237A true JP2007138237A (en) 2007-06-07
JP4279285B2 JP4279285B2 (en) 2009-06-17

Family

ID=38201473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332874A Active JP4279285B2 (en) 2005-11-17 2005-11-17 Silver-coated stainless steel strip for movable contact and method for producing the same

Country Status (1)

Country Link
JP (1) JP4279285B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041481A1 (en) * 2007-09-26 2009-04-02 The Furukawa Electric Co., Ltd. Silver-clad composite material for movable contacts and process for production thereof
JP2009079250A (en) * 2007-09-26 2009-04-16 Dowa Metaltech Kk Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor
JP2009099548A (en) * 2007-09-26 2009-05-07 Furukawa Electric Co Ltd:The Silver-clad composite material for movable contact and its manufacturing method
JP2009099550A (en) * 2007-09-26 2009-05-07 Furukawa Electric Co Ltd:The Silver-clad composite material for movable contact and its manufacturing method
JP2009099549A (en) * 2007-09-26 2009-05-07 Furukawa Electric Co Ltd:The Silver-clad composite material for movable contact and its manufacturing method
WO2011099574A1 (en) * 2010-02-12 2011-08-18 古河電気工業株式会社 Silver-coated composite material for movable contact component, method for producing same, and movable contact component
CN102468553A (en) * 2010-11-11 2012-05-23 同和金属技术有限公司 Silver coating material and manufacturing method thereof
JP2012119308A (en) * 2010-11-11 2012-06-21 Dowa Metaltech Kk Silver plating material and method for producing the same
CN102634826A (en) * 2011-02-08 2012-08-15 同和金属技术有限公司 Silver-coated material and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667543B2 (en) 2011-09-30 2015-02-12 Dowaメタルテック株式会社 Silver plating material and method for producing the same
JP5848169B2 (en) 2012-03-14 2016-01-27 Dowaメタルテック株式会社 Silver plating material
JP6193687B2 (en) 2012-09-27 2017-09-06 Dowaメタルテック株式会社 Silver plating material and method for producing the same
JP6086531B2 (en) 2013-03-18 2017-03-01 Dowaメタルテック株式会社 Silver plating material
JP6086532B2 (en) 2013-03-21 2017-03-01 Dowaメタルテック株式会社 Silver plating material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501309B1 (en) * 2007-09-26 2015-03-10 후루카와 덴키 고교 가부시키가이샤 Silver-coated composite material for movable contact and method for manufacturing the same
JP2009079250A (en) * 2007-09-26 2009-04-16 Dowa Metaltech Kk Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor
JP2009099548A (en) * 2007-09-26 2009-05-07 Furukawa Electric Co Ltd:The Silver-clad composite material for movable contact and its manufacturing method
JP2009099550A (en) * 2007-09-26 2009-05-07 Furukawa Electric Co Ltd:The Silver-clad composite material for movable contact and its manufacturing method
JP2009099549A (en) * 2007-09-26 2009-05-07 Furukawa Electric Co Ltd:The Silver-clad composite material for movable contact and its manufacturing method
JP4558823B2 (en) * 2007-09-26 2010-10-06 古河電気工業株式会社 Silver-coated composite material for movable contact and method for producing the same
WO2009041481A1 (en) * 2007-09-26 2009-04-02 The Furukawa Electric Co., Ltd. Silver-clad composite material for movable contacts and process for production thereof
WO2011099574A1 (en) * 2010-02-12 2011-08-18 古河電気工業株式会社 Silver-coated composite material for movable contact component, method for producing same, and movable contact component
US8637164B2 (en) 2010-02-12 2014-01-28 Furukawa Electric Co., Ltd. Silver-coated composite material for a movable contact part, method of producing the same, and movable contact part
JP5705738B2 (en) * 2010-02-12 2015-04-22 古河電気工業株式会社 Silver-coated composite material for movable contact parts, manufacturing method thereof, and movable contact parts
JP2012119308A (en) * 2010-11-11 2012-06-21 Dowa Metaltech Kk Silver plating material and method for producing the same
CN102468553A (en) * 2010-11-11 2012-05-23 同和金属技术有限公司 Silver coating material and manufacturing method thereof
CN102634826A (en) * 2011-02-08 2012-08-15 同和金属技术有限公司 Silver-coated material and manufacturing method thereof

Also Published As

Publication number Publication date
JP4279285B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP4279285B2 (en) Silver-coated stainless steel strip for movable contact and method for producing the same
JP5705738B2 (en) Silver-coated composite material for movable contact parts, manufacturing method thereof, and movable contact parts
JP4728571B2 (en) Manufacturing method of silver-coated stainless steel strip for movable contacts
JP4834022B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
JP4834023B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
JP2010146926A (en) Silver coating material for movable contact component and method of manufacturing the same
JP2007291510A (en) Silver coated composite material for movable contact and method for producing the same
JP2009099548A (en) Silver-clad composite material for movable contact and its manufacturing method
WO2007119522A1 (en) Silver coated composite material for movable contact and method for producing same
JP5749113B2 (en) Covering composite material for movable contact part, movable contact part, switch, and manufacturing method thereof
JP2012049041A (en) Silver coating material for movable contact component and method for manufacturing the same
JP2007291509A (en) Silver coated composite material for movable contact and method for producing the same
JP4558823B2 (en) Silver-coated composite material for movable contact and method for producing the same
JP5598851B2 (en) Silver-coated composite material for movable contact part, method for producing the same, and movable contact part
JP2009099550A (en) Silver-clad composite material for movable contact and its manufacturing method
JP2009099550A5 (en)
JP5391214B2 (en) Silver coated stainless steel strip for movable contacts and switch using the same
WO2007116717A1 (en) Silver coated composite material for movable contact and method for producing same
JP2020193366A (en) Production method of plated laminate, and plated laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081212

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4279285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350